
Abstract—Virtual power plant (VPP) has become an important 
resource for reserve provision owing to its fast-responding 
capability. In this paper, an optimal VPP operational regime 
considering reserve uncertainty is proposed, which includes a 
novel day-ahead offering strategy and a real-time dispatching 
model. At the day-ahead stage, the offering strategy gives the 
VPP’s price-dependent offers in the energy market under multiple 
uncertainties on market price, renewable generation, and calls of 
reserve deployment. A hybrid stochastic minimax regret (MMR) 
model is proposed to facilitate making offering decisions in the 
electricity market. At the real-time dispatching stage, generation 
scheduling can be realized based on the MMR criterion in an 
online fashion. To alleviate the intrinsic conservativeness of the 
dispatching model, a self-adaptive algorithm is also proposed to 
instantly modify the confidence bounds. The proposed regime is 
comprehensively tested through extensive case studies, of which 
the simulation results demonstrate the effectiveness in obtaining 
economic and less conservative offering decisions. 

Index Terms— Uncertainty, price-dependent offering strategy, 
stochastic minimax regret, secondary reserve, self-adaptive 

I. INTRODUCTION

ROWING pressure on secured energy supply and 
environmental issues is now boosting the development 
of distributed energy resources (DERs) [1]. In the past 

few decades, both the bulk injection and penetration level of 
the DERs have been dramatically increased [2]. Moreover, 
many major energy consumption parties, such as China and the 
European Union, have recently announced their carbon 
neutralization plans. In the foreseeable future, the amount of 
DERs will continue to grow to a great extent. 
 DER normally features small power capacities and inherent 
intermittency [3]. From the perspective of the system operator 
(SO), the massive integration of DERs into the power system 
will cast great challenges on system operation security [4]. 
From individual DER point of view, they can hardly access the 
wholesale market and benefit from the market competition. As 
a promising solution to the aforementioned occasion, virtual 
power plants (VPP) can aggregate multiple DERs to become a 
single market participant with an integrated operating profile 
[5]. Through such VPP aggregation, the power fluctuations 
induced by DERs can be absorbed. Moreover, the aggregated 
DERs can be admitted into the wholesale market for economic 
operation instead of “free-running”. 
 In electricity markets, joining in multiple markets rather 
than only the day-ahead energy market has become an efficient 
approach to improve the profitability of the market participants. 
In [6], authors develop a multi-market bidding strategy for 

demand side aggregators participating in a sequential of 
capacity reserve market, day-ahead, and real-time flexibility 
markets. In [7], a bidding strategy is proposed for a hydropower 
producer to participate in both the day-ahead and balancing 
markets in the NORDPOOL system. In [8], a model predictive 
control scheme is proposed to enable parallel participation of 
Denmark demand response providers in both the day-ahead and 
intraday markets. In [9], authors reviewed optimization models 
for hydropower producers bidding in multiple markets. It is 
concluded that participating in multiple markets offers 
opportunities in the form of possibilities to trade their way to 
profitable and flexible production schedules.  
 Owing to the fast-responding capability of the DERs, the 
VPP is of high potential to arbitrage through the ancillary 
service markets [10]. In the literature, several attempts have 
been engaged in VPP operation by considering the provision of 
reserve. At the early stage, attempts to incorporate reserve 
provision in VPP operational regime normally focus on 
developing joint optimization models to maximize the VPP’s 
profit while neglecting the uncertainties. In the works reported 
in [11] and [12], authors develop an optimization problem to 
maximize the profit from both selling the energy and proving 
reserve under no uncertainty. In [13], a more comprehensive 
model that includes energy, reserve, and reactive power 
provision is developed to help the VPP arbitrage in multiple 
markets without uncertainties. Later, the operating strategies of 
VPPs with reserve become more complex by involving 
uncertainties in the decision-making process. Whereas in this 
stage, these works normally concern only the day-ahead stage, 
and the real-time stage is rarely included. In [14], a modified 
scenario-based method is proposed to optimize the VPP’s day-
ahead energy and reserve scheduling decisions in confronting 
renewable and market price uncertainties. The work in [15] 
reports a stochastic optimization-based day-ahead scheduling 
strategy for VPP with multiple uncertainties including 
renewable generation, market price, and electrical load. In the 
day-ahead self-scheduling model developed in [16], scenarios 
and confidence bounds are used to jointly describe the 
uncertainties in price, wind generation, and reserve calls.  
 To date, VPP works considering reserve provision become 
more complete. The gap between the day-ahead stage forecast 
and the real-time stage information is handled by using multi-
stage models. In [17], authors propose a two-stage risk-
constrained stochastic optimization model for the VPP energy 
and reserve scheduling in both day-ahead and real-time stages. 
In [18], authors study a multi-energy VPP participating in the 
day-ahead energy and reserve markets. In the intraday 
operation, adjustments are introduced to the day-ahead baseline 
schedule with more accurate uncertainty information.  

Indeed, researchers have progressed significantly in 
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studying the VPP’s offering and dispatching with reserve. 
However, most of the existing works concern price-
independent offering strategies in the operation of VPPs with 
reserve. That is, the energy exchange volume is initially fixed 
regardless of the market-clearing results. Nevertheless, in some 
electricity markets (e.g., NORDPOOL, PJM, etc.), price-
dependent offers can be more effective to reach economic 
outcomes. In the literature, some preliminary attempts have 
been made for VPP by deploying the price-dependent energy 
offering strategy [19], [20]. As compared to price-independent 
offers, the price-dependent offers are advantageous in 
reflecting the suppliers’ aspiration to sell electricity at different 
price levels.  
 Based on the existing literature, this paper aims to develop 
an optimal VPP operational regime under several uncertainties. 
The proposed operational regime includes a novel price-
dependent offering strategy and a real-time dispatching model. 
Towards this end, one should firstly resolve the most 
challenging issue arisen from the uncertainties of market price, 
renewable generation, and calls for reserve deployment by the 
SO. Currently, the stochastic optimization approach [15], [21], 
[22] is widely employed to handle uncertainties in the relevant
works of VPP offering. However, in some cases, one can hardly
obtain the precise probability distribution for uncertain factors.
Hence the effectiveness is obviously limited by solely adopting
stochastic optimization. To tackle this issue, hybrid stochastic
robust optimization models are proposed (e.g. [16], [23], [24]),
in which the probability distribution is unnecessarily needed.
However, considerable conservativeness is unavoidable due to
the robust nature of these models. As an alternative to handle
uncertainties without accurate probability distributions, the
MMR approach features distribution-free and less conservative.
Thus this method has also been duly deployed in several power
engineering applications (e.g., transmission expansion
planning in [25], unit commitment problem in [26], and thermal
generator bidding problem in [27], etc).

Table I  
VPP OPERATIONAL REGIME SUMMARY 

References Price-
dependent 
offering 

Real-time 
dispatch 

Reserve 
provision 

Multiple 
uncertainty 

models 
[10], [21], [28] - - - - 

[19] √ - - - 
[29] - √ - - 

[11]–[14], [16], 
[18] 

- - √ - 

[15], [23], [30] - - - √ 
[17] - √ √ - 
[20] √ - - √ 

This work √ √ √ √ 
To emphasize the difference of this work, a summary of 

VPP operating works is provided in Table I, where four factors 
are involved for comparison, including price-dependent 
offering strategy in the day-ahead stage, real-time dispatch, 
reserve provision, and considering multiple uncertainty models 
simultaneously. 
 In the day-ahead offering stage of this work, it is assumed 
that we have the confidence intervals for renewable generation 
uncertainty and probability distributions for market price and 
reserve deployment calls. Hence, on the one hand, confidence 

bounds are introduced to represent the renewable generation, 
which serves as a prerequisite input of the MMR model. On the 
other hand, the market price and uncertain calls for reserve 
deployment are described by using scenarios complying with 
certain probability distributions, which enables the utilization 
of the stochastic optimization model. In combining these two 
mechanisms, a novel hybrid stochastic MMR model is 
proposed in this paper to jointly resolve the aforementioned 
uncertainty issues. In this work, risk-management tools are not 
considered in the proposed operational regime to maximally 
reduce the conservativeness in the obtained operating solutions. 
 At the power dispatching stage and to remain consistent 
with the MMR-based offering model, a similar mechanism is 
applied to the scheduling strategy to obtain the optimal VPP 
dispatching solutions. To control the conservativeness arisen 
from the minimax nature of the MMR approach, a self-adaptive 
algorithm is proposed to instantly adjust the confidence interval 
size based on the revealed uncertainty information. 

The contributions of this paper are summarized as follows. 
• An optimal VPP operational regime under reserve
uncertainty is proposed, which consists of a novel day-
ahead price-dependent offering strategy considering
uncertain reserve calls and a real-time dispatching model.
• A novel stochastic MMR-based model is proposed for
the day-ahead optimal offering decision-makings in VPP.
• A self-adaptive algorithm is proposed to control the
conservativeness introduced by the minimax nature of the
MMR-based dispatching model in the real-time stage.

 The rest of the paper is organized as follows. In Section II, 
the studied model is discussed in detail. Section III presents the 
formulations of the optimization problems. The proposed 
solution methodology and the self-adaptive algorithm are 
presented in Section IV. Section V provides simulation results 
and discussions of the case studies. Section VI concludes the 
work. 

II. MODEL DESCRIPTION

A. Market Structure

The day-ahead energy market adopts a uniform pricing
mechanism and the market-clearing resolution is one hour, i.e., 
there are 24 clearing periods for each day. For each hour, all the 
energy suppliers are expected to submit stepwise offering 
curves indicating the amount of energy they are willing to sell 
at different price levels. In a normal practice, each offering 
curve comprises at most five steps, namely, five price-quantity 
pairs. As reported in existing works (e.g. [5], [31]), the dual 
pricing mechanism is applied for energy deviations at the ex-
post settlement stage to encourage the suppliers to provide the 
energy allocated during the bidding process. In this paper, a 
similar dual pricing scheme (as presented in [5]) is adopted to 
settle the energy deviations based on market-clearing results. 
The settlement prices are expressed as follows: 

𝜆!,#$ = 𝛼 ∙ 𝜆!,# (1) 

𝜆!,#% = 𝛽 ∙ 𝜆!,# (2) 

𝛼 ≥ 1 (3) 

𝛽 ≤ 1                      (4) 
where 𝜆!,# is the day-ahead energy market-clearing price 
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at time 𝑡; The balancing prices for energy deficit/surplus are 
given by 𝜆!,#$  / 𝜆!,#% , respectively. Parameters 𝛼 and 𝛽 are 
the market penalty coefficients. 

B. VPP Operational Model
VPPs are generally equipped with distributed thermal

generators, renewable generators like wind turbines (WT) and 
photovoltaic (PV) panels, as well as energy storage systems. A 
general block configuration for VPPs is shown in Fig. 1. 
 The VPP considered in this work participates in the forward 
reserve market (FRM) and contracts 20% of its dispatchable 
generation capacity as the secondary reserve. The reserve 
considered in this work is similar to the thirty-minute reserve 
[32] in the PJM market except that the resolution has been 
adjusted to one hour. The VPP receives revenue for providing 
the potential reserve. Besides, once the reserve is called at a 
specific operating time, the change in energy production will 
be settled at the day-ahead market-clearing price. Inversely, 
failure to deliver the called reserve can result in energy 
deviations that will be settled in the balancing stage at penalty 
prices. 

In this study, the VPP operation is divided into two stages, 
i.e., the day-ahead offering stage and the real-time dispatching
stage. At the day-ahead offering stage, the VPP is faced with
multiple uncertainties relating to energy market price, wind
energy generation, and calls for reserve deployment by the SO.
At the real-time dispatching stage, the market has been cleared
and the SO has informed the VPP of the called reserve volume.
Operation uncertainty is all induced by wind power generation
at this stage.

Fig. 1. Configuration of a general VPP. 

C. Uncertainty Modeling
In this work, representative scenarios are used to model the

wholesale energy market price and calls for reserve deployment. 
As inspired by [17], a similar scenario generation method is 
utilized in our study. Since all the offering decisions are made 
in day-ahead, it is assumed that the probability distribution 

functions of reserve calls remain unchanged during the next day. 
Specifically, five typical scenarios are generated for the market 
price and the reserve deployment uncertainties, respectively. 
The values of the generated scenarios are ordered as very high, 
high, medium, low, and very low, which can capture the main 
features of the price and reserve uncertainty distributions as 
well as cover most of the possible scenarios in our situation. 
 To represent the uncertainty induced by wind power 
generation, confidence bounds are adopted to measure the 
output range. In our model, the confidence bounds are 
characterized by a forecasting value 𝑢&  and an uncertainty 
coefficient 𝛾 , which indicates the size of the confidence 
intervals. For given 𝑢& and 𝛾, the real wind power generation 
𝑢'	 is assumed to reside between the bounds expressed as: 

[(1 − γ)𝑢& , min{(1 + γ)𝑢& , 𝑢)*}]         (5) 
 Where 𝑢)*  is the installed capacity of the renewable 
generator. 
 At the offering stage, a constant empirical forecasting 
accuracy γ+,  is considered for all the decision periods 
because no uncertainty information is revealed in this stage. At 
the dispatching stage, to reduce the conservativeness stemming 
from the minimax nature of the dispatching model, the 
confidence bounds are adjusted by the proposed self-adaptive 
algorithm based on the uncertainty realizations. The intuition 
behind the self-adaptive algorithm is that the forecast accuracy 
of renewable generations is temporally related [33], [34].  

III. MODEL FORMULATION

 To further the discussion in Section II, this section presents 
detailed formulations for VPP day-ahead offering and real-time 
dispatching problems, respectively. 

A. Day-Ahead Energy Offering
At the day-ahead offering stage, the offering problems of

different hours are solved individually. Because three different 
uncertain factors are considered in this work, a three-level 
model is proposed to investigate the uncertainties at three 
different scales. Firstly, the regret model is adopted where only 
the renewable uncertainty is involved (i.e., Level 1). In 
concerning both renewable and reserve uncertainties, the 
stochastic MMR model is formulated (i.e., Level 2). Last, in 
presence of all operational uncertainties including price 
uncertainty, the VPP offering curves are formed (i.e., Level 3). 
The hierarchical structure of the proposed offering strategy is 
illustrated below and presented in Fig. 2. It is worth mentioning 
that the optimal offering result obtained from the day-ahead 
offering model is determined by factors including thermal 
generator production, renewable generator production, and 
reserve deployment scenarios.  
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Fig. 2. The hierarchical structure of the day-ahead offering model. 

1) Level 1： Regret Maximization
In our problem, regret is defined as the profit difference

between the optimal solution with full knowledge of 
uncertainties and the solution obtained with incomplete 
information. At this level, both the market-clearing price and 
the reserve volume requested by the SO are given, the only 
uncertainty is related to wind power generation. The regret 
model identifies the worst-case scenario regarding wind 
uncertainty for a given self-scheduling solution 𝐷	 =
{𝑃!, 𝑃-,)}, where 𝑃!	  denotes the energy offered in the market 
and 𝑃-,)  denotes the power generation of the 𝑖𝑡ℎ  thermal 
generator.  
 Given the market-clearing price 𝜆!  and a called reserve 
volume 𝑃. , the maximum regret 𝜑(𝐷|𝑃.)  for the self-
scheduling decision 𝐷  can be acquired by solving the 
following optimization problem: 

max
!
% min
"!" ,"#,%

" ,"&
"
%(𝑓$*𝑃%,&! , + 𝑓'(𝑃'!) − 𝑓((𝑃)!) − 𝑓*(𝑃*)

&

1

− min
"&

%𝑓((𝑃)	 ) + 𝑓*(𝑃*) −(𝑓$*𝑃%,&,
&

− 𝑓'(𝑃')11	

(6) 

s.t.

(1) - (4)        (7)        

𝑓/(𝑃!	 ) = 𝜆!𝑃!	         (8) 

𝑓.(𝑃.) = 𝜆!𝑃.        (9) 

𝑓0@𝑃-,)	 A = 𝑐)@𝑃-,)	 A
1 + 𝑏)𝑃-,)	 + 𝑎) (10) 

𝑓2(𝑃2	 ) = E𝑃2
	 𝜆!$ , 𝑃2	 ≥ 0
𝑃2	 𝜆!% , 𝑃2	 ≤ 0      (11) 

𝑃23	 +∑ 𝑃-,)3	) + 𝜂𝑢 = 𝑃!3	 + 𝑃. (12) 

𝑃2	 +∑ 𝑃-,)	) + 𝜂𝑢 = 𝑃!	 + 𝑃. (13) 

𝑦)3 × 𝑃-,)!)4 ≤ 𝑃-,)3 ≤ 𝑦)3 × 𝑃-,)!56 (14) 

𝑢&(1 − 𝛾78) ≤ 𝑢 ≤ min	{(1 + 𝛾78)𝑢& , 𝑢)*}    (15) 

𝑦)3 ∈ (0,1)      (16) 
 The energy offered in the market is denoted as 𝑃!	 , the 
power generation of the 𝑖𝑡ℎ thermal generator is denoted as 
𝑃-,). Renewable energy production is represented by 𝑢 and 𝜂 
is the conversion efficiency of the DC/AC converters. The 
energy deviation is represented by 𝑃2	 . In this formulation, 
terms with the superscript 𝑢 mean that they are optimization 
variables in the optimal self-scheduling problem under the 
renewable generation scenario 𝑢. The binary variable 𝑦)3  is 
used to indicate the on/off status of the dispatchable generators. 
The revenue from the energy market, revenue from responding 
to the reserve calls, fuel cost of thermal generators, and 
balancing cost of energy deviations are represented by 𝑓/(𝑃!	 ), 
𝑓.(𝑃.), 𝑓0@𝑃-,)	 A, and 𝑓2(𝑃2	 ), respectively. Eqs. (12) and (13) 
are energy balancing constraints in the VPP. Constraints in (14) 
restrict the power outputs of the thermal generators. Constraint 
(15) gives the interval for wind power production.

The first inner minimization problem aims to reach the
optimal self-scheduling decisions such that the profit of VPP 
can be maximized under an uncertainty scenario 𝑢. The second 
inner minimization problem is meant to find the optimal 
recourse action that minimizes the balancing cost under 
scenario 𝑢 and first-stage decision 𝐷. The overall objective 
function is the regret of the decision 𝐷  under the wind 
generation scenario 𝑢 . Therefore, the outer maximization 
problem aims to locate a renewable generation scenario such 
that the profit difference between the optimal solution and the 
given solution is maximized. 
 The regret model presented in this level will be solved 
multiple times using different reserve deployment scenarios to 
yield multiple maximum regrets under the wind generation 
uncertainty. The obtained maximum regrets will be passed to 
level 2 for further processing. 
2) Level 2: Stochastic MMR Model

At level 2, the model is extended to include the uncertain
calls for reserve deployment. To this end, scenarios complying 
with a certain probability distribution are used to represent the 
reserve call uncertainty. As concerned in the level-1 problem, 
for a given self-scheduling decision 𝐷 under the reserve call 
scenario 𝑃.,9, its maximum regret	𝜑M𝐷|𝑃.,9	N can be obtained 
by solving the problem (6) - (16). For a total number of 𝐾 
reserve call scenarios, 𝐾 regrets can be obtained by solving 
the problem for 𝐾 individual times. Since each reserve call 
scenario corresponds to a certain probability 𝜋9, the ‘Expected 
regret’ for the self-scheduling decision 𝐷 can be obtained by 
summing up the products of each regret and their corresponding 
probability. Therefore, the resulting model becomes a hybrid 
stochastic MMR optimization problem, which aims to make 
such a decision, of which the expected regret is minimized. 

min
7
Q𝜑M𝐷|𝑃.,:	N × 𝜋: +⋯+𝜑M𝐷|𝑃.,9	N × 𝜋;S    (17) 

s.t.

Constraints (6) – (16) (18)
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𝑦) × 𝑃-,)!)4 ≤ 𝑃-,)	 ≤ 𝑦) × 𝑃-,)!56 (19) 

∑ 𝑃-,)	) + 𝑢	&(1 − 𝛾78	) ≤ 𝑃!	 − 𝑃.,9 	≤ ∑ 𝑃-,)	)

+min{(1 + 𝛾78)𝑢& , 𝑢)*} (20) 

𝜋: +⋯+ 𝜋;=1 (21) 

𝑦)	 ∈ (0,1) (22) 
 In this formulation, 𝑃.,9 and 𝜋9 are the 𝑘𝑡ℎ reserve call 
scenario and its probability. The term 𝜑M𝐷|𝑃.,9	N represents 
the maximum regret of the self-scheduling decision 𝐷 under 
the reserve call scenario 𝑃.,9. Constraints in (19) restrict the 
power generations of the thermal generators. Constraint (20) 
limits the energy offer quantity. Constraint (21) ensures that the 
sum of the reserve call scenario probabilities equals to one.  
 The stochastic-MMR optimization model presented in this 
work is solved several times to obtain the optimal offering 
quantities under different market-clearing price scenarios. The 
acquired offering quantities will be communicated with level 3 
for the final construction of the stepwise offering curve. 
Level 3: Offering Curve Formation 
 At this level, to handle the price uncertainty, price scenarios 
ranging from low to high are generated to represent different 
price levels. The generated price scenarios are used as the 
bidding prices in the stepwise bidding curves, and the bidding 
volumes corresponding to each price scenario can be obtained 
by solving problem (17) – (22) independently for each price 
scenario. As 𝑆 price scenarios are considered as the input of 
problem (17) – (22), the same number of price-quantity pairs 
can be acquired. By combining the obtained price-quantity 
pairs, the offering curves can be hereby constructed. 
 It should be noted that the order we follow to explain the 
model is inverse to the actual implementation order of it for 
ease of understanding. Hence, starting from level 3, the price 
uncertainty is firstly addressed by generating different price 
scenarios to form the offering curves, then the reserve 
deployment uncertainty is addressed by the stochastic 
optimization in level 2. Finally, level 1 deals with the wind 
generation uncertainty using the regret model. 

B. Real-Time Dispatching
The market-clearing results are passed from the day-ahead

stage to the real-time stage. At the real-time stage, the SO has 
also informed the VPP of the called reserve volume. Hence, 
thermal generators shall be duly dispatched given the wind 
generation uncertainty to meet both the day-ahead market-
clearing results and the real-time reserve deployment requests. 

The MMR-based dispatching problem is formulated as 
follows: 

min
!!,#,$

$%𝑓"'𝑃#,%,&)
%

+max
'$

$min
!%,$

𝑓)'𝑃),&)

− min
!!,#,$
& ,!%,$&

$%𝑓"'𝑃#,%,&' )
%

+ 𝑓)'𝑃),&' )...

     (23) 

s.t.

Constraint	(7) − (11)     (24) 

𝑦),#3 × 𝑃-,),#!)4 ≤ 𝑃-,),#3 ≤ 𝑦),#3 × 𝑃-,),#!56        (25) 

𝑦),# × 𝑃-,),#!)4 ≤ 𝑃-,),#	 ≤ 𝑦),# × 𝑃-,),#!56        (26) 

−𝑅𝐷) ≤ 𝑃-,),#$:	 − 𝑃-,),#	 ≤ 𝑅𝑈) (27) 

−𝑅𝐷) ≤ 𝑃3-,),#$:
	 − 𝑃3-,),#

	 ≤ 𝑅𝑈)        (28) 

𝑃!,#3 + 𝑃.,# = ∑ 𝑃-,),#3
) + 𝑃2,#3 + 𝑢#        (29) 

𝑃!,#	 + 𝑃.,# = ∑ 𝑃-,),#	
) + 𝑃2,#	 + 𝑢#        (30) 

𝑢#
&(1 − 𝛾#.<	) ≤ 𝑢# ≤ min	{(1 + 𝛾#.<)𝑢#

& , 𝑢)*}    (31) 

[𝑦),#3 , 𝑦),#] ∈ (0,1) (32) 
 In this formulation, 𝑅𝐷)  and 𝑅𝑈)  represent the ramp 
down / up limits of the 𝑖𝑡ℎ thermal generator. The size of the 
renewable confidence interval given in (31) will be 
continuously adjusted by the proposed self-adaptive algorithm 
presented in the next section. 

IV. SOLUTION METHODOLOGY

The column-and-constraint-generation (C&CG) algorithm 
[35] has been proven efficient for solving two-stage minimax
problems, yet it cannot be directly applied to the formulated
MMR models because of the extra step that is needed to locate
the “optimal solution” under scenario	𝑢. Hence, in this section,
a reformulation methodology is firstly proposed to transform
the offering and dispatching problems into two-stage robust
optimization problems, then a detailed C&CG framework is
developed to solve the reformulated problems. The proposed
self-adaptive algorithm is given at the end of this section.

A. Problem Reformulation
It can be observed that both the offering and dispatching

minimax regret optimization problems can be written in the 
following compact form: 

min
=
E𝑓:(𝑦) +max3 Emin

6
𝑓1(𝑥) − min

=!,6!
{𝑓:(𝑦3) + 𝑓1(𝑥3)}aa (33) 

s.t.

𝐴𝑦 ≤ 𝑝, 𝑦 ∈ 𝑆> (34) 

𝐵𝑦 + 𝐶𝑥 − 𝐷𝑢 ≤ 𝑞 (35) 

𝐴𝑦3 ≤ 𝑝, 𝑦3 ∈ 𝑆> (36) 

𝐵𝑦3 + 𝐶𝑥3 −𝐷𝑢 ≤ 𝑞 (37) 

𝐸𝑢 ≤ 𝑙, 𝑢 ∈ 𝑆? (38) 
 Where 𝑦 represents the first-stage decision variables. The 
recourse actions are represented by 𝑥. The uncertainty scenario 
is represented by 𝑢  and the optimal solution under the 
uncertainty realization 𝑢 is given by (𝑦3 ,𝑥3). The negative 
utility functions of the first- and second-stage variables are 
given by 𝑓:(𝑦) and 𝑓1(𝑥), respectively.  
Proposition: Given that the recourse action solution set is 
always non-empty, problem (33) – (38) is equivalent to the 
following two-stage robust optimization problem: 

min
=
E𝑓:(𝑦) +max@ Qmin

6
{𝑓1(𝑥) − 𝑓:(𝑦3) − 𝑓1(𝑥3)}Sa (39) 

s.t.
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(34), (35) (40) 

𝐸A𝜉 ≤ 𝑙A (41) 

𝜉 = [𝑢< , (𝑦3)< , (𝑥3)<]< (42) 

𝐸A = j
0 𝐴 0
−𝐷 𝐵 𝐶
𝐸 0 0

k (43) 

𝑙A = l
𝑝
𝑞
𝑙
m (44) 

Proof: The reformulation can be completed through the 
following steps: 

min
*
0𝑓+(𝑦) +max' 0min

,
𝑓-(𝑥) − min

*&,,&
{𝑓+(𝑦') + 𝑓-(𝑥')}77 (45) 

≡ min
*
0𝑓+(𝑦) +max' 0max

*&,,&
{−𝑓+(𝑦') − 𝑓-(𝑥')} +min, 𝑓-(𝑥)77 (46) 

≡ min
*
0𝑓+(𝑦) + max

',*&,,&
9min

,
{𝑓-(𝑥) − 𝑓+(𝑦') − 𝑓-(𝑥')}:7 (47) 

 By considering a lifted uncertain vector 𝜉 as displayed in 
(42), which satisfies constraints (41) - (44), problem (47) can 
be reformulated into a two-stage robust optimization problem. 

B. C&CG Framework
To solve the problem (39) – (44), a detailed C&CG

framework is developed in this subsection. Under the C&CG 
framework, the original problem will be decomposed into 
primary and secondary problems. In this paper, the primary 
problem is meant to find the optimal first-stage decisions that 
will minimize the maximum regret, and it can be written as: 

min
=,B

{𝑓:(𝑦) + 𝜗} (48) 

s.t.

(34) (49) 

𝜗 ≥ −𝐻 (50) 

𝐵𝑦 + 𝐶𝑥C$: −𝐷𝑢C* ≤ 𝑞 (51)  

𝜗 ≥ 𝑓1(𝑥C) − 𝑓:(𝑦C3,*) − 𝑓1(𝑥C3,*)        (52) 

𝑥C$: ∈ 𝑆D (53) 
 Where 𝜗 is the auxiliary variable. Variables 𝑥C$: are new 
variables created in the (𝑣 + 1)𝑡ℎ iteration. Terms 𝑢C* , 𝑥C* , 
𝑦C3,* , and 𝑥C3,*  are the optimal values calculated in the 𝑣𝑡ℎ 
iteration from the secondary problem. The symbol 𝐻 
represents a big enough number to ensure that the primary 
problem is bounded in the first iteration. Note that in the first 
iteration, only constraints (49) and (50) are considered.  
 Since the primary problem is a relaxation of the original 
problem, its optimal objective value will be no bigger than the 
actual optimal objective value of the original problem. 
Therefore, the lower bound will be updated after solving the 
primary problem: 

𝐿𝐵 = max	{𝐿𝐵, 𝑓:(𝑦C$:* ) + 𝜗C$:* } (54) 

 Where 𝑦C$:*  and 𝜗C$:*  represent the optimal primary 
problem solutions calculated in the (𝑣 + 1)𝑡ℎ iteration. 
 There are two purposes for the secondary problem, one is to 
identify the worst-case condition that will maximize the regret 
of the primary problem decisions, the other is to determine the 
optimal recourse actions under the worst-case scenario. Using 
the results obtained from the primary problem, the secondary 
problem can be formulated as: 

𝜃 = max
@
Qmin

6
{𝑓1(𝑥) − 𝑓:(𝑦3) − 𝑓1(𝑥3)}S (55) 

s.t.

(41) – (44) (56) 

𝐵𝑦C$:* + 𝐶𝑥 − 𝐷𝑢 ≤ 𝑞             (57) 
 Where 𝜃 represents the maximum value of the secondary 
problem. Compared to the original problem, the feasible 
domain of the secondary problem is more restricted, and the 
optimal objective value of the secondary problem is no less than 
that of the original problem. Thus, the upper bound can be 
obtained by solving the secondary problem: 

𝑈𝐵 = min	{𝑈𝐵, 𝑓:(𝑦C$:* ) + 𝜃C$:* }        (58) 
  The convergence of the problem can be declared once the 
following criterion is satisfied: 

𝑈𝐵 − 𝐿𝐵 ≤ 𝜀**-              (59) 
 Where the convergence threshold of the C&CG algorithm 
is given by 𝜀**-. The complete solution algorithm is provided 
in algorithm 1. 

Algorithm 1 C&CG solution algorithm 
1: Initialize 𝑣 = 0 , 𝑈𝐵 = ∞ , 𝐿𝐵 = −∞ , 𝜀**- =

0.001 
2: While (62) is false, 𝑣 ← 𝑣 + 1 do 
3:     Solve (48) – (53), derive (𝑦C$:* , 𝜗C$:* )  and 

update the lower bound using (54).  
4:     Solve (55) – (57), derive (𝑥C$:* , 𝑦C$:

3,* , 𝑥C$:
3,* , 𝜃C$:* ) 

and update the upper bound using (58). 
5:     Create 𝑥C$: , add (51), (52), and (53) to the 

primary problem.  
6: end while 
7: Return 𝑦C$:*  

As referred to [35], the developed C&CG framework will 
converge in 𝑂(𝑄)  iterations, where 𝑄  is the number of 
extreme points of the renewable generation uncertainty set. 

C. Self-Adaptive Algorithm

Due to the minimax nature of the MMR approach in the real-
time stage, the dispatch solutions will inevitably be conservative 
if the confidence intervals are too big. To obtain more economic 
dispatch solutions, this section proposes an effective look-back-
and-adjust self-adaptive algorithm that can reduce the size of the 
confidence intervals. By observing the past wind uncertainty 
realizations, the optimal uncertainty coefficient that minimizes 
the total profit loss of the 𝑛 previous time windows will be 
identified and used at the current decision period. 
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 Based on the revealed uncertainty information (i.e., the actual 
renewable production 𝑢'), the optimal uncertainty coefficient 𝛾 
that minimizes the total profit loss of the 𝑛 previous decision 
periods can be obtained by solving the consensus optimization 
problem under the alternating direction method of multipliers 
(ADMM) framework. In this framework, the primary problem is 
meant to address the conflicts between different time windows, 
and the secondary problems are designed to locate their own 
optimal uncertainty coefficient	 𝛾. The self-adaptive process is 
summarized as follows: 
1) Select proper values for 𝜌 and 𝝇E, set 𝑣 = 0.
2) Identify such an overall uncertainty coefficient 𝛾 that will
coordinate the optimal uncertainty coefficients 𝛾F  for the 𝑛
previous time windows:

𝛾C$: = argmin
G"#$

[∑ (𝛾C$: − 𝛾FC)1#%:
FH#%4 + I

1
∑ (𝛾C$: − 𝛾FC −#%:
FH#%4

𝝇C)1] (60) 

3) For each past time window, using the revealed uncertainty
information and the calculated optimal overall uncertainty
coefficient 𝛾C$:  to concurrently minimize the energy
imbalance cost and the difference between the optimal single
window 𝛾FC$: and the overall optimal 𝛾C$::

𝛾FC$: = argmin
G%"#$

[𝑓2(𝑃2F) +
I
1
(𝛾C$: − 𝛾FC$: − 𝝇C)1], 𝑃2F ∝

𝑢F
&𝛾FC$: , ∀𝜏 ∈ [𝑡 − 𝑛, 𝑡 − 1] (61) 

4) Update the residual 𝝇C$: using the optimized solutions from
problems (60) and (61):

𝝇C$: = 𝝇C − (𝛾C$: − 𝛾FC$:)      (62) 

5) Check the convergence by verifying if the residual change is
small enough:

�(𝝇C$: − 𝝇C)1	 ≤ 𝜀5J!! (63) 

6) If the problem has converged, then the optimal overall
uncertainty coefficient can be obtained as 𝛾C$: . Otherwise,
update the iteration number to 𝑣 = 𝑣 + 1 and go back to step 2.

Where the penalty factor, residual, and convergence 
threshold in the ADMM method are given by 𝜌, 𝝇, and 𝜀5J!!, 
respectively. The process for selecting the optimal uncertainty 
coefficient is illustrated in Algorithm 2. 

Algorithm 2 Self-adaptive algorithm for selecting the 
optimal 𝛾 

1: Initialize 𝑣 = 0 , 	𝝇E = 0 , 𝜌 = 100 , 𝜀5J!! =

0.001, 	𝛾FE =
K3%&%3%

'K

3%
' . 

2: While (63) is false, 𝑣 ← 𝑣 + 1 do 
3:    Solve (60) with (𝛾FC, 𝝇C) to obtain 𝛾C$:. 
4:     Solve (61) for each past time window parallelly 

with (𝛾	C$:, 𝝇C) to obtain 𝛾FC$:. 
5:     Update 𝝇C$: ← 𝝇C − (𝛾C$: − 𝛾FC$:). 
6: end while 
7: Return 𝛾C$: 

V. CASE STUDY

 This section provides the numerical results to demonstrate 
the performance of the proposed operational regime for VPPs. 

A. Basic Data

The VPP under study is composed of two thermal
generators and one wind generator. Battery is not considered in 
the case study due to its high investment costs. The generator 
characteristics are presented in Table II. The Finland day-ahead 
market price and called reserve volume data from the 
NORDPOOL market [36] are used. The renewable generation 
data is the scaled wind generation from Finland [37]. The 
penalty coefficients 𝛼  and 𝛽  are set to be 1.5 and 0.5, 
respectively. At the day-ahead and real-time stages, the 
empirical worst-case uncertainty coefficients are set to be 0.7 
and 0.4, respectively. In the real-time stage, three look-back 
time windows are considered. 

Table II 
GENERATOR CHARACTERISTICS 

𝑃),- 
(𝑀𝑊) 

𝐸𝑐𝑜𝑃)&. 
(𝑀𝑊) 

𝑅𝑈 𝑅𝐷 𝑎 
$/ℎ 

𝑏 
$/𝑀𝑊ℎ 

𝑐 
($/𝑀𝑊ℎ)/ 

Diesel 45 5 25 15 708 30.7 0.77 
Gas 55 5 35 25 531 34.2 0.83 

Wind 60 0 / / / / / 

 Fig. 3a gives the day-ahead wind forecast data, where the 
uncertainty coefficient is constant; Fig. 4b shows the real-time 
wind forecast data, where the uncertainty coefficient is 
continuously modified.  

   (a)                          (b)  
Fig. 3. The actual data and the day-ahead (a) as well as real-time (b) 
forecast intervals for wind generation. 

 The market accepts offering curves with at most five steps. 
Hence, five price-quantity pairs are required in each market-
clearing period to construct the offering curve. Because each 
offering step is obtained by a price scenario and its 
corresponding offering quantity, five price scenarios are 
generated for each market-clearing hour to yield five price-
quantity pairs. The actual price and generated price scenarios 
are presented in Fig. 4. 
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Fig. 4. Generated price scenarios and the actual price. 

B. Results and Discussions
The computation platform is AMD Ryzen 8-3700X 3.60

GHz with 16G RAM. The averaged total computation time is 
1,424s, which is acceptable under the time scales of day-ahead 
offering (i.e., multiple hours) and real-time dispatching (i.e., 
within one hour). 
 The stepwise energy offers of the VPP in several 
representative hours are depicted in Fig. 5. In hour 3, the 
forecast price is low and the VPP is only willing to offer the 
energy from the wind generator for the first 3 price scenarios. 
As the price increases, the VPP starts to offer energy generated 
by the thermal generators for the fourth and fifth price scenarios. 
Therefore, three offering steps are constructed for hour 3. In 
hour 15, the forecast price is medium and for each price 
scenario, the VPP has a corresponding energy offer. In hour 21, 
the forecast price is high and the VPP is willing to offer its 
maximum capacity at the fourth price scenario. Though the fifth 
price scenario is higher than the fourth scenario, the VPP 
cannot offer more energy to the market, thus, only four steps in 
hour 21 can be observed. 

Fig. 5. Offering curves for hours 3, 15, and 21. 

 According to the market-clearing prices, the accepted VPP 
energy offers together with the called reserve are displayed in 
Fig. 6. The required energy is the sum of the market allocated 
energy and the reserve volume called by the SO.  

Fig. 7 displays the dispatching decisions of the thermal 
generators over the day. In Fig. 7, the VPP does not turn on the 
thermal generators in hours 1 to 5 and 24 because the market 

prices are very low. In hours 13, 21 to 23, only the diesel 
generator remains online, the gas generator is turned off due to 
its higher variable cost. In hours 12 and 14, both the diesel and 
gas generators are not generating at their optimal power 
because of the minimum economic minimum power restriction. 
It should be noted that, in Fig. 7, the scheduled generation 
levels do not exactly match the market price levels. For 
example, the market price at hour 19 is the highest over the day, 
while the production at hour 19 is not the highest. This violation 
is due to the VPP needs to respond to the SO’s calls for reserve 
deployment. Therefore, the VPP may curtail its production 
even at high price hours as shown in Fig. 14. 

Fig. 6. The market allocated energy, called reserve, and required energy. 

Fig. 7. The dispatching results of the thermal generators. 

 The hourly net profit and the details of the profit 
components of the VPP are shown in Fig. 8. The question of 
how to participate in the FRM is out of the scope of this paper; 
thus, the revenue in the FRM is not presented here. Due to the 
existence of the reserve contract, the VPP must respond to the 
reserve calls from the SO, which induced 6,156$ of revenue 
loss. The most important revenue is from selling energy to the 
day-ahead market (92,875$), and the major cost comes from 
the thermal generator fuel costs (45,179$). The total cost in the 
balancing market is 3,444$, and the overall operational profit 
from the proposed operational regime is 38,096$. 
 To evaluate the economic performance of the proposed 
operational regime (Case 1), multiple approaches and models 
are also tested for the VPP under study. The results from the 
price-dependent offering using the stochastic robust 
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optimization (RO) model (Case 2), the price-dependent 
offering using the multistage stochastic programming approach 
(Case 3), the price-independent offering using the stochastic 
MMR model (Case 4), and the price-dependent offering using 
the stochastic MMR model without performing real-time 
dispatch (Case 5) are provided in Fig. 9 to Fig. 12. The daily 
profit results of the discussed strategies are summarized in 
Table III. 

Fig. 8. The VPP’s profit using the proposed stochastic MMR model under the 
price-dependent framework.

Table III 
PROFIT RESULTS OF THE THREE STRATEGIES 

Operating strategy 

Energy 
market 
revenue 
[$] 

Fuel 
cost [$] 

Deviation 
Cost 
[$] 

Net profit 
[$] 

Case 1 92,875 45,179 3,444 38,096	
(100%) 

Case 2 65,765 32,809 −2,514 29,314	
(76.95%) 

Case 3 93,450 45,547 3,556 38,191 
(100.25%) 

Case 4 76,121 35,187 2,338 32,440	
(85.15%) 

Case 5 92,875 60,982 -9,986 35723 
(93.77%) 

 First, the stochastic MMR optimization model is replaced 
with the stochastic RO model while maintaining everything 
else unchanged. Since the offering decisions of different hours 
are independent of each other, the considered budget of 
uncertainty in the stochastic RO approach is set to be one.  

Fig. 9. The VPP’s profit using the stochastic RO model under the price-
dependent framework. 

The VPP’s revenue from the energy market is 65,765$. 
Compared to the revenue (92,875$) obtained when using the 
stochastic MMR model, one can see that the stochastic RO 
model offers less energy in the electricity market for the same 
price levels. The overall profit obtained from the stochastic RO 
model is 29,314$, which is only 76.95% of the profit when the 
stochastic MMR model is used. Therefore, one can conclude 
that, compared to the stochastic RO model, the proposed 
stochastic MMR model can significantly improve the economic 
performance of the VPP. Also, it can be observed that the 
deviation cost is negative, which means that the revenue in the 
balancing market is larger than the cost. This result confirms 
that the performance of the stochastic RO model is very 
conservative and leads to significant positive energy 
deviations. 

To further demonstrate that the proposed method can 
provide less-conservative solutions without the accurate 
probability distribution of wind uncertainty, the multistage 
stochastic programming approach is applied to the VPP under 
study. In stochastic programming, we remove the restriction 
that the accurate probability distribution of wind uncertainty is 
not available and model it by using scenarios instead of 
confidence intervals. From the result in Table III, one can see 
that our method performs very closely to the stochastic 
programming approach. The overall profit by using the 
proposed method has been merely reduced by 0.25% compared 
to the multistage stochastic programming approach. The major 
reason for this difference is that the stochastic programming 
approach has more precise information that enables it to handle 
the wind uncertainty by using expected values as the objective, 
whereas the proposed method only has less-precise information 
and needs to deal with wind uncertainty based on the minimax 
criterion. As a result, the conservativeness in the offering and 
dispatching solutions of the proposed method has been 
increased slightly compared with the multi-stage stochastic 
optimization approach. 
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Fig. 10. The VPP’s profit using the multistage stochastic programming 
approach. 

Then, to evaluate the difference between price-dependent 
and price-independent offering strategies, in the price-
independent offering using the stochastic MMR model, a single 
offering profile is generated by using the expected market price. 
Compared to the price-dependent offering strategy, the price-
independent offering strategy is less capable of capturing the 
arbitraging strategies due to lack of flexibility. This effect is 
obvious when the market price significantly deviates from the 
expected price, such as in hours 15, 16, and 19, the ratios of the 
price-independent strategy profit to the price-dependent 
strategy profit are 60.28%, 70.85%, and 70.89%, respectively. 
As a result, the overall profit using the price-independent 
strategy (32,440$) only takes up 85.15% of the price-dependent 
strategy profit. 

Fig. 11. The VPP’s profit using the proposed stochastic MMR model under the 
price-independent framework. 

The impact of doing the real-time dispatch is illustrated by 
comparing Fig. 12 with Fig. 8, it is easy to notice that the 
generation cost has been increased when the real-time dispatch 
is not considered. This is because, with less accurate wind 
power production prediction, the day-ahead dispatching result 
is more conservative, which leads to overproduction of the 

thermal generators. The overproduced energy can only be sold 
at penalty prices and cause losses in the overall VPP profit. 

Fig. 12. The VPP’s profit using the proposed price-dependent stochastic MMR 
model without performing real-time dispatch.  

 To illustrate the effectiveness of the proposed self-adaptive 
algorithm, the same dispatching problem is solved using both 
the adjusted and unadjusted uncertainty coefficients. Fig. 13 
shows the hourly profit loss using both uncertainty coefficients. 
The profit losses are obtained by subtracting the profits of the 
imperfect dispatching solutions from the profits of the perfect 
information approach [38]. For most of the time, the profit loss 
from using the adjusted uncertainty coefficient is significantly 
lower than using the constant worst-case uncertainty coefficient. 
However, in hour 20, the VPP’s profit loss using the adjusted 
𝛾 is larger than using the worst-case 𝛾, this is because the 
adjusted confidence bounds failed to contain the real wind 
generation scenario, as shown in Fig. 4b. This failure is due to 
the tradeoff that is made between robustness and economic 
performance. Though larger profit loss may be induced in some 
hours, the overall profit loss in the dispatching stage using the 
adjusted 𝛾 is 3,280$, which is only 32.34% of the profit loss 
when using the constant worst-case	𝛾 (10,143$). 

Fig. 13. Profit loss in the dispatching stage using the adjusted and 
constant uncertainty coefficients. 
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 The reserve response result is presented in Fig. 14 which 
shows that for most of the time, the VPP can exactly complete 
the reserve requests from the SO. However, the VPP’s 
capability for reserve deployment is also limited at some hours. 
When the price is very low, the thermal generators are either 
offline or producing at minimum economic power. Hence, the 
VPP cannot flexibly change its power output to complete the 
reserve calls, such as hours 5, 23, and 24. Similar limitations 
can also happen when the market price is exceptionally high. 
Another situation that can limit the VPP’s reserve provision 
capability is large price differences between adjacent hours, 
which happened at hours 20 and 21. Because most of the 
ramping capability is used to fulfill the market-clearing results, 
the flexibility left for responding to reserve calls is not enough 
to complete the task. The frequency of observing such 
limitations depends on how often the aforementioned extreme 
scenarios will happen in the energy market. In total, the VPP 
completed 91.29% of the requested reserve volume. 

Fig. 14. Reserve response results of the VPP. 

 It should be noted that such limitations in the VPP’s reserve 
response capability are acceptable in this case study because 
system security is not involved. If extreme operational 
scenarios that can severely threaten the system security must be 
considered, some economically unfavorable approaches such 
as cutting down the renewable generation and investing in 
expensive energy storage systems can be adopted to eliminate 
such limitations. 

Although a small-scale VPP is investigated in the case study, 
the proposed operational regime can be effectively extended for 
larger VPPs comprise more generators without significantly 
increasing the computational burden. Table IV gives the 
averaged computation time for VPPs managing different 
numbers of generators. As the number of generators is 
increased from 3 (2 thermal generators and 1 renewable 
generator) to 40 (20 thermal generators and 20 renewable 
generators), the total computation time only increases from 
1,424s to 1,625s. The reason for this result is two-fold. Firstly, 
calculating the optimal power generation of the thermal 
generators does not take too much time. Secondly, increasing 
the number of renewable generators will not substantially affect 
the convergence rate of the C&CG algorithm because the 

number of extreme scenarios for renewable energy production 
is not changed. Hence, the computational burden increment due 
to the increased number of generators is not significant 
compared with the time required to solve the stochastic MMR 
model. 

Table IV 
COMPUTATION TIME ANALYSIS 

Number of 
generators 

2T 
1R 

5 T 
5 R 

10T 
10R 

20 T 
20 R 

Computation 
time 

1,424s 1,497s 1,554s 1,625s 

T: thermal generator; R: renewable generator 

VI. CONCLUSION

 This paper proposes an optimal VPP operational regime 
under reserve uncertainty. In the day-ahead offering stage, the 
developed price-dependent offering strategy improves the 
offering flexibility of the VPP in the energy market. Also, the 
proposed stochastic MMR optimization model utilizes a 
combination of scenarios and confidence intervals to describe 
the uncertainties, making it advantageous for problems where 
some uncertainties have accurate probability distribution while 
others do not. In the real-time dispatching stage, the proposed 
self-adaptive algorithm can optimally determine the size of the 
confidence intervals in a look-back-and-adjust manner. The 
proposed regime was assessed using the typical day data. The 
results suggest that the price-dependent offering strategy can 
increase the VPP profitability in contrast with the price-
independent strategy, this effect is most obvious when the real 
price deviates a lot from the price forecast. Also, the proposed 
stochastic MMR model can provide less conservative offering 
decisions compared with the stochastic RO model. 
Furthermore, by properly determining the size of the 
confidence intervals, the proposed self-adaptive algorithm 
significantly reduces the profit loss due to imperfect 
information in the dispatching stage.  

Though all the above conclusions are based on offline 
analysis, the proposed method is of high potential to be 
implemented in the future because joint participation in 
multiple markets and price-dependent bidding strategy are 
widely adopted in existing electricity markets. Besides, 
methods that can improve the economic performance of VPPs 
will be more favorable in practical applications because 
profitability is the major concern for VPPs. 

In the future, several interesting topics can be further 
investigated, such as the incorporation of flexible loads 
especially electric vehicles, provision of other types of ancillary 
services including frequency and voltage regulations.  
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