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Abstract—This paper focuses on the distributionally robust
dispatch for integrated transmission-distribution (ITD) systems
via distributed optimization. Existing distributed algorithms
usually require synchronization of all subproblems, which could
be hard to scale, resulting in the under-utilization of computation
resources due to the subsystem heterogeneity in ITD systems.
Moreover, the most commonly used distributionally robust indi-
vidual chance-constrained dispatch models cannot systematically
and robustly ensure simultaneous security constraint satisfaction.
To address these limitations, this paper presents a novel distribu-
tionally robust joint chance-constrained (DRJCC) dispatch model
for ITD systems via asynchronous decentralized optimization.
Using the Wasserstein-metric based ambiguity set, we propose
data-driven DRJCC models for transmission and distribution
systems, respectively. Furthermore, a combined Bonferroni and
conditional value-at-risk approximation for the joint chance
constraints is adopted to transform the DRJCC model into a
tractable conic formulation. Meanwhile, considering the different
grid scales and complexity of subsystems, a tailored asynchronous
alternating direction method of multipliers (ADMM) algorithm
that better adapts to the star topological ITD systems is proposed.
This asynchronous scheme only requires local communications
and allows each subsystem operator to perform local updates with
information from a subset of, but not all, neighbors. Numerical
results illustrate the effectiveness and scalability of the proposed
model.

Index Terms—Integrated transmission-distribution (ITD) sys-
tems, asynchronous alternating direction method of multipliers
(ADMM), distributionally robust joint chance-constrained (DR-
JCC) optimization, Wasserstein metric

NOMENCLATURE

Function
IX (·) Indicator function of set X , i.e., if x ∈ X , IX (x) =

0; Otherwise, IX (x) = 1.
EP{·} Expectation over distribution P
P A probability measure/distribution
Sets
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Ai Set of parent nodes of node i in DS
Ci Set of children nodes of node i in DS
DGk Set of controllable units in DS k
DLk Set of distribution lines in DS k indexed by i ∈

DN k

DN k Set of non-root distribution nodes in DS k
DWk Set of renewable energies in DS k
K Set of DSs
T D Set of boundary nodes connecting to DSs
T G Set of controllable units in TS
T L Set of transmission lines in TS
T N Set of transmission nodes in TS
T W Set of renewable energies in TS
Parameters
εD1−3/εT1−2 Risk parameters of DS/TS
P̂W,Di /Q̂W,Di Forecasted active/reactive power of renewable

energy i in DS
P̂W,Ti Forecasted active power of renewable energy i in

TS
d
D

i /uDi Maximum downard/upward reserve capacity adjust-
ment of controllable unit i in DS

d
T

i /uTi Maximum downard/upward reserve capacity adjust-
ment of controllable unit i in TS

P
Tie

i Maximum active power of tie-line in boundary node
i of TS

Ll Line flow limit of transmission line l
θ Wasserstein radius
PG,Di /P

G,D

i Minimum/maximum active power of controllable
unit i in DS

PG,Ti /P
G,T

i Minimum/maximum active power of controllable
unit i in TS

QG,D
i

/Q
G,D

i Minimum/maximum reactive power of control-
lable unit i in DS

V i/V i Minimum/maximum voltage magnitude of distribu-
tion node i

ϕ Constant power factor
cr,Di /cr,Ti Cost coefficients of reserve adjustment of control-

lable unit i in DS/TS
cDi1−3/cTi1−3 Cost coefficients of controllable unit i in DS/TS
Mgl/Mjl/Mil/Mkl Generation shift distribution factors of

controllable units/renewable energies/loads/tie-line
power injection in TS

PL,Di /QL,Di Active/reactive load of node i in DS
PL,Ti Active load of node i in TS
ri/xi Resistance/reactance of distribution line i
V0 Reference voltage of substation in the root node
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Random Variables
ξTi Active power forecast errors of renewable energy i

in TS
ξP,Di /ξQ,Di Active/reactive power forecast errors of renewable

energy i in DS
Decision Variables
αTi /α

D
i Participation factors of controllable unit i in TS/DS

P̂i/Q̂i Active/reactive power flow of distribution line i in
the nominal scenario

P̂G,Di /Q̂G,Di Reference base-points of active/reactive power of
controllable unit i in DS in the nominal scenario

P̂G,Ti Reference base-points of active power of control-
lable unit i in TS in the nominal scenario

V̂i Voltage magnitude of distribution node i in the
nominal scenario

dDi /uDi Downard/upward reserve capacity adjustment of
controllable unit i in DS

dTi /uTi Downard/upward reserve capacity adjustment of
controllable unit i in TS

PTie,D/QTie,D Exchanged active/reactive power with TS
Pi/Qi Active/reactive power flow of distribution line i

under the realization of renewable energy
PG,Di /QG,Di Active/reactive power of controllable unit i in

DS under the realization of renewable energy
PG,Ti Active power of controllable unit i in TS under the

realization of renewable energy
PTie,Ti Exchanged active power with DS in boundary node

i of TS
Vi Voltage magnitude of distribution node i under the

realization of renewable energy
Main symbols and notation are defined here for quick refer-
ence. Others are defined by their first appearance as required.
Boldface lower case and upper case letters represent vectors
and matrices, respectively. The superscript T and D represents
variables of transmission system and distribution system, re-
spectively. And the notation Zz2z1 = {z ∈ Z|z1 ≤ z ≤ z2} is
used to denote integer ranges.

I. INTRODUCTION

A. Motivation and Background

The rapid uptake of distributed generations is leading to
the rise of active distribution grids that can actively manage
themselves in modern power systems. Power systems incorpo-
rating active distribution grids can be more reliable, efficient,
and cost-effective [1]. As a result, research interests have
been focused on the coordination of integrated transmission-
distribution (ITD) systems.

Without the inclusion of active distribution grids, a central-
ized dispatch scheme can be utilized. However, distribution
system (DS) and transmission systems (TS) in ITD systems are
operated separately by DS operators (DSOs) and a TS operator
(TSO). These independent entities are not fully aware of each
other’s networks and generating decisions. The transmission
and distribution grids are parts of an interconnected system,
any decisions made by TSO (DSOs) affect the DSOs’ (TSO’s)
operation and decisions. In the United Kingdom, for instance,
the centralized operation between TSO and DSOs becomes

almost impossible under the deregulated electricity market
environment. Thus, distributed optimization methods [2]–
[17] have gradually became an efficient alternative for the
cooperative operation of ITD systems. Given a distributed
framework, the TSO and each DSO can operate independently
and collaborate by sharing limited information. Accordingly,
each subsystem keeps proprietary data, including operation
states and topological information, confidential without com-
promising data privacy and decision-making independence.
However, each subsystem of ITD systems may have different
scales and different computing capacities in reality. Most of
these distributed optimization methods are in a synchronous
setting, where all workers need to wait for the slowest worker
to finish its computation or communication. It may lead to
the under-utilization of both computation and communica-
tion resources as some workers remain idle for most of the
time [18], [19]. For the heterogeneous ITD systems, how to
efficiently coordinate the operation of the entire system in an
asynchronous way has been one of the motivations behind the
rise of distributed optimization.

Another key issue that is required to consider in the
coordinated operation of ITD systems discreetly is the un-
certainties caused by integrated renewable energies. Large-
scale renewable energies, such as wind generation, have been
integrated into modern power systems with ever-increasing
penetration. Efficient integration of renewable energies to
meet the electricity demand while respecting the operational
constraints is a fundamental challenge for ITD systems. The
dispatch problem under uncertainties results in a robust op-
timization (RO) [10], [20]–[22] or a stochastic optimization
(SO) [23], [24] problem. The decision-maker requires the
security constraints to hold either for all realizations of the
uncertainty in RO or a high probability in SO. The latter
yields less conservative solutions but requires the decision-
maker to know the distribution information of the uncertainty.
This lack of a suitable distribution that describes uncertainties
on the one hand, and availability of historical forecasting data
on the other, have promoted the application of distribution-
ally robust optimization, although the distributionally robust
individual chance-constrained dispatch models [25]–[31] are
well-known, only a few of researches recently investigate
the distributionally robust joint chance-constrained (DRJCC)
dispatch model [32]–[34] to systematically and robustly ensure
simultaneous security constraint satisfaction.

B. Related works

In terms of the collaborative management of ITD systems,
the distributed optimal power flow (OPF), unit commitment
(UC), or economic dispatch (ED) models for ITD systems are
studied in [2]–[8]. However, the above models do not consider
the significant uncertainty of renewable energy, which may
cause the solution costly and unreliable. In [9], a traditional
chance-constrained ED model for integrated transmission-
district energy systems via distributed optimization is pro-
posed. The distributed two stage RO models for ITD systems
are proposed in [10], [22] and the distributed distributionally
robust optimization model for ITD systems is proposed in
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[11]. The general distributed optimization algorithms can be
classified into three types: 1) the augmented Lagrangian based
approaches such as the analytical target cascading (ATC) [2],
[4], [11], [12], [20], [35], [36], alternating direction method of
multipliers (ADMM) [10], [14]–[16], [22], [37] and auxiliary
problem principle (APP) [13]; 2) the Karush–Kuhn–Tucker
conditions-based approaches such as the heterogeneous de-
composition (HD) algorithm [5], [6] and the optimality condi-
tion decomposition (OCD) algorithm [17]; and 3) the benders
decomposition (BD) algorithm [7]. However, the HD, OCD,
and BD algorithms are only suitable to solve the deterministic
dispatch problem. When the number of DSs and uncertain
renewable energy units is large, their communication bur-
den is still heavy [10]. In contrast, for better scalability,
the augmented Lagrangian based methods can be utilized.
Among these methods, ADMM has shown its superiority
in convergence property. To enhance the cost-effectiveness
of interconnected power systems, ADMM has been adopted
in ITD systems operation [10], [22], residential distributed
generation coordination [37], multi-area ED [14], multi-area
UC [15], and multi-area power flow [16] problems.

Most of these distributed optimization methods are devel-
oped based on the premise that workers can solve regional sub-
problems synchronously. However, the scale and complexity
of subproblems are usually dependent on the system’s physical
configuration, and therefore are heterogeneous while requiring
different amounts of computation time. To overcome these
drawbacks of synchronous optimization, the recent works [38],
[39] have generalized the synchronous alternating direction
method of multipliers (ADMM) to an asynchronous version.
In asynchronous ADMM, all workers can perform their local
updates based on the latest available information from a subset
of neighbors, which prevents the speedy workers from spend-
ing most of the time idling. In [38], [39], the asynchronous
ADMM-based dispatch models for meshed power networks
are proposed. In [40], the large-scale UC problem is solved
using asynchronous ADMM. In addition to the asynchronous
optimization model, the asynchronous power flow model for
ITD systems and multi-area power systems is also presented
in [18] and [19].

In terms of the distributionally robust optimization models,
the main idea is to incorporate the available probability dis-
tribution information into an ambiguity set to characterize the
true probability distribution of uncertain parameters. Accord-
ingly, it eliminates the inherent dependence of SO on exact
probability distributions and reduces the solution’s conser-
vatism of RO. The existing distributionally robust optimization
models usually adopt two main types of ambiguity sets,
moment-based and metric-based ambiguity sets. The first ac-
commodates moment information of probability distributions,
while the second specifies the closeness of probability distri-
butions to an empirical distribution through a given statistical
distance metric. The moment-based ambiguity sets comprise
all distributions with an identical mean and covariance as
the uncertain parameters [25], [29]–[32], [41]. The moment-
based ambiguity set is relatively easier to manage than the
metric-based ambiguity set, and can provide better tractability
features [42]. However, this requires inferring the mean and

covariance of uncertain parameters from the empirical data
in order to construct the ambiguity set. The moment-based
method only characterizes the ambiguity set by the first two
moments of uncertain parameters, which cannot guarantee any
convergence properties for the unknown distribution to the
true distribution [43]. The probability distribution function
contains more information than the moments and is not fully
utilized in the moment-based method, which may lead to over-
conservative decisions. In contrast, the Wasserstein-metric-
based distributionally robust optimization method has recently
gained much attention in power systems applications, includ-
ing the OPF [26], [27], the UC [28], and the ED [33], [34]
problems. The definition of ambiguity sets via the Wasserstein
distance, directly utilizing the observed samples, brings several
attractive properties in terms of finite sample guarantees,
tractable reformulations, and asymptotic consistency. In power
systems, the Wasserstein-based ambiguity sets also enable
power system operators to control the conservativeness of
the solution, thus ensuring flexibility in the power system
operation. However, the aforementioned distributionally robust
optimization models primarily focus on individual chance
constraints.

Compared to individual chance constraints, the joint fea-
ture of distributionally robust chance constraints can provide
a stronger guarantee on overall power systems security by
enforcing the simultaneous satisfaction of multiple safety
constraints with high probability. Needless to say, the distri-
butionally robust joint chance-constrained problems are more
challenging than individual chance-constrained problems. For
instance, with only right-hand side disturbances, an individual
chance-constrained problem can be transformed to an equiva-
lent linearly constrained problem. In contrast, with only right-
hand side disturbances, a joint chance-constrained problem
is known to be convex only when the distributions are log-
concave [44]. Thus, the distributionally robust joint chance
constraints are less computationally tractable [34]. Fortunately,
tractable conservative approximations can be obtained by
using Bonferroni’s inequality to decompose the joint chance
constraint into several individual chance constraints [45], [46].
Recently, a few up to date literature focusing on the DC power
flow based DRJCC dispatch model for transmission system
are presented [32]–[34]. In [33], a Wasserstein metric-based
DRJCC look-ahead dispatch model based on the Bonferroni
approximation is discussed. And a further inner approximate
robust bound was proposed, which was illustrated that it can
achieve a better numerical scalability. In [34], two tractable
approximations for Wasserstein metric-based DRJCC dispatch
are proposed. A moment-based DRJCC OPF model in [32]
is recently proposed based on the optimized Bonferroni ap-
proximation. Even so, the distributionally robust joint chance-
constrained model applied in power systems is still limited
due to the huge challenge in addressing the joint chance
constraints.

C. Contributions and Organization

This paper concerns the distributionally robust dispatch
problem for ITD systems via distributed optimization. A fully
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decentralized asynchronous optimization scheme is proposed,
which is particularly attractive for the co-optimization between
the TSO and DSOs. In addition, the data-driven Wasserstein-
distance based distributionally robust joint chance-constrained
dispatch models for the transmission system and the distri-
bution systems are investigated to handle renewable energy
uncertainties. The contributions are summarized as follows:

1) Although [38], [39] have investigated the asynchronous
ADMM-based decentralized dispatch model for power
systems, they focused on the meshed networks. Consid-
ering the star topology of ITD systems and the subsys-
tem heterogeneity, we propose a tailored asynchronous
ADMM-based fully decentralized scheme to better adapt
to the ITD systems. Compared to the classical syn-
chronous ADMM [10], [14]–[16], [22], [37], the pro-
posed asynchronous scheme only requires local commu-
nication and allows each subsystem operator to perform
local updates with information from a subset of, but not
all, neighbors. In particular, the central TSO’s update only
requires a subset of DSOs’ information. Each DSO and
TSO can thus, operate their local systems independently
and asynchronously. Numerical results illustrate that the
proposed asynchronous scheme for ITD systems has good
scalability. Compared with the synchronous scheme, the
tailored asynchronous scheme can reduce idle time and
improve computational efficiency.

2) A DRJCC extension of asynchronous ADMM for ITD
systems is proposed. Different from most of the dis-
tributionally robust individual chance-constrained dis-
patch [25]–[31], this paper focuses on the Wasserstein-
distance-based distributionally robust joint chance-
constrained dispatch. In order to facilitate the further
reformulation of joint chance constraints, the DRJCC
model based on the linearized DistFlow is proposed to
describe the AC power flows and ensure the nodal voltage
security in the distribution system under uncertainties,
and the DRJCC model based on the DC power flow is
proposed for the transmission system. Inspired by [34],
a combined Bonferroni and CVaR approximation is pre-
sented to transfer the DRJCC models into the tractable
conic formulations. A detailed empirical study on the out-
of-sample performance reveals that the out-of-sample cost
can attain a distinct minimum at a critical Wasserstein
radius. Moreover, the critical radius gradually decreases
with the increase of sample size, which shows that
a sophisticated system operator who acknowledges the
presence of ambiguity can reduce the out-of-sample cost.

The rest of this paper is organized as follows: Section II
presents the separable formulation of ITD systems. Section III
addresses the tractable approximation. Section IV proposes
the asynchronous decentralized solution procedure. Case study
and conclusion are presented in Section V and VI.

D. Preliminaries

Throughout this paper a couple of existing results from the
field of distributionally robust optimization (DRO) [41], [47],

in particular the data-driven approach [42], are used. The DRO
problem can be written into a generic form

min
x∈X

max
P∈D

EP {f(x, ξ)} =

∫
Ω

f(x, ξ)P(dξ) (1)

with feasible set X ⊆ Rn, uncertainty set Ω ⊆ Rm, ambiguity
set D and objective function f : Rn × Rm → R.

In general, as the distribution P is not precisely known,
Problem (1) restricts it in the ambiguity set D, which defines
a family of distributions supported on Ω. Fortunately, in
practice, we always have access to a finite number of samples
Ξ̂ = {ξ̂1, .., ξ̂N} ⊆ Ω, which are assumed to be drawn
independently from P. Then, we can generate the discrete
empirical distribution P̂ based on the sampling set Ξ̂. In order
to construct an ambiguity set, we need the Wasserstein metric
defined below.

Definition 1 (Wasserstein metric) For two given distribu-
tions P1 and P2 on Rn, the type-1 Wasserstein distance is
defined by

W(P1,P2) = min
Π

{∫
Rn×Rn

‖ξ1 − ξ2‖Π(dξ1, dξ2)

}
, (2)

where Π is a joint distribution of ξ1 and ξ2 on Rn×Rn with
marginals P1 and P2, respectively.

According to Definition 1, one can denote the ambiguity set

D :=
{
P ∈ P(Ω) : W(P, P̂) ≤ θ

}
(3)

where P(Ω) is the set of all distributions on Ω and θ > 0.
Here, the main idea of D is that, for a judiciously chosen radius
θ, the ambiguity set D contains the unknown true distribution
with high confidence.

II. SEPARABLE FORMULATION OF ITD SYSTEMS

This section describes the typical structure of ITD sys-
tems and then presents the distributionally robust chance-
constrained dispatch model for DS and TS, respectively.

A. Structure of ITD Systems

As shown in Fig. 1, a typical ITD systems that incorporates
three distribution grids is connected to one transmission grid
through their individual root nodes. In practice, the ITD
systems allow the design of a decentralized decision-making
scheme, in which each grid is operated locally while cooper-
ating with its neighbors by sharing a limited set of data. As a
result, proprietary data such as operation states and topological
information can be kept confidential in each regional grid.

Fig. 1. Structure of decentralized operation for ITD systems
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In particular, we consider a transmission system denoted by
the tuple (T N , T L, T G, T W, T D). Here, T N denotes the
set of transmission nodes in TS, T L ⊆ T N ×T N the set of
transmission lines in TS, T G ⊆ T N the set of controllable
units in TS, T W ⊆ T N the set of renewable energies in
TS, and T D ⊆ T N the set of boundary nodes connecting
to the root node of DS. For each DS k ∈ K with index set
K of all DS, we consider a radial network denoted by the
tuple (DN k,DLk,DGk,DWk). Here, DGk ⊆ DN k denotes
the set of controllable units in DS k, DWk ⊆ DN k the set
of renewable energies in DS k, DN k the set of non-root
distribution nodes in DS k. The root node is indexed as 0
which connects the DS and TS. Each node is associated with
a parent node Ai and a set of children nodes Ci. Since the
distribution network is radial, it is |Ai| = 1, i ∈ DN k and all
distribution lines i ∈ DLk are indexed by DN k, where i is
the index of the downstream node of distribution line i.

The following assumptions are made in modeling the DR-
JCC dispatch problem of ITD systems.

1) The subsystem operator has access to a finite number of
i.i.d. (independend and identically distributed) samples,
which are locally drawn from an underlying distribution.

2) In accordance with the distributionally robust studies
of [26]–[28], [32]–[34], [48], the wind power curtailment
is not considered.

3) The DRJCC model for distribution system does not
impose distribution line flow limits, because real-life
distribution systems are typically voltage-constrained and
line flow limits can be disregarded [49].

4) The power loss of transmission grid and distribution grids
can be ignored.

B. Uncertainty Modeling for the Distribution System

In the presence of renewable energy forecast error, the
controllable units in each DS are assumed to adjust their
power based on the following linear decision rules (LDRs)
to guarantee that the forecasting errors of renewable energy in
each DS are fully mitigated.

PG,Di = P̂G,Di − αDi
∑

j∈DWk

ξP,Dj , i ∈ DGk, k ∈ K (4a)

QG,Di = Q̂G,Di − αDi
∑

j∈DWk

ξQ,Dj , i ∈ DGk, k ∈ K (4b)∑
i∈DGk

αDi = 1 with αDi ∈ [0, 1] , k ∈ K (4c)

where the active power forecast errors can also cause fluc-
tuations of reactive power, the reactive power forecast er-
rors can be assumed to be proportional [11], i.e., ξQ,Di =√

(1− ϕ2)/ϕ2ξP,Di .
The DC power flow based distributionally robust models

have been proven to effectively trade-off the likelihood of
constraint violations and the security cost to avoid constraints
violations [32]–[34]. However, the distributed energy resources
in distribution system mainly complicate the voltage regula-
tion, and therefore the DC power flow model is not technically
suitable since it parametrizes voltage magnitudes at rated
values. As the distribution grid is a radial topology, each

distribution line has to carry the complete net load of all its
downstream nodes. The linearized DistFlow [50] approxima-
tion for AC power flows is used here, and the distribution line
flow affected by the uncertain renewable energy injections is
derived as

Pi = P̂i −Bi∗

ξP,D −αD ∑
j∈DNk

ξP,Dj

 (5a)

Qi = Q̂i −Bi∗

ξQ,D −αD ∑
j∈DNk

ξQ,Dj

 (5b)

for all i ∈ DLk and k ∈ K. Here ξP,D and ξQ,D denote
the vector of active and reactive power forecast errors of all
non-root nodes in DS, αD denotes the vector of participation
factors of all non-root nodes in DS. If node i has no renewable
energy injection, then ξP,Di = ξQ,Di = 0. If node i has no
controllable units, then αDi = 0. For each distribution system
k, Bi∗ denotes the i-th row of B ∈ R|DLk|×|DNk| with
elements b(ij) = 1 if line i is part of the path from root to bus
j and b(ij) = 0, otherwise.

Accordingly, the nodal voltage magnitude affected by the
uncertain renewable energy injections can be derived as

Vi = VAi
− (riPi + xiQi)/V0

= V̂i +B>∗i

RB(ξP,D −αD
∑

j∈DNk

ξP,Dj )

+XB(ξQ,D −αD
∑

j∈DNk

ξQ,Dj )

 /V0

(6)

for all i ∈ DN k, k ∈ K. Here R and X are |DLk| × |DLk|
matrices with diagonal entries consisting of the line resistances
and reactances respectively: R(ii) = ri, R(ij,i 6=j) = 0, X in
analogy.

C. DRJCC Dispatch Model for the Distribution System

The DRJCC model for each distribution system k (omit the
subscript k) is formulated as

min max
P∈DD

EP

{∑
i∈DG

[
cDi1(PG,Di )2 + cDi2P

G,D
i + cDi3

]
+
∑
i∈DG

cr,Di
(
uDi + dDi

)} (7)

subject to

P̂i =
∑
j∈Ci

P̂j − P̂G,Di − P̂W,Di + PL,Di , i ∈ DN (8a)

Q̂i =
∑
j∈Ci

Q̂j − Q̂G,Di − Q̂W,Di +QL,Di , i ∈ DN (8b)

V̂i = V̂Ai
−
(
riP̂i + xiQ̂i

)
/V0, i ∈ DN (8c)

P̂1 = PTie,D, Q̂1 = QTie,D (8d)

PG,Di ≤ P̂G,Di − dDi , 0 ≤ dDi ≤ d
D

i , i ∈ DG (8e)

P̂G,Di + uDi ≤ P
G,D

i , 0 ≤ uDi ≤ uDi , i ∈ DG (8f)
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min
P∈DD

P
[
V i ≤ Vi ≤ V i, ∀i ∈ DN

]
≥ 1− εD1 (8g)

min
P∈DD

P

−dDi ≤ −αDi ∑
j∈DW

ξP,Dj ≤ uDi ,∀i ∈ DG


≥ 1− εD2 (8h)

min
P∈DD

P
[
QG,D
i
≤ QG,Di ≤ QG,Di ,∀i ∈ DG

]
≥ 1− εD3 (8i)

(4b), (6) (8j)

The objective function (7) aims to find the optimal decisions
for DS that minimizes the worst-case expected production
costs. (8a)-(8d) denote the linearized DistFlow equation for the
forecast renewable energy. (8e) and (8f) guarantee the reserve
availability considering the output limits of controllable units
in each DS. Chance constraints (8g)-(8i) ensure that even
under the worst case distribution, the constraints of nodal
voltage, adjustment reserve capacity of controllable units, and
reactive power of controllable units are still satisfied with the
prescribed reliability.

D. DRJCC Dispatch Model for the Transmission System

Similar to the DS, the controllable units in TS are also
assumed to adjust their power based on LDRs to guarantee
that the forecasting errors of renewable energy in TS are fully
mitigated.

PG,Ti = P̂G,Ti − αTi
∑
j∈TW

ξTj , i ∈ T G (9a)∑
i∈T G

αTi = 1 with αTi ∈ [0, 1] (9b)

Then, based on the standard DC power flow model, the
DRJCC model for the transmission system is summarized as

min max
P∈DT

EP

{∑
i∈T G

[
cTi1(PG,Ti )2 + cTi2P

G,T
i + cTi3

]
+
∑
i∈T G

cr,Ti
(
uTi + dTi

)} (10)

subject to∑
i∈T G

P̂G,Ti +
∑
i∈TW

P̂W,Ti =∑
i∈T N

PL,Ti +
∑
i∈T D

PTie,Ti (11a)

0 ≤ PTie,Ti ≤ PTie, i ∈ T D (11b)

PG,Ti ≤ P̂G,Ti − dTi , 0 ≤ dTi ≤ d
T

i , i ∈ T G (11c)

P̂G,Ti + uTi ≤ P
G,T

i , 0 ≤ uTi ≤ uTi , i ∈ T G (11d)

min
P∈DT

P

−dTi ≤ −αTi ∑
j∈TW

ξTj ≤ uTi , ∀i ∈ T G

 ≥ 1− εT1

(11e)

min
P∈DT

P

−Ll ≤ ∑
j∈TW

Mjl(P̂
W,T
j + ξTj )

−
∑
i∈T N

MilP
L,T
i +

∑
g∈T G

MglP
G,T
g

−
∑
k∈T D

MklP
Tie,T
k ≤ Ll, ∀l ∈ T L

]
≥ 1− εT2 (11f)

(9) (11g)

The objective function (10) aims to find the optimal decisions
for the TS that minimizes the worst-case expected production
costs. (11a) denotes the power balance. (11b) denotes the
active power limit of tie-line. (11c) and (11d) guarantee the re-
serve availability considering the output limits of controllable
units in TS. Chance constraints (11e)-(11f) ensure that even
under the worst case distribution, the constraints of adjustment
reserve capacity of controllable units, the transmission line
flow are still satisfied with the prescribed reliability. Note that,
as the DC power flow model is considered here, the reactive
power of substations in the boundary nodes is assumed to be
enough for the DSs.

Remark 1 If the wind power curtailment is considered, the
extra LDRs form of wind output limit similar with the con-
trollable units is needed. Then a new chance constraint about
wind power curtailment is added to the DRJCC model. How to
consider the wind power curtailment is addressed in Appendix.

E. Coupling of Transmission and Distribution System

Regional coupling constraints tend to guarantee the agree-
ment on tie-line power exchange between TS and each DS.
While implementing the distributed optimization, it is neces-
sary that the output active power from TS should be equal to
the input active power to DS. Hence, the regional coupling is
given by equalities

PTie,Ti = PTie,Di , i ∈ T D (12)

III. TRACTABLE APPROXIMATION

This section aims to transfer the proposed DRJCC model
into a tractable form under some mild approximations. As
both DSOs and the TSO are ignorant of P, the Wasserstein
metric based data-driven ambiguity set D defined by (3) is
used. Here, we assume that a finite number of samples ξ̂i,
i ∈ ZN1 drawn independently from P are accessible. Under
this ambiguity set, tractable conic reformulations of the worst-
case objective function and chance constraints in the DRJCC
model are presented. Accordingly, we summarize the tractable
approximation into a standard form of distributed optimization
problem.

A. Reformulation of Objective Function

Both objective functions of the distribution system
model (7) and transmission system model (10) can be regarded
as a sum of a quadratic function about the fuel cost at the
reference output base-points of controllable units, a linear
function about the reserve adjustment cost, and a linear func-
tion to represent the incremental cost under uncertainties [27].
Throughout the rest of this section, we omit the superscript T
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for notational simplification. Let us take the TS model as an
example. First, we define an approximation of (10) by

min
∑
i∈T G

[
ci1(P̂Gi )2 + ci2P̂

G
i + ci3

]
+
∑
i∈T G

cri (ui + di)

+ max
P∈D

EP

∑
i∈T G

−ci0αi ∑
j∈TW

ξj

 (13)

with ci0 = 2ci1P
G∗
i + ci2, where PG∗i is the optimal output

obtained through a deterministic model under forecasting
renewable energy. In this way, the worst-case expectation
term is separated from the deterministic term, facilitating
further reformulation. Besides, the quadratic function term
is approximated by a piecewise linear function to improve
computational efficiency.

In order to reformulate the second worse-case expecta-
tion term in (13), we use notations c0,α ∈ R|T G| and
ξ ∈ R|T W| to stack ci0, αi over i ∈ T G and ξj over
j ∈ T W , respectively. Moreover, the support of ξ is given
by a polytope Ξ = {ξ ∈ R|T W| : Hξ ≤ h}. In this paper,
we consider H and h denoted by H = [I − I]> and
h = [(P

W − P̂W )> (P̂W −PW )>]> with I identity matrix
and PW /P

W
the vector of lower/upper limit of wind outputs.

Then, we define its compact form

max
P∈D

EP

∑
i∈T G

−ci0αi ∑
j∈TW

ξj


= max

P∈D
EP
{
−c>0 α1>ξ

} (14)

with 1 = [1, 1, ..., 1]> ∈ R|T W| and according to [51, Corol-
lary 5.1], the worst-case expectation term (14) is equivalent to
the conic program

min
ηo≥0,βo,τo

ηoθ +
1

N

N∑
i=1

βoi (15a)

s.t. − c>0 α1>ξ̂i + τ oi
>(h−Hξ̂i) ≤ βoi , i ∈ ZN1 (15b)

‖H>τ oi + 1α>c0‖∞ ≤ ηo, i ∈ ZN1 (15c)

for a given radius θ > 0. As a result, the worst-case expecta-
tion objective (10) can be approximately reformulated into a
tractable conic form by substituting (15) into (13).

B. Reformulation of Joint Chance Constraints

Joint chance constraints (8g)-(8i) and (11e)-(11f) are non-
convex and very challenging to derive tractable equivalent
reformulations due to their implicit form. To this end, the
combined Bonferroni and CVaR approximation is proposed to
reformulate the joint chance constraints for transmission and
distribution grids. Let us take the TS model as an example,
and use notation z to stack variables (P̂Gi , P̂

Tie
i , ui, di) over

i. The generic formulation of joint chance constraints for TS
can be given as follows

min
P∈D

P [A(α)ξ ≤ b(z)] ≥ 1− ε (16)

where each element of A(α) and b(z) is given by an
affine map of α and z, respectively. Let us assume that
there are M affine inequalities involved in the joint chance
constraints, we use notation A(α) =

[
a1(α) · · ·aM (α)

]>
and b(z) =

[
b1(z) · · · bM (z)

]>
. The joint chance constraint

is thus, equivalent to

min
P∈D

P
[
am(α)>ξ ≤ bm(z),∀m ∈ ZM1

]
≥ 1− ε. (17)

Given a set of risk parameters εm ≥ 0, m ≤ M , with∑M
m=1 εm = ε, we can exploit Bonferroni’s inequality to split

the original joint chance constraints up into a family of M
simpler but more conservative individual chance constraints.
As discussed in [34], this amounts to approximating the
feasible set by

Ω :=

{
(α, z)

∣∣∣∣∣ ∀m ∈ ZM1 ,

min
P∈D

P
[
am(α)>ξ ≤ bm(z)

]
≥ 1− εm,

}
.

(18)
However, optimizing over Ω is still hard. We then define the
CVaR at level ε ∈ (0, 1) for a given measurable loss function
`(ξ) by

P- CVaRε(`(ξ)) := inf
δ

{
δ +

1

ε
E [`(ξ)− δ]+

}
with [·]+ = max{0, ·}. Thus, the CVaR based approximation
of Ω is given by

Φ :={
(α, z)

∣∣∣∣∣ ∀m ∈ ZM1 ,

max
P∈D

P- CVaRεm

[
am(α)>ξ − bm(z)

]
≤ 0

}
,

Remark 2 In [52], Φ has been shown that it is the best convex
inner approximation, i.e., Φ ⊆ Ω, in a sense made precise.
Moreover, if εm ≤ N−1 holds for all m ∈ ZM1 , we have
Φ = Ω. A detailed proof refers to [53, Corollary 2].

As [34, Proposition 1] discussed, Φ can be further derived
into the explicit conic form

Φ := (19)

(α, z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ γ ∈ RM , η ∈ RM , β ∈ RN×M ,

ηmθ +
1

N

N∑
i=1

βim ≤ 0, m ∈ ZM1

∀ i ∈ ZN1 , m ∈ ZM1 :

γm ≤ βim, τi,m ≥ 0

‖εmH>τim − am(α)‖∞ ≤ εmηm

am(α)>ξ̂i − bm(z) + (εm − 1)γm

+ εmτ
>
im(h−Hξ̂i) ≤ εmβim





.

Here, βi,m is the element of matrix β at i-th row and m-th
column.

Under the combined Bonferroni and CVaR approximation,
all the joint chance constraints in the DRJCC model of
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the transmission system have been replaced by the conic
representation. Then, the resulting DRJCC model has been
transformed into a single tractable conic program that can be
solved efficiently by off-the-shelf solvers. The tractable ap-
proximation of DRJCC model for DS can be derived similarly.

Remark 3 If the Wasserstein metric is defined in terms of the
`1-norm or `∞-norm, the tractable conic program is reduced
to a quadratic program with linear constraints [42].

Remark 4 The choice of the risk parameters εm affects the
performance of the combined Bonferroni and CVaR approxi-
mation. As recommended in [52], we set εm = ε/M for all
m ≤M .

C. Problem Formulation

Based on the Wasserstein metric 1, Section III-A and III-B
have elaborated how to reformulate the worse-case objectives
and chance constraints in the proposed DRJCC model dis-
cussed in Section II into a tractable form. Accordingly, the
overall optimization problem is summarized as below

min
x̄,{xk}k∈K

F̄ (x̄) +
∑
k∈K

Fk(xk) (20a)

s.t. Akx̄ = Bkxk | λk , k ∈ K , (20b)

x̄ ∈ X , xk ∈ Xk , k ∈ K . (20c)

Here, x̄ ∈ RdT and xk ∈ RdDk , k ∈ K stack the local decision
variables of TS and each DS, respectively. Selection matrices
Ak and Bk, k ∈ K with elements either 0 or 1 are used to
denote the coupling constraints (12) between the TS and DS
while λk denotes the corresponding Lagrangian multipliers
of constraint (20b). Moreover, we use compact notations X
and Xk, k ∈ K to collect all deterministic constraints and
the tractable reformulation of the chance constraints in (11)
and (8), respectively.

The operation problem for the TSO and each DSO is an
independent decision-making process, which is particularly
suitable for distributed optimization. Only tie-line information
is shared to minimize the data exchange between TSO and
each DSO. Therefore, the overall problem (20) can be solved
in a fully decentralized way to preserve regional information
privacy and dispatch independence of respective system op-
erators. Besides, due to the different network topology, scale
and complexity of each subsystem, the computation of each
regional grid may require different amounts of time. In the
synchronous decentralized computation, all system operators
need to wait for the slowest one to finish its computation
or communication. This may lead to the under-utilization
of both computation and communication resources as some
regional grids remain idle for most of the time. Thus, an
asynchronous decentralized algorithm is preferable where all
system operators can perform their local updates based on
the latest available information from a subset of but not
all neighbors. Therefore, it can prevent the speedy system
operators from spending most of the time idling.

IV. ASYNCHRONOUS DECENTRALIZED SOLUTION
PROCEDURE

In this section, we present a tailored asynchronous ADMM
based decentralized algorithm for solving the resulting op-
timization problem (20), which can better adapt to the star
topology of ITD systems. To this end, we first denote the
augmented Lagrangian function of (20) by

F̄ (x̄) +
∑
k∈K

(
Fk(xk) + Lk(Akx̄,Bkxk,λk)

)
with

Lk(x,y, z) = z>(x− y) +
ρ

2
‖x− y‖22

such that the classical ADMM method for solving (20) is given
by the iterations

x+
k = argmin

xk∈Xk

Fk(xk) + Lk(Akx̄,Bkxk,λk), k ∈ K (21a)

λ+
k = λk + ρ(Akx̄−Bkxk) , k ∈ K (21b)

x̄+ = argmin
x̄∈X

F̄ (x̄) +
∑
k∈K

Lk(Akx̄,Bkx
+
k ,λ

+
k ) . (21c)

Although the update of (xk,λk) can be parallelized over
k ∈ K, Step (21c) has to wait Step (21a) and Step (21b)
finished for all k ∈ K. In order to overcome this problem, we
introduce a consensus variable for parallelizing Step (21c) by

Akx̄ = yk , Bkxk = yk

and their associated pair of Lagrangian multipliers (λTk ,λ
D
k )

for all k ∈ K. As a result, a variant of classical ADMM is
yielded as follows:

x+
k = argmin

xk∈Xk

Fk(xk) + Lk(Bkxk,yk,λ
D
k ), k ∈ K (22a)

x̄+ = argmin
x̄∈X

F̄ (x̄) +
∑
k∈K

Lk(Akx̄,yk,λ
T
k ) , (22b)

λD,+k = λDk + ρ(Bkx
+
k − yk) , k ∈ K (22c)

λT,+k = λTk + ρ(Akx̄
+ − yk) , k ∈ K (22d)

y+
k = arg min

yk

Lk(Bkx
+
k ,yk,λ

D,+
k ) (22e)

+ Lk(Akx̄
+,yk,λ

T,+
k ), k ∈ K .

It is clear that the update of x+
k can be executed in parallel

with the update x̄+ in the tailored ADMM iterations (22).
Moreover, as functions Lk are quadratic, we can work out the
update yk explicitly as

y+
k = Akx̄

+ +Bkx
+
k −

λT,+k + λD,+k

ρ
, k ∈ K .

However, in practice, the computational time of solving (22a)
and (22b) might be enormously different such that (22) still
leads to an inefficiency on communication. In order to mitigate
this disadvantage, we adopt the framework proposed in [38]
to design an asynchronous ADMM approach.

Algorithm 1 and 2 outline an asynchronous ADMM variant
from TS’s perspective and each DS’s perspective. Here, we use
notation ` and `k, k ∈ K to denote the local iteration counter
in TS and DS. Moreover, we assume that the communication
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Fig. 2. The proposed distributed DRJCC optimization framework

Algorithm 1 Asynchronous ADMM in TS
Initialization:
• choose λT,0k , k ∈ K and set ` = 0;

• solve TS problem x̄0 = arg minx̄∈X F̄ (x̄);

• send (Akx̄
0,λT,0k ) to all DS k ∈ K.

Repeat:
1) Wait until k̄ ∈ K DS’s (Bkx

`
k,λ

D,`
k );

2) Evaluate

ȳ`+1
k =

Akx̄
` +Bkx

`
k −

λT,`
k +λD,`

k

ρ k ∈ K,

y`k k ∈ K\K.

3) Update primal and dual by

x̄`+1 = argmin
x̄∈X

F̄ (x̄) +
∑
k∈K

Lk(Akx̄, ȳ
`+1
k ,λT,`k ) ,

λT,`+1
k = λTk + ρ(Akx̄

`+1 − ȳ`+1
k ) , k ∈ K .

4) Set `← `+ 1 and send (Akx̄
`,λT,`k ) to all DS k ∈ K.

delay is bounded. This implies that all transfer information
would eventually arrive at its destination.

The main idea of the proposed algorithm is to let TS update
its associated primal and dual iterates with obtaining only
|K| ≥ 1 DS’s information but not all of them, i.e., K ⊆ K.
In a result, TS updates its consensus variable ȳk, k ∈ K by
using limited DS’s information. Notice that ȳk in Algorithm 1
might not be equal to yk in Algorithm 2 as the update (23)
only depends on the part of neighbors’ information. Notice
that only |K| is fixed but the elements might be different from
each iteration. In addition, how to choose K does not affect
the convergence guarantee that has been established in [39,
Theorem 1].

The schematic of the holistic model framework is displayed
in Fig. 2. Under the synchronous protocol, the speedy agents
which might be TS or DS, would spend most of the time idling,
and thus the parallel computational resources cannot be fully
utilized. Instead, with the lock removed, the speedy agents can

Algorithm 2 Asynchronous ADMM in DS k

Initialization:
• choose λD,0k , set `k = 0;

• solve DS problem x0
k = arg minxk∈Xk

Fk(xk);

• send (Bkx
0
k,λ

D,0
k ) to TS.

Repeat:
1) Wait (Akx̄

`k
k ,λ

T,`k
k ) from TS;

2) Update y`k+1
k by evaluating

y`k+1
k = Akx̄

`k +Bkx
`k
k −

λT,`kk + λD,`kk

ρ
. (23)

3) Update primal and dual by

x`k+1
k = argmin

xk∈Xk

Fk(xk) + Lk(Bkxk,y
`k+1
k ,λD,`kk )

λD,`k+1
k = λD,`kk + ρ(Bkx

`k+1
k − y`k+1

k )

4) Set `k ← `k + 1 and send (Akx
`k
k ,λ

D,`k
k ) TS.

update their variables more frequently in the asynchronous
protocol. On the flip side, the asynchronous one introduces
delayed variable information and thereby requires a larger
number of iterations to reach the same solution accuracy than
its synchronous counterpart. This implies that none of the
workers have to be synchronized with each other and does not
need to wait for the slowest worker either. In the considering
heterogeneous network, the local DSs and TS might have
different computational powers, or the data sets can be non-
uniformly distributed across the network. Thus, the agents
can require different computational times in solving the local
subproblems. Besides, the communication delays can also be
different, e.g., due to probabilistic communication failures and
message retransmission.

V. NUMERICAL RESULTS

In this section, we present numerical studies on two bench-
marks to illustrate the effectiveness of the proposed scheme. In
both cases, the risk parameters of chance constraints in TS and
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each DS are all set to 5%. The constant power factor for all
DSs is set to 0.75. The construction procedure of data-driven
ambiguity set refers to [34] using the wind outputs data from
southeastern Australia from 2012 to 2013 [54]. As discussed
in Remark 3, we use `1-norm for the Wasserstein metric on
RW such that the DRJCC model is reduced to a quadratic
program.

For the implementation of the asynchronous ADMM algo-
rithm, the initial values of the coupling variables are set to
zero while the initial guess of the Lagrangian multiplier is set
to 0.02. Moreover, we set |K| = 2 in Case 1 and |K| = 3
in Case 2. The simulation is employed in MATLAB R2021a
on an Intel Core i7-9700K, 3.6 GHz, 16 GB RAM PC with 8
cores. Gurobi 9.0 is used to solve each subproblem locally
on each core. All regional subproblems in synchronous and
asynchronous setting are solved by using the Matlab Parallel
Computing Toolbox.

A. Test System T39D3

Case 1 is referred to as T39D3, where an modified IEEE 39-
bus transmission system is connected with one modified IEEE
33-bus distribution system, one modified IEEE 69-bus distribu-
tion system, and one modified IEEE 85-bus distribution system
located at transmission nodes 3, 10, and 17, respectively. The
root node of each DS connects the TS. Accordingly, the three
DSs are respectively named as DS 1, 2, 3 and the three tie-
lines are respectively named as Tie-line 1, 2, 3. The TS has
five wind farms located at transmission nodes 3, 6, 17, 20, and
25, respectively. DS 1 has three distributed wind generations
located at distribution nodes 2, 3, and 6, respectively. DS 2
has three distributed wind generations located at distribution
nodes 3, 4, and 8, respectively. DS 3 has four distributed
wind generations located at distribution nodes 2, 5, 13, and
60, respectively. The network topology, controllable units
parameters, wind outputs, load of TS and each DS, and other
detailed data in Case 1 has been made available online [55].

The sample set is set to N = 50 for TS and each DS.
Then, another S = 1000 test samples from the data source
are carried out to test the out-of-sample performance, which
is assessed by the following out-of-sample operation cost

ÔO = c(ẑ) +
1

S

S∑
i=1

c>0 α̂1
>ξ̂N+i

and the out-of-sample constraint violation probability

ÔC =
∑
j∈J

{
1

S

S∑
i=1

IAj(α̂)ξ̂N+i>bj(ẑ)

}
where c(ẑ) represents the deterministic term in (13), ẑ =
(P̂G,P Tie,u,d) and α̂ denote the optimal value obtained
from the sample set, set J denotes the index of the joint
chance constraints.

1) Impact of Wasserstein Radius: The out-of-sample con-
straint violation probability for TS and each DS with different
Wasserstein radii are shown in Fig.3. Different Wasserstein
radii result in different out-of-sample performance. With the
increasing of Wasserstein radius, the solution leads to a lower

risk of constraint violation for TS and each DS. This is because
the larger Wasserstein balls lead to higher robustness to sam-
pling errors. This is expected as larger Wasserstein radii result
in more conservative solutions. For sufficiently large values
of radius, the proposed DRJCC model can guarantee that the
out-of-sample constraint violation probabilities of all chance
constraints are smaller than the selected risk parameters.

Fig. 3. Out-of-sample constraint violation probability

2) Comparison with stochastic & robust optimization: This
section compares the proposed DRJCC model with radius
θ = 0.0001 to the SO-based and RO-based models. The RO-
based model is constructed as a LDRs-based adjustable robust
optimization model, which requires all chance constraints to
be satisfied for all realizations in the support of uncertain wind
farm outputs. The SO-based model is constructed as a sample
average approximation model. The S test samples is carried
out to compare the out-of-sample operation cost and constraint
reliability of TS and each DS, shown in Fig. 4.

The total operation cost of the DRJCC model is larger
than SO while smaller than RO model. The DRJCC and RO
models can ensure lower constraint violation probability than
the required risk level, while the SO model cannot guarantee
the required system reliability level. This is because the SO
assumes uncertain variables follow the empirical probabil-
ity distribution generated from N samples, so the solution
is sensitive to the perturbation in the true distribution of
uncertainties. Since RO completely ignores the probabilistic
information, the RO model is the most conservative solution
while SO yields the most aggressive solution. We can conclude
that the proposed DRJCC model can flexibly balance the
system economic and constraint reliability in comparison with
RO and SO models.

3) Impact of Risk Parameters: The risk parameter ε reflects
the system operator’s risk attitude. Table I shows the out-of-
sample total operation cost with the same radius θ = 0.0001
under different risk parameters. It can be observed that a larger
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Fig. 4. Out-of-sample constraint reliability and operation cost

TABLE I
COMPARISON OF DIFFERENT RISK PARAMETERS

ε 2% 3% 5% 10% 15% 20%

Operation cost ($) 79528 79069 78628 78364 78051 77824

ε allows to tolerate some constraint violation probability, in a
result, the total operation cost will decrease. We can conclude
that the choice of risk parameter also has an important impact
on the conservatism of solution. In fact, the system operators
can reduce the total operation costs by increasing the risk
parameters as long as they can tolerate a relatively high
operational risk.

4) Convergence Performance and Solution Quality: The
tailored asynchronous ADMM scheme is compared with the
synchronous ADMM and the traditional centralized method
for the DRJCC model of ITD systems with radius θ = 0.0001
and risk parameter ε = 5%. The centralized model is also
solved using the Gurobi solver, which leads to operation by
a single central super entity with complete knowledge and
control of the entire ITD systems. The solution quality is
summarized in Table II, where the results are nearly the same
as the centralized method.

TABLE II
COMPARISON OF SYNC-ADMM, ASYNC-ADMM, CENTRALIZED METHOD

Scheme
Tie-line power (MW) Generation

Tie-line 1 Tie-line 2 Tie-line 2 cost ($)

Centralized 239.7 440.2 702.5 78628.1

Sync. ADMM 240.0 440.0 702.3 78628.3

Async. ADMM 239.9 440.3 702.2 78628.3

The distributed optimization for ITD systems is particularly

attractive for the co-optimization between TSO and DSOs
where they will not need to share their system data due to
the legal framework and data confidentiality under deregulated
electricity market environments. In the United Kingdom, for
instance, the integrated operation between transmission system
and distribution systems becomes almost impossible under the
deregulated electricity market. While the proposed distributed
optimization is to minimize the data exchange between the
transmission and distribution systems, then the ITD systems
can carry out joint co-optimization together. Meanwhile, the
proposed distributed co-optimization scheme is suitable for the
implementation by distributed cloud computing.

5) Computation, Idle, and Execution Time: Table III
demonstrates the computation time, idle time, and execution
time of asynchronous and synchronous ADMM. The Primal
and dual residue of tie-line power during the iteration process
is compared in Fig. 5. Note that the execution time represents
the total time that the algorithm takes to converge, including
the parallel computation time and idle time. Here, the com-
munication time is not considered as passing message from
one worker to the other usually takes a couple of milliseconds,
which is very small compared to local computation time. Thus,
there is no idle time for the slowest TS in synchronous scheme.
It is clearly shown asynchronous scheme spends relatively less
time idling, while the synchronous scheme suffers from greater
amount of idle times. In asynchronous scheme, 18% of the
time is wasted in idling, while it is 49.2% for synchronous
scheme. The asynchronous and synchronous ADMM con-
verges after 32s and 46s with all the primal and dual residues
smaller than the predefined convergence criterion. This is due
to the fact that in asynchronous ADMM a worker uses the
most updated information of its neighbors in a more timely
manner than in the synchronous case and updates its local
variables more frequently. Global computational progress in
the synchronous scheme is held up by the slowest subproblem
DS 3 which simultaneously incurs very high idle time on the
fastest DS 1. Due to the idle time for the slowest worker
at each iteration, a lot of time is wasted on waiting for all
workers using a synchronous scheme. The higher computation
time for DS 3 forms the main bottlenecks for global progress
of synchronous scheme which are readily circumvented by
asynchronous scheme.

B. Test System T118D7

Case 2 is a T118D7 system with a modified IEEE 118-
bus transmission system connected with seven modified IEEE
benchmark distribution systems. The transmission system and
distribution systems data are from MATPOWER 7.1 [56]. The
IEEE 118-bus transmission system is connected with one
IEEE 33-bus distribution system, one IEEE 69-bus distribution
system, one IEEE 85-bus distribution system, one IEEE 136-
bus distribution system, one IEEE 141-bus distribution system,
one IEEE 85-bus distribution system, and one IEEE 33-bus
distribution system at transmission nodes 8, 15, and 25, 34, 65,
80, 100, respectively. The root node of each DS connects the
TS. There are five wind farms located at transmission nodes
8, 25, 32, 48, and 63 in TS. The number of distributed wind
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TABLE III
COMPARISONS OF TIME FOR SYNC. AND ASYNC. ADMM

Regions
Sync. ADMM Async. ADMM

Time(s) % of total Time(s) % of total

TS
Computation 22 48.9% 27 84.4%

Idle 23 51.1% 5 15.6%

DS1
Computation 6 13.0% 23 71.9%

Idle 40 87.0% 9 28.1%

DS2
Computation 19 41.3% 26 81.3%

Idle 27 58.7% 6 18.8%

DS3
Computation 46 100.0% 29 90.6%

Idle 0 0.0% 3 9.4%

Total
Computation 93 50.8% 105 82.0%

Idle 90 49.2% 23 18.0%

Execution 46 \ 32 \
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Fig. 5. Primal and dual residue about execution time for Case 1

generations in the seven DSs are respectively 3, 3, 4, 6, 9, 7,
and 4. The network topology, controllable units’ parameters,
wind location and wind outputs, and other parameters in Case
2 are available online [55]. In Case 2, the sample set is set
to N ∈ {50, 100, 200, 500} for TS and each DS. Another
S = 1000 test samples from the data source are also carried
out to test the out-of-sample performance. Different from Case
1, the empirical out-of-sample cost in Case 2 is assessed
under the premise that only the decisions ẑ in the nominal
scenario is implemented and that the power adjustments of
controllable units in TS and each DS are determined by solving
a traditional deterministic OPF problem. To obtain a feasible
recourse action, drastic measures such as load shedding and
wind power spilling must be involved in the deterministic OPF
to ensure that the model is feasible.

1) Relationship between Wasserstein Radius and Sample
set: Using the sample data, a detailed empirical study on
the out-of-sample performance for varying Wasserstein radii
is carried out on Case 2. Figure 6 illustrates the empirical out-

of-sample cost as a function of Wasserstein radii for different
sample sizes, averaged over 30 independent simulation runs.
We can observe that the out-of-sample cost have a negative
relationship with the sample size, say the larger available
samples are, the smaller out-of-sample cost would be. That
is, the conservativeness of the proposed DRJCC method is
mitigated with the increase of sample size. The reason is that
the more historical data is available, the more probabilistic
information of the true probability distribution is revealed, and
the less conservative the solution is. A closer inspection of
the results from Fig. 6 reveals that the out-of-sample cost
attains a distinct minimum at a critical Wasserstein radius
θopt > 0. This shows that there exists a best Wasserstein radius
corresponding to a lowest out-of-sample cost for different
sample size. Meanwhile, this best Wasserstein radius gradually
decreases with the increase of sample size. We can conclude
that by setting θ = θopt, a sophisticated system operator who
acknowledges the presence of ambiguity can reduce the out-
of-sample cost.

10
-4

10
-3

10
-2

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

O
u

t 
o

f 
sa

m
p

le
 c

o
st

 (
$

)

10
5

N=50

N=100

N=200

N=500

Fig. 6. Average out-of-sample cost under different radius and sample size

The radius θ is the scalar parameter that controls the solution
robustness, which is similar to the uncertainty budget in RO
model. For a larger Wasserstein radius, we require the chance
constraints to hold for a larger set of distributions. When the
number of available samples is small, the system operator
can choose a larger radius to improve the robustness of the
solution to yet-to-be-realized uncertain parameters. When a
large number of historical data is available, the empirical
distribution tends to be a good representation of the uncertain
parameters and the system operator can reduce the radius to
obtain a smaller operation cost. In the implementation, the
operator firstly sets a probability for the chance constraint a
priori (In practice, the chance constraint is usually required
to be satisfied with a high probability (e.g., 90%, 95%) to
guarantee a high security level for power systems [26], [57]).
Then, the system operator may perform a statistical analysis to
identify the desired level of robustness (i.e., the desired radius)
based on the violation of specific operational constraints.
Ideally, one should select the best possible Wasserstein radius
θ = θopt that minimizes the out-of-sample operation cost over
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all Wasserstein radii; note that θopt inherits the dependence on
the sample set. As the true distribution is unknown, however,
it is impossible to evaluate and minimize the out-of-sample
performance. In practice, the best we can hope for is to
approximate θ = θopt using the sample data. Statistics offers
several methods to accomplish this goal, such as the holdout
method [51] and the k-fold cross validation [27].

2) Comparison with Moment-based DRJCC Model: Based
on the observations from Fig. 6, the out-of-sample performace
of the proposed Wasserstein metric-based DRJCC model with
the best radius θ = θopt is compared with the moment-based
DRJCC model, shown in 7. The ambiguity set for moment-
based model is the set of all probability distributions with
given sample mean and sample covariance. Then, the moment-
based DRJCC models for TS and DSs can be respectively,
formulated as a second-order cone program P1 as discussed
in [32]. It can be seen that the lowest reliability of all
chance constraints and the out-of-sample cost in the moment-
based model almost stay constant and keep at a relatively
unnecessary conservative level under different sample sets.
However, the performance of the proposed Wasserstein metric-
based model can be usually improved with the increase of
sample sets. This is because the proposed Wasserstein metric-
based model incorporates a variety of historical data to en-
hance the characterization of the true probability distribution.
Accordingly, the true distribution is revealed with increasing
accuracy as the number of available data increases. However,
the moment-based model utilizes the first two moments to
construct the ambiguity set. Once the moment information
is determined, the ambiguity set is fixed, and the solution
conservativeness is also determined. Because the samples used
to construct the ambiguity set is selected randomly, the mean
and covariance barely changes with the sample set grows from
50 to 500, so the solution of the moment-based model almost
keeps constant.

Fig. 7. Comparison of the out-of-sample cost and the lowest out-of-sample
constraint reliability

3) Convergence Performance and Solution Quality: The
tailored asynchronous ADMM scheme is also compared with
its synchronous counterpart to demonstrate its convergence
performance in Case 2 with radius θ = 0.001 and risk param-
eter ε = 5%. The average primal and dual residue of power
for the seven tie-lines during the iteration process in Case 2
is compared in Fig. 8. The asynchronous and synchronous
ADMM converges after 76s and 103s. This indicates that the

proposed asynchronous optimization scheme for ITD systems
has good scalability. Of course, if the scale of transmission
system is much larger than that of distribution systems, the
computing of transmission system will take more time. This
will degrade the computational efficiency of the asynchronous
algorithm. Under this circumstance, some rules can be adopted
to simplify the transmission system model, such as the fast
inactive constraint filtration method [11].

In actual ITD systems, if there are tens or hundreds of
DS connected with the TS, the computational efficiency will
highly depend on how to choose the subset of TS’s neighbors
who exchange information with TS at each iteration. Some
random sampling based subsystem selection strategy could be
used [58].
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Fig. 8. Average primal and dual residue about execution time for Case 2

In summary, the tailored asynchronous ADMM could be
more suitable and scalable for the practical deployment and
more efficient than its synchronous counterpart. The impact
of communication delay on the convergence performance
due to information exchange between subsystems will be
minimal. This asynchronous property is more fault-tolerable
for delayed or missing information and is invulnerable to
communication network condition as well as communication
bottleneck. Despite strongly asynchronous systems, more fre-
quent asynchronous updates are able to successfully drive the
problem towards the global solution much faster. Besides, for
many engineering applications, only a mild level of solution
accuracy is needed. Thus the asynchronous updates have the
potential to be computational efficiency.

VI. CONCLUSIONS

This paper proposes a DRJCC dispatch model for ITD
systems via distributed optimization. Based on the data-driven
Wasserstein ambiguity set, we proposed the DRJCC models
for transmission and distribution systems, respectively. A
combined Bonferroni and CVaR approximation is adopted to
transform the distributionally robust model into a tractable



14

conic formulation. A detailed empirical study on the out-of-
sample performance of the DRJCC model reveals that the
out-of-sample cost can attain a distinct minimum at a crit-
ical Wasserstein radius. Meanwhile, a tailored asynchronous
ADMM-based fully decentralized dispatch scheme is proposed
to better adapt to the star topology of ITD systems, where
each subsystem operator can perform local updates with
information from a subset of, but not all, neighbors. The
proposed asynchronous decentralized optimization scheme has
been illustrated by applying two IEEE benchmarks that it has
good scalability and can improve computational efficiency for
ITD systems.

Future work will investigate several open and more chal-
lenging problems, including 1) developing the optimized Bon-
ferroni approximation for metric-based distributionally robust
joint chance-constrained program to reduce conservatism, 2)
developing an asynchronous and inexact ADMM algorithm
to better adapt to the different complexity of each subsystem
in ITD systems, and 3) developing the AC-OPF based distri-
butionally robust joint chance-constrained approach for ITD
systems.
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APPENDIX

A. Considering the Wind Power Curtailment

If one would like to consider the wind power curtailment,
the wind power will become decision variables. Taking the TS
as an example, the uncertain wind power can be expressed as

P̃W,Tj = P̂W,Tj + ξTj , j ∈ T W (24)

where P̃W,Tj denotes the uncertain power of wind j.
Similar to the LDRs form of the controllable units’ output,

the wind output can be written in a LDRs form as follows:

PW,Tj = ṖW,Tj −
∑
k∈TW

βTjkξ
T
k , j ∈ T W (25)

where PW,Tj denotes the output of wind j under the realization
of wind generation, ṖW,Tj denotes the output of wind j in the
nominal scenario, βTjk denotes the adjustable term under the
realization of wind generation.

As a result, the power balance equation (11a) is changed
as (26). The chance constraint for transmission line flow limit
(11f) is changed as (27). Moreover, a new chance constraint
about the wind power curtailment is added as (28), which
ensure that the wind power outputs cannot exceed the random
wind power.∑
i∈T G

P̂G,Ti +
∑
i∈TW

ṖW,Ti =
∑
i∈T N

PL,Ti +
∑
i∈T D

PTie,Ti (26)

min
P∈DT

P

−LTl ≤ ∑
j∈TW

Mjl

(
ṖW,Tj −

∑
k∈TW

βTjkξ
T
k

)

+
∑
g∈T G

Mgl

P̂G,Tg − αTg
∑
j∈TW

ξTj

− ∑
k∈T D

MklP
Tie,T
k

−
∑
i∈T N

MilP
L,T
i ≤ LTl , ∀l ∈ T L

]
≥ 1− εT2 (27)

min
P∈DT

P
[
PW,Tj ≤ P̃W,Tj , ∀j ∈ T W

]
≥ 1− εT3 , with 24, 25

(28)
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