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Abstract—Over the past decade, there has been a global growth
in datacenter capacity, power consumption and the associated
costs. Accurate mapping of datacenter resource usage (CPU,
RAM, etc.) and hardware configurations (servers, accelerators,
etc.) to its power consumption is necessary for efficient long-term
infrastructure planning and real-time compute load management.
This paper presents two types of statistical power models that
relate CPU usage of Google’s Power Distribution Units (PDUs,
commonly referred to as power domains) to their power con-
sumption. The models are deployed in production and are used
for cost- and carbon-aware load management, power provision-
ing and infrastructure rightsizing. They are simple, interpretable
and exhibit uniformly high prediction accuracy in modeling
power domains with large diversity of hardware configurations
and workload types across Google fleet. A multi-year valida-
tion of the deployed models demonstrate that they can predict
power with less than 5% Mean Absolute Percent Error (MAPE)
for more than 95% diverse PDUs across Google fleet. This
performance matches the best reported accuracies coming from
studies that focus on specific workload types, hardware platforms
and, typically, more complex statistical models.

Index Terms—Datacenter power modeling, statistical power
models, datacenter power efficiency.

NOMENCLATURE

r The index indicating PDU’s operating regime.
d The index indicating day.
T The set of 288 5-minute time periods within a

day.
C The set of PDUs in a cluster.
cpuPDU− Minimum PDU-level CPU usage.
cpuPDU+ Maximum PDU-level CPU usage.
·̂ The predicted value of a variable.
·̄ The average value of a variable.
uPDU

CPU PDU-level CPU usage.
λ Segment length in the Per-PDU model.
αr Intercept of the Per-PDU model in operation

regime r.
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βr Slope of the Per-PDU model in operating
regime r.

uPDU
POW PDU power consumption.

um
CPU CPU usage of machine m.

um
POW Power consumption of machine m.

Cm Hardware configuration of machine m.
Pm− Idle power of machine m.
Pm+ Maximum power usage of machine m.
lmd Binary label indicating whether machine m is

dedicated to a specific workload.
uM,PDU

POW Power usage of all machines in PDU.

uO,PDU
POW The overhead power of PDU.

NFi Platform count of platform family Fi.

uFi
CPU CPU usage of platform family Fi.

PPDU
N Maximum networking power in PDU.

PPDU
C Maximum cooling power in PDU.

APDU Power architecture of PDU.
PPDU− Total idle power of all machines in PDU.
PPDU+ Total maximum power of all machines in PDU.

I. INTRODUCTION

DATACENTERS are warehouse-sized computing systems
that operate around the clock to support large-scale

Internet services worldwide, while enabling fast growth of the
IT industry and transformation of the economy. The demand
for computing resources and datacenter power worldwide has
been continuously growing, contributing to approximately 1%
of the total electricity usage [1]. Given the rapid growth of dat-
acenter workload globally (more than sixfold in a decade) [1],
novel methodologies for improving datacenter power and
energy efficiency can have a considerable economic, environ-
mental and performance impact [2]. The focus of this paper
is on the development of power models that predict power
consumption of power domains in Google’s datacenters as a
function of their resource usage and hardware characteristics,
which are used for efficient datacenter planning and compute
load management.

There exists a body of literature focused on provisioning
power consumption at component, circuit, server, PDU1 (also
referred to as power domain) and datacenter levels [2]. While
component (e.g., processor) level power models are typically

1PDU stands for Power Distribution Unit, multiple of which comprise a
datacenter campus. PDUs are metered and encapsulate all servers, networking
equipment and data storage.
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designed to capture relationships between control signals and
component states at different time scales [2]–[5], they are usu-
ally designed for specific types of hardware and are hard to
use for power provisioning in hyperscale datacenters that are
highly heterogeneous in workload types, platform families,
and platform level control mechanisms [6]. Statistical models
(sometimes referred to as software-based models) [2], [7] have
proven effective in modeling either individual subsystems of
a server such as CPU, memory, disk and network, or a virtual
machine, server, server cluster [8], or whole datacenters.

In this paper, we discuss two types of statistical power
models deployed at Google which relate a power domain’s
CPU usage to its power consumption at 5-minute granularity.
The first type, named Per-PDU model, is piecewise-linear in
CPU usage and retrained daily for each PDU. The second
type, named Unified model, is used to 1) predict a sin-
gle machine power, which is then aggregated to obtain the
PDU power estimate (Unified Machine Model), or 2) directly
predict PDU power (Unified PDU Model). The Unified models
utilize Random Forest regression to capture nonlinear depen-
dence between machine/PDU power consumption, CPU usage,
machine/PDU hardware characteristics, and machine-workload
sharing properties. Both types of models implicitly incorpo-
rate the effects of task scheduling and CPU/voltage frequency
scaling.

Each model shows advantages in certain use cases. For
example, the Per-PDU model’s predictive performance across
all CPU/power usage regimes and its piecewise-linearity
is exploited within Google’s Carbon-Intelligent Computing
System [9] to evaluate the impact of changes in datacenter
clusters’ CPU usage on their power consumption as a result of
shifting workloads in time and across locations. The Per-PDU
model has also been used for estimation and real-life valida-
tion of a datacenter’s potential to reduce power consumption
during grid-level demand response events. On the other hand,
the Unified Machine Model is used to set CPU utilization lim-
its and ensure that the power capping [10] thresholds are not
exceeded. Our evaluation has shown that the Unified models
are best suited for quantifying the impact of large perturba-
tions in compute usage due to load migrations, maintenance, or
infrastructure upgrades, as well as long-term capacity planning
for future datacenters.

The previous studies on statistical power models primar-
ily focused on a single machine or a group of machines, and
have been limited in the number of machine configurations,
workload types and targeted use cases ([7] and references
therein). Modeling approaches involving a single server and a
few-server models for specific platforms and workloads (e.g.,
streaming media, synthetic workloads, SPECpower database
applications, etc.) report a wide range of prediction errors,
from 2% to 26% [7]. At a datacenter level, modeling of power
consumption has mainly been addressed via stylized mod-
els [11]–[13] with little or no performance validation. The
best previously reported prediction error for a cluster ([8])
comprised of thousands of servers serving Webmail and Web-
search workloads, as well as data processing pipelines using
Mapreduce [14] is 1% [10]. This model was previously used
at Google to estimate PDU power consumption, but has been

substituted by the new generation of models discussed in this
paper. We refer to it as the “benchmark model”, and quantita-
tively demonstrate the superior performance of the new models
by conducting validations across all PDUs within the Google
datacenter fleet (Section III).

To summarize, the key contributions of the discussed work,
when compared to the state-of-the-art, include:

• Use-case-driven design: The proposed power model
design is driven by a wide range of targeted use cases,
which include: 1) real-time estimation of datacenter
power consumption and its electricity-based carbon foot-
print [15], [16]; 2) near-term (intraday and day-ahead)
cost-and-carbon-aware workload management (including
software-controlled power capping [10] and grid-level
demand response [15], [17]–[19]); and 3) power provi-
sioning and rightsizing of future machine upgrades given
monthly, quarterly, or yearly projected resource usage
trends [10].

• Largest scale validation: To the best of our knowledge,
the paper discusses the largest-scope power modeling
system deployed for their training and validation, which
spans all power domains across the Google datacenter
fleet with their heterogeneous hardware configurations,
workload types and resource utilization regimes.

• High accuracy: A multi-year validation of the discussed
models has consistently demonstrated high prediction
accuracy throughout the dynamic range of power
domains’ utilizations. While the deployed models use
only basic hardware and CPU usage characteristics, the
predictive performance matches the best reported results
in the related literature [10], [20], [21].

The rest of the paper is organized as follows. Section II
describes the overall power architecture of a datacenter, dis-
cusses the deployed system used for daily training and vali-
dation, and reviews the Per-PDU and Unified models in more
detail. The performance of the proposed models for differ-
ent use cases is discussed in Section III. Finally, Section IV
concludes the paper.

II. DATACENTER INFRASTRUCTURE

AND POWER MODELING

In this section, we 1) describe a typical Google datacenter
power architecture, 2) briefly discuss its workload classifica-
tion and management, 3) introduce a system used for data
collection, training and validation of the deployed power mod-
els, and 4) include a detailed overview of the two types of
power models, with a brief discussion on their complexity and
scalability.

A. Power Architecture

Figure 1 shows a simplified view of power architecture of a
typical Google datacenter [22]. Every datacenter is connected
to the electric grid via several medium-voltage feeders. Each
medium-voltage distribution line is transformed to supply low-
voltage PDUs. PDUs are typically connected to multiple BUS
ducts. The BUS ducts supply power to the IT equipment (i.e.,
compute, storage and networking racks), fan coils (used for
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Fig. 1. A simplified representation of datacenter power distribution hierarchy.

cooling) on the datacenter floor and, in some cases, off-floor
cooling equipment (e.g., chillers).

A single PDU typically has a few thousand machines and a
handful of PDUs comprise a cluster. The PDUs in each clus-
ter belong to a single job-scheduling domain, i.e., a common
real-time scheduler that assigns computing tasks to its feasible
machines. Generator backup is available to keep the datacen-
ter running in the event of power outage. Depending on the
architecture, the PDUs in a cluster are either connected to a
separate backup generator or to a common backup generator
that supports the medium-voltage line.

All PDUs are metered and provide power measurements
which are used to train and validate the models discussed in
the subsequent sections. It is observed that datacenter power
can be accurately expressed as the sum of its individual PDU
measurements inflated by a few percent overhead to account
for unmetered auxiliary loads such as office HVAC.

B. Datacenter Workloads and Their Management

Machines at Google are set up to run any application, con-
nected via high bandwidth switches within a campus and via
a global backbone network connecting datacenters. Datacenter
hardware is controlled and administered by specialized soft-
ware that can handle massive scale. To the extent possible,
hardware controls, job scheduling, etc., are abstracted away
from users.

Compute jobs at Google are managed by a distributed
cluster-level operating system (known as Borg [23]). These
jobs can be roughly split into two categories: 1) indefinitely
running servers, and 2) batch processes (e.g., data process-
ing pipelines using MapReduce or Flume [14], [24]). Jobs

Fig. 2. Data processing and training pipeline.

can consist of several tasks (sometimes thousands), both for
reasons of reliability and because a single process can’t usually
handle all traffic. The cluster operating system is responsible
for task allocation across machines within a cluster, which
includes starting a job, finding machines for its tasks (i.e., task
scheduling), allocating requested resources (CPU/RAM/disk)
on machines, and instructing the machines to start executing
the tasks. A machine is either dedicated to a specific workload
(e.g., Search), or shared among various workloads.

The PDU-level CPU usage of serving jobs (category 1) in
Google datacenters have predictable daily patterns. On the
other hand, the total PDU-level CPU usage of batch processes
has considerable intraday variability and their intraday pro-
files are hard to accurately predict [9]. As a result, the total
PDU-level CPU usage typically varies significantly within a
day with fluctuations larger than 10% for more than half of
the PDUs across the Google fleet.

C. Power Modeling Pipeline

The power modeling pipeline is used for data extraction,
processing, training and validation of two types of power
models, Per-PDU and Unified, that map CPU usage to power
consumption at 5-minute granularity.

The pipeline consists of components with specific function-
ality such as (Figure 2):

1) Collection of usage and machine/PDU hardware config-
uration data,

2) Data processing for detection of outliers and their
removal,

3) Power models training, and
4) Performance evaluation.
The collected usage data includes: 1) power consumption

and CPU usage of every single machine across the fleet at
5-minute granularity, collected through built-in power sen-
sors, reported by the machine OS, and logged and maintained
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in a Google-internal database; 2) PDU power at 5-minute
granularity, collected by power meters for each PDU and
stored in a separate Google-internal database. The gathered
configuration data includes both machine and PDU configura-
tion information as discussed in more detail in Section II-D2.

The data processing is conducted before the power models
are trained with the goal to automatically detect and remove
outliers from the data set. It has been observed that the out-
liers mainly correspond to atypical regimes in CPU usage
and power measurements caused by rare maintenance events,
power meter malfunctions, losses in stored data, etc. Rare and
short-term losses in the collected usage data are handled using
linear interpolation of the time series. Other heuristics used to
automatically detect and remove outliers include:

• Smoothing using Exponentially Weighted Moving
Average (EWMA) in cases where CPU usage changes
more than 30% from one 5-minute interval to the next
(which is rare);

• Removing data instances for which changes in power
measurements cannot physically match the corresponding
change in CPU usage from one 5-minute interval to the
next. For example, data instances with �|power usage| >

20�|CPU usage| for any two consecutive 5-minute mea-
surements are excluded. This type of anomaly is typically
caused by erroneous power meter readings;

• Filtering out data instances with PDU power measure-
ments smaller than 80% of its daily median. It is observed
that these power drops are extremely rare and coincide
with 1-2 hour-long maintenance events.

The power models are trained after the data processing step.

D. Power Models

As discussed above, PDUs contain servers, cooling and
networking equipment. The telemetry system available in
each PDU enables collection of power consumption data at
5-minute granularity and, therefore, a supervised learning
framework for modeling PDU power consumption.

While datacenter infrastructure planning and real-time
workload management are typically driven by trends in work-
load resource usage (CPU, RAM, disk usage), the analysis
in this paper demonstrates that PDU power consumption can
be accurately estimated using only its CPU usage. This con-
clusion holds irrespective of the diversity in machine types,
e.g., compute, storage, accelerators (TPU or GPU), etc., which
might appear surprising. However, it is well known that storage
machines have a narrow dynamic range of power usage [2],
which translates into a small impact on power fluctuations
when aggregated at a PDU level. Our empirical analysis
demonstrates similar conclusions with regards to accelerators.
The proposed models demonstrate high power prediction accu-
racy irrespective of PDUs’ diversity in machine types and
workloads.

The following subsections discuss the Per-PDU and Unified
models in more detail.

1) Per-PDU Power Model: To enable power efficiency
and carbon-aware workload management as in [9], we use a

Fig. 3. Structure of the piecewise linear model.

light-weight, piecewise-linear Per-PDU model. The piecewise-
linearity of the model allows for easier and tractable inte-
gration of the power usage sensitivity within the datacenter
power-aware load management optimization problems.

Extensive analysis of 5-minute average PDU power
consumption uPDU

POW , as a function of its average CPU
usage uPDU

CPU , indicates three distinct utilization regimes
(Figure 3). Furthermore, PDU power consumption monotoni-
cally increases with its CPU usage. Based on this observation,
the linear models are trained for low, medium and high CPU
usage regimes, as defined below:

⎧
⎨

⎩

low, if uPDU
CPU ≤ cpuPDU− + λ

medium, if uPDU
CPU ∈ [

cpuPDU− + λ, cpuPDU− + 2λ
)

high, if uPDU
CPU ≥ cpuPDU− + 2λ.

PDU minimum and maximum CPU usage, i.e., cpuPDU− ≡
min uPDU

CPU and cpuPDU+ ≡ max uPDU
CPU are measured historically.

Note that in the previous expressions we omit the reference to
time for more clarity. The three segments are assumed to be of

equal lengths, defined as λ = cpuPDU+ −cpuPDU−
3 . Piecewise-linear

models in the context of machine and cluster power estima-
tion were previously proposed in [21], where the Multivariate
Adaptive Regression Splines (MARS) [25] was used to auto-
matically learn the regime switching points (called knots). The
Per-PDU model is defined using the three equal-width seg-
ments corresponding to low, medium and high usage regimes,
while achieving continuity (i.e., change in PDU power as a
function of a change in its CPU usage is bounded by the
platform-aware constant), monotonicity (i.e., PDU power is
monotonically increasing in its CPU usage) and desirable
accuracy for the use cases of interest.

For each PDU, linear models are trained for each usage
regime to estimate the power consumption of a given PDU as

ûPDU
POW = αr + βruPDU

CPU . (1)

The intercept and slope corresponding to each regime, i.e.,
αr, βr, r ∈ {low, medium, high} are computed so that the
weighted sum of squared errors is minimized. The model
parameters in (1) are constant for each day and updated daily.
The daily training uses the most recent 7 days of PDU power
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Fig. 4. Nonlinear relationship between machine power and CPU utilization for compute, storage and accelerator machine types. Actual power is presented
in blue, while the Unified Machine Model’s predictions are in red.

and CPU usage data and is done to adapt the model in case
of hardware changes (deployment/decommission of servers).
In addition, the training instances are weighted based on their
recency, i.e., higher weights are assigned to more recent mea-
surements to ensure proper adaptation to systematic changes
in the fleet. In particular, the pipeline uses 1

1+d to weigh data
instances from d days ago.

The predictive performance of the Per-PDU model is eval-
uated daily using power/CPU usage data from the next day
(Section III). It is observed that the Per-PDU model can
adapt to sporadic changes in workload properties and hard-
ware infrastructure in ∼ 2 days. Outside of these transient
regimes, the model parameters typically change very slowly
in time. Note that the Per-PDU model implicitly incorporates
effects of real-time scheduling and frequency scaling within a
PDU.

In addition to the efficiency-aware workload management,
the Per-PDU model is used for monitoring and near-term
predictions of Google datacenter power usage and electricity-
based carbon footprint. These models are particularly useful
when power measurements are delayed or power meters are
broken.

2) Unified Models: In this section, we discuss Unified
Machine and PDU models that are useful for long-term infras-
tructure planning. In this scenario, the models are used to
predict the power consumption of future PDUs (e.g., after
adding some machine capacity) that operate at a given CPU
utilization. The Per-PDU model is not applicable to this use
case since it implicitly assumes specific PDU hardware con-
figuration and workload types. In order to effectively plan for
power consumption of existing or future PDUs with changing
server compositions, we need power models that can be gen-
eralized across PDUs and are able to incorporate knowledge
about server deployment plans.

For the Unified Machine Model, a PDU is a collection of
machine types, while for the Unified PDU Model, a PDU is
a collection of platform families. Both models can be trained
using data from one PDU to predict power usage of a different
PDU (Section III).

Random Forest [26] is used to model nonlinear relationships
between the features (CPU usage/utilization, machine/PDU

hardware characteristics, and machine-workload sharing
properties) and the power consumption of a machine (Unified
Machine Model) or PDU (Unified PDU Model) across the
Google fleet. Random Forest regression has been widely used
to learn nonlinear relationships among variables in various
research areas [27]. In particular, it can handle high dimen-
sional data with both continuous and discrete variables. The
abundance of power consumption and CPU usage data for
all machines and PDUs across the Google datacenter fleet
makes this class of models good candidates for predicting their
relationships.

To train the Random Forest regressor, the Sklearn [28]
package is used with the default values for most of the hyper-
parameters and the Mean Squared Error as the minimization
objective. However, some hyperparameters such as number of
trees, maximum tree depth and minimum number of samples
in each leaf node were manually tuned so that the training
and validation errors attain convergence within the selected
number of samples and show no further improvement.

Unified Machine Model estimates power consumption of
each machine deployed in a PDU, which are then added up to
predict the PDU power. To predict machine-level power con-
sumption, the industry has been mainly using the approach
in [10], which interpolates power usage based on a straight
line connecting machine’s idle power (corresponding to 0 CPU
usage) and maximum power (corresponding to the maximum
CPU usage). However, in reality, the relationship between
machine’s CPU usage and its power consumption is nonlinear
as shown in Figure 4. The Unified Machine Model captures
the nonlinear relationship (Figure 4) for each machine type
within the Google datacenter fleet.

There are three machine types: compute, storage, and
machines with accelerators (TPUs or GPUs). For all three
types, CPU utilization is a strong predictor of their power
usage, as shown in Figure 4. Moreover, as shown in Figure 4,
the relationship between CPU and power usage varies for var-
ious machine types. Thus, machines’ hardware characteristics
affect their power usage as well and are included as features
into the model.

The Unified Machine Model is trained using the following
features:
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• Cm: machine m’s motherboard family (i.e., configuration)
comprising CPU type and size, memory quantity ×
size, SSD quantity × size, disk quantity × size, etc.
(e.g., Xeon machine with nCPU CPUs, nRAM × 32GB
memory, and ndisk × 1TB disk). Each machine config-
uration has a unique code in the format of a 5 digit
number. Machine configuration is a discrete feature, con-
verted into a series of binary features using the one-hot
encoding approach [29]. Additional feature selection is
used to remove the features that do not impact the model’s
predictive performance.

• Pm−, Pm+: idle and maximum power usage of machine m
with a given configuration.

• lmd : binary feature indicating whether machine m is ded-
icated to a specific application (e.g., Search). If equal
to 0, this means that machine m is shared by various
applications (i.e., workloads).

• um
CPU: CPU usage of machine m.

The objective is to develop a mapping f (.) between the
above-described features and power consumption of machine
m, expressed as ûm

POW = f (Cm, Pm−, Pm+, lmd , um
CPU).

The model training uses a week of Google fleetwide
machine usage and configuration data, which is then randomly
sampled to keep 30000 5-minute data instances that capture
all machine configurations and machine-workload sharing set-
tings. Furthermore, to ensure high prediction accuracy along
the full CPU/power usage operating regime of each machine
family, the stratified sampling [30] is applied, i.e., machine’s
CPU utilization range is split into 10 equally spaced buckets,
after which the data is sampled randomly from each bucket.

The total power consumed by the machines within a given
PDU, uM,PDU

POW , is estimated by summing over machine level
power predictions, i.e.,

ûM,PDU
POW =

∑

m∈PDU

ûm
POW

=
∑

m∈PDU

f
(
Cm, Pm−, Pm+, lmd , um

CPU

)
. (2)

Finally, to predict total PDU power, ûPDU
POW , the power usage

of its networking and cooling equipment, uO,PDU
POW := uPDU

POW −
uM,PDU

POW , is estimated and added to the total predicted machine
power ûM,PDU

POW . Since uO,PDU
POW exhibits small variations over

time and is significantly smaller than PDU total power con-
sumption, we estimate it using its average value from the
previous day, ūO,PDU

POW .
The high accuracy of the Unified Machine Model (discussed

in more detail in Section III) is attributed to: 1) the fact that the
model is trained using all machine configurations and operat-
ing regimes (from 0% CPU usage to almost 100% CPU usage);
2) the scale of aggregation of machine level power estimates
(tens of thousands) to compute PDU power predictions; and
3) more detailed system-related features.

Unified PDU Model estimates PDU power consumption
uPDU

POW , using PDU-level hardware and CPU usage features as
listed below:

• PPDU− , PPDU+ : sum of the idle and maximum machine
powers in PDU.

• NFi : total number of machines per platform family Fi. For
example, all computing machines with Intel CPUs belong
to the platform family named Intel. Another category of
machines is storage which, depending on the type of stor-
age (e.g., SSD), has a few different platform families.
Overall, there are 10 platform families across Google’s
datacenter fleet, say F1, . . . , F10, with the correspond-
ing number of machines within a given PDU denoted as
NF1 , . . . , NF10 , which are used as features.

• uFi
CPU : sum of CPU usage of all machines per platform

family in a PDU, that is, uFi
CPU := ∑

m∈Fi
um

CPU, i =
1, . . . , 10, are used as the CPU usage features. Note
that each platform family contains several machine
configurations.

• PPDU
N : power drawn by the networking equipment within

a PDU is not metered separately, and we use its maximum
value as a proxy. A small dynamic range of network-
related power consumption justifies the approximation
(also previously observed in [2], [10]).

• PPDU
C : Similar to PPDU

N , maximum power drawn by the
cooling equipment within a PDU is used as a proxy for
its power.

• APDU : categorical feature used to identify the type of
PDU power architecture from the three available types,
and is one-hot encoded.

The objective is to develop a mapping g(.) between the above
described features and PDU power consumption, expressed as

ûPDU
POW =
g
(

PPDU− , PPDU+ , {NFi}10
i=1, {uFi

CPU}10
i=1, PPDU

N , PPDU
C , APDU

)
.

(3)

The model is trained using around 1 million instances of
PDU-level CPU and power usage measurements at 5-minute
granularity, and across all PDUs within the Google fleet.

Both Unified models (Machine and PDU) are trained using
the same week of data to provide a consistent baseline for
their performance comparison. The prediction accuracy of
the Unified PDU Model significantly depends on the distri-
bution of the platform family mix and CPU usage regimes
captured by the training data, as discussed in more detail in
Section III-B1.

E. Model Complexity

The Per-PDU model is a piecewise linear regression model
and its complexity is O(n), with n being the sample size of the
training data [31]. The time complexity of the Random Forest
regression models is O(n log n), as discussed in [31].

The Per-PDU models are decoupled and can be trained in
parallel for each PDU, and thereby, completed within minutes.
The Random Forest regression model also has parallelization
built-in and is typically trained in 2 hours. In addition, our
validation analysis has shown that the Unified models insignif-
icantly change over time and, consequently, do not require to
be retrained often.

The models in this paper typically do not take up a lot
of storage space due to the small number of hyperparameters
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that they use. Thus, the space complexity is not a constraining
factor. The Per-PDU model is usually a few kilobytes (for one
PDU) and the Unified models are a few gigabytes.

III. PERFORMANCE EVALUATION THROUGH TARGETED

USE CASES

The previously discussed power models are rigorously
validated for all PDUs across the Google datacenter fleet.
Their predictive performance is analyzed while taking into
consideration the use cases of interest:

1) Near-term power estimation and, consequently, carbon
accounting ([15], [16]);

2) Near-term load shaping, which includes peak power
shaving ([10]), load drop experiments (e.g., grid level
demand response [17]), as well as carbon- and cost-
aware load shifting ([15], [18], [19]);

3) Long-term planning and rightsizing of future datacenter
infrastructure, including upgrades and deployments.

For the majority of the use cases listed above, the main goal
is to accurately predict PDU power consumption as a function
of its CPU usage (or utilization), hardware and machine-
workload sharing properties. There are different performance
metrics that could be used to quantify the prediction’s devia-
tion from the actual power measurements. The metrics should
provide a reasonable comparison across various PDUs regard-
less of their maximum power capacities. To that end, Mean
Absolute Percent Error (MAPE) for a day d, is chosen to
evaluate performance of the power models, and is defined as

MAPEPDU(d) = 100%

|T |
T∑

t

|ûPDU
POW(t) − uPDU

POW(t)|
uPDU

POW(t)
. (4)

A. Use Case #1: Near-Term Power Estimation

To test 5-minute power prediction accuracy across all PDUs
fleetwide, the deployed models are trained using seven days
of historical data, and their performance is evaluated using
the actual CPU and power usage, as well as other features
collected on the following day.

To compare the performance across all discussed models, a
2-step evaluation analysis is conducted:

1) For a randomly selected week, we compute the average
daily MAPE for each PDU and model using:

MAPE
PDU

:= 1

7

∑

d∈week

MAPEPDU(d). (5)

Then, we capture the fraction of PDUs with the aver-
age daily MAPE smaller than a given percent value.
As shown in Figure 5, all three models have similar
performance, with MAPE smaller than 5% for more
than 90% PDUs, and MAPE smaller than 10% for more
than 99% of PDUs. The uniformly low MAPE across all
models makes them good candidates for short-term esti-
mation and forecasting of PDU average power, which
is aggregated to obtain cluster-level and campus-level
power predictions. Figure 5 also includes the average
daily MAPE of the linear model in [10], referred to
as the “benchmark” model. The “benchmark” model
aggregates the output of the linear model between the

Fig. 5. Fraction of PDUs with average daily MAPE less than a given value.

Fig. 6. Fraction of PDUs with the median and 99th percentile of daily
Per-PDU’s MAPEs less than a given value.

idle and maximum power consumption for each machine
type within a PDU as a function of its CPU usage. The
“benchmark” model has been previously used at Google
to predict datacenter power consumption and the figure
shows that it is significantly outperformed by the new
generation of power models discussed in this paper.

2) To test the uniformity of the evaluated performance
across time, daily MAPEs are calculated for
each PDU across a year-long time horizon, i.e.,
{MAPEPDU(d)}d∈year. Both the Unified PDU and
Unified Machine Models are inherently time-invariant
since their training data incorporates the full range of
values of their features. On the other hand, to evaluate
the temporal insensitivity of the Per-PDU model, the
50th and 99th percentiles of {MAPEPDU(d)}d∈year

are computed for each PDU. We then compute the
fraction of PDUs with their daily MAPE median (50th
percentile) and 99th percentile smaller than any given
percentage value. As shown in Figure 6, the Per-PDU
model’s overall performance exhibits some performance
deviations across time.

B. Use Case #2: Load Shaping

The Per-PDU model’s piecewise linearity provides a suit-
able framework to evaluate the impact of changes in CPU
usage on power usage, which can then be easily integrated
into cost- and carbon-aware optimizations designed to shape
compute load by shifting compute tasks in time and space
([9], [17], [18]), i.e., between datacenter clusters. However,
while the discussed models have comparable MAPEs when
predicting changes in power usage as a result of small varia-
tions in CPU usage, this is not the case when changes in CPU
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Fig. 7. Example of a substantial load drop in one of the experimental PDUs.

Fig. 8. Cluster level performance of the proposed models for eight
experimental clusters during the planned power drop event.

usage are more substantial, which typically happens during
datacenter maintenance events, or grid-level demand response
events.

1) Power Drop Experiments: There are several applications
in which a model’s capability to accurately extrapolate power
usage outside the previously seen regimes of compute load
is critical. Examples of such applications are: 1) risk-aware
planning of large workload migration across various clusters,
and 2) substantial, planned drops in compute load to respond
to grid-level demand response events.

To evaluate the applicability of the proposed approaches to
such scenarios, we discuss two conducted experiments (tests).

In Test I, power drop experiments were conducted in 8
clusters spanning all types of power architectures across the
Google datacenter fleet. The planned CPU usage drop was
performed between 3:50 pm and 5:25 pm on a given day by
progressively terminating non-critical tasks based on their pri-
ority (starting with the lowest priority). Performance of the
proposed models was evaluated within the testing interval.
Figure 7 shows an example of the actual power and CPU
usage for an experimental PDU, along with the corresponding
predictions of the three models.

To evaluate performance of the power models, average
MAPE is computed across all PDUs within a given cluster
and using the data instances within the testing interval, i.e.,∑

PDU∈C MAPEPDU

|C| . The experimental results in Figure 8 demon-
strate that the Unified Machine Model has the best predictive

Fig. 9. Power usage profile on a test day and the corresponding Per-PDU
predictions computed by applying the trained models to the actual PDU-
level CPU usage profiles for all power domains within the selected datacenter
campus.

performance during the power drop events, with an average
MAPE of less than 6% across all the test clusters. However,
there are cases where the Per-PDU and Unified PDU mod-
els perform comparably well. Clusters 3 and 6 in Figure 8
are two examples where both the Per-PDU and Unified PDU
models generate accurate predictions. This is not surprising
given that the dropped, experimental, CPU usage is captured
in the training data. There are, however, scenarios, where the
Per-PDU model’s MAPE is less than 5% even when the low
CPU usage regime is not present in its training data (e.g., see
clusters 1, 4 and 5 in Figure 8), which implies that the extrap-
olated, low-usage-regime segment of the Per-PDU model is
still an effective predictor of PDU power.

The reliability of the electricity grid can be jeopardized
and the price for obtaining additional power capacity corre-
spondingly rises in periods of high demand. Therefore, utilities
offer incentives, through Demand Response (DR) programs,
for their customers to drop loads when requested. As large
power consumers on the grid, datacenters’ ability to reduce
demand at grid-critical hours could contribute to the electricity
grid’s stability and lower average cost.

During summer months of 2021, Test II was conducted
to evaluate Google datacenters potential to drop power for
6 hours on selected days: 7/13, 7/29, 7/30, 7/31, 8/11. The
power load was dropped by enforcing lower cluster-level CPU
consumption using the capacity curve mechanism that lever-
ages temporal flexibility of some of compute workloads, as
recently proposed in [9]. The load shedding was accom-
plished in two stages lasting 2 and 4 hours to avoid negative
performance implications on workloads due to the abrupt and
significant drops in available CPU capacity. The outcome of
the campus-level CPU usage drop on its power consumption
on one of the test days is captured in Figure 9. The normal-
ized power consumption is computed by dividing campus-level
actual power usage by its average daily value over non-event
hours.

The Per-PDU model was used to evaluate power usage pre-
dictability using CPU usage profiles on event days. To obtain
the campus-level load shedding impact, the Per-PDU models,
trained on days before the test dates were applied for every
power domain within a campus, and then summed to compute
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Fig. 10. CDF of maxd∈5 month horizon WUPEPDU(d) across all PDUs in the
datacenter fleet.

the campus-level power consumption. It was observed that
the PDU-level predictive performance guarantees were not
affected by the large perturbations in CPU usage. Moreover,
as expected, the power prediction uncertainty at a campus
level decreases and the evaluated, out-of-sample, MAPEs are:
0.6% (7/13), 0.5% (7/29), 0.5% (7/30), 0.3% (7/31), and 0.6%
(8/11).

2) Power Capping: As discussed in Section I, another ben-
efit of accurate power models is software-controlled power
capping [10], used to limit maximum power usage of a PDU
by controlling its CPU usage. To attain this goal in a risk-
aware manner, characterizing model’s underprediction error
(i.e., when predictions are lower than the actual power mea-
surements) is critical to ensure that the targeted PDU-level
power usage limit is respected by the model-based control
of its CPU usage limit. To that end, the worst (largest) 90-
day underprediction (percent) error is computed daily using
the data instances with high PDU-level CPU utilizations (and
therefore, high power utilizations):

WUPEPDU(d) = 100% max
uPDU

CPU (t)∈high

t∈[d−1,d−90]

(
uPDU

POW(t) − ûPDU
POW(t)

)

uPDU
POW(t)

. (6)

To avoid tripping PDUs’ circuit breakers, the power capping
system typically responds by throttling low priority comput-
ing tasks, which reduces their CPU (thereby, power) usage. To
bound the frequency of the power capping events and define
the related, user-perceived service level objectives (SLOs),
statistical properties of a model’s underprediction error is used.

Next, for each PDU, maximum underprediction error of the
Per-PDU model is computed over a 5-month time horizon,
(i.e., maxd∈5 month horizon WUPEPDU(d)), the CDF of which is
shown in Figure 10. The maximum of the worst underpre-
diction errors across all PDUs are then used to obtain the
fraction of PDUs with the corresponding maxima less than a
given value. The analysis shows that for 99% of PDUs, the
worst underprediction error is less than 9.3%. It is observed
that larger underprediction errors in some PDUs typically hap-
pen due to the unpredicted machine upgrades, to which the
Per-PDU model typically adjusts within 2-3 days.

C. Use Case #3: Rightsizing Infrastructure Upgrades

The structure and accuracy of the Unified Machine Model
make it suitable for cost- and performance-aware infrastructure

Fig. 11. Fraction of the hold-out PDUs with MAPEPDU smaller than a given
percent error.

planning, commonly referred to as rightsizing. Typical plan-
ning scenarios require: 1) provisioning power consumption
after deployments/decommissioning of machines, 2) analysis
of the long-term impact of platform mix in a power domain
on its power consumption, and 3) studying the effect of large
workload migrations across a datacenter fleet on its power
consumption. Such scenarios require long-term forecasting
(monthly, quarterly, etc.), where PDU power and resource
usage data are either unavailable, or the predicted operating
regime is different from the historically observed pattern. The
Unified Machine Model predicts power consumption of a PDU
by aggregating its machine-level predictions, where machine-
level training instances capture the full dynamic range of CPU
utilizations (see Section II-D2 for more details). This enables
the model to predict power consumption at various operating
regimes with higher accuracy.

To evaluate performance of the Unified Machine Model
in predicting power consumption of new (future) PDUs, 47
PDUs across all power architectures were randomly selected
and removed from the training dataset. The Unified Machine
Model was then retrained on the reduced training data set,
and used to predict PDU-level power for each of the hold-out
PDUs at 5-minute time granularity. The model was tested on a
week of data outside the time period used in the training data
set. For each hold-out PDU, MAPEPDU was computed using
all data instances within the test week/dataset. When aver-
aged across all tested PDUs, the computed MAPE was 2.23%,
while PDU-level MAPEs were below 5% for the majority of
the tested domains (Figure 11). This was consistent with the
prediction accuracy for PDUs included in the training data
set, and indicates the ability of the Unified Machine Model to
provision power of unseen PDU configurations.

IV. CONCLUSION

In this paper, design of two types of statistical power models
(named the Per-PDU and Unified models) is discussed along
with rigorous validations of their accuracy, simplicity, inter-
pretability and applicability to all hardware configurations and
workloads across the Google fleet of hyperscale datacenters.
The two types of models are already deployed in production
and trained using machine-level and PDU-level power and
CPU usage measurements, and their basic hardware charac-
teristics. The models are developed to accommodate several
use cases of interest including: cost- and carbon-aware load
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management, power and carbon footprint provisioning, peak
power control (i.e., power capping) and infrastructure right-
sizing. To the best of our knowledge, this is the largest scale
datacenter power modeling effort in both the scope of diverse
use cases and the variety of hardware configurations and work-
load types used for modeling and validation. The extensive
analysis of the models’ prediction accuracy across Google fleet
demonstrates their state-of-the-art performance.

The models currently facilitate several decision-making sce-
narios that datacenter planners and compute providers face
today. Our goal is to develop modeling extensions to enable
Google’s 24/7 carbon-free datacenters [32].
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