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Abstract—An accelerated loss of life (LOL) of 
distribution transformers has been observed in recent 
years owing to the increasing penetration of electric 
vehicles (EVs). This paper proposes an evolutionary 
curriculum learning (ECL)-based multi-agent deep 
reinforcement learning (MADRL) approach for 
optimizing transformer LOL while considering various 
charging demands of different EV owners. Specifically, 
the problem of charging multiple EVs is cast as a 
Markov game. It is solved by the proposed MADRL 
algorithm by modeling each EV controller as an agent 
with a specific objective. During the centralized training 
stage, a novel centralized ECL mechanism is adopted to 
enhance the coordination of multiple EVs. It enables the 
proposed approach to address the management of large-
scale EV charging. When the training procedure is 
completed, the proposed approach is deployed in a 
decentralized manner. Herein, all the agents make 
decisions based solely on local information. The 
decentralized manner of execution helps preserve the 
privacy of EV owners, reduce the related communication 
cost, and avoid single-point failure. Comparative tests 
utilizing real-world data demonstrate that the proposed 
approach can achieve coordinated charging of a large 
number of EVs while satisfying the various charging 
demands of different EV owners.  

Index Terms—Evolutionary curriculum-based multi-
agent deep reinforcement learning; transformer loss of 
life; management of EV charging. 

NOMENCLATURE 

Abbreviations: 
EV   Electric vehicle 
MADRL  Multi-agent deep reinforcement learning  
LOL         Loss of life 
NLL         Normal insulation life of transformer 
ECL         Evolutionary curriculum learning 
MG   Markov games 
MDP         Markov decision process 
SOC   State-of-charge 

HTS   High time sensitivity 
MTS   Mid time sensitivity  
MATD3  Multi-agent twin delayed deep deterministic 
policy gradient  
PSN         Parameter space noise 
ReLu  Rectified linear unit 
Parameters: 

t∆    Time interval 
NLL   Normal insulation life 

TOτ    Oil time constant 

wτ    Winding time constant 

TO,Rθ∆   Top-oil rise over ambient temperature at 
rated load 

HS,Rθ∆   Winding hottest spot conductor rise over 
top-oil temperature at rated load 
R    Ratio of rated load loss to no-load loss 

UK / iK   Ratio of the ultimate/initial load L to the 
rated load 
n / m   Empirically derived exponent used to 
calculate the variation of TOθ∆ / HSθ∆ with changes in load 

j
dept    Departure time of j-th EV 

j
dsgP / j

chgP   Maximum power of discharging and 
charging of j-th EV 

max
jE    Battery capacity of j-th EV 

LOLW   Economic value of the transformer 

CPW    Measure in $ to map the CP j
t into money 

j    Charging preference of the j-th EV owner 
w   Weighting factor 
c    Bound of action noise 
τ    Soft replacement 
Variables: 

AAF    Aging acceleration factor 

EQAF   Equivalent aging factor 

HSθ    Winding hottest-spot temperature 
    Duration of load on the transformer 

Aθ    Ambient temperature 

TOθ∆   Top-oil rise over ambient temperature 

HSθ∆   Winding hottest-spot rise over top-oil 
temperature 

TO,Uθ∆ / TO,iθ∆  Ultimate/initial top-oil rise over ambient 
temperature 

HS,Uθ∆ / HS,iθ∆  Ultimate/initial winding hottest-spot rise 
over top-oil temperature 

tot
tL / bas

tL / EV
tL  Total/basic/EV load 
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CA j
t / TS j

t / CP j
t / C j

t   
Charging anxiety/time sensitivity/charging  

preference/charging cost of j-th EV at time t 
j

arrt    Arrival time of j-th EV 
j

tSOC   State-of-charge of j-th EV at time t 

tEP    Electricity price at time t 
j

tP    Power of j-th EV at time t 
j

t    Objective function of the j-th EV 
S    Randomness from the environment. 

j
ts / j

ta / j
tr State/action/reward of j-th agent at time t 

Xt/At  State/action set at time t 
φ    Parameters of critic network 
θ    Parameters of actor network 
ς    Noise of action 
ζ    Variance of normal distribution 

I.  INTRODUCTION 
Electric vehicles (EVs) are regarded as environmentally-

friendly means of transportation because these can reduce 
air pollution and fossil fuel consumption. However, 
unregulated charging creates challenges for the operation of 
power grid [1], [2]. EVs are typically charged at home, 
whereby the major impact of EV charging would be on the 
distribution transformers [3]. Hence, the load of unregulated 
EV charging would mainly result in the overload of these 
transformers, and such an effect would intensify further as 
the penetration of EVs increases [4]. Specifically, the 
overload may cause an increase in the transformer hottest-
spot temperature, resulting in material aging and 
accelerating the loss of transformer life [5], [6]. An approach 
to mitigate the negative impact is the reinforcement of 
transformer assets. However, it is ineffective to adapt to the 
development of EVs by enhancing transformer assets 
because the speed of transformer renewal is slower than the 
present increase in the popularity of EVs [3]. To mitigate the 
negative impact of EV charging on transformers, one 
feasible approach is to manage EV charging during idle time 
periods (i.e., the period when EV owners connect their EVs 
to the power grid). Incentivizing such demand-side 
management plans would help mitigate the impact on 
transformer life and reliability as well as prevent failures [4]. 
Accordingly, it is necessary to develop an EV charging 
strategy considering the transformer loss of life (LOL) and 
demand response arbitrage benefit. 

Several studies have adopted centralization-based 
approaches for the management. In [3], a centralized 
approach was proposed to simultaneously optimize the 
transformer LOL and the satisfaction of EV owners. Ref. [4] 
first collected information of all the EVs and then, presented 
a fuzzy logic algorithm to schedule EV charging to optimize 
the transformer LOL. Residential distribution transformers 
need to supply power to a considerable number of EVs 
owning to the characteristics of the geographical clusters of 
EV owners [7] and their preference for charging at home [3]. 
In [8], it was reported that a transformer powers 30 EVs and 
that this number is likely to increase as EVs gain popularity 
[9]. The centralized approaches utilize a central controller to 
collect information from all the dispatch units and determine 
the optimal solution based on the global information. 
However, given the rapid growth of the EV market share, 
the centralized optimization approach is likely to encounter 

many limitations while addressing the management of large-
scale EV charging. That is, these are vulnerable to single-
point failures [10], may not be computationally efficient 
when confronted with large and complex EV-charging 
management [11], incur communication cost and their 
exposure to large-scale controls is more likely to weaken the 
privacy of EV owners than small-scale controls [12], etc.  

The distribution-based approaches divide the entire 
optimization problem into several sub-problems that are 
solved in a distributed manner, potentially overcome the 
drawbacks of the centralized approach to a certain extent. 
Ref. [13] developed an algorithm to reduce the probability 
of transformer failure with minimum communication cost. 
However, owing to the absence of a coordinated mechanism 
among EVs, each EV is charged to maximize its own 
satisfaction. This approach cannot ensure that transformers 
would work in the desired state without human intervention 
in EV charging. Considering this, [8] proposed a 
reinforcement learning (RL)-based coordinated charging 
approach. It is aimed at preventing transformer overloading 
through coordination among EVs. Information is shared 
among EVs to enhance the coordination. However, such an 
operation would result in an increase in communication cost 
and breach of privacy. Ref. [14] presented a charging 
algorithm that manages PEV charging based on estimated 
transformer temperatures, and considers owner privacy. 
However, it is still unavoidable to incur communication 
costs. In addition, the above-mentioned studies omitted the 
various charging demands of different EV owners. This may 
not be realistic owing to many factors (commuting behavior, 
traffic conditions, etc.) that would result in unique charging-
demands for each EV owner [15].  

Considering these shortcomings, an actor-critic multi-
agent deep reinforcement learning (MADRL) is considered 
in this study to manage the charging of multiple EVs. Herein, 
charging preference is utilized to characterize different EV 
owners having various charging demands. In addition, each 
EV controller is modeled as an intelligent agent to provide 
charging autonomy for enabling EV owners to select EV 
charging patterns to satisfy their unique demands. The actor-
critic framework enables the critic network with rich 
additional information to induce the improvement of the 
actor network. This operation enables the actor network of 
each agent to achieve a coordinated relationship with others 
even when it is based only on local information at the 
execution stage [16]. Coordinated EV-charging management 
can be attained in a completely decentralized manner by 
leveraging this mechanism. This yields a novel guideline for 
studies related to EV charging considering privacy 
protection, minimization of communication costs associated 
with the deployment of communication devices, and 
prevention of single-point failure. However, current 
MADRL approaches may fail to optimize the large-scale 
coordinated EV-charging problem in a decentralized manner 
because the RL-based approach optimizes the action 
through trial and error. In the multi-agent scenario, the action 
space would increase exponentially as the number of agents 
increases. A larger action space would hinder agents from 
identifying good strategies through trial and error, 
particularly in the coordinated scenario [17]. These factors 
can result in limitations in the application of MADRL to 
coordinated EV-charging management. To overcome the 
limitations on the application of a fully decentralized control 
mechanism for large-scale EV-charging management, this 
paper proposes a novel decentralized control framework for 
minimizing the transformer LOL and the dissatisfaction of 



EV owners. It is based on a combination of the MADRL 
algorithm and the evolutionary curriculum learning (ECL) 
mechanism. The following are the main contributions of this 
study: 
1) The proposed decentralized control framework can 

address scenarios wherein a large number of EVs need 
to be managed. This is achieved by integrating the ECL 
mechanism with the centralized training and 
decentralized execution framework. Specifically, the 
coordinated charging management of EVs is modeled 
as a Markov game (MG). The MG is solved using the 
proposed MADRL approach by modeling each EV 
controller as an intelligent agent. All the agents are 
trained in a centralized manner with curriculum 
learning and evolutionary selection process to develop 
a coordinated strategy. This is different from previous 
MADRL approaches [10], [16], and [18] that encounter 
substantial challenges in learning good strategies when 
the agent population is large. 

2) The problem of EV-charging management is solved by 
the MADRL algorithm, which features centralized 
training and decentralized execution. The centralized 
training process and global critic enables the proposed 
approach to learn a coordinated control strategy. When 
the training process is completed, only local 
information would be required by each agent to make 
decisions. This is different from conventional 
distributed approaches, which achieve coordinated 
charging management through communication. This 
decentralized approach can help protect the privacy of 
EV owners, minimize communication cost, and prevent 
single-point failure. 

3) The proposed approach can satisfy the various demands 
of different EV owners. This is achieved by modeling 
each EV controller as an agent and assigning various 
reward function to different agents. This differentiates 
the proposed approach from the centralized 
management approach that aims to optimize a summing 
objective function. It may be difficult to satisfy various 
demands of different EV owners by the simple 
optimization of a summing objective function. 

The remainder of this paper is organized as follows. 
Section II introduces the mathematical formulations of the 
transformer and EV owners’ optimization models. In Section 
III, the optimization problem is reformulated as an MG, and 
the proposed approach is described in detail. In Section IV, 
the simulations and comparative results are discussed in 
detail to demonstrate the effectiveness of the proposed 
approach. Finally, Section V concludes the paper. 

II.  SYSTEM MODEL AND PROBLEM FORMULATION 
This paper considers a distribution system that includes a 

distribution transformer and several residential loads. The 
residential loads can be divided into 1) the basic load (the 
loads other than EV loads) and 2) the loads of all the EVs. 
This study focuses on the co-optimization of transformer 
LOL and dissatisfaction of EV owners. There are two 
components need to be modeled: 1) transformer LOL model 
and 2) EV owners’ optimization model.  

A.  Transformer Model 
In this study, the IEEE standard C57.91 [19] is utilized to 

construct the transformer LOL model. It describes the 
impact of transformer loading on the corresponding LOL. 
Herein, transformer LOL is defined as 
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where AAF denotes the aging acceleration factor, EQAF is the 
equivalent aging factor, HSθ  is the winding hottest-spot 
temperature, M is the total number of time intervals, k 
denotes an index, AA,kF  is the aging acceleration factor for 
the time interval t∆ ,  represents the duration of load L on 
the transformer, and NLL denotes the normal insulation life 
of transformer [19]. As the equations show, the transformer 
LOL defined in Eq. (2) is a function of HSθ . HSθ  can be 
calculated using the following equation: 

HS A TO HSθ θ θ θ= + ∆ + ∆             (3) 
where Aθ  represents the ambient temperature, TOθ∆  is the 
top-oil rise over ambient temperature, and HSθ∆ indicates the 
winding hottest-spot rise over top-oil temperature. TOθ∆
and HSθ∆ are defined as 

( ) ( )TO/
TO TO,U TO,i TO,i1 e τθ θ θ θ−∆ = ∆ − ∆ × − + ∆    (4) 

( ) ( )/
HS HS,U HS,i HS,i1 e wτθ θ θ θ−∆ = ∆ − ∆ × − + ∆     (5) 

where TO,Uθ∆ and TO,iθ∆ denote the ultimate and initial top-
oil rise over ambient temperature, respectively; HS,Uθ∆ and

HS,iθ∆ are the ultimate and initial winding hottest-spot rise 
over top-oil temperature, respectively; and TOτ  and wτ
represent the oil time and winding time constants, 
respectively. The two constants are explained in detail in 
[19]. TO,Uθ∆  , TO,iθ∆  , HS,Uθ∆  , and HS,iθ∆  are defined by the 
following equations: 

2 2
U

TO,U TO,R TO,i TO,R
1 1

, 
1 1

n n

iK R K R
R R

θ θ θ θ
   + +

∆ = ∆ × ∆ = ∆ ×   + +   
(6) 

   2
HS,U HS,R U

mKθ θ∆ = ∆ ×           (7a)  
2

HS,i HS,R
m

iKθ θ∆ = ∆ ×            (7b)                   
where TO,Rθ∆ is the top-oil rise over ambient temperature at 
rated load, HS,Rθ∆  denotes the winding hottest-spot 
conductor rise over top-oil temperature at rated load, R is the 
ratio of rated load loss to no-load loss, UK is the ratio of the 
ultimate load L to the rated load, iK is the ratio of the initial 
load L to the rated load, and n / m is an exponent used to 
calculate the variation in TOθ∆ / HSθ∆ with that in the load. n 
and m are determined empirically by the type of transformer. 
A detailed explanation is presented in [19]. Here, UK  is 
influenced by the total load tot

tL of the transformer [19]. tot
tL is 

defined as 
tot bas EV
t t t= +L L L                 (8) 

where bas
tL  represents the basic load and

1

NEV j
t tj

P t
=

= ∆∑L

denotes the load of N EVs. As indicated by [13], bas
tL needs 

to be forecasted according to historical data. The forecasted 
value of bas

tL is expressed as bas
t
L . 

B.  EV Owners’ Optimization Model 
The EV owners’ objective is to minimize their 

dissatisfaction. This paper considers two types of 



dissatisfaction of EV owners, 1) charging preference and 2) 
charging cost. 

1) Charging preference: It is used to characterize different 
charging patterns of EV owners. We consider the 
combination of charging anxiety and time sensitivity to 
represent charging preference to mitigate the influence of 
early stopping of charging caused by uncertain events during 
the EV charging period that cannot satisfy the energy 
demands of EV owners. 

Charging anxiety indicates EV owner’s concern that the 
EV does not have adequate energy to reach its destination. 
The physical significance of charging anxiety is similar to 
that of range anxiety mentioned in [20]. However, charging 
anxiety would more realistically reflect an individual’s 
psychological state. In a realistic scenario, the main 
disadvantage of EVs compared with vehicles that use 
conventional fuels is the longer energy-filling time. During 
the charging period, the EV owners may experience anxiety 
regarding whether the battery energy would attain the level 
(after charging) that is required to satisfy their travel 
demands. Unlike the range anxiety noted in [20] that only 
provides the dissatisfaction feedback to the controller at 
departure time, charging anxiety is associated with the 
length of the charging time and sends dissatisfaction 
feedback at each time slot for the duration of charging. The 
charging anxiety CA of the j-th EV at time t is defined as 

( )max 1
CA

j j
tj

t j
dep

E SOC

t t

−
=

−
           (9) 

where max
jE  is the battery capacity of the j-th EV, j

dept

represents its departure time, and j
tSOC denotes its state-of-

charge (SOC). The charging anxiety values under the time-
varying albeit fixed SOC scenario are shown in Fig. 1 to 
explain CA j

t   better. Specifically, the figure shows the 
charging period from the arrival time arrt to 1 h prior to the 
departure time ( 1dept −  ). In Fig. 1, max

jE  = 24 kWh, and
j

tSOC = 0.1 during the charging period. It is evident from 
the figure that because the charging time would decrease as 
the EV owner approaches j

dept   (which would reduce the 
probability that the battery would be charged to the desired 
energy in a limited time), the charging anxiety varies more 
with the reduction in remaining charging time than it did 
earlier. 

 
Fig. 1. The charging anxiety varying with charging time. 

Inspired by the concept mentioned in [21], time 
sensitivity is introduced here to reflect the differences 
among EV owners in terms of the preference to charge their 
batteries within the charging time. Time sensitivity is the 
anxiety of having to stop the charging prematurely owing to 
certain uncertain events during the charging time that would 
result in an unsatisfied charging demand. Specifically, EV 
owners with high time sensitivity (HTS) tend to charge at 

early charging periods. This implies that HTS imparts EV 
owners with the tendency to access more battery-energy 
earlier (compared with EV owners displaying mid time 
sensitivity (MTS)) before they are likely to encounter 
uncertain events. The influence of time sensitivity for the j-
th EV at time t is defined as 

( )
                                for MTS

TS
log 1 1  for HTS j

j
tj

t j j
tZ

B

B Z

=   − +  
       

( )max 1 ,  0
min ,  1

j
arrj

t j j
dep arr

t t
B

t t

 + −
 =
 − 

       (10) 

where Z is the time sensitivity ratio for the EV owners with 
HTS. The variation in TS j

t  with time is shown in Fig. 2. It 
is evident from the figure that at time t, the MTS has the 
smallest influence among these seven lines. This implies that 
the EV owners with MTS have lower anxiety, which results 
in a lower willingness to charge earlier than the EV owners 
with HTS. Moreover, the larger Z for HTS results in a larger 
influence. This implies that the larger Z is, the higher the 
willingness to satisfy the energy demands as early as feasible 
before approaching the departure time. 

 
Fig. 2. The time sensitivity varying with charging time. 

Combining the charging anxiety CA and time sensitivity
TS , the charging preference CP of the j-th EV at time t can 
be defined as 

1CP CA TS ,  ,j j j
t t t arr dept t t − = × ∈        (11) 

Fig. 3 shows the variation in CP j
t  with time. Here, the 

blue and orange areas denote HTS with Z = 80 and MTS, 
respectively, for an equal CA  . As the figure shows, TS
provides diversity for CP . This implies that the EV owners 
with HTS have a higher CP  to charge in early charging 
periods than EV owners with MTS. 

 
Fig. 3. The charging preference varying with charging time. 

2) Charging cost: The utilization of real-time signals such 
as the time-of-use price can substantially reduce the 
charging cost. The charging cost can be expressed as  

C

. . 

j j
t t t

j j j
dsg t chg

EP P t

s t P P P

= ⋅ ⋅∆

≤ ≤
              (12) 

where C j
t denotes the charging cost of the j-th EV at time t. 

C j
t is positive when the EV draws energy from the grid to 

charge, and negative when the EV earns by discharging the 
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energy to the grid. tEP  is the electricity price at time t. It 
needs to be forecasted based on historical EP  data. The 
forecasted value of tEP  is denoted by tEP . j

tP represents the 
power of the j-th EV at time t. j

dsgP  and j
chgP  are the 

maximum discharging and charging power, respectively, of 
the j-th EV. For this study, the selling price of electricity is 
equal to its purchasing price as recommended by [20].  

III.  PROPOSED FRAMEWORK FOR EV-CHARGING 
MANAGEMENT 

Real-time EV-charging management can be an 
optimization problem that minimizes the following equation 
considering the above-mentioned models. The objective 
function of the j-th EV j

t  at time t is defined as 

( )LOL
CP

W LOL LOL
min +W CP C

. . 

tot bas
t tj j j

t t t

j j j
dsg t chg

N
s t P P P

−
+

≤ ≤

 :   (13) 

where N indicates the number of EVs. LOLtot
t and LOLbas

t are 
the LOLs determined by tot

tL  and bas
tL  , respectively. LOLW

indicates the economic value of the transformer, and
LOL LOLtot bas

t t−  denotes the LOL under the load of the N 
EVs. CPW  is used to measure in USD to map the CP j

t  to 
currency. 
  In this section, the optimization problem is formulated as 
an MG, which is then solved by the proposed approach. It 
should be noted that MG differs from the Markov decision 
process (MDP). The MDP can only describe single-agent 
environments, whereas MG is a game theory [22] extension 
to MDP-like environments. It mainly studies the problem of 
coordination and competition in multi-agent systems. 

A.  Problem Reformulation 
 The MG is mainly composed of four components: 

State: The state of the j-th EV

t

j js S∈ at time t is defined 
as 



HS, 1( ,  ,  ,  ,  ,  ,  ,  )jdep dep

j j bas EV j j j
tt t t t t

s EP t SOC t SOCθ −=  L (14) 

where j  denotes the charging preference of the j-th EV 
owner. HS,

bas
tθ is the winding hottest-spot temperature at time 

t and is influenced by the bas
t
L  [19]. Note that bas

t
L  is a 

forecasted value, and HS,
bas

tθ  is not the true value. The true 

value is denoted as HS,
bas

tθ  and is influenced by bas
tL . 


 Action: The action in the MG represents the 

charging/discharging power of EVs. The action of the j-th 
EV at time t is defined as j j

t ta P=  . That the action j
ta  is 

active implies charging, and a negative value denotes 
discharging.  

 Reward Function: In this study, we consider the co-

optimization of transformer LOL and the dissatisfaction of 
all the EVs as follows: 

( )( )1
1 Nj j i

t t ti
r w w

=
= − ⋅ + − ⋅∑          (15) 

Here, [ ]0,1w∈  denotes the weighting factor that indicates 

the relative importance between the individual objective j
t  

and overall objective (the transformer LOL and the 
dissatisfaction of all the EV owners, i.e.,

1

N i
ti=∑   ). For 

example, only individual objective is considered when the 

weighting factor w is set to one. When w is set to zero, the 
overall objective reward accounts for the largest proportion 
in the reward function.  

Transition Function: Following the action ta , the state 

transforms from j
ts  to 1

j
ts +  at time-step t + 1 with the 

transition function ( )1 , ,j j j
t t ts s a+ = S  . Here, S  indicates 

the randomness from the environment.  
j

ta mainly alters the deterministic elements in j
ts , i.e.,

1 max/j j j j
t t tSOC SOC a t E+ = + ∆  . For the  tEP  in j

ts  , the state 
transition is influenced by S . The transition of HS,tθ is 
affected by both j

ta andS . 

B.  Proposed Control Model Approach 
The proposed control approach is a combination of 

MADRL and curriculum learning, i.e., the multi-agent twin-
delayed deep deterministic policy gradient (MATD3) 
algorithm and ECL training mechanism. 
  1) Brief introduction of MATD3: The MATD3 is the multi-
agent variant [23] of the TD3 [24] algorithm. It is used to 
solve the MG by modeling each EV controller as a TD3 
agent within the centralized training framework. 
Considering N agents with parameterized continuous 
policies, the gradient for the j-th agent can be expressed as 
( [ ]1,j N∈ )  

 
,1 ( )X , A ~

( ) [ ( ) (X ,A ) | ]j j j j jj j j jt t tt t j

j j j
j t t ta a s

J s Q
θ

θ θ θ φ µ
θ µ

=
∇ = ∇ ∇


 (16a). 

Here, 1X ,..., N
t t ts s =     is the state set of time t,

1 1 1A ,..., , ,...,j j j N
t t t t ta a a a− + =    is the action set of other agents 

of time t,denotes the replay buffer (contains experiences 
of the N agents),

j

j
θµ represents the policy network of the j-

th agent with parameter jθ  , 1A ,..., N
t t ta a =     represents the 

action set of time t, and
,1
(X ,A )

j

j
t tQφ is the centralized action-

value function with parameters ,1jφ . In TD3, the action-value 

function pair
, 1,2j i

jQφ =
 is used to eliminate overestimation. 

,1
(X ,A )

j

j
t tQφ and

,2
(X ,A )

j

j
t tQφ are updated as 

, 1,2

2( (X ,A ) )
j i

j
t tLoss Q yφ =

= −   

,1 ,21 1 1 1min (X ,A ),  (X ,A )
j j

j j j
t t t t ty r Q Qφ φγ ′ ′+ + + +

 = +    (16b) 

where
1

1 1 1
1 1 1A [ ( ) ,..., ( ) ]

N

N N N
t t ts sθ θµ ς µ ς′ ′+ + += + +  . ς  denotes the 

noise and can be defined as 
~ ( (0, ), , )clip c cς ζ −          (17) 

where γ  is the reward discount factor,   represents the 
normal distribution, ζ  is the variance, and c  denotes the 
bound of noise. 
  

, 1,2j i
φ

=
′ and jθ ′ can be updated as 

, 1,2 , 1,2 , 1,2(1 )
(1 )

j i j i j i

j j j

φ τφ τ φ

θ τθ τ θ
= = =′ ′← + −

′ ′← + −
          (18) 

where soft replacement 1τ  . 
  2) Introduction of ECL mechanism: ECL is an RL-based 
training mechanism that can be integrated conveniently with 
any RL-based algorithm without being limited to particular 
algorithms. Inspired by [25], it can be concluded that 
“survival of the fittest” provides a thought for the application 
of curriculum learning in RL, enabling for a better 
integration of the two. In light of this, ECL consists of two 



critical components: curriculum learning and evolutionary 
calculation. The original core concept of curriculum 
learning is to start small: learning is to perform the more 
convenient task first and then, gradually increase the task 
difficulty throughout the training process [26]. A notable 
challenge that MADRL presently encounters is that these 
may fail to optimize the large-scale EV-charging problem 
because the action space would increase exponentially with 
the increase in the number of agents. Curriculum learning is 
adopted in the proposed approach to overcome the challenge. 
A highly intuitive approach in accordance with the concept 
of starting small is to 1) decompose large-scale EV-charging 
into several stages in which the number of EVs per stage 
increases successively and 2) begin training at the stage with 
the minimum number of EVs and terminate it at the final 
stage with the desired number of EVs. This enables the 
agents to leverage the experiences from the previous stages 
to adapt progressively to the present stage. A direct approach 
to increase the number of EVs to the next stage is cloning. 
Given N trained EVs with the parameter 1 2[ , ,..., ]N

i ω ω ω=ω
at the i-th stage, the initial parameters of the next stage with 
xN EVs are obtained through cloning at the (i + 1)-th stage. 
This can be expressed mathematically as

1 [ , ,..., ]i i i i

x

+ =


ω ω ω ω  . However, it is challenging to ensure 

the overall performance by using this approach to introduce 
new EVs to the present stage by directly cloning existing 
EVs from the previous stage. This is mainly a result of the 
fact that successfully trained agents from the previous stage 
may not adapt effectively to the present stage with increased 
number of agents in the environment. This occurs because 
policy parameters applicable to the previous stage need not 
be the best initialization for present stage owing the increase 
in the number of EVs. To ensure ideal performance of the 
final stage with the desired number of EVs, we need to 
promote agents with better adaptability at each stage of 
training. Considering this, the evolutionary calculation is 
integrated with curriculum learning to enhance the 
capability of the proposed approach for scaling adaption 
during the curriculum learning-based training process. 
Therefore, the proposed training mechanism is called 
evolutionary curriculum learning (ECL). The ECL 
mechanism deployed in this model has several steps:  
(i) Population initialization: Suppose there are I 
populations each having n agents with ϒ roles. That is, n EV 
controllers manage EV charging for EV owners with ϒ  
types of charging preferences. Note that the I populations are 
individual and parallel to each other. The parallel trainings 
are applied on each population, which implies that I parallel 
trainings are performed simultaneously. 
(ii) Population evaluation: Each population is evaluated 
after the I trainings are completed. The purpose of 
evaluation is to continuously select and train the agents with 
good performance and discard those with low performance. 
As mentioned above, each population has n agents (n EV 
controllers) with ϒ roles ( ϒ types of charging preferences of 
EV owners). ( )r

iσ denotes the set of agents functioning in 
role r contained in the i-th population. Here, [ ]1,...,i I∈ , and

[ ]1,...,r∈ ϒ . An evaluation is performed in a new population 
consisting of all roles in which the populations are random 
selected to form the new one population

1 2

(1) (2) ( ), ,...,i i iσ σ σ
ϒ

ϒ    . Following this rule, we can 

determine that I populations can constitute I ϒ  new 
populations. The I ϒ new populations run individually, and in 
parallel to interact with the environment. Meanwhile, the 
environment would create a large number of scenarios with 
randomness to evaluate the adaptability of all the 
populations according to the environmental feedback 
rewards. After the rewards of I ϒ  new populations are 
collected completely, these would be averaged and sorted 
among the same role.  
(iii) Population selection: We assume that the final 
evaluation stage has I populations and that there are I 
rankings in each role. For each role, the agent sets with top-
k reward would survive, and the other agent sets (total is I - 
k) would be discarded.  
(iv) Crossover among populations: After the selection of 
each role is complete, the surviving agent sets are mixed 
with those who acting the same role as themselves, and then 
match with those who acting the different role to form a new 
population [25]. Essentially, given the top-k agent sets 
playing the r-th role ( ) ( )

1 ,...,r r
kσ σ 

  , there are ( )20.5 k k⋅ +  

mix combinations under the same role ( ) ( )( ) ( ) ( )( )
( )2

1 1

0.5

,...,r r r r
k k

k k

σ σ σ σ

⋅ +

 
 


. 

After the mix, the match is applied among the different roles. 
For example, assuming there are ϒ=2 in a population, the 
new population would consist of ( )

1

1
iσ and ( )

2

2
iσ extracted from 

the i1-th and i2-th populations, respectively. Here,
[ ]1 2, 1,...,i i k∈  . Thus, the ϒ  roles would have 

( )( )20.5 k k
ϒ

⋅ +  match combinations where ϒ=2, and each 

match combination is the new population. Then, each new 
population would be mutated individually in the next step. 
(v) Population mutation: Mutation is an important step in 
evolutionary calculation. It maintains the diversity of 
evolution by transforming the chromosome loci at the 
parameter level, thereby preventing the premature 
phenomenon of local optimum. This is similar to the use of 
the exploratory mechanism in RL. The introduction of the 
exploratory mechanism in RL can impel policy to explore in 
a decision space. Furthermore, an effective exploratory 
mechanism can accelerate convergence while preventing 
falling into local optimum. Considering this, the exploratory 
mechanism is adopted in the proposed approach as the key 
mutated approach. However, the conventional exploratory 
mechanism generally adds noise directly to the action [27], 
[28]. This could potentially impair the dependencies 
between state and action and results in low performance in 
complex environments [29]. To overcome the ambiguity 
caused by conventional exploration mechanisms and better 
match the concept of mutation at the parameter level in 
evolutionary calculations, the parameter space noise (PSN) 
[30] is used during the mutation step. Variations in the 
parameter level can induce a consistent, complex, and state-
dependent transformation to policy over multiple time-steps. 
This ensures that the PSN can provide natural and efficient 
exploration for effectively directing the improvement of 
control performance in the parameter space [30], [31]. 
  Finally, steps (ii)–(v) need to be repeated until the number 
of agents equals the desired number. The detailed steps of 
the proposed approach are shown in Algorithm 1.  



Algorithm 1  Training of proposed approach 
1: Initialize the x populations. Each population has n 

agents with ϒ roles 
2: Execute parallel MATD3 training on the x populations 
3: while n less than desired number of agents: 
4:  Evaluate all the populations according to the reward 
5:  Select the top-k populations to execute the crossover 

step according to the evaluation results  
6:  Execute the mix step to combine the agent sets with 

identical role  
7:  Execute the match step among the different roles to 

construct a new population. 
8:  Execute parallel MATD3 training on new populations 
9: end 

10: Evaluate all the populations according to the reward 
11: Return the best population according to the evaluation 
12: Train the best population until reward convergence  

3) Architectures of MATD3 networks deployed in ECL 
mechanism:  

Critic architecture (include Qφ  and Qφ ′  ): The ECL 
mechanism is applied in the training of MATD3. In this 
study, the entire training process is decomposed into 
multiple stages wherein the number of agents in the 
environment increases with each successive stage. In the 
training process, the agents first learn to play in a simpler 
environment with fewer agents and then, progressively 
adapt to the more complex environment with more agents. 
They repeat the steps until the desired number is attained in 
the environment. It should be noted that the fixed neural 
network cannot process the changing state dimensions. In 
this study, the training process will have different number of 
agents in the environment at different stages due to the 
presence of the ECL training mechanism. Specifically, the 
critic network of each agent receives information from all 
the agents within the environment in a centralized manner 
during training, the input dimensions of the critic network of 
each agent will change when the number of agents increases. 
Inspired by [25], the self-attention network [32] is adopted 
in the proposed approach to solve this challenge. 
Specifically, the self-attention network is deployed in an 
action-value function approximated neural network 
(shortened to action-value network). Its architecture is 
shown in Fig. 4. Note that each agent has an individual 
action-value network that has architecture identical to that 
of the other agents. Specifically, the j-th agent action-value 
network can be represented as follows (see Fig. 4; [ ]1,j N∈ ): 

( ) ( ) ( )1 1
1e , ,  e , ,  ..., e ,j j N N

j j j N jf s a g s a g s a= = =  

where e j , 1e , and eN represent the encoders of the ( ),j js a , 

( )1 1,s a  , and ( ),N Ns a  pairs, respectively; jf  denotes the 
light-blue feed forward neural network of the j-th agent with 
an input layer, a hidden layer of rectified linear units 
function (ReLu) neurons, and a ReLu output layer; and jg
represents the light green feed forward neural network, 
which has an architecture identical to that of jf .  
  After all the encoders [ ]1 2e ,e ,..., eN are calculated, jD is 
obtained as follows: 

( )
(1) ( 1)

T T T T
1 1 1

( 1) ( )

[ ,..., ,

e , e ,..., e ,e ,..., e
         ,...,  ]
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ω

≠
= ∑D               (21) 

where [ ]( ) [ ], ,  ..., ,  ...,  a b z a b a zϕ = ⋅ ⋅ , and kd represents the 
network dimensions. These are introduced in detail in [32]. 
  Finally, the action-value function is 

( )(X,A) e ,j
j j jQ h= D          (22) 

where jh  denotes the light-orange feed forward network 
with an input layer, two hidden layers of ReLu neurons, and 
a linear output layer. 

Feed Forward Feed Forward Feed Forward

Attention 

Feed Forward

ej

ej

e1 eN

  
Fig. 4. The architecture of action-value network to address the variant 
number of agents cannot deploy on fixed neural network problem.  
  Actor architecture (include θµ  and θµ ′  ): To address the 
dynamic environment, the feed forward neural network is 
deployed in policy function-approximated neural network 
(shortened to policy network). Mathematically, the mapping 
relationship from the input state to the output action of 
policy network of the j-th agent can be defined as 
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(23) 

where uI represents the input of the u-th hidden layer; W j
u

and B j
u are the weight and bias matrices, respectively, of the 

u-th hidden layer of the j-th agent; U denotes the total 
number of hidden layers; ζ  denotes the latent feature 
extracted by all the U hidden layers from the input js ; and
W j

O and B j
O are the weight and bias matrices, respectively, 

of the output layer. Specifically, the policy network consists 
of an input layer, four hidden layers of ReLu neurons, and a 
tanh output layer.  

IV.  NUMERICAL RESULTS 

A.  Experimental Setup 
In the case study, a transformer that services eight 

households with one EV each is considered. The capacity of 
the transformer is 50 kVA. Four EV owners have HTS with 
Z = 100, and the other 4 EV owners have MTS. The charging 
power limit of the EVs is 6.3 kW [33]. As recommended by 
[34], the j

arrt and
j

arr

j
t

SOC of the j-th EV owner are modeled as 

random variables. The time interval t∆   is set as 1 h. 
Realistic data is used in this study to evaluate the 
performance of the proposed approach. The electricity price 
and basic load data have been provided by PJM [35] and the 
national grid [36], respectively. The data are divided into a 



200-day training set (Jan 1, 2017 to Jul 19, 2017) and a 100-
day test set (Jul 20, 2017 to Oct 27, 2017). The training set 
is utilized to train the model. When the training process is 
completed, the performance of the model is evaluated using 
the test set. The related parameters of the transformer [37], 
EV [33], and commuting behaviors [38] are listed in Table I. 
The

arrtSOC  is a sample from a normal distribution

( )20.4,0.1 and is bounded by 0.2 and 0.6. The arrival time

arrt is sampled randomly from the set {17,18,19}. The latest 

time to leave home dept is set as eight. 
In the scenario mentioned above, the training process of 

the proposed approach is divided into four stages. The first 
stage has five populations, and each population has two 
agents. Each of the five populations is trained with 1000 
episodes. Then, agents in different roles from the five 
populations are assembled to form 25 new populations. The 
first stage ends after the 25 new populations are evaluated 
with 5000 episodes. In the second stage, we select the agent 
sets with the top-two reward values for each role. Thus, there 
are three mix combinations within the same role and nine 
match combinations for the different roles, i.e., nine new 
populations. The nine populations are trained with 4000 
episodes, and 81 populations are evaluated subsequently 
with 5000 episodes. This follows the same theory as in the 
first stage. The second stage also terminates after the 
evaluation is completed. The third stage involves a process 
identical to that in the second stage, except that there are 
10000 training episodes. In the fourth stage, i.e., final stage, 
5000 training episodes are provided to a population that has 
been selected from the third stage evaluation. The 
parameters used in the training are shown in Table II. 

TABLE I 
PARAMETERS OF MODEL MENTIONED IN SECTION II 

Symbol Value Symbol Value 
n, m 0.8 

Aθ  40℃ 

TOτ  6.86 hours TO,Rθ∆  53℃ 
wτ  0.08 hours HS,Rθ∆  27℃ 

NLL  51.8 10  hours×  R  4.1 
CPW  0.1 $ hour/kWh⋅  LOLW  8305$ 

arrtSOC  ( )2clip( 0.4,0.1 ,

      0.2,0.6)


 

arrt  {17,18,19
} 

maxE  24 kWh Pdsg 
Pchg 

-6.3 kW, 
6.3 kW 

TABLE II 
THE PARAMETERS OF THE PROPOSED APPROACH 

Parameters Value 
Neuron numbers of hidden layers 128 
Reward discount factor 0.95 
Memory capacity 1e6 
Learning rate of actor 1e-4 
Learning rate of critic 1e-4 
Soft replacement 1e-3 
Batch sizes for updating 256 
Training episodes 2e4 
The variance of normal distribution 0.2 
The bound of noise 0.3 
Policy update frequency 2 
Optimizer Adam 

 

B.  Comparisons with baselines 
Comparative tests are carried out with various benchmark 

approaches to evaluate the performance of the proposed 
approach. 

1) Illustrations of benchmark approaches:  
• Uncontrolled approach: In this approach, the EVs are 

charged with the maximum charging power once these 
arrive at home. 

• TD3 [24]: Each EV controller is modeled as a TD3 agent, 
which is trained separately to maximize its reward function 
without coordination with other EVs.  

• Vanilla-MATD3 [23], [24]: It is a simplified version of 
the proposed approach. The difference between vanilla-
MATD3 and the proposed approach is the training 
mechanism. Specifically, the neural networks of vanilla-
MATD3 are trained in a conventional manner, rather than 
using the ECL-based training mechanism utilized in the 
proposed approach. 

• Optimization of deterministic information scenario with 
NLopt [39]: The electricity price, basic load, and commuting 
behaviors of EV owners are assumed to be known 
beforehand. Then, NLopt is utilized to solve a deterministic 
optimization problem based on global information. This 
approach yields optimized results based on deterministic 
information. However, it is infeasible to achieve this in a 
realistic scenario owing to the randomness of the electricity 
price, basic load, and commuting behavior.  

2) Performances on training set: The cumulative costs 
obtained by different RL-based control strategies are shown 
in Fig. 5. For an unbiased comparison, only the cumulative 
costs of the final training stage (i.e., Algorithm 1, line 12) of 
the proposed approach are plotted in Fig. 5. At the beginning 
of the training process, the EV controllers are incapable of 
making decisions to obtain low cumulative costs. Therefore, 
they explore the action space to accumulate experience. As 
the training process progresses, the EV controllers gradually 
learn the management strategy to achieve lower costs. 
Although the TD3 approach converges at approximately 
10000 episodes, its cost curve shows the highest value and 
oscillates substantially. In this study, the working state of the 
transformer and the dissatisfaction of the EV owners are 
determined jointly by the charging/discharging powers of all 
the EVs. In other words, the state transition probability of 
each EV controller depends not only on itself, but also on 
other EV controllers. Such scenario can straightforwardly 
cause the independent EV controller to violate the Markov 
assumptions in a multi-agent scenario, resulting in a 
significantly low training effect [40]. Because the agents are 
only trained separately for the TD3 approach, this will lead 
to the absence of coordination among the EV controllers and 
subsequently make it difficult to guarantee the Markov 
assumptions. Thereby, TD3 fails to learn the valid policy. In 
contrast, the centralized training mechanism helps the 
vanilla-MATD3 approach to learn a coordinated charging 
management and ensures the Markov assumption owing to 
the utilization of the global critic during the training process. 
Therefore, it learns a strategy that is better and more stable 
than that developed by the TD3 approach. The proposed 
approach further enhances the stability and control 
performance of the learned strategy. This is achieved by 
systematically integrating the centralized training with the 
ECL mechanism. The centralized training helps the 
proposed approach satisfy the Markov assumption. 



Furthermore, the ECL mechanism enables the proposed 
approach to achieve better control performance and adapt to 
more challenging charging tasks with a larger number of 
EVs that need to be managed. As a result, a more stable 
control strategy with better control performance is 
developed by the proposed approach. The results 
demonstrate the effectiveness of the proposed approach.  

 
Fig. 5. Each 100-episodes average cumulative costs during the training 
process for different RL-based approach.   

3) Performances on the test set: The cumulative costs 
obtained by different control strategies on the test set are 
shown in Fig. 6. The percentage terms on the right indicate 
the cost reduction ratio of the corresponding approach 
compared with the uncontrolled approach. The figure 
reveals that the cost obtained by the TD3 approach is not 
reduced. This is because the separate training mechanism 
cannot ensure the Markov assumptions. In contrast, the 
Markov assumption is satisfied by vanilla-MATD3 owing to 
the centralized training mechanism and the global critic 
structure. Therefore, it achieves better performance, and its 
cumulative cost is reduced by 59.35%. The ECL mechanism 
further enhances the performance of the proposed approach. 
Furthermore, it enables the approach to achieve a 
performance that is close to that of the deterministic 
information solutions, based only on local information. 
However, the deterministic information approach assumes 
the uncertain variables to be known beforehand and require 
complete communication links. These are difficult to obtain 
in practice. 

  
Fig. 6. Cumulative costs on the test days for the different approaches. 

The cumulative cost is composed of three parts: the LOL 
cost, charging preference cost, and charging cost. The 
detailed costs obtained by different control strategies on the 
test set are shown in Fig. 7. The figure reveals that the TD3 
and uncontrolled approaches cannot consider all the three 
objectives simultaneously. The LOL cost is excessively high 
for these. Although vanilla-MATD3 can simultaneously 
minimize the costs of the three objectives, the proposed 
approach achieves a better balance among these objectives 
and a lesser cost. This demonstrates the effectiveness of the 
proposed approach. The optimization of the deterministic 
information scenario has a negative LOL cost. This implies 
that it is profitable for the EV owners to reduce the LOL cost. 

This mechanism is reasonable because the EV charging 
behavior is controlled to maximize the interests of the 
transformer at the expense of those of the EV owners [3]. 
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Fig. 7. Detailed cost on the test days for the different approaches. 
C.  Select a day on the test set for evaluating the proposed 

approach 
To further evaluate the performance of the proposed 

approach, detailed results for a test day are shown in Fig. 8. 
The arrows in Fig. 8(c) and (e) indicate the time of arrival at 
home of different EVs. The HS,

tot
tθ  mentioned in Fig. 8(g) 

denotes the HSθ influenced by tot
tL .  

It is evident from Fig. 8(c) and (e) that each EV charges 
at relatively low electricity prices and discharges at 
relatively high electricity prices. However, the presence of 
CP causes the EV owners with HTS and MTS to have 
different charging modes. Comparing the two figures, the 
EV owners with HTS 1) tend to charge in an earlier charging 
period although the electricity price for that period is 
relatively high and 2) have full energy earlier than the EV 
owners with MTS. At the three instances when the electricity 
price is relatively high (17:00, 18:00, and 19:00), the EV 
owners with MTS opt for a high discharging power to obtain 
economic advantages. However, the EV owners with HTS 
have high charging and low discharging power at the same 
time. This phenomenon indicates that a HTS imparts EV 
owners with a tendency to access more battery-energy 
earlier (compared with the EV owners having MTS) before 
they are likely to encounter uncertain events. In addition, 
each EV battery has full energy when the EV departs (see 
Fig. 8(d) and (f)). 

The transformer LOL cost also influences the EV- 
charging behaviors. It is highly important to understand the 
change rule of transformer LOL to comprehend its influence 
on EV-charging behaviors. In Fig. 9, each triangle denotes 
the difference in LOL between two hottest-spot 
temperatures when the temperature difference is fixed as 
5 °C. For example, the first triangle denotes the LOL value 
at 75 °C minus that at 70 °C. As Fig. 9 shows, the difference 
in LOL between two temperatures increases exponentially 
with the increase in the hottest-spot temperature. This trend 
implies that for transformers having high hottest-spot 
temperatures, each increase in temperature would cause 
more damage than earlier. Therefore, whether the hottest-
spot temperature can be reduced is highly important for 
minimizing the transformer LOL. As shown in Fig. 8(c) and 
(e), the instances when EV owners with HTS are on the 
verge of being charged fully (i.e. 22:00, 23:00, and 0:00) and 
those when EV owners with MTS start charging (i.e. 21:00, 
22:00 and 23:00) involve a low charging power. This 
presents a phenomenon wherein if all the EVs are charged at 
short intervals, the charging power of each EV would not be 
significantly high. This is because if all the EVs perform at 
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a high charging power in a short time, the excessive load 
would result in a significantly high probability of a rapid 
increase in the hottest-spot temperature. This is illustrated 
by the blue temperature curve generated by the uncontrolled 
approach in Fig. 8(g). The increased temperature would 
eventually cause an increase in transformer LOL (see Fig. 9). 
Thus, maintaining the total charge power of all the EVs 
within a relatively appropriate range in the charging period 
helps ease the growth of the hottest-spot temperature curve. 
This is illustrated by the orange temperature curve generated 
by the proposed approach in Fig. 8 (g).  

 
(a) Real-time electricity price. 

 
(b) The real-time winding hottest-spot temperature influenced by the sum of 

basic load HS,
bas

tθ . 

 
(c) Charging/discharging power of 4 EV owners with HTS. 

  
(d) The energy of 4 EV owners with HTS. 

 
(e) Charging/discharging power of 4 EV owners with MTS. 

  
(f) The energy of 4 EV owners with MTS. 

  
(g) The real-time winding hottest-spot temperature influenced by the sum of 

total load HS,
tot

tθ . 
Fig. 8. Detailed scheduling results of the proposed approach on one test day. 

  
Fig. 9. The trend of LOL difference when the hottest-spot temperature 
difference is fixed at 5mpe  

D.  Discussion of weighting factor w 
Further tests are carried out to investigate the impact of 

the selection of weighting factor on the charging behavior 
developed by the proposed approach. In this test, w is set to 
0, 0.5, and 1 for cases 1, 2, and 3, respectively. The 
cumulative cost and its detailed cost (i.e., the transformer 
LOL cost, charging preference cost, and charging cost) 
achieved by the proposed approach when w is set to different 
values are presented in Fig. 10. The figure shows that the 
charging preference costs decrease when we increase w. 
This is because the individual objective becomes more 
important than the overall objective as we increase w. 
Because of the decrease in the importance of the overall 
objective, the LOL costs increase as w increases. This results 
in the increase in the cumulative cost. The results 
demonstrate that the proposed approach enables EV owners 
to balance the weight between their individual preferences 
and overall objective by adjusting w. This is different from 
the centralized optimization approach with a summing 
objective function, which may hinder the optimization of the 
various charging preferences of different EV owners. 

Fig. 10. Impact of the weighting factor w on the optimization results. 

E.  Scalability of proposed approach 
To demonstrate the superiority of the proposed approach 

in terms of addressing a large population of agents, further 
tests are carried out when the number of EVs whose 
charging needs to be managed is larger. We consider six 
cases in this test, wherein the number of EVs is set to 8, 12, 
16, 24, 32, and 64 separately. The experimental parameters 
of the eight-agent case have been mentioned earlier. To 
provide fair comparisons among these six cases, the EV 
penetration keeps the same level. In this setting, the 
transformers with ratings of 75, 100, 150, 200, and 400 kVA 
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services 12, 16, 24, 32, and 64 EVs, respectively. The basic 
load bas

tL  and economic value of transformer LOLW  also 
varies proportionally [3]. In addition, these six cases have 
identical commuting behaviors of EV owners. The case with 
12 EVs involves 8 EV owners with HTS and 4 with MTS. 
The case with 16 EVs involves 8 EV owners with HTS and 
8 with MTS. The case with 24 EVs involves 16 EV owners 
with HTS and 8 with MTS. The case with 32 EVs involves 
16 EV owners with HTS and 16 with MTS. The case with 
64 EVs involves 32 EV owners with HTS and 32 with MTS. 

The cumulative cost incurred by the different control 
strategies under the different cases are shown in Fig. 11. 
With the gradual addition of more EVs that need to be 
managed, the optimization capability of vanilla-MATD3 
decreases gradually. In particular, the 12-agent case is the 
watershed for vanilla-MATD3. Vanilla-MATD3 has better 
control performance than the uncontrolled approach in the 
cases with at most 12 agents in the environment. However, 
when the number of agents exceeds 12 (i.e., in the 16-, 24-, 
32-, and 64-agent cases), vanilla-MATD3 does not display 
the capability to optimize compared with the uncontrolled 
approach. Apparently, with the increase in the number of 
agents, the control strategy needs to optimize the charging 
decision in a larger action space and more complex coupling 
relationship between EV charging. This generates 
significant challenges for the optimization of vanilla-
MATD3. In contrast, the proposed approach can effectively 
maintain the control performance when the number of 
agents is increased, and always displays performance that is 
closest to that of NLopt. The cumulative costs for the 
proposed approach are reduced by 57.03%, 72.04%, 81.38%, 
79.31%, 77.71%, and 70.53%, respectively, compared with 
those obtained with vanilla-MATD3. These simulation 
results demonstrate the superiority of the proposed approach 
in addressing a large population of agents.  
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Fig. 11. Cumulative costs on the test days under the six different numbers 
of EVs case. 

V.  CONCLUSIONS 
In this study, the proposed approach simultaneously 

optimizes the operation of transformers and the demand of 
EV owners by managing EV charging/discharging. It 
proposes a centralized ECL-based training and a 
decentralized deployment approach to manage larger-scale 
EV charging in a fully decentralized manner. The core 
concept underlying the ECL-based training mechanism is to 
learn the more straightforward task first and then, gradually 
increase the task difficulty. The advantage of this training 
approach is that it provides the agents a process to adapt 

gradually to the target task. This can reduce the learning 
difficulty of agents and thereby, yield higher performance 
for the target task. After the training, the advantage of a 
decentralized deployment can protect the EV owner’s 
privacy, reduce the related communication cost, and prevent 
single-point failure. The simulations and comparative 
results reveal the following: 1) The training process of the 
proposed approach is the most stable and achieves the best 
performance with the training set, among the RL-based 
approaches. 2) In the test set, the performance of the 
proposed decentralized approach is close to that of the 
NLopt centralized approach based on the deterministic 
global information. 3) The interpretability of EV 
charging/discharging decisions further demonstrates the 
effectiveness of the proposed approach. 4) The proposed 
approach can adaptively adjust to the different preferences 
of EV owners by setting different weighting factors w. 5) 
The six cases with different numbers of EVs demonstrate 
that the proposed approach has good scalability. 
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