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Abstract—Soft open points (SOPs) are power electronic devices 

which can replace conventional normally open points in 

distribution networks. SOPs enable full control of active power 

flow between the interconnected feeders and can inject reactive 

power at each node to which they are connected. SOPs integrated 

with energy storage (ES) have been recently proposed to realize 

both spatial and temporal flexibility in active distribution 

networks. The flexibility provided by integrated ES-SOP devices 

will allow network operators to run their networks closer to their 

limits, but only if there is appropriate management of the 

uncertainty arising from demand and renewable generation. The 

only existing model of an ES-SOP uses nonconvex nonlinear 

equations, neglects uncertainty, and represents converter losses in 

an oversimplistic manner. This paper presents a robust mixed-

integer convex model for the optimal scheduling of integrated ES-

SOPs to ensure a zero probability of constraint violation. Losses of 

the subsystems comprising the ES-SOP are modelled using a 

proposed binary-polynomial model, enabling efficient scheduling 

of the energization state of subsystems to reduce no-load losses. 

The ES-SOP is considered in this paper to be owned by the 

network operator to: 1) manage power flow constraints, 2) 

minimize cost of losses, and 3) maximize arbitrage profit. 

 
Index Terms—Converter losses, convex optimization, energy 

storage, robust optimization, soft open point. 

NOMENCLATURE 

A. Sets 

Dt Uncertainty set of nodal net injection at time t. 

k:j→k Set of nodes connected to node j except node i. 

Ωb, Ωn, Ωt Set of network branches / nodes / time periods. 

B. Indices 

i, j Indices of nodes (i, j ∈ Ωn). 

ij Index of branch ij (ij ∈ Ωb). 

t Index of time. 

C. Variables 

b1,t,  b2,t, 

b3,t 

Binary variables which define the energization state of 

AC-DC converters 1 and 2, and the DC-DC converter 

at time t. 

Iij,t Current magnitude of branch ij, at time t. 

k11,t, k12,t Auxiliary variables for AC-DC converter 1. 

k21,t, k22,t Auxiliary variables for AC-DC converter 2. 
ES-SOP

3, 3,  abs
,

t t
k P  Auxiliary variables for the DC-DC converter. 

k4,t Auxiliary variable for the battery. 

Lij,t Squared current of branch ij at time t. 
ES-SOP

1,t
P  Active power of AC-DC converter 1 at time t. 

ES-SOP,L

1,t
P  Active power loss of AC-DC converter 1 at time t. 

ES-SOP

2,t
P  Active power of AC-DC converter 2 at time t. 

ES-SOP,L

2,t
P  Active power loss of AC-DC converter 2 at time t. 

ES-SOP

3,t
P  Active power of the DC-DC converter at time t. 

ES-SOP,L

3,t
P  Active power loss of the DC-DC converter at time t. 

ES-SOP

4,t
P  Power output of the battery (positive for discharging) 

at time t. 
ES-SOP,L

4,t
P  Battery power loss at time t. 

Pij,t, Qij,t Active/Reactive power flow from node i to j, at time t. 
G G

, ,
,

i t i t
P Q  Active / Reactive power generation at node i, at time t. 

ES-SOP

,j t
P  

Active power injection by ES-SOP at node j, at time t. 
ES-SOP

1,t
Q  Reactive power of AC-DC converter 1 at time t. 

ES-SOP

2,t
Q  Reactive power of AC-DC converter 2 at time t. 

ES-SOP

,j t
Q  

Reactive power injection by ES-SOP at node j, time t. 
ES-SOP

1,t
S  Apparent power of AC-DC converter 1 at time t. 

ES-SOP

2,t
S  Apparent power of AC-DC converter 2 at time t. 

SoCt State of charge of the battery at time t. 

Vi,t, ui,t Voltage magnitude / Squared voltage at node i, time t. 

θ Binary variable used to define the uncertainty set. 

D. Parameters 

ca0, ca1, ca2 AC-DC converter polynomial loss model coefficients. 

cd0, cd1, cd2 DC-DC converter polynomial loss model coefficients. 

caux Storage auxiliary / Battery management system losses. 

cES Storage internal resistance loss coefficient. 
t

i
d  Uncertain net injection of node i at time t. 

t

i
d  Nominal value of the net injection of node i at time t. 
ˆ t

i
d  Deviation from the nominal net injection value. 

Iij, max Ampacity of branch ij. 
D D

, ,
,

i t i t
P Q  Active / Reactive power demand at node i, time t. 

ES

max
P

 Power rating of energy storage / battery. 

 pt Day-ahead market price at time t. 

Rij, Xij Resistance / Reactance of branch ij. 
AC-DC

max
S

 Rating of AC-DC converters. 
DC-DC

max
S

 Rating of DC-DC converter. 

T Number of time periods. 

Vmax, Vmin Maximum and minimum voltage limit. 

Δt Duration of a single time period. 

I.   INTRODUCTION 

OFT OPEN POINTS (SOPs) are power electronic devices 

which provide a flexible interconnection (in terms of active 

power) between two or more feeders in electricity distribution 

networks [1]. The most common applications for which they 

have been studied are loss minimization (e.g. [2]) and power 

flow management (e.g. [3]). Energy storage (ES) systems can 

fulfil numerous functions in smart grids, including power flow 

management [4], and arbitrage [5]. However, multiple 
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applications are often necessary to justify investment in ES 

systems [6]. 

Integrated energy storage – soft open point (ES-SOP) 

devices, which have been recently proposed in [7], offer a 

promising new solution which can provide both spatial (due to 

SOPs) and temporal (due to ES) flexibility to active distribution 

networks. This flexibility is offered at a reduced capital cost 

compared with installing an SOP and an ES system separately. 

This occurs as the SOP converters can be used to control 

charging/discharging of the ES, as shown in Fig. 1, without the 

need of additional converter(s) to interface the ES with two (or 

more) feeders of the network. 

 
Fig. 1.  An integrated ES-SOP device in a distribution network. 

A. Applications of ES-SOPs in Distribution Networks  

Power flow management can defer network reinforcement 

[4], and this will often be the primary motivation to install either 

an SOP or an ES to a distribution network. Power flow 

management is vulnerable to uncertainty because it involves 

managing the power flow in specific branches to ensure that 

violations of network limits do not occur in situations in which 

branch power flow will be very close to these limits. 

Distribution network operators (DNOs) are naturally 

conservative with respect to constraint violations – operating 

outside of acceptable limits is a danger to both life and property, 

and so ensuring sufficient robustness in the selected schedule of 

controllable devices, such as SOPs and ES systems, is of 

paramount importance. 

Consequently, if an SOP or ES is scheduled neglecting 

uncertainty, it may lead to a high probability of a violation of 

technical constraints because even small perturbations in the 

demand or generation during peak load – given a predefined 

schedule – can cause the power flow to exceed its limits. This 

will be referred to as probability of constraint violation (PoCV).  

 This situation calls for suitable uncertainty management 

which ensures feasibility of the optimal schedule with a very 

high probability and without being overly conservative. A 

conservative schedule can result in a great headroom between 

the branch power flow and the corresponding limit, which 

indicates potential underutilization and opportunity cost for the 

ES system. Note that, in general, adding robustness increases 

the computational complexity. In general, nonconvex problems 

are NP-hard, and so can be very challenging to solve [8]. 

Ensuring that the formulation is convex is therefore paramount 

to ensure computational tractability. 

Network loss reduction is a valuable objective which is most 

commonly considered in optimal SOP scheduling (e.g. [2]), and 

occasionally considered in ES scheduling (e.g. [9]). The 

regulatory framework around network losses is critical in this 

respect. Two types of incentives are used in the European 

countries investigated in [10]. The first, is an indicator 

introduced by the electricity regulator, e.g. a maximum 

acceptable threshold for network losses. The second (stricter) 

incentive, is that DNOs must buy energy at wholesale market 

price to compensate for losses. Both measures are applied to 

encourage network efficiency, encouraging DNOs to 

effectively manage losses within their networks.  

This paper considers a system in which the second measure 

is used, and the focus is on optimal ES-SOP scheduling and its 

impact on the cost of losses (rather than simply network losses). 

The losses arising within the subsystems of the ES-SOP must 

be included in the overall cost of losses, and necessitate the 

inclusion of an appropriate ES-SOP loss model. The ES-SOP 

device consists of several naturally partitioned subsystems, and 

so there could be benefits of de-energizing individual 

subsystems if they have significant no-load losses (a practice 

which would be analogous to the idea of ‘power gating’ in VLSI 

design [11]). Such an approach leads to a substantial increase 

in the computational complexity, however, due to the 

introduction of binary variables. It is worthwhile noting that the 

losses in these converters are typically very significant – for 

example, in [12], it was found that power converters must be at 

least 97.8% efficient for it to be suitable for loss reduction in 

distribution networks. In other solid-state devices (e.g., solid 

state transformers), the device efficiency is also seen as a key 

challenge in device design [13]. 

Arbitrage takes advantage of the temporal variations in price 

to maximize profit [5]; this results in a schedule in which ES 

discharges when market price is high and charges when market 

price is low. This application has been widely used in the 

relevant literature with the aim of alleviating the impact of the 

significant capital cost of ES. 

B. Uncertainty Management 

The most prominent optimization methods capable of 

handling uncertainty are stochastic programming [14-16], 

chance-constrained optimization [17], and robust optimization 

[2, 18]. The first two require full knowledge of the probability 

distribution of the uncertain parameters, which might not be 

possible to acquire in practice. Moreover, stochastic 

programming easily becomes intractable as the number of 

scenarios rises, and chance-constrained optimization provides 

solutions with probabilistic guarantees, which might not be 

acceptable in all cases. 

This paper uses (two-stage) robust optimization [18] because 

it: 1) does not require knowledge of the probability distribution 

of the uncertain parameters, 2) effectively controls the degree 

of conservatism, and 3) is computationally tractable (e.g. when 

used with cutting plane algorithms based on Benders 

decomposition or column and constraint generation [19]), 

provided underlying uncertainty sets satisfy some 

computability assumptions [20]. 

C. Scope of the Paper 

This paper aims to create robust, day-ahead operational 

schedules for ES-SOP devices. These schedules could be used 

in conjunction with a real-time control stage which adapts the 

schedule to the realisation of uncertainty during operation, but 

this real-time control is not within the scope of this paper. Day-

ahead scheduling is important because: 1) The inclusion of an 

ES system necessitates the advance scheduling of ES-SOP 

devices; otherwise, the energy resources of the ES may be 

depleted, resulting in either constraint violation or imbalance 

costs. 2) The schedule of these devices is required to be 
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optimized in advance, since the optimal schedule can inform the 

network operator for the procurement of network services, 

which should be contracted in advance [21]. 

D. Novelty and Contribution  

This paper provides a method to optimize the schedule of a 

DNO-owned ES-SOP device, which manages power flow to 

ensure that network constraints are violated with zero 

probability (given that uncertainty realization lies within the 

predefined uncertainty set), whilst optimizing cost of losses and 

arbitrage profit attained through arbitrage. 

Relevant literature [7] has provided an initial (nonconvex) 

model of integrated ES-SOP devices, which fails to address 

uncertainty, and models converter losses assuming constant 

efficiency. Therefore, the contributions of this work are: 

1) We introduce a mixed-integer robust convex model for 

optimal scheduling of integrated ES-SOP devices. Two-

stage adaptive robust optimization is employed to ensure 

a zero PoCV, while allowing adjustment of the 

conservatism of the solution. In the first stage, the ES-

SOP schedule is decided, accounting for the worst-case 

uncertainty realization of demand and renewable 

generation, which is sought in the second stage within a 

predefined uncertainty set and for a given level of 

conservatism.  

2) The losses of each subsystem in the ES-SOP device are 

modelled using a novel binary-polynomial model, with 

the binary variable modelling the energization state of 

each converter. This approach accurately captures the 

losses of each individual subsystem, even when 

individual converters are de-energized during idle 

periods. It is demonstrated that this discontinuous model 

leads to significant changes in the operating 

characteristics relative to models considered in previous 

works, with the turn-on losses suppressing low-power 

‘trickle transfer’ between feeders and encourages ES 

charging/discharging through individual feeders to 

further limit total losses. 

3) The proposed (initially nonconvex) ES-SOP binary-

polynomial loss model is convexified to obtain a mixed-

integer convex model. 

Convexity in terms of continuous variables (as we have a 

mixed-integer convex problem [22]) is significant because it 

guarantees a computationally efficient and globally optimal 

solution by commercially available solvers [23]. 

The rest of the paper is organized as follows. Section II 

describes the ES-SOP loss model. Section III provides the 

problem formulation, introducing the deterministic problem, 

followed by the robust model. Then, Section IV outlines the 

solution methodology. Section V presents the case study, and 

simulation results are illustrated and discussed in Section VI. 

Finally, the conclusions are drawn in Section VII. 

II.   ES-SOP LOSSES 

An integrated ES-SOP system has more subsystems than 

either an SOP or ES considered in isolation. As such, there are 

more opportunities to optimize the operation of individual 

subsystems of the device to reduce operational costs. 

In this section we consider how the losses of individual 

subsystems can be modelled, with a particular focus on how no-

load (energization) losses of converters can be effectively 

modelled and subsequently exploited to reduce operating costs. 

This is particularly valuable if an ES-SOP device is only 

operating at a fraction of its rated power. 

A. Subsystem Modelling 

A schematic of the system is presented in Fig. 2, and 

comprises of four subsystems: two AC-DC voltage source 

converters, a DC-DC interface converter, and the battery. 

 
Fig. 2.  Schematic of the ES-SOP device. The ES-SOP is composed of four 
subsystems: i) AC-DC converter 1, which connects the DC link with feeder 1, 

ii) AC-DC converter 2, which connects the DC link with feeder 2, 3) the DC-

DC converter, which connects the DC link with the battery, and iv) the battery. 

The losses for the AC-DC and DC-DC converters are 

modelled using a combination of a binary variable b, 

representing the on-off (energization) state of the device, and a 

second-order polynomial function of the apparent power S, 

which models the losses of the converter as the loading changes 

[24, 25]. The losses of the converter are therefore given by 

 ( )2

Loss, Conv. 0 1 2
P b c c S c S= + + .  (1) 

De-energizing a converter (i.e., setting b = 0) will result in 

zero losses, but the device can then no longer transfer active 

power or provide reactive support (so S = 0). 

Whilst the values of (1) are assumed to be based on a 

regression-based approach, each of the polynomial loss 

coefficients c0, c1, c2 can be attributed to different loss 

mechanisms within a converter. The constant voltage 

coefficient c1 is due to switching losses and conduction losses 

in diode-like components, whilst the ohmic loss coefficient c2 

are due to ohmic conduction losses [26]. No-load energization 

losses c0 are largely due to the no-load losses of passive 

components such as LCL filters and interface transformers [27-

29]. Nevertheless, even with detailed physics-based modelling, 

not all converter losses can be attributed known physical 

mechanisms [25], further justifying the use of a model such as 

(1). 

We consider a battery loss model of the form: 

 
2

Loss, Batt. aux ES
P c c P= + , (2) 

where PLoss, Batt. are the losses in the battery, caux are auxiliary 

system losses, and the coefficient cES models losses due to the 

internal resistance of the battery. The losses above correspond 

to the low C-rate model, which best describes the battery 

operation patterns, considered in the present paper. Particularly, 

the considered battery applications, which include energy 

arbitrage and network losses reduction, implies that the battery 

C-rate does not exceed one [30]; for higher C-rate services, a 

more detailed battery loss model can be considered within the 

proposed framework. 

The battery auxiliary losses caux are a result of safety-critical 

functions of a battery management system. Therefore, in 

contrast to losses in the converters c0, we assume that the battery 

auxiliary system cannot be de-energized to reduce no-load 

1b
1b

Feeder 1 Feeder 2
2b 2b

3b

3b

1P


2P
→

3P
→DC-DC

AC-DC 1 AC-DC 2

Battery

4P
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losses. For Li-ion battery chemistries, which are used in the 

majority of grid-scale ES systems, auxiliary losses can be 

assumed independent of system utilization [31]. 

1)  Coefficient Values and System Efficiency 

Table I lists the value of each coefficient used to model the 

subsystem losses of the ES-SOP device. The coefficients yield 

the power-efficiency curves shown in Fig. 3. The ES round-trip 

efficiency is calculated based on one charge-discharge cycle. 

The curves show the models behave in a realistic manner: 

efficiency is very low at low powers, increasing quickly; peak 

efficiency is often at part-load, with a reduction at high powers 

as conduction losses increase [32, 33]. Likewise, the round-trip, 

full-load ES efficiency between 85% and 90% is close to values 

attained in real utility-scale systems [34]. 

TABLE I 

ES-SOP SUBSYSTEM LOSS COEFFICIENT VALUES FOR LOSS MODELS (1), (2) 

Symbol ca0 ca1 ca2 cd0 cd1 cd2 caux cES 

Value (% of 

rated power) 
0.5 0.5 2 0.35 0.25 1.4 0.2 1.6 

 
Fig. 3.  Efficiency as a function of power for the AC-DC converter, the DC-DC 
converter, and total round-trip efficiency of the ES system, using loss models 

(1), (2), and coefficients as in Table I. 

B. Converter and Storage Loss Model 

This section provides equations that describe the losses of: 1) 

AC-DC converters; 2) the DC-DC converter; and 3) the battery. 

1)  AC-DC Converters 

Equations (3) and (4) describe the losses of the two AC-DC 

converters which connect the DC link on the one side with the 

endpoints of feeders 1 and 2 of the network on the other. 

 ( )( )
2

ES-SOP,L ES-SOP ES-SOP

1, 1, a 0 a1 1, a 2 1,t t t t
P b c c S c S= + +   (3) 

 ( )( )
2

ES-SOP,L ES-SOP ES-SOP

2, 2, a 0 a1 2, a 2 2,t t t t
P b c c S c S= + +   (4) 

which can be written as: 

 
ES-SOP,L

1, a 0 1, a1 11, a 2 12,t t t t
P c b c k c k= + +   (5) 

 
ES-SOP,L

2, a 0 2, a1 21, a 2 22,t t t t
P c b c k c k= + +   (6) 

which are linear constraints. 

In (5) and (6), auxiliary (nonnegative) variables k11,t, k12,t, k21,t, 

k22,t are defined as follows: 

 
( ) ( )

( ) ( )

2 2
ES-SOP ES-SOP ES-SOP

11, 1, 1, 1,

2 2
2 ES-SOP ES-SOP

11, 1, 1,

t t t t

t t t

k S P Q

k P Q

= = + 

= +

  (7) 

 ( ) ( ) ( )
2 2 2

ES-SOP ES-SOP ES-SOP

12, 1, 1, 1,t t t t
k S P Q= = +   (8) 

 
( ) ( )

( ) ( )

2 2
ES-SOP ES-SOP ES-SOP

21, 2, 2, 2,

2 2
2 ES-SOP ES-SOP

21, 2, 2,

t t t t

t t t

k S P Q

k P Q

= = + 

= +

  (9) 

 ( ) ( ) ( )
2 2 2

ES-SOP ES-SOP ES-SOP

22, 2, 2, 2,t t t t
k S P Q= = +   (10) 

which are relaxed, and written as the following second-order 

cone constraints: 

 
ES-SOP ES-SOP

1, 1, 11,2t t t
P Q k   (11) 

 
ES-SOP ES-SOP

1, 1, 12, 12,2
2 2 1 1

t t t t
P Q k k−  +   (12) 

 
ES-SOP ES-SOP

2, 2, 21,2t t t
P Q k   (13) 

 
ES-SOP ES-SOP

2, 2, 22, 22,2
2 2 1 1

t t t t
P Q k k−  +   (14) 

The exactness (i.e. relaxed constraints are binding at 

optimality) is guaranteed by the objective function, which 

minimizes cost of losses, and is presented in Section III-A. The 

proof can be found in Appendix A. A detailed explanation for 

the derivation of (12) and (14) can be found in Appendix B. 

The following constraints ensure that when binary variables 

b1,t, b2,t are zero, then 

ES-SOP,L ES-SOP,L

1, 2,
,

t t
P P  are also zero. 

 
AC-DC

11, 1, maxt t
k b S   (15) 

 ( )
2

AC-DC

12, 1, maxt t
k b S   (16) 

 
AC-DC

21, 2, maxt t
k b S   (17) 

 ( )
2

AC-DC

22, 2, maxt t
k b S   (18) 

2)  DC-DC Converter 

Equation (19) gives the losses of the DC/DC converter, 

which connects the DC link with the battery. 

 ( )( )
2

ES-SOP,L ES-SOP ES-SOP

3, 3, d 0 d1 3, d 2 3,t t t t
P b c c P c P= + +   (19) 

which can be written as: 

 
ES-SOP,L ES-SOP

3, d0 3, d1 3,  abs d 2 3,t t t t
P c b c P c k= + +   (20) 

which is a linear constraint. 

Auxiliary variables
ES-SOP

3,  abs 3,
,

t t
P k in (20) are defined below: 

 
ES-SOP ES-SOP

3,  abs 3,t t
P P=   (21) 

 ( )
2

ES-SOP

3, 3,t t
k P=   (22) 

Equation (21) is linearized as follows: 

 
ES-SOP ES-SOP ES-SOP ES-SOP

3,  abs 3, 3,  abs 3,
,  

t t t t
P P P P  −   (23) 

Equation (22) is relaxed, and written as the following second-

order cone constraint: 

 ES-SOP

3, 3, 3,2
2 1 1

t t t
P k k−  +   (24) 

To make sure that when binary variable b3,t is zero, then PL3,t 

is also zero, we introduce the following constraints: 

 
ES-SOP DC-DC

3,  abs 3, maxt t
P b S   (25) 

 ( )
2

DC-DC

3, 3, maxt t
k b S   (26) 

3)  Battery 

Equation (27) describes battery losses: 

 ( )
2

ES-SOP,L ES-SOP

4, aux ES 4,t t
P c c P= +   (27) 

which can be written as the following linear constraint: 



 5 

 
ES-SOP,L

4, aux ES 4,t t
P c c k= +   (28) 

where 

 ( )
2

ES-SOP

4, 4,t t
k P=   (29) 

Equality (29) is relaxed to a second-order cone constraint: 

 
ES-SOP

4, 4, 4,2
2 1 1

t t t
P k k−  +   (30) 

III.   PROBLEM FORMULATION 

A. Deterministic Problem 

This section presents the deterministic model: 1) the 

objective function, 2) the constraints, and 3) the full model. 

1)  Objective function 

We consider a single objective function, expressed in 

monetary terms, which comprises the cost of losses of the ES-

SOP device, the arbitrage profit, and the cost of network losses: 

  

( )

t

b

ES-SOP,L ES-SOP,L ES-SOP,L ES-SOP,L

1, 2, 3, 4,

ES-SOP Loss Cost

ES-SOP 2

4, ,

Arbitrage Profit

Cost of Network Losses

min

t t t t t

t
t t ij ij t t

ij

P P P P p t

P p t R I p t



+ + + 

−  

 
 
 

  
+   
  

 




  (31) 

2)  Constraints 

a) Power Flow Constraints 

Power flow constraints are formulated according to DistFlow 

branch equations [35, 36] employing the convex relaxation in 

[37, 38]. Relaxation gaps are evaluated in Section VI to provide 

information for the quality of the solution, as in [39]. A 

graphical representation of the power flow equations employed 

in this paper is shown in Fig. 4. The equations are presented 

below (for each time period) [37]. Defining variables ui,t and Lij,t, 

as squared voltage and squared current, respectively, facilitates 

the convex formulation of the power flow model. 

 
Fig. 4.  Graphical representation of the DistFlow branch equations. The active 

(and reactive) power flow at the sending node of branch ij equals the sum of: i) 
sum of power flows from node j to nodes k1, k2,…, kn, ii) branch losses, iii) 

demand at node j, and iv) minus generation at node j [39]. 

 
D G

, , , , , b

:

,   
ij t jk t ij ij t j t j t

k j k

P P R L P P ij
→

= + + −     (32) 

 D G

, , , , , b

:

,   
ij t jk t ij ij t j t j t

k j k

Q Q X L Q Q ij
→

= + + −     (33) 

( ) ( )2 2

, , , , , b
 2 ,  

j t i t ij ij t ij ij t ij ij ij t
u u R P X Q R X L ij= − + + +    (34) 

where  

 
2

, , n
,   

i t i t
u V i=     (35) 

 ( )2 2 2

, , , , , b
,   

ij t ij t ij t i t ij t
L P Q u I ij= + =     (36) 

which is relaxed to [37, 38]: 

 
, , , , , ,2

2 2
ij t ij t ij t i t ij t i t

P Q L u L u−  +   (37) 

Integrating the ES-SOP device into the network, (32) and 

(33) become: 
D G ES-SOP

, , , , , , b

:

if ES-SOP at node 

  ,    
ij t jk t ij ij t j t j t j t

k j k

j

P P R L P P P ij
→

− − = − −     (38) 

 

ES-SOP

, , , , , , b

:

ES-SOP at node 

    ,
D G

ij t jk t ij ij t j t j t j t

k j k

j

Q Q X L Q Q Q ij
→

− − = − −   (39) 

Network operational constraints are as follows: 

 
2 2

min , max n
,   

i t
V u V i      (40) 

 
2

, ,max b
,  

ij t ij
L I ij     (41) 

b) ES-SOP Constraints 

This section presents the rest of the equations that govern the 

operation of the ES-SOP device. Converter and storage loss 

equations have already been given in Section II-B. Therefore, 

the rest of the ES-SOP model is detailed below: 

 ( )ES-SOP ES-SOP,L

1 4, 4,t t t t
SoC SoC P P t

+
= − +    (42) 

 
ES ES-SOP ES

max 4, maxt
P P P−     (43) 

 
min maxt

SoC SoC SoC    (44) 

 
1 T

SoC SoC=   (45) 

Equation (42) represents how the state of charge (SoC) of the 

battery changes based on the power of the device and its losses. 

Equations (43) and (44) impose limits on the power and energy 

of the battery, and (45) ensures that the SoC at the beginning of 

the day is equal to the SoC at the end of the day. Power balance 

constraints for the ES-SOP device, as shown in Fig. 2, are given 

by (46) and (47). 

 ( )ES-SOP ES-SOP ES-SOP,L

3, 4, 4,t t t
P P P= − −   (46) 

ES-SOP ES-SOP ES-SOP ES-SOP,L ES-SOP,L ES-SOP,L

1, 2, 3, 1, 2, 3,
0

t t t t t t
P P P P P P+ + + + + =   (47) 

Finally, capacity constraints for AC-DC converter 1, AC-DC 

converter 2, and the DC-DC converter are represented by (48), 

(49), and (50), respectively. 

 
( ) ( )

2 2
ES-SOP ES-SOP AC-DC

1, 1, max

ES-SOP ES-SOP AC-DC

1, 1, max2
 

t t

t t

P Q S

P Q S

+  



  (48) 

 
ES-SOP ES-SOP AC-DC

2, 2, max2t t
P Q S   (49) 

 
DC-DC ES-SOP DC-DC

max 3, maxt
S P S−     (50) 

3)  Model 

The decision variables of the optimization problem are: ui,t, 

Pij,t,   Qij,t,   Lij,t,  
ES-SOP ES-SOP,L ES-SOP ES-SOP,L ES-SOP ES-SOP,L

1, 1, 2, 2, 3, 3,
, , , , , ,

t t t t t t
P P P P P P  

ES-SOP ES-SOP,L ES-SOP ES-SOP

4, 4, 1, 2,
, , , ,

t t t t
P P Q Q   k11,t,   k12,t,   k21,t,   k22,t,  

ES-SOP

3,  abs
,

t
P   

k3,t,   k4,t,   SoCt,   b1,t,   b2,t,   b3,t. The full model is shown below: 

minimize (31)

subject to (5), (6), (11)-(18), (20), (23)-(26), 

               (28), (30), (34), (37)-(50) 

 

B. Compact Form of the Deterministic Model 

This section presents the deterministic model in a compact 

form, which are referred to in explanations of the robust model 

and solution methodology in sections III.C and IV, respectively. 

ij ijR L

losses

ijP
i

D

jP

G

jP

j

nknjkP

1k

2k

1jkP

2jkP
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T T

min  +c x e y   (51) 

 s.t.   Ax b   (52) 

 
T

2
Fx f x   (53) 

 + =Hx Ky d   (54) 

 My r   (55) 

 
T

2
Gy g y   (56) 

where x is the vector of first stage decision variables, which are 

all ES-SOP scheduling variables, and y is the vector of second 

stage decision variables, which corresponds to power flow 

variables ui,t, Pij,t, Qij,t, Lij,t. Note that the separation of variables 

and constraints in two stages (in this section) takes place to 

make a smoother transition to the two-stage adaptive robust 

model. In the objective function (51), the first term represents 

the ES-SOP loss cost minus arbitrage profit (first and second 

term in (31)), while the second term represents the cost of 

network losses (third term in (31)). Constraint (52) collects first 

stage, linear constraints (5), (6), (15)-(18), (20), (23), (25), (26)

, (42)-(47), and (50). Constraint (53) represents first stage, 

second-order cone constraints (11)-(14), (24), (30), (48), and 

(49). Constraint (54) denotes second stage, linear equality 

constraints (active and reactive power balance for each branch) 

(38), (39), for which uncertainty will be considered (demand 

and renewable generation). Constraint (55) collects the rest of 

second stage linear constraints (34), (40), and (41). Finally, 

constraint (56) corresponds to second stage, second-order cone 

constraint (37). 

C. Robust Model 

The inherent uncertainty of demand and renewable 

generation is addressed in this paper using two-stage adaptive 

robust optimization [18], which ensures a feasible solution for 

given uncertainty intervals. In the first stage, ES-SOP schedule 

is determined taking into account all possible uncertainty 

realizations. The resulting schedule is feasible, thus robust, for 

any uncertainty realization of demand and renewable 

generation. In the second stage, the worst-case scenario, for 

which maximum feeder loading occurs (which can lead to 

constraint violation), is sought within a predefined uncertainty 

set. We subsequently present the uncertainty set and the two-

stage adaptive robust model. 

1)  Uncertainty Set 

We combine the uncertainty of demand and renewable 

generation, and we therefore consider nodal net injection, as an 

uncertain parameter, with the following uncertainty set at each 

time period [18, 40]: 

( )
( )n

, , , ,

, ,

 : , 1,
ˆ, , :

ˆ ˆ ,  

n

t t

i t i t i t i t

t t t t i

t t t t

i i i i t i i t n

D

d d d d i

   

 

 + − + −



+ −

 +   + 

 =

= −  

 
 
 
 + 

d

d d  

 (57) 

Based on (57), di
t takes values within the following interval: 

 ˆ ˆ,
t t t t t

i i i i i
d d d d d − +     (58) 

A user-defined parameter, which is called budget of 

uncertainty (Γt), adjusts the level of robustness/conservatism of 

the solution. A zero value for the budget of uncertainty 

corresponds to the deterministic case and will result in an 

unacceptably high probability of constraint violation (PoCV), 

especially if the network is operated close to its limits. 

Conversely, if the budget of uncertainty takes its maximum 

value (which is equal to the number of nodes of the network), it 

ensures that there is a feasible solution for all possible 

realizations within the uncertainty interval. This (fully robust) 

solution corresponds to a zero PoCV but is overconservative, 

resulting in a higher operational cost. The level of conservatism 

is adjusted to ensure a zero PoCV, without requiring a 

significant sacrifice in terms of objective function value. 

2)  Two-Stage Adaptive Robust Model 

Having described the uncertainty set Dt, we present the two-

stage adaptive robust model, in compact form, below: 

 ( )
( )T T

,

T

2

min  max min

s.t.    ,  

D 

+

 

x y x dd

c x e y

Ax b Fx f x

  (59) 

where  

 ( )  T

2
, : ,  ,   = + =  x d y Hx Ky d My r Gy g y   (60) 

is the set of feasible power flow solutions for a fixed ES-SOP 

schedule x and nodal net injections d. Second stage variables y 

are adjustable (i.e. tune themselves) to each uncertainty 

realization d, and given ES-SOP schedule x. 

The separation of variables has been implemented in the 

following way. First stage variables include the actual decisions 

that the operator must make, i.e., ES-SOP scheduling variables. 

These decisions are made before uncertainty is revealed. Power 

flow variables (ui,t, Pij,t, Qij,t, Lij,t) are indeed decision variables, 

but they do not represent actual decisions. They are adjustable 

variables that adjust themselves to each uncertainty realization 

(i.e., after uncertainty has been revealed) and ES-SOP power 

injections to feeders. Therefore, power flow variables are 

classified as second stage variables. 

IV.   SOLUTION METHODOLOGY 

The proposed two-stage adaptive robust model (59), (60) is 

initially a tri-level min-max-min problem, which is eventually 

converted to a bilevel problem (shown later) that cannot be 

directly solved by commercial software, and requires a specific 

solution approach. By taking the dual of the inner minimization, 

we first merge the second and third level problems and obtain a 

two-level problem. We then decompose the resulting model to 

solve the robust problem, for which different cutting plane 

algorithms have been proposed in the literature, as it cannot be 

directly solved by off-the-shelf solvers.  

Benders decomposition [41, 42] iteratively introduces 

constraints (cuts) to the model using dual solutions of the 

second-stage problem. Column and constraint generation 

(CCG) [19] creates constraints and new variables for the worst-

case uncertainty realization at each iteration. In [19], it is shown 

that CCG provides tighter bounds for the objective function, 

which reduces the number of iterations. This is why CCG has 

been chosen in this paper to solve our two-stage model. In CCG 

method, the problem is decomposed into a master problem 

(MP) and a subproblem (SP), which are solved iteratively. The 

MP provides a lower bound for the original problem and at each 

iteration by adding cuts to the MP, which are derived from the 
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optimal solution of the SP, it provides better lower bounds. The 

algorithm continues until the lower bound from the MP and the 

upper bound from the SP converge. In Section IV-A, we 

provide the MP and the SP using the compact form (59), (60). 

In the robust model, we use the budget of uncertainty (Γt), 

which adjusts the level of robustness. For a fixed first stage 

decision vector (x*), the problem reduces to determining the 

worst-case realization of nodal net injection d. For an integer 

Γt, it is shown that the worst-case realization occurs when 

uncertain nodal net injections are either at the upper or lower 

limits of the uncertainty set [43]. Thus, the optimal solution of 

the reduced model occurs at an extreme point of the uncertainty 

set. If we denote all extreme points of uncertainty set, the 

reduced model can be equivalently written as a model with a 

large but finite number of constraints. However, solving the 

formulation with all extreme points is impractical for many 

problems. Nevertheless, one can easily observe that solving the 

formulation with a subset of extreme points provides a lower 

bound for the original problem. Therefore, a CCG algorithm 

that adds constraints for one extreme point at each iteration 

provides stronger lower bounds at each iteration and it will 

terminate in a finite number of iterations with an optimal 

solution. 

A. Master Problem (MP) 

The MP determines the ES-SOP schedule and satisfies the 

constraints for the scenarios added so far. For the mth iteration 

of the algorithm, the MP is given below: 

 
T

m min  f += c x   (61) 

 s.t.   Ax b   (62) 
 T

2
Fx f x   (63) 

 
T

,  1,...,
v

v m   =e y   (64) 

 ,  1,...,
v v

v m+ =  =Hx Ky d   (65) 

 ,  1, ...,
v

v m  =My r   (66) 

 
T

2
,  1, ...,

v v
v m  =Gy g y   (67) 

where v (= 1,…,m) corresponds to iterations that have been 

performed so far (i.e. v is associated with the variables and 

constraints added up to the mth iteration), and η is the auxiliary 

variable that minimizes the second stage objective function 

value. At each iteration, new variables ym are introduced, and 

new constraints (64)-(67) are added to the MP, which are 

derived from the optimal solution of the SP. dv is obtained from 

the solution of the SP, and yv are the corresponding second stage 

decision variables. 

B.Subproblem (SP) 

For a given first stage decision vector x*, which represents 

the ES-SOP schedule, the following subproblem determines the 

worst-case realization of nodal net injection d. 

 
( )

T

,

max min
D  y x dd

e y   (68) 

 s.t.      ( )

+ =Hx Ky d λ   (69) 

    ( )My r π   (70) 

 
T

2
   ( , )Gy g y ω φ   (71) 

where λ, π, ω, and φ are the corresponding dual decision 

variables. To solve the SP, we first transform the bilevel model 

into a single-level model making use of conic duality theory 

[44], which results in the following bilinear model. 

 ( )
, , , ,

max


− +
d π λ ω φ

d Hx λ rπ   (72) 

 ( )
1

. .   
H

h

s t
=

+ + + =Kλ Mπ Gω gφ e   (73) 

 
2
ω φ   (74) 

  free, 0,   free, 0 λ π ω φ   (75) 

where H is the number of constraints in (71). 

The proposed model remains exact in our robust optimization 

framework since second-order cones (71) are self-dual, which 

means that they appear as second-order cones (74) in the dual 

model [45]. Furthermore, in the solution approach explained 

below, for a fixed first stage decision vector (x*), since the 

primal SP satisfies Slater’s condition, strong duality holds; and 

by strong duality theorem of second-order cone programming 

problems [44], the primal SP and dual SP attain the same 

objective function values. 

The bilinear term dλ in the objective function can be 

linearized since the feasible regions of the bilinear term are 

bounded and disjoint. For an integer Γt, there exists an optimal 

solution at an extreme point of the uncertainty set; and at the 

optimal solution, θ 
+ and θ – take a value of either 0 or 1. Hence, 

bilinear terms can be linearized using the Big-M method and 

the above problem can then be reformulated as a mixed-integer 

second-order cone programming problem. 

 
s

, , , , , , ,

ˆ ˆmaxf
       

+ − + −

+ − 
= + − − +dλ dσ dσ Hx λ rπ   (76) 

 ( )
1

. .   
H

h

s t
=

+ + + =Kλ Mπ Gω gφ e   (77) 

 
2
ω φ   (78) 

 
, , , , , b t

,  ,  
ij t ij t ij t ij t ij t

M M ij t  
+ + + + +

−         (79) 

 ( ) ( ), , , , , , ,
1 1

ij t ij t ij t ij t ij t ij t ij t
M M    

+ + + + +
− − +   + −   (80) 

 
, , , , , b t

,  ,  
ij t ij t ij t ij t ij t

M M ij t  
− − − − −

−         (81) 

 ( ) ( ), , , , , , ,
1 1

ij t ij t ij t ij t ij t ij t ij t
M M    

− − − − −
− − +   + −   (82) 

  free, 0,   free, 0,  ,  free, , 0,1
+ − + −

  λ π ω φ σ σ θ θ   (83) 

where Mij,t are sufficiently large numbers, and σij,t
+ = λij,tθij,t

+, σij,t
- 

= λij,tθij,t
-, which are linearized by constraints (79)-(82). For 

instance, constraints (79) and (80) reduce to σij,t
+ = λij,t, if θij,t

+ = 

1, and σij,t
+ = 0, if θij,t

+ = 0. Algorithm 1 provides the procedure 

of the described solution methodology. 

Algorithm 1: Column and Constraint Generation 
1. Set LB = -∞, UB = +∞, m = 0, tolerance ε. 

2. while (UB - LB < ε) do 

3.     Solve the MP (61)-(67). Get optimal solution and  

    objective, x* and fm, respectively. LB ← max{LB, fm }. 

4.     Given x*, solve the dual SP (76)-(83). Get worst-case  

    uncertainty realization d* and objective fs. UB ←  

    min{UB, cTx* + fs }. 

5.     dm+1 ← d*. Introduce new variables ym+1. Add  

    constraints (64)-(67) to the MP. 

6.     m ← m + 1. 

7. end 

8. Return x*. 
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V.   CASE STUDY 

A. Test Network and Input Data 

The test network is composed of two IEEE 33-bus systems 

connected via an ES-SOP as shown in Fig. 5. Each converter is 

rated at 400 kVA, and the battery is 400 kW / 800 kWh. The 

ES-SOP manages feeder power flows – with a limit of 3.45 

MVA – while optimizing cost of losses and arbitrage profit. 

Customer types are shown in Table II, and the corresponding 

load profiles are taken from [46]. The location and capacity of 

distributed generation is shown in Fig. 5; the associated profiles 

are from the North-East of England, in 2019, and were produced 

using [47]. The day-ahead market price profile is taken from 

[48], and is shown in Fig. 6. The simulation is run for 24 hours 

and input data correspond to a typical winter weekday. 

 
Fig. 5.  The case study network showing the location and capacity of distributed 

generation and ES-SOP. Constrained branch is shown in red. 

TABLE II 

CUSTOMER TYPES FOR THE TEST NETWORK 
Customer Type Load Points (Buses) 

Residential 2-6, 9-13, 15-22, 26-28, 33, 35-56, 59-64 

Commercial 7-8, 14, 23, 29-32, 65-65  
Industrial 24-25, 57-58 

 
Fig. 6.  Day-ahead market price. 

VI.   RESULTS AND DISCUSSION 

The proposed methodology was applied to the network 

shown in Fig. 5, using the data described in Section V. The 

model was formulated in MATLAB R2017a using YALMIP 

[49] and optimized using Gurobi [50]. An Intel Core i7 octa-

core processor at 3.00 GHz with 32 GB of RAM was used for 

the simulations. Optimality gap was set to 0.5%. The following 

subsections demonstrate: A) the impact of the ES-SOP loss 

model; B) the accuracy of the proposed model with respect to 

the convex relaxations; C) the impact of uncertainty; D) a 

comparison with two-stage stochastic programming; and E) the 

application of the proposed model to a real-world distribution 

network. 

A. ES-SOP Loss Model 

This section compares the ES-SOP schedules produced by 

the proposed model and [7], which is considered as a 

benchmark. The constant-efficiency assumption of [7] for ES 

and SOP devices is common in previous works considering 

each of those systems in isolation [2, 51]. The deterministic 

model described in section III-A is used for comparison with 

[7], because the focus is on the ES-SOP loss model. Fig. 7 

shows the loading of each feeder considering optimal ES-SOP 

operation; the network is heavily loaded, and the margin 

between maximum feeder demand and the line limit is small. 

 
Fig. 7.  Feeder demand considering optimal ES-SOP operation – deterministic 

model. The network is heavily loaded; the margin between maximum demand 
and feeder capacity is very small. 

Fig. 8 presents the optimal ES-SOP schedules generated by 

our proposed model and [7]. Both profiles demonstrate the 

spatial and temporal flexibility provided by an ES-SOP.  

During periods of significant mismatch in feeder load, the 

ES-SOP device acts in a SOP-like mode, transferring power 

between feeders. This relieves the network with the higher 

demand, thereby reducing total system losses and managing 

active thermal constraints (which occurs when feeder demand 

is equal to the thermal limit of the line). An example of this 

spatial flexibility is demonstrated in Fig. 8a-c from 11:00 – 

12:00, 15:00 – 17:00, and 20:00 – 22:00. During these periods, 

ES power is zero but the active power injections to the feeders 

are nonzero, indicating a load transfer between the feeders to 

reduce network losses. In all cases, demand is effectively 

moved from the heavily to the lightly loaded feeder. Because 

the demand on the two profiles follow different profiles, the 

direction of this transfer changes throughout the day.  

As well as shifting energy in space, the ES-SOP device can, 

via the ES system, provide temporal flexibility by shifting 

demand in time. In Fig. 8c, the ES discharges and injects to both 

feeders between 17:00 and 20:00, when price is at its highest. 

Because the demand on feeder 2 is higher than that of feeder 1 

(at these time periods), more active power is injected to the 

former (see Fig. 8a-b). This demonstrates spatial flexibility in 

these time periods as well, which can be considered as a 

superimposition of these two characteristics.   

We now examine the impact of considering the proposed ES-

SOP loss model against the benchmark model [7], by 

comparing their output. The proposed model considers the 

capability of a converter to be de-energized in order to save 

costs incurred by no-load losses. This is evident in Fig. 8a-b 

during 01:00 – 02:00 and 20:00 – 23:00. In the first time 

interval, the proposed model increases the utilization of AC-DC 

converter 1 to compensate the de-energization of AC-DC 

converter 2. During the second time interval, the utilization of 

both AC-DC converters is increased (between 20:00 – 22:00) 

due to the reduced marginal losses at low powers for the 

proposed model. Conversely, between 22:00 – 23:00, the low 

power ‘trickle transfer’ is suppressed, as the real power transfer 

is too small to overcome the no-load losses. As such, AC-DC 

converter 1 switches off (Fig. 8d). 



 9 

The benchmark [7] considers a linear loss model for all 

subsystems, which results in constant efficiency. Conversely, 

our proposed model considers a quadratic term for losses, 

which results in drop in efficiency at high powers. This 

penalizes utilization close to the rated power (0.4 MVA) of the 

converters and storage, as shown in Fig. 8c-e.  

When the ES-SOP device is switched on (i.e., if all binary 

switches b are enabled), the marginal cost of losses increases 

with power, so small powers have the lowest marginal losses. 

As a result, and because the device is already energized to 

provide support to the feeders (see Fig. 8a-c), the ES-SOP 

device can take advantage of the smaller price differential from 

mid-morning to mid-afternoon. 

The above observations are quantified in Table III, which 

presents the differences between the two models for each 

subsystem of the objective function and the saving compared to 

the operation without the ES-SOP device. This (no ES-SOP 

operation) is associated with an overall cost of £162.7 (per day), 

of network losses only, as there is neither ES-SOP loss cost, nor 

arbitrage profit. The ES-SOP schedule produced by the 

benchmark model is also evaluated using our proposed loss 

model and is shown in bold (in Table III). The benchmark 

model underestimates ES-SOP loss cost by 13.4%. The 

proposed model generates an 8% higher arbitrage profit, and 

results in an overall saving 21.4% greater than that of the 

benchmark model. 

 

 

 

 
Fig. 8.  ES-SOP optimal schedules produced by our proposed model (solid blue 

lines) and the benchmark [7] (dash-dotted red lines). 

TABLE III 

COMPARISON OF OUR PROPOSED MODEL WITH BENCHMARK [7] 

 
Proposed 

Model 
Benchmark 

[7] 

Difference 

(%) 

Network Loss Cost (£) 145.8 148.1 - 

ES-SOP Loss Cost (£) 14.6 12.9 (14.9) - 

Arbitrage Profit (£) -21.5 -19.9 - 

Total (£) 138.9 141.1 (143.1) - 

Saving (£) 23.8 21.6 (19.6) +21.4% 

B. Evaluation of Relaxation Gaps 

This section evaluates the relaxation gaps for the constraints 

that have been relaxed. Relatively small gap values indicate that 

the relaxations are practical for the model [39, 52]. Five gaps 

are defined as follows: 

  ( )( )
2

ES-SOP,L ES-SOP ES-SOP

1, 1, 1, a 0 a1 1, a 2 1,t t t t t
Gap P b c c S c S= − + +   (84) 

  ( )( )
2

ES-SOP,L ES-SOP ES-SOP

2, 2, 2, a 0 a1 2, a 2 2,t t t t t
Gap P b c c S c S= − + +   (85) 

 ( )( )
2

ES-SOP,L ES-SOP ES-SOP

3, 3, 3, d 0 d1 3, d 2 3,t t t t t
Gap P b c c P c P= − + +   (86) 

 ( )( )
2

ES-SOP,L ES-SOP

4, 4, aux ES 4,t t t
Gap P c c P= − +   (87) 

 ( )2 2

5, , , , , ,ij t ij t ij t ij t i t
Gap L P Q u= − +   (88) 

which are associated with the original (i.e. prior to relaxation) 

constraints (3), (4), (19), (27), and (36), respectively. The mean 

values of these gaps are presented in Table IV, along with the 

mean values of 
ES-SOP,L ES-SOP,L ES-SOP,L ES-SOP,L

1, 2, 3, 4, ,
, , , , .

t t t t ij t
P P P P L  

TABLE IV 

RELAXATION GAPS 

Relaxation 

Gap 

Mean 

Value 
Variable 

Mean 

Value 
Relative Gap 

Gap1 (MW) 7.81×10-9 
ES-SOP,L

1,
 (MW)

t
P  0.0034 2.30x10-5 

Gap2 (MW) 8.74×10-9 
ES-SOP,L

2,
 (MW)

t
P  0.0036 2.43x10-5 

Gap3 (MW) 2.05×10-9 
ES-SOP,L

3,
 (MW)

t
P  0.0016 1.28x10-5 

Gap4 (MW) 1.26×10-9 
ES-SOP,L

4,
 (MW)

t
P  0.0015 8.40x10-6 

Gap5 (A) 2.27×10-4 
0.5

,
 (A)

ij t
L  26.06 8.71x10-5 

Comparing each relaxation gap with the corresponding 

variable, we can notice a difference of 5-6 orders of magnitude, 

which indicates satisfactory accuracy of the proposed model. 



 10 

C. Impact of Uncertainty 

1)  Deterministic Model 

The deterministic model neglects uncertainty of the input 

data and optimizes the model assuming the uncertain 

parameters will take their base case values. This assumption 

means that feasibility of the optimal solution can only be 

guaranteed for that specific case. To demonstrate this, the 

feasibility of the ES-SOP schedule obtained from the 

deterministic model has been examined by running 100 Monte 

Carlo simulations to explore different realizations of the 

uncertainty. This is carried out in the following way: the ES-

SOP schedule is considered fixed, which we use to run a power 

flow for each (time step of each) day, varying the uncertain 

parameter (i.e. nodal net injection) at each iteration, by 

sampling from its uncertainty set (±10% [51]). Uniform 

distribution is used for nodal net injection, as the corresponding 

uncertainty set for robust optimization is the interval shown in 

(58). 

Fig. 9 shows that 43.1% of the simulated days leads to 

violations of the capacity constraint at branch 34-35 (Feeder 2). 

The optimal ES-SOP schedule for the nominal values of the 

uncertain parameters gives a branch loading, which is below the 

associated limit by only a tiny margin, as illustrated in Fig. 7. 

This results in a high rate of constraint violation in the Monte 

Carlo simulation, as even a slight increase in net demand during 

peak load can cause branch loading to violate its thermal limit. 

This issue is addressed in this study by using robust 

optimization, which immunizes the solution against uncertainty 

(given that data perturbation lies within the considered limits) 

to a predefined level of conservatism set by the decision-maker. 

 
Fig. 9.  Monte Carlo simulations to examine the feasibility of the ES-SOP 
schedule obtained by the deterministic model; 43.1% of simulated days led to 

constraint violation. Black line corresponds to branch capacity limit. 

2)  Robust Model 

The infeasibility shown in Section VI-C1 provides the 

motivation to use robust optimization. This section provides 

results from the robust model for different levels of 

conservatism and finds the budget of uncertainty (Γt) which 

ensures zero PoCV with the minimum increase in the objective 

function value. 

Table V shows the robust optimal value and the PoCV 

(calculated by 1,000 Monte Carlo simulations) for each Γt. Note 

that the robust optimal value is equal to the objective function 

value for the worst-case realization (for a given budget of 

uncertainty). Therefore, we also calculate the mean value of the 

objective function across all uncertainty realizations yielded by 

the Monte Carlo simulations. In this study, Γt ranges between 

zero and number of nodes (here 64 with nonzero load), with 

zero corresponding to the deterministic case and maximum 

value to fully robust; a value of 10 for Γt corresponds to the 

worst combination of 10 load points (for each time step) with 

maximum deviation from their nominal value. We can see in 

Table V that in order to get a robust solution that guarantees a 

zero PoCV, we need to pay a price, which is the increase in cost; 

this is the so-called price of robustness [53]. The required 

computational time for the proposed two-stage adaptive robust 

model was 68s. 

TABLE V 

POCV, ROBUST OPTIMAL VALUE, AND MEAN OBJECTIVE FUNCTION VALUE 

FOR DIFFERENT VALUES OF Γ 

Γt PoCV 
Rob. Opt. 

Value  
Increase 

Mean Obj. 
Fun. Value 

Increase 

0  43.1% £138.95 0% - - 
3 17.6% £142.87 2.8% £139.15 0.14% 

6 3.8% £146.16 5.2% £139.18 0.17% 

9 0.3% £149.22 7.4% £139.53 0.42% 
10 0% £150.17 8.1% £139.76 0.58% 

Fig. 10 compares the quality of deterministic and robust (Γt 

= 10) solutions in terms of constraint violation, using Monte 

Carlo simulation. This figure demonstrates the effectiveness of 

robust optimization, which can reduce the PoCV to zero with 

only an 8.1% increase in cost in the worst case, and only 0.58% 

on average.   

 
Fig. 10. Cumulative probability of feeder 2 demand from 100 Monte Carlo 

simulations for deterministic and robust solutions. In (a), Γt = 0, i.e. 
deterministic model – PoCV = 43.1%; and in (b), Γt = 10 – PoCV = 0%.  

Fig. 11 compares the ES-SOP schedules derived by the 

deterministic and robust (Γt = 10) models. The active power 

injected to feeder 2 is increased by 32% at time 18:00, when 

there was the highest probability of violation in the 

deterministic case (see Fig. 9). Overall, +25% more energy 

(during 17:00 – 19:00) is injected to feeder 2 to mitigate the 

probability of violation compared to the deterministic case. 

Concurrently, the injection to feeder 1 is considerably lower 

(during 17:00 – 19:00), which means that the available energy 

in the battery is mainly used to relieve feeder 2, which is very 

close to its limit during this period, rather than inject to feeder 

1, which has a greater margin (see Fig. 7). 
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Fig. 11  ES-SOP schedules (active power injections to feeders) determined by: 

deterministic model (dash-dotted red lines), and robust model using Γt = 10 

(solid blue lines). 

D. Comparison with Two-Stage Stochastic Programming 

This section compares the proposed model with two-stage 

stochastic programming, which was formulated based on [14, 

15]. The separation of variables between stages remains the 

same. The second stage variables are now scenario-dependent. 

Scenarios have been created using Monte Carlo simulation for 

the uncertain parameters. The results are summarized in Tables 

VI and VII.  

Table VI shows that the stochastic programming model 

cannot reach an optimality gap of 0.5% (which was the one set 

for the robust model) within an hour, even for two scenarios. 

For ten scenarios, the model was not able to produce a feasible 

solution within two hours. This can be justified, however, by 

the complexity of the deterministic (mixed-integer) model, and 

the increasingly high computational burden, as number of 

scenarios rises. 

Table VII presents results for the stochastic programming 

model when optimality gap is set to 3%; 20 runs of the model 

have been carried out. The average PoCV decreases when 

number of scenarios increases, as feasibility is ensured in more 

cases this way. However, both average PoCV and the PoCV 

range are not acceptable, and considerably more scenarios are 

needed. But, for ten scenarios, no feasible solution was found 

within two hours. Therefore, the use of stochastic programming 

is not suitable for this model. 

TABLE VI 

RESULTS OF TWO-STAGE STOCHASTIC PROGRAMMING I  

(OPTIMALITY GAP = 0.5%) 
Number of 
Scenarios 

Computational 
Time 

Optimality 
Gap 

2 1h >2% 
5 1h >2.5% 

10 No feasible solution found in 2h 

Robust 68s 0.5% 

TABLE VII 

RESULTS OF TWO-STAGE STOCHASTIC PROGRAMMING II 

(OPTIMALITY GAP = 3%) 
Number of 
Scenarios 

Average PoCV PoCV Range 

2 31.55% 9%-66% 
5 24.07% 11%-53% 

10 N/A N/A 

E. Application to a Real-World Distribution Network 

This section presents an application of our model to a real-

world system, which has been used in several papers and 

technical reports (e.g. [54, 55]). This is a real 11 kV urban 

network from the North-East of England, comprising seven 

feeders, of which two have been chosen for this study (feeders 

A1 and A3 from [54, 55]). These two feeders are illustrated in 

Fig. 12, and the corresponding data are given in [56]. The 

location and capacity of distributed generation is shown in Fig. 

12; the associated profiles are from the North-East of England, 

in 2019, and have been produced using [47]. Each converter is 

rated at 400 kVA, and the battery is 400 kW / 1 MWh. Feeder 

limit is 2 MVA.  

 
Fig. 12.  A real-world distribution network from the North-East of England. 

1)  Impact of ES-SOP Loss Model 

This subsection compares the results obtained by our 

deterministic model and the benchmark [7], which are shown in 

Table VIII. Operation without the ES-SOP device corresponds 

to a total cost of £66.68 (per day), of network losses only. The 

saving for our model is 83.7% greater than the benchmark (for 

the real-world distribution network), which can be justified by 

the low percentage (26%) of time that converters are energized. 

This is, in turn, justified by the lighter loading compared to the 

first test network (Section VI-A), as illustrated in Fig. 13. The 

corresponding percentage for the first test network was 72%. 

The fact that converters are off for so many time steps (for the 

real-world distribution network) allows such a big difference to 

occur. The benchmark model underestimates ES-SOP loss cost 

by 40% in this case. The ES-SOP loss cost difference between 

the proposed model and the benchmark is approximately 

£6/day, and is the main contributor to the overall saving 

difference of 83.7%. Given that the reduction in operational 

costs is a key component in the justification for SOPs and ES 

systems [57], this represents a significant improvement in 

performance. 

TABLE VIII 

COMPARISON OF OUR PROPOSED MODEL WITH BENCHMARK [7] –  
REAL-WORLD DISTRIBUTION NETWORK 

 
Proposed 

Model 
Benchmark 

[7] 
Difference 

(%) 

Network Loss Cost (£) 69.37 69.38 - 

ES-SOP Loss Cost (£) 8.06 8.49 (14.14) - 

Arbitrage Profit (£) -25.28 -24.75 - 

Total (£) 52.15 53.12 (58.77) - 

Saving (£) 14.53 13.56 (7.91) +83.7% 
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Fig. 13.  Feeder demand considering optimal ES-SOP operation – deterministic 
model – real-world distribution network. The network is heavily loaded (but 

not so much as in the first test case); the margin between maximum demand 

and feeder capacity is small. 

2)  Impact of Uncertainty 

This subsection shows how our model manages uncertainty 

in the real-world distribution network in terms of PoCV. In this 

case, we considered an energy storage with greater energy 

capacity (1 MWh instead of 800 kWh, as in the first test case); 

for this reason, we increased the uncertainty to 15%. The results 

of the robust model are shown in Table IX. We can see that the 

real-world distribution network is not so heavily loaded as the 

first test network because of the much lower PoCV for Γt = 0. 

Our model has been successfully applied to this network 

resulting in zero PoCV (for Γt = 3) with an increase in the 

average total cost of approximately 1% and 14.5% in the worst 

case. 

TABLE IX 

POCV, ROBUST OPTIMAL VALUE, AND MEAN OBJECTIVE FUNCTION VALUE 

FOR DIFFERENT VALUES OF Γ – REAL-WORLD DISTRIBUTION NETWORK 

Γt PoCV 
Rob. Opt. 

Value  
Increase 

Mean Obj. 

Fun. Value 
Increase 

0  8% £52.15 0% - - 
1 3.6% £55.33 6.1% £52.22 0.13% 

2 1.5% £56.98 9.3% £52.40 0.47% 

3 0% £59.73 14.5% £52.69 1.03% 

VII.   CONCLUSION 

This paper has introduced a robust mixed-integer convex 

model for the optimal scheduling of Energy Storage-Soft Open 

Point (ES-SOP) devices in distribution networks. ES-SOPs are 

integrated devices which can provide both spatial and temporal 

flexibility to network operators. However, their business case 

can rely on fulfilling multiple applications in uncertain 

conditions, requiring a method to maximize the value of the 

device in scenarios with variable demand and generation. 

Existing ES-SOP models represented the losses of the whole 

device using constant efficiency (linear loss term). This paper 

introduced a binary-polynomial model which quantifies the 

non-linear relationship between device losses and utilization 

and enables explicit modelling of converter de-energization to 

reduce no-load losses during idle periods. Results from a real 

network in the North East of England show these considerations 

have a significant impact (40% ES-SOP loss cost 

underestimation by the benchmark model) on the losses 

incurred within the device, and substantially change the optimal 

device schedule (83.7% greater saving than that of the 

benchmark model). 

The optimal schedules created using deterministic 

optimization methods resulted in an unacceptably high 

probability of network constraint violation: this is because the 

network was operated close to its limits and any unforeseen 

increase in net demand could lead to specific branches being 

overloaded. A two-stage adaptive robust optimization was used 

to address this issue; the probability of constraints being 

violated (given the assumed uncertainty set) could be reduced 

to zero with only a 1.03% increase in the average operating cost 

of the network (14.5% increase in the worst case). If a small but 

non-zero probability of constraint violation is acceptable to the 

operator, the method allows them to decrease the budget of 

uncertainty to decrease the operating cost in exchange for a low 

but acceptable probability of violating network limits. 

In this paper, the ES-SOP was assumed to be owned and 

operated by the DNO. In future work, the implications of this 

assumption could be further explored. Alternative ownership 

models and business cases could be investigated to assess which 

ownership models deliver the best value for energy customers 

while ensuring sufficient incentive for investment in ES-SOPs. 

APPENDIX A 

EXACTNESS OF THE ES-SOP LOSS MODEL RELAXATIONS 

This appendix provides a proof for the exactness of ES-SOP 

loss model relaxations, i.e. the relaxations of (7)-(10), (22), and 

(29). To facilitate the understanding of the proof, we expand the 

objective function (31), omitting pt and Δt, which are positive, 

and are multiplied by all terms in (89). 

( ) ( )

( ) ( )

ES-SOP,L ES-SOP,L

1 , 2 ,

ES-SOP,LES-SOP,L

4 ,3 ,

0 1, 1 11, 2 12, 0 2, 1 21, 2 22,

ES-SOP

0 3, 1 3,  abs 2 3, aux ES 4,

ES-SOP

4, ,

min

t t

tt

a t a t a t a t a t a t

P P

d t d t d t t

PP

t ij t

c b c k c k c b c k c k

c b c P c k c c k

P R

+ + + + +

+ + + + +

− +

t

b

2

,

t

ij t

ij

I





 
 
 
 
 
 
 
 
  





 (89) 

Proposition: The relaxations of constraints (7)-(10), (22), 

(29) are exact. 

Proof: We show exactness of the relaxed model (see Section 

III-A3) for constraint (29), and a similar approach can be 

followed for the other relaxations. Assume that there exists an 

optimal solution 

 ( )ES-SOP ES-SOP,L

4, 4, 4,
... , , , ,  ...

t t t
w k P P

 
 
=   (90) 

of the relaxed model, and constraint (30) is not binding at w*, 

i.e. 

 ES-SOP

4, 4, 4,2
2 1 1

t t t
P k k−  +   (91) 

or, equivalently, 

 ( )
* 2

ES-SOP *

4, 4,t t
P k   (92) 

For some small enough ε > 0, there exists another solution of 

the relaxed model, w', where w' is equal to w* except 
ES-SOP ES-SOP,L

4, 4, 4,
, , ,

t t t
k P P

 


i.e. 

 ( )ES-SOP ES-SOP,L

4, 4, 4,
... , , , ,  ...

t t t
w k P P

 
 =   (93) 

such that 

 *

4, 4,t t
k k  = −   (94) 
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*

ES-SOP ES-SOP

4, 4, ESt t
P P c 



= −   (95) 

 
*

ES-SOP,L ES-SOP,L

4, 4, ESt t
P P c 



= −   (96) 

We next show that w' is a feasible solution, and it has the 

same objective function value as w*. Note that the changes (i.e. 

(94)-(96)) only affect constraints (28), (30), and (46) of the 

relaxed model. By substituting (94)-(96) into (28), (30), (46), it 

can be verified that w' satisfies these constraints, and thus w' is 

also a feasible solution of the relaxed model. 

Then, by substituting (94)-(96) into the objective function, 

we observe that w' has the same objective function value as w*, 

which shows that the relaxed model has alternative optimal 

solutions. Since the feasible region of the relaxed model is 

bounded, we can deduce that there exists an ε > 0, for which 

constraints (94)-(96) are satisfied and constraint (30) is binding. 

Therefore, we can conclude that we can find an exact optimal 

solution with the same objective function value as w*. ■ 

Note that the above proof is similar to the relaxation 

exactness proof provided in [37]. 

APPENDIX B 

DERIVATION OF RELAXED CONSTRAINTS (12) AND (14) 

Constraint (8) is relaxed to: 

 ( ) ( )
2 2

ES-SOP ES-SOP

12, 1, 1,t t t
k P Q +   (97) 

which can be rearranged as follows: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
ES-SOP ES-SOP

1, 1, 12,

2 2 2 2ES-SOP ES-SOP

1, 1, 12, 12,

2 2 2 2ES-SOP ES-SOP

1, 1, 12, 12,

4 4 4 0

2 2 1 1 0

2 2 1 1

t t t

t t t t

t t t t

P Q k

P Q k k

P Q k k

+ −  

+ + − − +  

+ + −  +

  (98) 

which can be written as the following second-order cone 

constraint, which is identical to constraint (12). 

 
ES-SOP ES-SOP

1, 1, 12, 12,2
2 2 1 1

t t t t
P Q k k−  +   (99) 

A similar approach can be followed for the conversion of 

constraint (10) to constraint (14). 
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