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Distributionally Robust Joint Chance-Constrained
Optimization for Networked Microgrids Considering

Contingencies and Renewable Uncertainty
Yifu Ding, Student Member, IEEE, Thomas Morstyn, Member, IEEE,

Malcolm D. McCulloch, Senior Member, IEEE

Abstract—In light of a reliable and resilient power system
under extreme weather and natural disasters, networked micro-
grids integrating local renewable resources have been adopted
extensively to supply demands when the main utility experiences
blackouts. However, the stochastic nature of renewables and
unpredictable contingencies are difficult to address with the de-
terministic energy management framework. The paper proposes
a comprehensive distributionally robust joint chance-constrained
(DR-JCC) framework that incorporates microgrid island, power
flow, distributed batteries and voltage control constraints. All
chance constraints are solved jointly and each one is assigned
to an optimized violation rate. To highlight, the JCC problem
with the optimized violation rates has been recognized as NP-
hard and challenging to solve. This paper proposes a novel
evolutionary algorithm that successfully solves this problem and
reduces the solution conservativeness (i.e. operation cost) by
around 50% compared with the baseline Bonferroni Approxi-
mation. We construct three data-driven ambiguity sets to model
uncertain solar forecast error distributions. The solution is thus
robust for any distribution in sets with the shared moments
and shape assumptions. The proposed method is validated by
robustness tests based on these sets and firmly secures the solution
robustness.

Keyword— Distributionally robust optimization, joint chance
constraints, data-driven ambiguity set, reliability

I. NOMENCLATURE

A. Set and index
T , t Set, index of timesteps
B, b Set, index of buses
S, s Set, index of distributed assets (i.e. storages,

PV panels, loads)

B. Parameters and variables
mu Cost factor of grid power
ms Cost factor of solar generation curtailment
ml Cost factor of load curtailment
mr Cost factor of droop control provision
md Battery degradation costs
NB Number of network buses
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grids (RELCON).
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NL Number of lines
NS Number of distributed batteries
ND Number of loads
NPV Number of solar PV panels
Nit Maximum number of evolution iterations
Nc Number of single chance constraints
Ns Number of forecast error samples
Np Number of individuals in one generation
ηdis, ηch Battery discharging / charging efficiency
v, v Maximum / minimum bus voltage
v Voltage magnitude of buses
SoC, SoC Maximum / minimum state of charge (SoC)
P c, P d Maximum discharging / charging power
P d, P c Battery discharging / charging power
P l Demands at each bus
P l

′
Supplied loads at each bus

P cl Critical loads at each bus
Es Battery energy capacity
µpv Mean vector of solar forecast errors
Σpv Covariance matrix of solar forecast errors
ε, ε Upper / lower bounds of violation rates of

chance constraints
εi Violation rate of single chance constraints
εj Violation rate of joint chance constraints
ds Droop provision coefficients
P pv Forecast solar power at each bus
P pv

′
Consumed solar power at each bus

˜P pv Solar power forecast errors
P inj Net injected power at each bus
P g Imported grid power
Rup Upward droop provision from batteries
Es SoC of distributed batteries
r Ratio to measure the solution convergence
rthr Threshold ratio for the termination condition
Vo, Io Voltage / current operation point vector
Y Network admittance
C Sparse matrices to map the distributed assets
P Individuals (population) in one generation

II. INTRODUCTION

THe reliability of the power system under the impact of
increasing renewable penetration and extreme weather

conditions is a rising concern. In the developed world, the
decreasing number of dispatchable fossil-fuel power plants
and reduced system inertia render the power system more
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vulnerable to natural disasters [1]. Recent examples include the
rolling blackouts across California due to the wildfire [2] and
disastrous power outages in Texas due to the extremely cold
weather [3]. In the developing world, increasing electricity
demand and aging infrastructure result in frequent power
outages. In sub-Saharan African countries, the outage time
of public utility is commonly around 10%, and even reaches
50% in some instances [4].

To tackle utility failures and power cuts, microgrids aggre-
gate local renewable energy resources and loads in a small
network, and operate flexibly with or without the grid connec-
tion, thanks to modern inverter-based design [5]. Microgrids
can thus supply loads when the grid experiences scheduled
under-frequency load shedding (UFLS) [6] or unpredictable
power cuts. This islanding capability is incorporated into the
power scheduling of microgrids [7], [8]. Smart load shedding
is also employed to mitigate power imbalances in microgrids.
For example, refs. [9], [10] model users’ utility functions
using different appliances so that flexible loads can be shifted
efficiently for peak shaving in distributed power networks.

On the other hand, intermittent renewable resources such as
solar power pose challenges to short-term power system oper-
ations. The imperfect forecast brings uncertainty, which could
result in network constraint violations and high power losses
[11]. Stochastic and robust optimization have been proposed
to address the uncertainty. While robust optimization based
on the worst-case scenario leads to an overly-conservative
and cost-prohibitive solution, the chance-constrained (CC)
formulation, as one of the predominant stochastic approaches,
can directly control the system reliability to a predefined
level and decide the optimal cost. The CC formulation of
the optimal power flow (OPF) was first proposed in [12],
incorporating a series of single network chance constraints
(CCs) pertaining to voltage and power limits.

The most intuitive way to solve the CC problem is the
scenario-based approach. As the exact solution of a CC
problem is unattainable, this approach solves a great number
of problem scenarios randomly drawn from the uncertainty
distribution. To secure the estimation confidence level 1− β,
the number of random samples should be at least 2

ε (ln 1
β +n),

given the violation rate ε and the dimension of decision
variables n [13].

A more effective alternative is distributionally robust op-
timization (DRO). This approach constructs a set based on
historical data - termed the ambiguity set - including all pos-
sible uncertainty distributions. The formulation thus ensures
constraints are satisfied for any distribution in the ambiguity
set built upon distribution moments and shape information.
The problem can be solved by being recast into tractable
formulations, including linear programming (LP), semidefinite
programming (SDP) and second-order conic programming
(SOCP) depending on the degree of approximation [14].
However, defining an ambiguity set to characterize uncertain
distributions is non-trivial, as one needs to decide the trade-
off between solution robustness and conservativeness, while
considering the mathematical tractability [15]. Compared with
early works using the first two moments (i.e. mean and
variance) such as [16], recent works utilize the high-order mo-

ments (e.g. skewness [17]), structural properties (e.g. unimodal
[18] and symmetric [19]) to set tighter bounds. Another kind
of method is the moment-free method. Ref. [20] constructs
a ball space where possible distributions are centred at the
reference distribution based on the training samples, and the
ball radius is defined by Wasserstein-based distance metrics.
However, such an approach is highly data-intensive and its
performance is substantially influenced by the volume of data
available [21].

All aforementioned literature [16], [17], [19]–[23] adopt the
single CC formulation, in which each constraint is considered
as an independent event with the pre-defined violation rate.
However, in most power system applications, the JCC formu-
lation is desired, which means that all constraints should be
satisfied simultaneously and use one whole-system reliability
metric. For example, a distribution feeder is considered to be
reliable if and only if all the constraints such as bus voltage
limits, power balance are met simultaneously.

However, solving the JCC problem is notoriously difficult
since its DRO reformulation generally results in intractable
problems [24]. Only a few papers attempted to solve the JCC
problems using either the scenario-based or approximation-
based methods. The scenario-based method, following the
aforementioned principles, solves possible scenarios from his-
torical samples for the JCC problem. Ref. [25] first proposed
the JCC-OPF formulation for the transmission network with
high wind power penetration. A droop-type function, termed
the distribution vector, was introduced to control generators
concerning wind power forecast errors [25], [26]. These prob-
lems were solved in a great number of wind power forecast
scenarios. Similar works include [27]–[29] for power networks
integrating flexible loads or thermal storages. In general, the
scenario-based approach offers a fairly accurate solution given
a large volume of samples, but its scalability heavily relies on
statistical techniques, such as sample average estimation, to
ease the computation burden [30].

The approximation-based method is decomposing an in-
tractable JCC problem into a series of tractable SCCs, then
approximating individual violation rates. The simplest ap-
proximation method, termed the Bonferroni Approximation,
assumes that all individual violation rates are the same and
equal to the joint violation rate divided by the number of indi-
vidual constraints, proposed first in [31]. This approximation
has an extremely conservative assumption that neglects the
intersections of constraints and treats all constraints equally.
In this case, the solution conservativeness increases with the
number of individual chance constraints [32]. To reduce the so-
lution conservativeness, ref. [33] identifies all intersections of
constraints using machine learning classification and obtained
around 5% result improvement, compared to the Bonferroni
Approximation as the baseline. Refs. [34], [35] approximate
the JCC to conditional value-at-risk (CVaR) constraints and
introduce a scaling factor to control the tightness of the
approximation. The improvement benchmarked against the
Bonferroni Approximation is around 8-12%. However, none
of the previous papers try to allocate the optimized violation
rates for each constraint. Ref. [33] concludes these optimal
violation rates are challenging to find. Furthermore, ref. [36]
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theoretically proves that a JCC problem with the optimized
individual violation rates, termed the optimized Bonferroni
Approximation, is a strongly NP-hard problem.

This paper makes the following contributions which to-
gether address the aforementioned challenges:

1) A novel evolutionary algorithm is proposed to solve the
JCC problem with optimized individual violation rates, which
is an NP-hard problem and challenging to solve. Our method
shows around a 50% reduction in the solution conservative-
ness (i.e., operation cost) benchmarked against the Bonferroni
Approximation. This performance is the best to date compared
to other approximation-based methods for the JCC problem.
Moreover, these optimized violation rates are interpretable,
accurately reflect the sensitivities of corresponding constraints
to the operation cost.

2) The proposed JCC algorithm is tested on three data-
driven ambiguity sets, namely, symmetrical, unimodal and
symmetrical & unimodal sets. These ambiguity sets are created
and constructed using the empirical solar power forecast
errors from a machine learning model to capture accurate
statistical characteristics of uncertainty distributions in each
time interval.

3) This DR-JCC energy management framework for the
networked microgrid incorporates CCs pertaining to the power
flow, bus voltage, energy storage power and energy limits.
We run the power flow simulations under three uncertain
distribution assumptions (i.e. ambiguity sets) to observe the
no-violation cases. Only the proposed method can schedule
the system to closely meet the reliability requirements, while
the SCC and the benchmark case give either unreliable or
overly-conservative results.

The rest of the paper is organized as follows. Section III
presents the centralized OPF formulation for a networked
DC microgrid. Section IV demonstrates the essential steps
to reformulate the model into a DR-JCC framework with the
optimized individual violation rates, and then we propose a
novel evolutionary algorithm to solve the intractable problem.
Section V presents a statistical analysis of empirical solar
forecast errors and the rationale behind the three data-driven
ambiguity sets. Section VI presents a case study to evaluate the
model performance and test the solution robustness. Finally,
section VII concludes the paper.

III. CENTRALIZED OPF FOR NETWORKED MICROGRIDS

Fig. 1 shows an example of a networked DC microgrid
in a rural area. The microgrid has a main busbar connected
to multiple households and the main grid via an inverter.
The grid often experiences unpredictable power cuts. Each
household at the end point has a bidirectional multi-port DC-
DC converter connected to local PV panels, distributed energy
storage (ES), and appliances. The centralized OPF is optimized
in the receding horizon with 15-min time intervals and a
one-day window. The formulation considers both the grid-
connected and island mode simultaneously, allowing off-grid
operation at any time step. The subsequent sections present
the centralized OPF formulation with predetermined forecast
errors.

Fig. 1. Networked DC microgrid in the rural area [37]

1) Preliminaries: As in Fig. 1, we consider a networked
microgrid with NB buses and NL lines. The network buses
are indexed by b ∈ B, and the network admittance matrix is
denoted as Y ∈ RNB×NB . Distributed assets are located at
different buses including energy storage, solar power gener-
ation, flexible and inflexible loads, indexed by s ∈ S . Bold
letters Pt := {P1,t, P2,t, ..., Pn,t} represent decision variable
vectors across distributed assets at time t ∈ T . The positions
of those distributed assets in the network are mapped by sparse
matrices Cpv ∈ RNB×NPV , Cs ∈ RNB×NS , Cl ∈ RNB×ND .
The multi-period centralized DC OPF has the time interval ∆t.
For all constraints, ∀t ∈ T and ∀b ∈ B hold unless otherwise
specified.

2) Objective function: The objective function is formulated,

J = ∆t

T∑
t=0

{mu(P gt )2 +mr

NS∑
s=0

(Rups,t)
2

+ms

NPV∑
s=0

(P pvs,t − P
pv′

s,t )2 +ml

ND∑
s=0

(P ls,t − P l
′

s,t)
2

+md

NS∑
s=0

(P ds,t + P cs,t)}

(1a)

The objective function includes five terms, namely, utility
tariff, droop control provision cost, solar power curtailment
penalty, load shedding penalty and battery degradation cost.
Except for battery degradation costs, all costs are modeled as
a quadratic function. Cost factors ms and ml are associated
with the solar power self-consumption and users’ utility, as
detailed in Section V.

2) SoC battery droop control: Distributed ES in the network
has two functions: shifting solar energy in time and providing
P-V droop control to regulate bus voltages within the range.
For the voltage regulation function, distributed ES reserves
energy to address positive solar power forecast errors and
provide upward voltage regulation. When solar power is over-
estimated, it leads to a power imbalance and low bus voltages.
Then each ES will release the reserved energy according to
its droop coefficient and bus voltage deviation, until a new
power balance is achieved. When the solar power is under-
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estimated, the surplus solar power will be curtailed considering
the curtailment penalty in (1a).

NS∑
s=0

dss,t = 1 ∀dss,t ∈ [0, 1] (1b)

Rups,t ≥ dss,t
NPV∑
s=0

˜P pvs,t (1c)

P ds,t +Rups,t ≤ P d (1d)

P cs,t −R
up
s,t ≥ 0 (1e)

SoC ≤ Ess,t −R
up
s,t∆t (1f)

Ess,t ≤ SoC (1g)

Ess,t+1 = Ess,t −
Pd

s,t

ηdis
∆t+ P cs,tηch∆t (1h)

At any timestep t, all distributed ES in the network should
deliver the P-V droop provision to address exactly the total
amount of solar power forecast errors (1b), while each dis-
tributed ES is coordinated to deliver a fraction known as the
droop coefficient dss,t in (1c). Droop provision is constrained
by the battery power output limits (1d) - (1e), energy constraint
(1f) - (1g) and energy balance considering the round-trip
efficiency (1h).

3) Power flow and balance: We categorize users’ loads into
flexible and inflexible loads, and flexible loads can be curtailed
during a blackout.

P l
′

s,t = P ls,t (1i)

0 ≤ P pv
′

s,t ≤ P
pv
s,t (1j)

〈P gt , P
pv′

s,t , P
d
s,t, P

c
s,t, P

l′

s,t〉 ≥ 0 (1k)

P gt +

NPV∑
s=0

P pv
′

s,t +

NS∑
s=0

(P ds,t − P cs,t) =

ND∑
s=0

P l
′

s,t (1l)

At the grid-connected mode, the system cannot curtail any
load (1i) but the solar power curtailment is allowed (1j). All
stacked decision variables in (1k) should be greater than zero.
The power balance is guaranteed by (1l).

Considering distributed ES with the droop provision, local
solar power generations with forecast errors and loads, the
injected power at each bus in the network is formulated as,

Pinjt = CgPgt +Cs(Pdt−Pct+Rupt )+Cpv(Ppv
′

t −P̃pvt )−ClPl
′

t

(1m)
The voltage at each bus depends on the power injected at

that bus and power flow between all neighboring buses,

Pinjt = diag(v)I = diag(v)Yv (1n)

Pinjt = diag(Vo)Yv + diag(Io)(v− Vo) (1o)
v ≤ v ≤ v (1p)

To deal with the non-convex constraint (1n), ref. [38] uses
Taylor series expansion for linearization and validates its high
fidelity. Based on this approach, constraint (1n) is linearized
around the operating point (Vo, Io) as (1o). Bus voltages are
regulated within a certain range to ensure power quality (1p).

4) Island mode: Designed to operate during a blackout,
the microgrid can island at any timestep. The grid-connected

and islanding schedules of the microgrid are solved simulta-
neously, as two scenarios of one problem. The optimization
problem in the islanding scenario is identical to the grid-
connected mode, except for the constraints pertaining to load
curtailment and utility supply.

P gt = 0 t ∈ [to, to +H] (1q)

P cls,t ≤ P l
′

s,t ≤ P ls,t t ∈ [to, to +H] (1r)

When the utility power is available, battery SoC of these two
scenarios should be the same. When the blackout happens (1q)
during [to, to + H], the microgrid is only required to supply
inflexible loads (1r) during islanding, and the battery control
reference follows the optimization result of the islanding
scenario.

IV. DR-JCC FRAMEWORK WITH THE OPTIMIZED
INDIVIDUAL VIOLATION RATES

The centralized OPF formulation in section III has an
underlying assumption of predetermined solar power forecast
errors, ˜P pvs,t , while these errors follow an uncertain distribution
in practice. We thus introduce the DR-JCC formulation to inte-
grate uncertainty and secure solution robustness for uncertainty
distributions. Introducing the JCC formulation is essential
because the microgrid is reliable if and only if all individual
CCs are satisfied simultaneously. As shown in Fig. 2, the
process for formulating and solving the DR-JCC problem
includes four steps.

Fig. 2. Schematic diagram for formulating and solving the JCC model for
the networked microgrid

As shown in Fig. 2, firstly, the solar forecast error sam-
ples are collected. We then summarize the family of error
distributions and build ambiguity sets. Given the shape and
moment assumptions of ambiguity sets, the DR-JCC problem
is formulated considering the joint risk of the battery power
capacity, bus voltage and network violation. The problem is
solved by decomposing and recasting into the SOCP formu-
lation. However, the JCC with the optimized violation rates is
an intractable problem. Thus, we propose a novel evolutionary
algorithm to solve this problem.
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A. DR-JCC formulation

We first present the DR-JCC formulation considering uncer-
tain solar power forecast error distributions. All six constraints
(1c) - (1f) and (1p) involving forecast errors ˜P pvs,t are reformu-
lated in the DR-JCC fashion, while the other constraints (1b),
(1g) - (1o), (1q) and (1r) remain the same. The new problem
formulation is given by,

min
x

EP[J (x)]

s.t. (1b), (1g) - (1o), (1q), (1r)

inf
P∈P(µ,σ)

P(
⋂Nc

i=0(Ai(x)ζ ≤ bi(x))) ≥ 1− εj (2)

where Ai(x)ζ ≤ bi(x) =

{dss,t
NPV∑
i=0

˜P pvs,t ≤ R
up
s,t (3a)

P ds,t +Rups,t ≤ P d (3b)

Rups,t ≤ P cs,t (3c)

Ess,t −R
up
i,t∆t ≥ SoC (3d)

v ≥ v (3e)
v ≤ v} (3f)

The letter x represents the decision variable vector (i.e.
droop coefficient, grid power and distributed asset power
outputs), and ζ represents the uncertainty variable vector
following the distribution P (i.e. solar power forecast error

˜P pv). Nc is the number of individual constraints included,
while Ai(x) and bi(x) are affine functions about the decision
variables. The DR-JCC inequality (2) means that given all
distributions in the ambiguity set P built upon moments µ, σ,
the violation rate of the JCC is less than εj even for the worst-
case distribution. This JCC problem can be decomposed into
the SCC problem with individual violation rates. Constraint
(2) is transformed to constraint (4) based on the set operation
properties of supremum and infimum. Then the JCC (4) can
be decomposed into Nc single chance constraints based on
Boole’s inequality [39].

sup
P∈P(µ,σ)

P(
⋃Nc

i=0(Ai(x)ζ > bi(x))) ≤ εj (4)

=⇒ sup
P∈P(µ,σ)

∑Nc

i=0 P(Ai(x)ζ > bi(x)) ≤ εj (5)

Thus, given the violation rate of the single CC εi, the
following inequality holds.

Nc∑
i=0

εi ≤ εj (6)

B. Ambiguity set construction and SOCP formulation

The solar forecast error distributions typically show strong
unimodality or symmetry [40]. This paper uses moments and
distribution structure assumptions to construct ambiguity sets.
For a time interval t ∈ T , we have Ns error samples ζn,t. We
can compute the empirical mean µt and covariance σt of the
error distribution in this time interval,

µt =
1

Ns

Ns∑
n=0

ζn,t (7)

σ2
t =

1

Ns − 1

Ns∑
n=0

(ζn,t − µt)(ζn,t − µt)ᵀ (8)

Given the solar power correlation between two buses a, b at
time t denoted as γa,b,t, the mean vector µpv and covariance
matrix Σpv of forecast errors in the network are,

µpv := [µ0,t, · · · , µb,t] (9)

sa,b =

{
σ2
a,t if a = b

γa,b,tσa,tσb,t if a 6= b
(∀sa,b ∈ S ∈ RNB×NB )

(10)

Σpv := S− µpvµᵀ
pv (11)

Depending on the certainty of the computed moments, one
can build the ambiguity set and recast the CC model into
either the SOCP or SDP formulation. The former considers
no estimation errors for the computed moments, while the
latter considers the confidence level of the moment estimation.
A detailed demonstration can be consulted in [41]. In this
paper, we prepare a sufficient number of samples and adopt
the SOCP formulation assuming the computed moments are
exactly true moments of unknown distributions. We construct
three ambiguity sets as D1

ζ , D2
ζ and D3

ζ . We drop indexes t, pv
for conciseness.

Ambiguity set 1: (Unimodal, centred at the mean and mode
zero.)

D1
ζ :=

{
P ∈ Pα :

E[ζ] = µ,E[(ζ − µ)2] = σ2

M[ζ] = µ = 0

}
where Pα denotes all unimodal distributions on Rn, and
M[ζ] is the mode of distributions.

Ambiguity set 2: (Symmetric, centred at mean zero.)

D2
ζ :=

{
P ∈ P :

E[ζ] = µ,E[(ζ − µ)2] = σ2

P[ζ] = P[−ζ] = 0

}
(12)

Ambiguity set 3: (Unimodal and symmetric, centred at
mean and mode zero.)

D3
ζ :=

{
P ∈ D1

ζ ∩ D2
ζ

}
(13)

Based on the proof in [42], a single DR-CC in (5) can be
recast into a SOCP constraint given by,

λ(εi)||Σ1/2Ai(x)||2 ≤ bi(x)− µᵀAi(x) (14)

where λ(εi) depends on the specific ambiguity set. For D1
ζ ,

D2
ζ and D3

ζ , their functions λ1(εi), λ2(εi) and λ3(εi) are,

λ1(εi) :=
2

3

√
1

εi
∀εi ∈ (0,

1

3
) (15)

λ2(εi) :=

√
1

2εi
∀εi ∈ (0,

1

2
) (16)

λ2(εi) :=

√
2

9εi
∀εi ∈ (0,

1

6
) (17)

Equations (15) - (16) are proven in [43] and [44] based on
Gauss’s inequality and Chebyshev’s inequality. Equation (17)
is proven in ref. [45].
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C. Approximation of individual violation rates

Since we only know a joint violation rate εj , single vio-
lation rates εi need to be computed. We choose Bonferroni
Approximation as the baseline case. It assumes all individual
violation rates to be equal and the sum of individual violation
rates is the exact joint violation rate.

εi :=
εj
Nc

(18)

Nevertheless, the Bonferroni Approximation leads to a very
conservative solution, as this approximation assumes all con-
straints have the same chance to be violated. We therefore
propose an improved method using the Optimized Bonferroni
Approximation. It considers the individual violation rate εi
as a variable rather than a fixed priori, which is solved
simultaneously with the original optimization problem [36].

H := −Csdst + Cpv (19)
G := diag(Vo)Y + diag(Io) (20)

λ(εi)||dst1Σ
1/2
pv,t||2 ≤ Rupt − µ

ᵀ
pv,t1dst (21)

λ(εi)||dst1Σ
1/2
pv,t||2 ≤ Pd − Pdt − µ

ᵀ
pv,t1dst (22)

λ(εi)||dst1Σ
1/2
pv,t||2 ≤ Pc − µᵀ

pv,t1dst (23)

λ(εi)|| − dst1∆tΣ
1/2
pv,t||2 ≤ Est − SoC− (−µᵀ

pv,t1∆tdst ) (24)

λ(εi)||G−1HΣ
1/2
pv,t||2 ≤ v−G−1{diag(Io)Vo + Pinjt } (25)

λ(εi)||G−1HΣ
1/2
pv,t||2 ≤ −v + G−1{diag(Io)Vo + Pinjt } (26)

Based on the Optimized Bonferroni Approximation and
the reformulation in (14) - (17), the DR-JCC inequality (2)
consisting of six individual CCs (3a) - (3f) is recast into
individual SOCP constraints (21) - (26), with a new variable
εi and constraint (6). 1 represents the unit vector with the
dimension of buses, and µᵀ

pv,t1 thus is the sum of total forecast
error across all buses. However, introducing the variable εi
destroys the convexity of this problem. One can observe that
each constraint has a multiplication of variables. The problem
has been proven as strongly NP-hard [36].

D. Evolutionary algorithm for the JCC problem

To tackle the aforementioned NP-hard problem, we propose
an evolutionary algorithm to approximate the solution of the
intractable JCC problem, including the optimized individual
violation rate for each CC and total operation cost. In the sub-
field of meta-heuristic optimization, the evolutionary algorithm
is a bio-inspired algorithm analogous to the natural evolution
process [46]. The essence of an evolutionary approach to solve
a problem is to equate possible solutions to individuals in a
population, and to introduce a notion of fitness on the basis
of solution quality [47].

Algorithm 1 provides the pseudo-code of the proposed
population-based evolutionary algorithm. First, a group of Np
individuals P as the first-generation population is created,

P := [ε0, ...., εi] ∀i ∈ [0, Nc],∀εi ∈ [ε, ε] (27)

Each individual P has six parameters, which are the opti-
mized variables for each CC violation rate (27). The sum of

Algorithm 1: Population-based evolutionary algorithm
Initialise the population with random individual

solutions;
Evaluate each individual solution;
while termination condition is not satisfied do

Perform competitive selection;
Apply pair, breed and mutation procedures;
Evaluate the new pool of individual solutions;
Apply replacement to form the new population;
Find current best solution;

end
Output overall best solution;

individuals’ parameters should satisfy Boole’s inequality (6),
thus the upper bound of parameters is the joint violation rate
εj . We use the voltage violation rate of a feeder in reality (e.g.
0.1% [48]) to set the lower bound of parameters.

F(P) := EP[J (P, x)] (28)

Each individual is evaluated by the fitness value, defined
as the objective function value of the JCC problem (28),
where x is the decision variable in the original optimization
problem to be solved together. The evolution of the population
is conducted iteratively based on competitive selection. For
each iteration, only the first half of individuals with lower
fitness values are selected as the elite for the next generation.

εsi :=
εcmi + εcni

2
∀εcmi ∈ Pm,∀εcni ∈ Pn (29)

εs
′

i := εsi + max{θ, 0} θ ∼ N (0, σ2) (30)

The elite pairs with each other and generates offspring.
Specifically, the offspring is generated by taking the average
value of parents’ parameters (29). The mutation of offspring
is necessary, otherwise the solution might be trapped into a
local minimum. That is to add a random number drawn from
a normal distribution to six offspring’ parameters (30). The
parameters of the mutated offspring should be normalized,
so that the sum is always equal to the joint violation rate.
The mutation only happens when all parents are different,
otherwise the fitness values over generations are hard to
converge.

The evolutionary iteration will stop until any of these
two termination criteria is reached, the maximum number of
iterations (i.e. Nit = 10), and the ratio to measure the solution
convergence, defined as the ratio of the maximum. The average
value of fitness functions is as below.

r :=
max{F(P0), ...,F(Pn)}

1
Np

∑Np

n=0 F(Pn)
− 1 ≤ rthr (31)

The algorithm will stop when the ratio (31) is lower than
the threshold value, rthr. Much empirical evidence such as
[47], [49] and [50] shows that if the evolutionary algorithm,
as one of the global optimization methods, is repeated many
times with the random initial guesses in the first generation
and still obtains the same solution, this solution is considered
as an acceptable approximation of the global optimum.
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This method can be readily transferable from one problem
to another, as only two parts of the algorithm are problem-
dependent, the initial values of the first generation (i.e., the
initial guess of individual violation rates) and fitness function
(i.e., the objective function). Moreover, one can adjust the
convergence ratio (31) of the algorithm to decide the trade-
off between the fidelity of the optimum approximation and the
computation time. However, if a problem has a very small joint
violation rate divided by a great number of chance constraints,
some of the initial guesses for the optimized violation rates
could result in infeasible solutions. A successful evolution
process would require a large population and significant com-
putation efforts.

V. DATA-DRIVEN SOLAR POWER FORECAST

We choose a light gradient boosting machine in ref. [51]
to predict solar power. This paper does not consider the
demand uncertainty since its forecast errors are generally much
smaller than solar power forecast errors for a microgrid with a
high solar self-consumption. The dataset used is two-year 15-
min weather measurements in Gitaru dam, Kenya, including
the solar irradiance, air temperature and wind speed for the
prediction features. We set the prediction horizon to be one
day. The prediction is updated every time interval in the
receding horizon for a whole year.

Fig. 3. Solar power forecast error distributions in a year (a) the boxplot of 15-
min solar power forecast error (modes and means labeled with black and green
markers) (b) Forecast error distribution at 11:45 am (with non-parametric
kernel density estimation in black dash line and parametric Gaussian fitting
in red solid line)

We calculate solar power forecast errors all over the year,
aggregate them based on time intervals and label the mean and
mode, as in Fig. 3 (a). For each time interval with the daylight,
there are 365 error samples from each day in a year. The
maximum value is around 150% in the early morning when
the solar power is too small (around 1W) to be accurately
predicted. One can also observe several phenomena in Fig. 3.
First, those error distributions in each time interval are highly
symmetric centered at their means. Second, both the mean

and mode are around zero and fairly close except for early
morning and late afternoon when the solar irradiance is very
low. Third, the distribution is unimodal but not necessarily a
normal distribution as shown in Fig. 3 (b).

VI. CASE STUDY

The section presents a case study of a networked DC
microgrid in the rural area, Kenya. This microgrid has 10
households connected to the main busbar radially, and each
has local PV panels and 60Wh, 20W home batteries. Their
power outputs are considered to be independent. Households’
load profiles are constructed using the weather data based on
our previous work [37]. Specifically, inflexible (i.e. light) and
flexible (i.e. fan and phone charger) loads are considered,
and the utility for using them is modeled as a quadratic
function of power, temperature and solar irradiance based on
welfare economics [9]. The parameter ml is a coefficient of the
utility function to reflect users’ comfort to achieve smart load
shedding. For example, the user’s utility when using lights is
inversely proportional to the solar irradiance, meaning that the
more economic utility that users can get from lights during the
low solar irradiance.

TABLE I
CASE STUDY PARAMETERS

mu $0.023/(kWh)2 ηdis, ηch 0.95 Np 6
ms $1.00/(kWh)2 SoC, SoC 0.2, 1 Nit 10
mv $0.23/(kWh)2 vb, vb 0.95, 1.05p.u. rthr 2%
md $0.27/kWh Rline 8Ω/km σm 0.1

The power capacity of PV panels and line length from
main bus to households are drawn from uniform distributions
U1(20, 40) [W] and U2(50, 200) [m]. Table I shows the model
parameters in the first two columns and the evolutionary algo-
rithm parameters in the third column. The model parameters
such as line resistance are from the manufacturer information
[52], and ms is set to be large to encourage self-consumption.
The evolutionary algorithm parameters are optimized from em-
pirical experiments. For example, we increase the number of
individuals Np by two each time and observe the diminishing
marginal improvements on computation time and results, until
there is no significant improvements on results. The model
framework is built using the CVXPY package [53] in Python,
and run on an Apple iMac with a processor of 3.1GHz Intel
Core i5 and a memory module of 8 GB 2133 MHz LPDDR3.

A. Solving DR-JCC problem with evolutionary algorithm

We first solve the DR-JCC model with different joint viola-
tion rates using the proposed evolutionary algorithm, and com-
pare results with the baseline, the Bonferroni Approximation.
In each experiment with one joint violation rate, we run the
evolutionary algorithm for 10 times and the solutions converge
to the same optimum. Those solutions are thus considered as
an acceptable approximation of the global optimum.

The computation processes for three joint violation rates
(i.e. 0.05, 0.02, 0.01) with the unimodal ambiguity set D1

ζ

are shown in Fig. 4. First, in the higher system reliability
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Fig. 4. Computation processes for DR-JCC under three joint violation rates

(i.e. 1 − εj) cases, solutions converge faster. This is because
the numerical range of individuals’ parameters to explore
becomes smaller. Second, the substantial reduction of the
objective function is often achieved in the first two or three
iterations. This means one can decide the trade-off between
computation time and solution conservativeness by changing
the termination condition such as the ratio rthr.

TABLE II
SUMMARY OF RESULTS AND COMPUTATION TIMES

Joint vio. rates 0.05 0.02 0.01

Methods BL. PPSD. BL. PPSD. BL. PPSD.

ε1
0.0083

0.023
0.0033

0.008
0.0016

0.003
ε2 0.022 0.008 0.003

ε3 − ε6 0.001 0.001 0.001

Time (s) 11.02 464.02 11.69 351.82 12.55 269.14

Obj. func. ($) 8.54 3.54 21.54 8.54 30.86 21.06

BL.: Baseline; PPSD.: Proposed

Detailed results and computation times are listed in Table II.
Significant cost reductions are achieved in all runs compared
with the baseline method. For three cases, the reduction is
58.50%, 60.35% and 31.75% respectively. Parameters ε1 -
ε6 are the optimized individual violation rates of chance
constraints (21) - (26). These constraints are the voltage droop
regulation, battery power discharging and charging limits,
battery energy limit, voltage upper and lower regulations.
Among all six violation rates, parameters ε1 and ε2 are
optimized to have the higher values, while parameters ε3 - ε6
are optimized to have the lower values (i.e. 0.001). To check
how these parameters change with the power flow conditions,
we change the line resistance Rline from 8 to 12 Ω/km and
repeat experiments. The operation cost slightly increases but
the value of parameters remains unchanged.

The results indicate the first two constraints are the most

critical to the operation costs. They are droop regulation and
battery discharging power limit. This means the operation cost
is mainly determined by the droop provision and solar power
uncertainty, as we set the high value for cost coefficients
for energy reserve and solar curtailment. On the other hand,
tightening the last four constraints, battery power charging
limit, bus voltage and battery energy limits will not increase
the cost significantly, even with a high line resistance. This is
because the objective function does not include the monetary
term for power loss pertaining to bus voltages.

B. DR-JCC framework performance

As this model framework aims to address renewable uncer-
tainty in microgrids and tackle utility contingencies, we con-
duct simulations with a progressively smaller joint violation
rate ranging from 0.2 to 0.01. The utility blackout is simulated
with a duration ranging from one hour to a day.

Fig. 5. (a) System power balance, (b) solar power curtailment, (c) bus voltages
when εj = 0.01 and (d) batteries’ power outputs when εj = 0.01 in the DR-
JCC framework. The average values are plotted in blue thick lines in (c) and
(d) (with 50% opacity to show individual values)

Fig. 5 showcases how the microgrid system addresses solar
generation uncertainty under different joint violation rates εj ,
including (a) overall power flow, (b) solar power curtailment,
(c) bus voltages and (d) battery powers when εj = 0.01. For
battery power outputs, negative values represent the battery
discharging. In the DR-JCC framework, the microgrid system
curtails the increasing amount of solar power with a progres-
sively tighter joint violation rate in Fig. 5 (b). Fig. 5 (c) and (d)
show bus voltages and battery powers of individual households
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with the average value. The bus voltages are regulated within
a range of ±0.05 p.u..

Fig. 6. (a) System power balance, (b) load curtailments, (c) one household
load supply and (d) one household battery power outputs when there is a
blackout. In (b), (c) and (d), two scenarios are presented, the grid-connected
one under the normal condition and the island one for blackout.

The islanding operation of the microgrid is simulated for
an overcast day with a blackout between 4 a.m. - 6 p.m.
Fig. 6 shows the simulation result. In Fig. 6 (b), when a
blackout happens, flexible loads are curtailed, mainly phone
changer (i.e. load spike at 17 p.m.) and fan at noon. Battery
control reference follows the islanding mode solution during
the blackout, as blue solid lines in Fig. 6 (d).

Fig. 7. Daily operation costs with the three ambiguity sets (with the error
bar to show the cost deviation due to the island hour from no blackout to a
full-day blackout)

We compute daily operation costs under six different relia-
bility requirements (i.e. 1− εj) and three ambiguity sets with
the 12-hour islanding period. The error bars show the cost
deviations due to the islanding time from no blackout to a
full-day blackout. In summary, in Fig. 7, the daily operation
cost increases exponentially along with the system reliability
requirements for all three ambiguity sets, and extending the
islanding duration also increases the operation cost.

C. Solution robustness and system reliability

Following the performance demonstration, this section
presents solution robustness tests for the proposed evolutionary
algorithm and system reliability outcomes. We use forecast
error samples excluding those used to construct the ambiguity
set. We fix the solution obtained and run the power flow under
those forecast error samples, then count the case when all the
constraints are met (i.e., no-violation case). The percentage of
no-violation time intervals out of total time intervals in a day
is defined as the daily reliability outcome.

Fig. 8. Summary of the full factorial robustness tests for three formulation
methods. (Titles of each plot shows the experiment setting; Black dash lines
show the reliability levels; Colored markers in the box plots are daily results
in each experiment)

We test three joint violation rates which are 0.05, 0.02 and
0.01 (i.e. the corresponding daily reliability requirements are
0.95, 0.98 and 0.99) and consider three aforementioned am-
biguity sets, symmetric, unimodal and symmetric & unimodal
sets. For comparison, we include another two methods, SCC
with all violation rates equal to the set reliability level, and
the baseline case, JCC with the Bonferroni Approximation. A
full factorial experiment of these settings gives a total number
of 3 × 3 × 3 = 27 robustness tests. For each test, we use
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10,800 forecast error samples (i.e., 30 samples for each 15-
min time interval) from the historical sample pool. Samples
in each time interval are from different days and independent.
Thus the power flow tests conducted in each time interval are
considered to be independent.

Fig. 8 shows results from all robustness tests. Each subplot
represents a combination of the daily reliability requirement
and ambiguity set. Three box plots in each experiment from
left to right show the results from SCC (blue circles), JCC
using the Bonferroni Approximation (orange triangles) and
the proposed algorithm for JCC (green squares) respectively.
Colored markers in each box plot are the daily results. Table
III summarizes the average daily reliability in all robustness
tests, and the reliability values closets to the set requirements
are highlighted in bold.

TABLE III
SUMMARY OF THE AVERAGE DAILY RELIABILITY (%) IN ALL

ROBUSTNESS TESTS

Reliability 95% 98% 99%

Cases (a) (d) (g) (b) (e) (h) (c) (f) (i)

SCC 91.5 91.9 89.9 94.6 94.9 92.3 97.4 97.5 94.6
JCC-B 97.8 98.1 95.3 99.3 99.4 98.2 99.8 99.8 99.3
JCC-P 94.3 94.6 91.7 97.9 98.1 95.4 99.4 99.4 98.4

SCC: Single chance constraints; JCC-B: Joint chance constraints (Baseline);
JCC-P: Joint chance constraints (Proposed)

The SCC method fails to meet reliability requirements in all
tests. More than half of its reliability outcomes are below the
set requirements (i.e. black dash lines in Fig. 8) and the aver-
age daily reliability is also far lower than requirements (Table
III). In contrast, JCC with the Bonferroni Approximation gives
an overly-conservative solution. In cases except (g) and (h),
the majority of daily reliability outcomes are exactly or nearly
100%. This makes its average reliability outcomes are highest
and above the set requirements in all cases. The proposed
algorithm can decide the optimal trade-off between the system
reliability and operation cost. In each test, more than half of
its daily reliability meets the requirements (i.e. the median
of the box plot is all above the reliability threshold), and its
average reliability values in six of nine cases are closest to the
set reliability levels. In cases (g), (h) and (i), the underlying
uncertainty distribution assumption is based on the unimodal
& symmetrical set, which is the smallest set among all three.
The set can not fully incorporate all true distributions and
impacts the reliability performance. The average values are
below the reliability requirements.

For three ambiguity sets, the rank based on the system reli-
ability from the highest to the lowest is symmetric, unimodal
and unimodal & symmetric sets respectively. This result is
aligned with the operation cost (Fig. 7). When the set gets
more constrained, the solution becomes less reliable and the
operation cost becomes lower, and vice versa. In our case, the
unimodal & symmetric set is overly-constrained to describe the
true distribution of solar forecast errors. However, even using
the other two sets, there are a few discrete outliers in particular
days which are costly to address, unless using an ambiguity
set including all possible distributions. A feasible method for

system operators could be to predict those particular days
using the multi-year data and prepare the extra storage for
those times.

VII. CONCLUSION

The paper proposes a DR-JCC framework for microgrids
considering solar generation uncertainty and utility contingen-
cies. The framework models a networked microgrid with an
islanding capability and smart load shedding during black-
outs. Under imperfect solar forecasts, it optimizes chance
constraints pertaining to the power flow, voltage control and
battery limits jointly, to decide the optimal trade-off between
the operation cost and system reliability.

To find the optimized individual violation rates for the JCC
problem, we propose a novel population-based evolutionary
algorithm to optimize the decision variables and individ-
ual violation rates simultaneously. Results clearly show the
proposed algorithm can effectively solve the problem non-
conservatively. It can reduce the operation cost by around 50%
compared to the benchmark case, which has evenly individual
violation rates (i.e. Bonferroni Approximation). Moreover, the
individual violation rates from the proposed method indicate
the cost sensitivities of constraints. A higher violation rate
means this constraint is more influential to the total cost.

For solution robustness, we consider three ambiguity sets for
solar power forecast error distributions, unimodal, symmetric
and unimodal & symmetric sets, based on empirical samples.
We solve the model based on these set assumptions and then
test the constraint violations with new forecast errors. Under
the well-fitting ambiguity set assumption, the solution from
the proposed method can control the system to closely meet
the reliability requirements. The single chance-constrained
formulation widely used in current research and practices,
however, shows poor performance in securing reliability.

Future research will investigate the implementation of the
convex AC OPF such as [54] which incorporates active,
reactive generation limits and power losses. This research will
study how individual violation rates change with power flow
conditions such as line congestion and heavy loading. Another
important area is to implement this approach in the transmis-
sion network operation and planning (e.g. [16], [55]) which
can shift the paradigm in risk and reliability management
especially under extreme weather and create greater value by
saving million-scale reserve procurement costs.
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