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Abstract—Mobile energy resources (MERs) have received 

increasing attention due to their effectiveness in boosting the 
power system resilience in a flexible way. In this paper, a novel 
mobility model for MERs is proposed, which can support the 
routing of MERs to provide various services for the power system. 
Two key points, the state transitions and travel time of MERs, are 
formulated by linear constraints. The feasibility of the proposed 
model, especially its advantages in model size and computational 
efficiency for the routing of MERs among many nodes with a small 
time span, is demonstrated by a series of tests. 
 

Index Terms—Mobile energy resources, power system resilience, 
mobility model, routing, linear constraint. 
 

I. INTRODUCTION 
OBILE energy resources (MERs) can act as “first aid 
boxes” to rapidly restore and maintain electric service to 

customers when the power system suffers blackouts resulting 
from, e.g., severe natural events and cyber attacks [1], [2], [3].  

To date, rather little research has studied the routing of MERs, 
whereas its effectiveness for boosting the resilience and 
economics of the power system has been highlighted [4]-[9]. 
The routing of MERs for the above purposes is always 
formulated as a programming problem, and the model depicting 
the time- and space-related travel behavior of MERs is exactly 
regarded as the kernel component of that programming.  

From a review of the relevant research, two major mobility 
models have been used to formulate the travel behavior of 
MERs to support their routing. 1) The time-space network 
(TSN) [5], [6] uses the arcs between nodes to represent all 
possible behaviors of MERs in each time span. 2) In addition, 
two simply formulated mobility models with almost the same 
structure were given in [7] and [8], respectively, as part of the 
constraints in programming for routing MERs, and herein let us 
call them sliding window-based model (SWBM). The SWBM 
depicts that the parking label of an MER (i.e., the parking state 
of 1) cannot transit from one node to another unless the time 
interval exceeds the travel time between the two nodes. 

However, there are some inherent drawbacks for both models. 
For either TSN or SWBM, the model size increases greatly with 
routing scope, reflected as the dramatic increase in the number 
of binary variables or constraints with the square of the number 
of nodes that support the connection of MERs, even though 
some improvement has been made for TSN in [9]. Moreover, a 
small time span will also make the two models much more large, 
whereas a smaller span is better for the routing quality. 

Therefore, TSN and SWBM may experience degraded 
efficiency when they are used for routing of MERs among 
many nodes, while the routing is truly an urgent task for, e.g., 

 
 

electric service restoration issue where MERs are generally 
scheduled to restore the loads as many and as soon as possible 
in the whole power system [5], [7], [8], [9]. Time for solving 
the model delays the execution of the obtained optimal schedule 
of tasks for the restoration, and thus the utility always desires 
the model can be solved as quickly as possible. We might adopt 
a rough time span to improve the efficiency at the large sacrifice 
of routing quality; however, making such a trade-off is not easy.  

To bridge this gap, this paper proposes a novel mobility 
model to support the routing of MERs. The model formulates 
the travel behavior of MERs by linear constraints and thus can 
be well embedded as a kernel part in a mixed-integer linear 
programming (MILP) or others for the issues involving routing 
of MERs that can be accurately solved by off-the-shelf solvers. 

II. A MOBILITY MODEL FOR MERS 

A. Constraints of State Transition 
MERs can travel among the nodes (or buses) of power grid 

and exchange power with it, with the support of necessary 
facilities, e.g., charging stations. We use sets , ,  to 
represent the nodes of power system that support the connection 
of MERs, the MERs, and the time spans for scheduling, 
respectively; and ={0, 1, 2, … , D}. Two binary variables are 
defined to denote the parking and traveling states of MER: xj,i,t, 
which is equal to 1 if MER j is parked at node i during time span 
t and 0 otherwise; and vj,i,t, which is equal to 1 if MER j is 
traveling to node i during time span t and 0 otherwise. Clearly, 
there is only one state anytime for an MER, as formulated by 

 , , , , 1, ,j i t j i t
i i

x v j t
∈ ∈

+ = ∀ ∈ ∈∑ ∑
 

    (1) 

Without loss of generality, we can give the representative 
segments of the parking and traveling state sequences that we 
expect in Table I. Assume that, over the period [t1+2, t1+4], 
MER j is traveling from node i1 to i2, so vj,i2,t owns the traveling 
label, shown by the blue ‘1’. As a result, the parking label, 
shown by the red ‘1’, transits from xj,i1,t to xj,i2,t. 

Based on Table I, we can clearly infer that the parking state 
of an MER does not change unless a new travel starts or ends, 
and an idea is then conceived: perhaps we can determine its 
parking state transitions (PST) from its traveling state 
transitions (TST). Then, let us constrain the PST by (2) that 
includes Dj,i,t and Uj,i,t to be determined, and define ‘Δ(1)j,i,t’ and 
‘Δ(2)j,t’ in (3) to denote the TST. According to that idea, we 
expect to find a way to formulate Dj,i,t and Uj,i,t by Δ(1)j,i,t and 
Δ(2)j,t in the linearized form to obtain the definite form of (2), as 
expressed by (4), where a1, b1, c1, a2, b2, and c2 are coefficients 
to be determined by the following content. 

{ }, , , , , , 1 , , , , , , , \j i t j i t j i t j i t j i tx D x x U i j t D+− ≤ ≤ + ∀ ∈ ∈ ∈     (2) 
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From Table I, we can list all of the feasible state transitions 
of an MER in Table II, including the PST in the 2nd column 
and the TST in the 7th and 8th two columns. The intervals of 
Dj,i,t and Uj,i,t required to realize each of the PST by (2) are given 
accordingly in the 3rd and 4th columns. Then, in the 5th (or 6th) 
column, Dj,i,t

*(or Uj,i,t
*) represents the interval of Dj,i,t(or Uj,i,t) 

required for all the PST under a pair of Δ(1)j,i,t and Δ(2)j,t, i.e., 
under the same TST, which takes the intersection among the 
required intervals of Dj,i,t(or Uj,i,t) of the included PST. In 
addition, the effect of (1) is considered when we determine the 
above intervals of Dj,i,t and Uj,i,t. For example, for the first PST 
in Table II (i.e., t=t1+1 and i=i1), we should make xj,i,t+1=0 while 
xj,i,t=1. However, this is naturally realized only due to (1) while 
we note that vj,i2,t+1=1; we just need to ensure that (2) is not 
contradictory to xj,i,t+1=0, and thus, we take Dj,i,t≥1 and Uj,i,t≥−1. 

Then, the determination of the coefficients in (4) can be 
described as that, for all five pairs of Δ(1)j,i,t and Δ(2)j,t in Table II, 
by (4), we should make Dj,i,t(or Uj,i,t) always within the 
intersected interval Dj,i,t

* (or Uj,i,t
*) to satisfy all the required 

intervals in the 3th (or 4th) column, and thus, all the PST can 
be ensured by (2) and (1). Thus, the feasible coefficients can be 
determined by the two programming models in (5), in which the 
constraints are shrunk slightly to simply transform the strict 
inequalities to non-strict ones for compiling and solving [10]. 
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In fact, any feasible solution of (5) can be satisfactory. Thus, 
we do not restrict what the objective functions fD and fU are, but 
only require that they be linear for the simplicity to solve the 
two models in (5). For example, we can set fD=a1+b1+c1 and 
fU=a2+b2+c2, and then obtain [a1, b1, c1]=[−1.2, −0.4, 0.8] and 
[a2, b2, c2]=[1, −0.5, 0.7] by solving (5). Then, based on (3) and 
(4), we can rewrite (2) as (6), for "jÎ, tÎ \{D}, iÎ. 

, , 1 , , , , , , 1 , , , , 11.2( ) 0.4( ) 0.8j i t j i t j i t j i t j i t j i t
i i

x x v v v v+ + +
∈ ∈

≥ + − + − −∑ ∑
 

 (6a) 
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i i

x x v v v v+ + +
∈ ∈

≤ + − − − +∑ ∑
 

 (6b) 

B. Constraints of Travel Time 
Let us define the matrix Tj, where the element Tj,i1i2 in the 

i1th row and i2th column denotes the time spans spent traveling 
from node i1 to node i2 for MER j. Tj can be predetermined 
before scheduling the MERs by the algorithms for the shortest 
path issue, e.g., Dijkstra’s algorithm and the Floyd-Warshall 
algorithm [4], or even the mature map applications. We follow 
[5]-[9] and assume Tj is already known. In addition, besides the 
travel time Tj,i1i2, if we hope to further consider the time spent 
by MER j in some other procedures around a travel including, 
e.g., being disconnected and departing from node i1 (denoted as 
Tj,i1+), being parked at and connected to node i2 (denoted as 
Tj,i2−), we can use the sum Tj,i1++Tj,i1i2+Tj,i2− as the new element 
in the i1th row and i2th column to compose the matrix Tj. 

Then, our next step is to extract Tj,i1i2 from Tj when the MER 
starts traveling from node i1 to i2. Two auxiliary matrixes Aj,t 
and Bj,t are defined as  

 TT T T
, ,1, ,1 ,2, ,2 , , ,, , ,j t j t j j t j j N t j Nx T x T x T∗ ∗ ∗ = ⋅ ⋅ ⋅ A 

 (7a) 

 , ,1, , 1 ,2, , 2 , , ,, , ,j t j t j j t j j N t j Nv T v T v T∗ ∗ ∗ = ⋅ ⋅ ⋅ B   (7b) 
where Tj,i* and Tj,*i represent the ith row and the ith column of 
Tj, respectively. 

Let us take a look at the matrix Cj,t=Aj,t−1+Bj,t−Tj. When 
t=t1+2 (i.e., MER j starts traveling from node i1 to i2), we can 
derive that all the row sums of Cj,t1+2 are below 0 except for that 
of the i1th row, and the sum of the i1th row is exactly Tj,i1i2. In 
other words, the travel time spent is equal to the maximum row 
sum of matrix Cj,t1+2. For any other t in Table I, we can obtain 
that the maximum row sum of Cj,t is below or equal to 0. Thus, 
let us define the variable Sj,t for "jÎ, tÎ \{0} as 

( ), , , 1 , , , , ,max 0j t j i t j ik j k t j ik j ik
k k k

S x T v T T i−
∈ ∈ ∈

   = ∪ ⋅ + ⋅ − ∈  
   

∑ ∑ ∑
  

  (8) 

The set after ‘0’ represents all the row sums of Cj,t. For the 
sake of modeling, the relaxed form of (8) can be written as 
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−
∈ ∈ ∈

≥ ⋅ + ⋅ −

∀ ∈ ∈ ∈

∑ ∑ ∑
  

   
 (9a) 

 { }, 0 , , 0j tS j t≥ ∀ ∈ ∈    (9b) 
In our model, Sj,t represents the travel time to be consumed 

by MER j, as shown in Table I. For a specific routing problem 
of MERs, whether it is desirable to reach a high resilience of 
the power system or for other purposes, time wasted in travel 
(i.e., Sj,t over Tj,i1i2) is not expected and is not optimal. This 
means Sj,t will be minimized as much as possible while (9) holds 

TABLE I 
REPRESENTATIVE SEGMENTS OF THE EXPECTED STATES FOR MER J 

Time Parking state Traveling state Sj,t Rj,t t xj,1,t … xj,i1,t … xj,i2,t …xj,N,t vj,1,t … vj,i1,t … vj,i2,t …vj,N,t 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 
t1 0 1 0 0 0 0 0 0 0 0 

t1+1 0 1 0 0 0 0 0 0 0 0 
t1+2 0 0 0 0 0 0 1 0 Tj,i1i2(3) Tj,i1i2(3) 
t1+3 0 0 0 0 0 0 1 0 0 Tj,i1i2−1(2) 
t1+4 0 0 0 0 0 0 1 0 0 Tj,i1i2−2(1) 
t1+5 0 0 1 0 0 0 0 0 0 0 
t1+6 0 0 1 0 0 0 0 0 0 0 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

 TABLE II 
THE FEASIBLE STATE TRANSITIONS AND THE EXPECTED DJ,I,T AND UJ,I,T 

t PST 
(xj,i,t→xj,i,t+1) 

Required 
Dj,i,t 

Required 
Uj,i,t 

Dj,i,t
* Uj,i,t

* TST 
Δ(1)j,i,t 

TST 
Δ(2)j,t 

t1+1 1→0 (for i=i1) ≥1 ≥−1 ≥1 ≥0 0 −1 0→0 (for i≠i1 or i2) ≥0 ≥0 
t1+1 0→0 (for i=i2) ≥0 ≥0 ≥0 ≥0 −1 −1 
t1+4 0→1 (for i=i2) [−1,0) ≥1 [−1,0) ≥1 1 1 
t1+4 0→0 (for i≠i2) ≥0 [0,1) ≥0 [0,1) 0 1 

t1 
0→0 (for i≠i1) ≥0 [0,1) 

[0,1) [0,1) 0 0 

1→1 (for i=i1) [0,1) ≥0 
t1+2, 
t1+3 0→0 (for all i) ≥0 ≥0 

t1+5 
0→0 (for i≠i2) ≥0 [0,1) 
1→1 (for i=i2) [0,1) ≥0 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

in the solving process, and thus, (9) is equivalent to (8). Then, 
Sj,t is equal to Tj,i1i2 only when MER j starts traveling from i1 to 
i2, i.e., when xj,i1,t−1=1 and vj,i2,t=1, for i1, i2∈. Actually, we 
can imagine Sj,t as the fuel supplemented at time t, and the MER 
is ‘refueled’ only at the start of each travel.  

Then, we define the variable Rj,t as  
 { }, , 1 , , , 1 , , 0j t j t j t j i t

i
R R S v j t− −

∈

= + − ∀ ∈ ∈∑


    (10) 

Similarly, Rj,t can be imagined as the residual fuel of MER j 
at time t. As shown in Table I, Rj,t decreases with travel. 
Additionally, constraint (11) is used to maintain the traveling 
state until Rj,t is ‘used up’, where M is a large positive number. 

 ,
, , , , ,j t

j i t j t
i

R
v R j t

M ∈

≤ ≤ ∀ ∈ ∈∑


   (11) 

The binary variable wj,t is defined for "jÎ and tÎ \{0} to 
maintain the direction of the MER during each travel as follows.  

 { }, , , 1 , , 2 , , 0j t j i t j i t
i i

w v v j tε−
∈ ∈

≥ + − + ∀ ∈ ∈∑ ∑
 

     (12a) 

{ }, , , , , 1 ,(1 ) (1 ), , , 0j t j i t j i t j tw v v w i j t−− − ≤ − ≤ − ∀ ∈ ∈ ∈     (12b) 
where ε is a small positive number and 0<ε≤1. 

The constraints for the initial conditions are written as (13), 
where ij represents the initial node where MER j is parked. 

 , ,0 ,0 ,0 ,01 , 0 , 0 , 0
jj i j j jx S R w j= = = = ∀ ∈，    (13) 

The elaboration about the derivation in the above two 
sections has been uploaded as [10] by the authors. The final 
form of the proposed mobility model contains (1), (6), (9)-(13), 
and the variables involved includes the binary ones xj,i,t, vj,i,t, wj,t, 
and the continuous ones Sj,t, Rj,t. 

C. Estimation of the Size of the Models 
We estimate the size of the model proposed in this paper and 

three other representative models, as shown in Table III, where 
N is the number of nodes that support the connection of MER, 
i.e. N=||, Nv is the number of virtual nodes introduced in TSN 
[5], [6], and M is the number of MERs, i.e., M=||. In this 
estimation, we assume the same matrix Tj for any j∈ and 
the ith-row and kth-column element is written as Tik. The 
elaboration of the estimation can be found in [10]. Specially, 
for the SWBM, if we further assume all Ti1i2 are equal to a 
specific value Tav, we can estimate the minimum number of 
constraints when Tav=1, which is M[D(N2−N)+2D+2]. This 
number increases as Tav increases. The results in Table III show 
that the proposed model eliminates the drawback in existing 
mobility models that the number of variables or constraints 
increases with the square of nodes. This can lead to better 
efficiency especially when we route MERs among many nodes 
using a small time span, and we will demonstrate that later. 

III. NUMERICAL RESULTS 

A. A Simple Programming for Testing 
For testing, we construct a simple MILP model by (14) to 

schedule MERs for electric service restoration after the power 
grid suffers great faults. Communication between MERs and 
decision maker (e.g., the power system operator) can be 
realized in the wireless mode through public, private, or satellite 
networks. Here we aim to restore electric energy as much as 
possible for the interrupted customers while considering the 

costs of MERs by traveling, as formulated by 

 
( ) ( )

( ) ( ) ( ) ( ) ( )

.max

s.t.: Equations 1 , 6 , 9 13 , 15
l

l i i j t j
t l i j

y t W P t t C D∆
∈ ∈ ∈ ∈

  
⋅ ⋅ ⋅ ∆ − ⋅      

−

∑ ∑ ∑ ∑
     (14) 

The first term in (14) is the energy restored by MERs. 
Suppose that the power grid is separated by faults into several 
islands, represented by set , and recovery of the faults is 
considered. In addition to the mobility model, a full 
programming model of scheduling MERs for some purposes, 
e.g., service restoration [5], [8], [9], economic dispatch [6], also 
includes the constraints to restrict the operation of power grid 
and MERs, however, they are not the concern of this paper and 
are compressed as much as possible in this test. Thus, for 
simplicity and to focus on the performance of the mobility 
model itself, the operational constraints of the power grid and 
MERs themselves are ignored in the test, which means 1) all of 
the nodes in one island can be restored as long as an MER is 
parked at any node in it and 2) the MERs are not limited in 
power or energy. l represents the set of nodes in island l. Pi(t) 
and Wi are the interrupted load and its weight for node i. The 
auxiliary binary variable yl is used to indicate the restored state 
of island l, and some relevant constraints should be added into 
(14) based on assumption 1) for the specific mobility model. 
For example, for our proposed model, they can be written as 

 ( )
, ,

, , ,l

l

j i t
j i

l j i t
j i

x
y t x l t

M
∈ ∈

∈ ∈

≤ ≤ ∀ ∈ ∈
∑ ∑

∑ ∑ ，
 

 

    (15) 

The second term in (14) represents the travel costs of MERs, 
and this term can prevent useless travel of MERs. Cj.Δt is the 
energy consumption of MER j by traveling for one time span, 
and we can always convert it into ‘kW·h’ based on the fuel and 
electric prices so that the two terms in (14) have the same units. 
Dj is the total travel spans of MER j. For our model, Dj can be 
represented by ∑ ∑ vj,i,ti∈t∈ . 

B. Test and Comparison Results 
We perform the test based on the modified IEEE 37-node test 

feeder [11]. In addition to the model proposed in this paper, the 
three other representative models, the general TSN in [5], the 
modified TSN in [9], and the SWBM in [8], are chosen for 
comparison in this test, and we just need to replace ‘(1), (6), (9)-
(13)’ with the other models and modify (15) to conduct the 
programming of (14). The test is implemented using MATLAB 
R2018b with YALMIP toolbox, and the programming is solved 
by Gurobi 9.0.0 on a computer with an Intel Core i5-8250U 

TABLE III 
COMPARISON OF THE MODEL SIZE AMONG THE MOBILITY MODELS 

Mobility Models Number of binary variables Number of constraints 

Proposed model, 
(1), (6), (9)-(13) 

M(D+1)(2N+1) ( and 
2M(D+1) continuous 
variables in addition. ) 

MD(5N+6)+7M 

TSN,  
(1)-(4) in [5] 

DM(N2+2Nv), where 
Nv=∑ ∑ Tikk>i

N−1
i=1 −N(N−1)/2 

DM(N2+3Nv+1)− 
M(N2−N+2Nv) 

Modified TSN, 
(4)-(6) in [9] 

M[N2(D+1)−∑ ∑ Tik
N
k=1

N
i=1 −N] MD(N+1) 

SWBM, (23), 
(25), (26) in [8] 

M(D+1)(N+1) 
M[(2D+1)∑ ∑ Tik

N
k=1

N
i=1 − 

∑ ∑ Tik
2N

k=1
N
i=1 +4D+4]/2 
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processor and 12 GB of memory. The MIP gap is set to 1×10−5. 
The scheduling horizon is taken as 6 h, and two MERs are 

adopted here. The two MERs are supposed to be the same and 
be driven by electric power, with a consumption of 0.3 kW·h 
for 10 min. Their speed is set to 1000 ft./min. Four faults (at 
lines 5-9, 3-6, 23-26, and 33-34) are supposed to occur at the 
same time, i.e., at the initial moment of the 1st span, and be 
repaired 70 min, 130 min, 230 min and 320 min later, 
respectively. The scheduling result using our proposed model 
for the total 37 nodes with a 10-min time span is illustrated in 
Fig. 1. The results of the four models have the same optimal 
value of the objective function, i.e., 7.58×103 kW·h, though the 
optimal routes are slightly different. 

For a comparison of the model size and computational 
efficiency of the four models, we also perform a series of tests 
under different values of the time span and the number of nodes 
that support the connection of MERs. The results are 
summarized in Fig. 2. The proposed model always has a smaller 
size than the other models from a comprehensive perspective. 
The optimal value of the objective function decreases with an 
increase in the chosen time span, which is 7.58×103 kW·h for a 
10-min span, 6.70×103 kW·h for a 20-min span, and 6.22×103 
kW·h for a 30-min span. This shows that a smaller time span 
seems more beneficial to the quality of the routing of MERs. 
Moreover, for most situations, the proposed model consumes 
the shortest time to obtain the optimal result, and this merit in 
terms of computational efficiency becomes increasingly 
apparent as the number of nodes increases and the length of the 
time span decreases. Especially under the situation where all the 
37 nodes and a 10-min time span are chosen, as shown in Fig. 
2(l), the time consumption of the proposed model is only 
approximately one tenth of that of the general TSN. 

IV. CONCLUSION 
In this paper, we focused on the routing issue of MERs, and 

proposed a novel mobility model to support it. The model was 
derived around two key points of the behavior of MERs: the 
state transitions and the necessary travel time between nodes, 
and all the constraints composing the model were formulated in 
linear form, which can be well embedded in programming for 
routing of MERs. The quantitative estimation showed the 
advantage of the proposed model in size. The results of test 
further validated the better computational efficiency of the 
proposed model than the others, especially under the cases 
where MERs were routed among many nodes with a small time 
step. The proposed model can be well recommended to solve 
the routing and scheduling issues of MERs. 
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Fig. 1.  (a) illustrates the routing of two MERs among 37 nodes with a 10-min 
time span. (b) is the energized state of the four islands. 

 
Fig. 2.  Comparison of the model size and computational efficiency among the 
proposed model and the other three. The logarithmic coordinate is adopted for 
the numbers of variables and constraints. 
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