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Abstract—With increasing penetration of distributed energy
resources (DER) in the distribution system, it is critical to design
market structures that enable smooth integration of DERs. A
hierarchical local electricity market (LEM) structure is proposed
in this paper with a secondary market (SM) at the lower level
representing secondary feeders and a primary market (PM)
at the upper level, representing primary feeders, in order to
effectively use DERs to increase grid efficiency and resilience. The
lower level SM enforces budget, power balance, and flexibility
constraints and accounts for costs related to consumers, such
as their disutility, flexibility limits, and commitment reliability,
while the upper level PM enforces grid physics constraints such
as power balance and capacity limits, and also minimizes line
losses. The hierarchical LEM is extensively evaluated using a
modified IEEE-123 bus with high DER penetration, with each
primary feeder consisting of at least three secondary feeders.
Data from a GridLAB-D model is used to emulate realistic power
injections and load profiles over the course of 24 hours. The
performance of the LEM is illustrated by delineating the family
of power-injection profiles across the primary and secondary
feeders as well as corresponding local electricity tariffs that
vary across the distribution grid. Through numerical simulations,
the hierarchical LEM is shown to improve the efficiency of the
market in terms of lowering overall costs, including both the
distribution-level locational marginal prices (d-LMP) as well as
retail tariffs paid by customers. Together, it represents an overall
framework for a Distribution System Operator (DSO) who can
provide the oversight for the entire LEM.

Index Terms—DER, DSO, Local electricity markets, Dis-
tributed optimization, Transactive energy

I. INTRODUCTION

The current electrical grid together with the electricity
market, was designed for unidirectional energy flows — from
large centralized producers to final consumers. However, as
the power grid becomes increasingly decentralized, the elec-
tricity market structure needs to (1) incentivize consumers
appropriately for investing in DERs, (2) ensure that DERs are
appropriately compensated for any grid services provided, (3)
coordinate with the existing market structure at the wholesale
level, (4) provide a suitable rate structure to ensure that
relevant costs to various stakeholders are minimized and (5) be
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scalable with increasing penetration of DERs. Local electricity
markets (LEMs) have the potential to empower the consumer
to take control of their energy footprint, allow transactive
energy trading among members of a community, improve com-
munity resilience against wider grid events, and potentially
reduce energy bills. Many of the existing consumer choice
programs compensate DERs for their grid services, typically
through direct incentives and feed-in tariffs. However, these
policies do not price the fine-grain locational and temporal
variation in the services that DERs are capable of providing,
and are therefore unable to meet network-level objectives
under high DER penetration [1]. As the number of DERs
and prosumers (energy consumers who also produce some
electricity) increases, more structure is warranted to coordinate
them. New operational entities such as a distribution system
operator (DSO) that oversees the LEM [2], and new types
of tariffs such as distribution-level locational marginal prices
(d-LMP), may be needed [3].

Local energy markets have the capability to allow electricity
prices to be endogenous quantities rather than be imposed
exogenously. In such a marketplace, prosumers can buy and
sell energy in an open marketplace, or through an operator [4].
The introduction of DERs such as rooftop solar panels and
electric vehicles (EV) has introduced significant complexity
to the management of the grid. Grid operators and utilities
often rely on standard load profiles derived from historical
data to model home energy usage and estimate the amount of
energy required to supply and balance the grid. However, the
intermittent and highly variable nature of the generation from
photovoltaic (PV) panels, demand of EVs, and needs of other
DERs can cause unpredictable swings in demand. LEMs have
the potential to help solve this problem for energy retailers
and other grid management entities by offering flexibility
services and the opportunity for new business models. LEMs
also provide an attractive alternative to FERC Order 2222,
as the direct participation of DERs at the wholesale level
may introduce tier-bypassing [5], which may lead to potential
instabilities.

In this paper, we propose an LEM for energy transactions at
the distribution level. The LEM consists of a two-tier structure.
The lower level consists of DER-coordinated assets (DCA)
located at each secondary feeder bidding into a secondary level
market. DCAs are entities that aggregate and coordinate the
DERs within their secondary feeder in order to bid into the
SM. These DERs could include renewable generation such as
rooftop solar PV as well as battery storage and/or flexible
loads. We note here that our market mechanism does not
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inherently rely on any assumptions about ownership structures,
e.g. it could be possible for a single agent to coordinate DCAs
across multiple primary nodes. An SM operator (SMO) is
assumed to oversee the market operations at this level, clearing
and scheduling the DCAs. At the upper level, the SMO in turn
bids into a PM as an agent representing a primary feeder node.
These bids are in turn cleared and scheduled by a PM Operator
(PMO), who represents a primary feeder. The payments made
by the PMO to the agents at the primary feeder nodes, i.e.
the SMOs, are denoted as d-LMPs, and those that are made
in turn by the SMO to the DCAs are denoted as local retail
tariffs.

Both the lower and the upper level market solutions pro-
posed here are based on an optimization framework, with the
upper level based on a distributed Proximal Atomic Coordina-
tion (PAC) approach [6], [7], while the lower level uses decen-
tralized optimization at each primary feeder node. While the
upper level accommodates detailed power physics including
nonlinear DistFlow based power balance, and various capacity
limits on the main decision variables, the lower level accom-
modates accurate forecasting of generation and consumption
of various DERs with finer granularity and therefore better
accuracy. The lower level market also incorporates oversight
over the DERs’ actual participation in the market and any
unmet commitments thereof in the form of a commitment
score. Suitable accommodation is made in recognizing and
reflecting any vulnerabilities that may be present in the form of
security breaches at the secondary feeder level. Both the PMO
and SMO are proposed to be managed by a DSO. We note
that there may be multiple primary feeders and thus multiple
PMOs connected to a single substation. In this case, all these
PMOs would be coordinated by the DSO at the substation.
However, for brevity, we assume in this paper that there is
only one primary feeder (and PMO) per substation. The overall
structure of this hierarchical market is illustrated in fig. 1.

Overall the incorporation of such a hierarchical market
framework for DERs allows an efficient incorporation of
various expanded responsibilities in a local market. A DSO
needs to take on various roles, including maintaining sys-
tem reliability, facilitating transactions between agents and
aggregators, and enabling energy procurement, market clearing
and scheduling. Our proposed PMO-SMO structure distributes
these roles between the two tiers with greater emphasis on
grid physics in the upper level and addressing consumer
preferences, reliable performance of DERs and monitoring
of security breaches in the lower level. Through a modified
case study of an IEEE-123 bus primary feeder test case
with multiple secondary feeders at each bus, we demonstrate
the functioning of the hierarchical structure and show that
the LEM can coordinate and aggregate local DERs more
effectively, and enable an optimal combination of local power
and power drawn from the bulk grid. This in turn helps reduce
distribution level costs and d-LMPs. The incorporation of a
commitment score helps to maintain better reliability while
still extracting flexibility from customers and DERs. Finally,
the time-varying local retail tariffs lead to more efficient
market scheduling and lower final costs for end-users, while
ensuring that DERs and consumers are correctly compensated

for the flexibility services they provide to the grid.

A. Related work

Several papers have addressed the topic of LEMs and can be
grouped into three broad categories – (i) local markets, (ii) hi-
erarchical market structures, and (iii) real-world deployments
of local electricity markets.

Category (i) deals with papers that introduce the concept
of LEMs and related solutions [8]–[12]. Reference [8] is the
earliest reference in the literature for the term “local electricity
market”. Reference [9] describes how microgrids provided
a way of aggregating smaller resources to participate in a
market structure. Reference [10] deals with the concept of
having customers and smaller sized DERs participating in
a market structure. Transactive energy is also a big driver
in enabling LEMs, as compensating consumer resources for
services rendered is a key concept in LEMs. LEMs can in fact
be viewed as specific structural realizations of a transactive
energy framework, and consider the wider system impact
and interaction with the Wholesale Energy Market (WEM)
[11]. Other methodologies exist which enable or incentivize
the participation of DERs in the WEM, such as net energy
metering (NEM), and net energy billing (NEB) [12]. However,
these solutions do not encourage full participation of the
resources and are often restrictive in their implementation [1].

Category (ii) corresponds to papers that layout LEMs with
a direct interconnect to the WEM [6], [10], [13]–[17]. This
differs somewhat from papers in Category (i) wherein the
local market structures were largely theoretical constructs and
still evolving with standardizations yet to emerge. Reference
[13] details the interaction between WEM and LEM, and
provides numerical results on the cost savings provided by
LEM. However, the paper does not disaggregate the price at
the DSO and the consumer level, it rather uses a uniform price
throughout. References [14], [15] propose alternative retail
market structures that interact seamlessly with a WEM. They
utilize a centralized optimization framework, an objective
function which aims to minimize the operational costs for the
market operator or the DSO, and primarily consider the market
participants to be microgrids and/or aggregators. In contrast
to these references, our earlier work in [6] proposed a dis-
tributed optimization framework which was used to minimize
a combination of social welfare and line losses, subject to OPF
based on nonlinear Distflow. In this framework, general agents
representing DERs can bid into a local market at the primary
feeder level, which interacts directly with a WEM. In addition
to these papers, several surveys that capture the evolving LEM
landscape have been carried out [10], [16], [17]. Of these,
in [10], the authors lay out the evolving market structure
which will enable customer participation in a market structure.
Reference [16] is a survey that details the related work in
LEM design, existing theoretical tools and models studied
in the context of LEM, and challenges of realizing an LEM
structure. Reference [17] carries out a survey of peer-to-peer
markets. Our paper is similar to those considered in [16], and
is a distinct addition in the form of a two-level, hierarchical
LEM that includes grid physics, accurate forecasts of DER
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generation, DER characteristics such as follow-through or
unmet commitment, and vulnerability to security breaches.

Category (iii) corresponds to works related to real-field
implementation [18]–[21]. A pioneer solution to integrate
DERs has been implemented in the New York electricity
market, in the United States [18]. This reference as well as
[19] underscore the potential that DER participation brings
in terms of coordinated system operation, and shows the
feasibility of smaller DER agents effectively participating in
electricity markets. In addition to such efforts in the United
States, there are several illustrations of successful LEMs in
Europe [20], [21]. Reference [20] proposes a two-stage auction
based local market mechanism to allocate physical storage
rights. Reference [21] discusses the recently proposed market
design rules in the current context of the German market
with numerical simulations, and a novel market design called
Tech4all is introduced. The book [22] is an excellent reference
for an overall state of the art summary on LEM.

B. Our approach

Our paper proposes an LEM that connects with the WEM,
and belongs to Category (ii). The LEM consists of a two-
level hierarchical structure, located in the distribution grid,
consisting of a secondary market (SM) at the lower level
and a primary market (PM) at the upper level. Together, this
hierarchical structure allows for an efficient functioning of the
distribution grid which has to achieve multiple objectives and
satisfy complicated constraints, by accommodating complex
grid physics such as nonlinear and possibly unbalanced power
flows, at the upper level by the PM and consumer needs and
constraints, in the SM.

The PM and SM are assumed to be operated by an SMO
and a PMO, respectively. The SM consists of DCA bids
submitted to the SMO who clears and schedules them to
determine local electricity tariffs. The underlying optimization
framework determines the schedules of real and reactive power
injections of these DCAs (located at each secondary feeder)
as well as their optimal flexibility ranges. Also included are
constraints corresponding to bid flexibilities, budget, power
balance and capacity limits. A multiobjective cost function of
disutility to the DCAs, net cost to the SMO, bid-commitment
reliability, and bid-flexibility, is utilized.

The PM consists of bids from each SMO at node i in the
primary feeder, which are aggregations of the cleared market
schedules of all the secondary feeders connected to i. The
objective function includes a weighted combination of social
welfare and line losses. The constraints on real and reactive
power injections are determined using the net flexibility range
of each SMO from the SM clearing. Power balance constraints
based on nonlinear DistFlow, capacity limits on P and Q
injections, thermal line limits and bounds on voltages are
included. The underlying optimization framework is based on
the distributed approach in [6], and employs a PAC algorithm
to determine the schedules of these agents at each i. The
resulting market clearings include the real and reactive power
injections at each primary feeder node and the d-LMPs which
correspond to the payments made by the PMO to the SMOs (or

vice versa). The net injection from the entire primary feeder
is conveyed at the distribution substation to the WEM.

Together with the SM at the lower-level and PM at the
upper level, our LEM is used to determine local electricity
tariffs and d-LMPs that correspond to the payments between
SMOs and DCAs, and between PMOs and SMOs, respec-
tively. Both these prices capture the fine-grain locational and
temporal variation in a distribution grid, and form the basis
of an efficient LEM that can efficiently allocate resources and
accurately compensate prosumers for grid services provided.
In this paper, we primarily focus on flexibility services that
DERs and flexible loads can offer. This flexibility could be
achieved by DCAs through several different types of actions,
some examples include (i) load shifting or curtailment, (ii)
dispatching distributed generation (such as diesel generators)
or battery storage, (iii) using smart inverters to curtail active
power from non-dispatchable renewable resources like rooftop
PV, or alter Q injections by varying the power factor. In
addition to determining the prices, the LEM is also used to
determine and update commitment scores at the secondary
feeder level, which quantify the ability of each DCA to fulfil
their contractual commitments and follow the cleared market
schedules. We validate the entire LEM using a modified
IEEE 123-node test network, with 14% renewable generation
in terms of nameplate capacity1 and up to 50% flexible
consumption2 distributed over 79 primary feeder nodes, and
between 3-5 secondary feeders at each of the nodes.

C. Our contributions

We propose a novel local electricity market for real-time
energy transactions in a distribution grid with high DER
penetration. The following are its unique features and the key
contributions of our paper:
• Hierarchical local electricity market structure that is elec-

trically collocated with the current distribution network.
• Effectively address multiple functions of the distribution

grid by virtue of the proposed LEM’s hierarchy, with grid
physics considered in the PM and consumer needs and
constraints in the SM.

• Systematic approach showing how DERs, along with their
flexibility bids, can be coordinated and aggregated in real-
time via DCAs, and how these aggregated entities can
participate in retail and/or wholesale electricity markets.

• Optimization of multiple objectives including commit-
ment reliability, net cost, flexibility and utility in the SM;
and net costs, utility and line losses in the PM.

• Accommodation of disparate constraints including bud-
get, power balance, capacity and flexibility limits in the
SM; and nonlinear ACOPF constraints in the PM.

• Generation of a novel commitment score aimed at im-
proving the reliability of our LEM by tracking the per-
formance of DCAs at the secondary level.

• Fine-grain pricing in the form of local retail tariffs in the
SM and d-LMPs in the PM that vary with both location
and time, allowing for more efficient allocations in terms

1relative to a peak load of 3.6 MW on the entire feeder
2relative to the baseline or nominal load
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Fig. 1: Overall schematic illustrating how the proposed LEM inte-
grates seamlessly into the existing radial distribution network, and
connects with bulk transmission.

of lower costs and accurate compensation of DERs. This
in turn provides an alternative to the current practices of
net-metering and/or direct participation of DERs through
aggregators at the WEM level (under FERC 2222).

• Validation of the entire LEM using a modified IEEE 123-
bus, with a high penetration of DERs and flexible loads.

The rest of the paper is organized as follows. In section II
we introduce the structure of the LEM, including the lower
level SMO, upper level PMO, and the interactions between the
PMO, SMO, and WEM. In section III we present numerical
results on a modified IEEE-123 test feeder, with high levels of
PV penetration and load flexibility. In section IV we provide
concluding remarks.

II. A LOCAL ELECTRICITY MARKET (LEM)
The LEM we propose in this paper consists of a two-

level hierarchical structure, located in the distribution grid,
with an SM at the lower level and a PM at the upper level,
a schematic of which is shown in figs. 1 and 2. These
markets are assumed to be operated by an SMO and a PMO,
respectively, with combined oversight of both provided by a
DSO. In what follows, we provide details of the SM and PM,
the interface between the two, and their timelines. Throughout
this paper, we define net injections as generation less load (i.e.
P = PG−PL, Q = QG−QL), thus net generation would be
positive while net loads are taken to be negative. All bids are
assumed to be based on load/generation forecasts one timestep
into the future, for both the PM and SM. Thus, the cleared
schedules hold for the entire duration of the next period (i.e.,
either ∆tp or ∆ts), until the next time market bidding and
clearing occur.

A. SM structure

The following quantities are defined before we pose the
optimization problem that serves as the backbone of the SM:

Fig. 2: Proposed hierarchical LEM structure and optimization frame-
work incorporating bid flexibility. The upper level PMO coordinates
with the WEM, while the SMO at the lower level oversees the DCAs.
At the bottom of this figure, we show an example of a feasible
flexibility bid from a DCA and the revised flexibility range that results
from the SM clearing.

• i ∈ NI : Set of indices of all SMOs under consideration,
downstream of a particular PMO.

• j ∈ NJ,i: Set of indices of all DCAs under consideration,
downstream of a given SMO i.

• P i0j , Q
i0
j : Baseline net active and reactive power injec-

tions for DCA j, which could either be forecasted by the
SMO based on historical data or explicitly submitted by
the DCA as part of its bid.

• ∆P ij = [P ij , P
i

j ], ∆Qij = [Qi
j
, Q

i

j ]: Bid flexibilities
for each DCA. These intervals represent the range of
maximum downward and upward flexibilities in P and
Q injections being offered by the DCA.

• tp and ts: Timestamps for the PM and SM, respectively.
• ∆tp,∆ts and ∆tWEM : Time periods for the PM, SM,

and WEM, respectively.
• t̂p: The most recent PM clearing prior to the current SM

interval [ts, ts + ∆ts].
• P ∗i (t̂p) and Q∗i (t̂p): Real and reactive power setpoints,

respectively, provided by the PM to SMOs at time t̂p.
• np, ns: Number of primary clearing periods and number

of secondary clearings per primary period, respectively.

The following decision variables are determined as outputs of
the optimization for each DCA j bidding to SMO i:

• Decision vector ~Sij = [P ij , Q
i
j , δP

i
j , δQ

i
j , µ

iP
j , µiQj ]

• P ij , Q
i
j : Optimal power injections assigned as setpoints

by the SMO i to DCA j.
• [δP ij , δQ

i
j ]: Optimal symmetric flexibility ranges around

the above setpoints P ij , Q
i
j , i.e. the DCA is directed to

have net injections within these intervals [P ij −δP ij , P ij +
δP ij ], [Qij − δQij , Qij + δQij ].
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• µiPj , µiQj : Local electricity tariffs.
• Cij(t): Commitment score where Cij(t) ∈ [0, 1] reflects

the SMO’s confidence in whether the DCA j will reliably
follow their committed injections within the flexibility
range specified above.

The solutions correspond to power injections and net tariffs
corresponding to each DCA, determined at ts and applied over
the period [ts, ts + ∆ts], for all ts. The following objective
function and constraints define the underlying multi-objective
optimization problem ∀ ts, tp (tp ≤ ts). All quantities and
variables in eq. (1) are specified for the current secondary
timestep ts unless explicitly specified otherwise.

min
~Si
j

∑
j∈NJ,i

{f ij,1, f ij,2, f ij,3, f ij,4} (1a)

f i1,j � f i2,j � f i3,j � f i4,j (1b)

fj,1 = −Cij(P i
2

j +Qi
2

j ), f ij,2 = µiPj P ij + µiQj Qij

f ij,3 = −(δP ij + δQij)

f ij,4 = βiPj (P ij − P i0j )2 + βiQj (Qij −Qi0j )2

subject to:

P ij + δP ij ≤ P ij ≤ P
i

j − δP ij (1c)

Qi
j

+ δQij ≤ Qij ≤ Q
i

j − δQij (1d)

δP ij , δQ
i
j ≥ 0, (1e)

0 ≤ µiPj ≤ µiP , 0 ≤ µiPj ≤ µiQ (1f)
ts+∆tp∑
ts

∑
j∈NJ,i

µiPj (t)P ij (t)∆ts ≤ µP
∗

i (t̂p)P
∗
i (t̂p)∆tp (1g)

ts+∆tp∑
ts

∑
j∈NJ,i

µiQj (t)Qij(t)∆ts ≤ µ
Q∗

i (t̂p)Q
∗
i (t̂p)∆tp (1h)

∑
j∈NJ,i

P ij (ts) = P ∗i (t̂p),
∑
j∈NJ,i

Qij(ts) = Q∗i (t̂p) (1i)

The cost functions in (1a) correspond to the following:
1) Commitment f ij,1: This term maximizes the injections

assigned to more trustworthy DCAs (i.e., Cij closer to
1) while minimizing the scheduling of DERs with lower
commitment scores, who are relatively less likely to
follow through on their contractual commitments.

2) Net costs f ij,2: This term minimizes the net costs to
the SMO for running its SM, which are composed of
payments made out by the SMO to DCAs that are net
generators, and denote revenue if the DCAs are loads.

3) Flexibility f ij,3: These terms aim to maximize the aggre-
gate flexibility that the SMO can extract from its DCAs,
and in turn offer to the PMO.

4) Disutility f ij,4: These terms aim to minimize the disutility
or inconvenience caused to DCAs when they provide
flexibility to the operator. Thus, our SMO is an altruistic
entity that also considers welfare maximization for its
DCAs. For our simulations in section III-B, the disutility
coefficients were chosen as βiPj , βiQj ∼ U [0.1, 1].

The multiobjective optimization problem in eq. (1) was
formulated and solved using a hierarchical or lexicographic

optimization-based approach. This method has been widely
used in the literature to solve multiobjective problems [23],
[24], particularly when the objectives have different units and
may not be comparable in magnitude. In the hierarchical
method, the different objectives are ranked in descending order
in terms of their importance to the decision maker. The SMO
orders their four objectives as shown in eq. (1b), assigning
commitment reliability as the most important goal and DCA
disutility as being the least important. The SMO then solves a
series of optimization problems, sequentially optimizing each
of these objectives one at a time, in descending order of
importance:

min
~Si
j

Fk =
∑
j∈NJ,i

f ij,k(~Sij) ∀ k = 1, 2, 3, 4 (2)

s.t. f ij,`(~S
i
j) ≤ (1 + ε)

∑
j∈NJ,i

f ij,`(~S
i∗

j ) = (1 + ε)F ∗` , (3)

∀ ` = 1, 2, . . . , k − 1, k > 1

constraints in eqs. (1c) to (1i) (4)

At each step after optimizing the 1st objective (commitment
reliability f ij,1), additional constraints are placed on the values
of the previously optimized objectives as in eq. (3). The hy-
perparameter ε controls the extent to which previous objective
values are allowed to be degraded while searching for the new
minima. We used ε = 0.05 (5%) for our simulations. Using
such a hierarchical approach also helps us get around the issues
of our objective terms potentially being on different orders
of magnitudes since we only minimize a single objective at
each step, and the constraints in eq. (3) look at the relative
changes in the objective function values rather than their
absolute magnitudes. Thus, we can proceed without needing to
normalize any of the terms. This is especially advantageous
here since most normalization methods require either prior
knowledge of maximum or minimum objective values (which
are not known beforehand in our case), or entail solving
additional optimization problems to find these values at every
iteration, which can be computationally expensive [25]–[27].
Finally, we note that multiobjective optimizations problems in
general do not have unique minima. Rather, the goal here is
to find a Pareto-optimal set or efficient frontier of multiple
possible solutions [23], [28].

The constraints in eqs. (1c) to (1e) reflect the feasible
flexibilities for each of the DCAs. Constraints in eq. (1f)
enforce that the cleared tariffs µij for any DCA j cannot exceed
a price ceiling µij . These upper bounds may be set by an
external regulatory authority such as a DSO, Independent Sys-
tem Operator (ISO), Regional Transmission Operator (RTO),
or Public Utility Commission (PUC). The budget constraints
in eq. (1g) and eq. (1h) ensure that the total net payments
made out by the SMO to its DCAs over all the SM clearings
within each primary interval [ts, ts+∆tp] do not exceed its net
revenue received from the PMO during the same period. We
enforce these budget constraints separately for P and Q since
proposed reactive power markets often behave quite differently
compared to the energy market for real power [29]. Note that
our optimization problem solves for the prices in terms of
[$/kW] or [$/kVAR] so these are converted to [$/kWh] or
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[$/kVARh] respectively, before applying any of the budget
constraints.

The constraints as written in eq. (1g) and eq. (1h) can be
quite restrictive since they require the SMO to balance its
budget for every PM period ∆tp. Thus, in addition to the
strict budget constraints above, we also considered a softer
implementation of the same. These require the SMO to balance
its budget over the course of a longer time horizon (e.g. 1 day),
allowing the SMO to run a deficit for some PM clearings,
if needed. These are shown in eqs. (5) and (6), where we
consider a planning horizon of np primary clearing periods
for the budget balance:

np∆tp∑
0

∑
j∈NJ,i

µiPj (t)P ij (t)∆ts ≤
np∆tp∑

0

µP
∗

i (t)P ∗i (t)∆tp (5)

np∆tp∑
0

∑
j∈NJ,i

µiQj (t)Qij(t)∆ts ≤
np∆tp∑

0

µQ
∗

i (t)Q∗i (t)∆tp (6)

Since the optimization problem in eq. (1) is currently framed
as a single period problem, we transformed our inherently
multiperiod budget constraints to a quasi-multiperiod form
for implementation. This was done by assuming that the
SMO evenly redistributes its leftover net revenue over all
the remaining SM clearings in the current budget period. For
example, the quasi-multiperiod version of the strict budget
constraint in eq. (1g) is given by:∑
j∈NJ,i

µiPj (ts)P
i
j (ts)∆ts ≤ (7)

∑t̂p
0 µP

∗

i (t)P ∗i (t)∆tp −
∑ts−∆ts

0

∑
j∈NJ,i

µiP
∗

j (t)P i
∗

j (t)∆ts
t̂p+∆tp−ts

∆ts

where t̂p is the most recent primary clearing time prior to this
SM clearing, and the denominator is the number of secondary
clearings left in the current PM interval [t̂p, t̂p+∆tp]. A similar
quasi-multiperiod form can be derived for the relaxed budget
constraints in eqs. (5) and (6) as well.

Finally, eq. (1i) denotes power balance constraints for the
SMO, where the sum total of net injections from the DCAs
downstream needs to satisfy the net flows from the primary
feeder upstream, These net injections P ∗i (t̂p) and Q∗i (t̂p), at
each primary feeder node (SMO) i are scheduled by the PMO.
Since the PM clears less often than the SM, these values
can be treated as constant for the SM optimization problem
over each ∆tp. Suitable convex relaxations were added to
ensure feasibility and minimal optimality gap, and the resulting
optimization problems were solved using Gurobi in Python3.

The overall operation of the SM is summarized as follows:
Starting with DCA bids ~Bij = [P i0j , Q

i0
j ,∆P

i
j ,∆Q

i
j ] as

inputs, the constrained optimization problem in eqs. (1a)-(1i)
is solved by the SMO, with the market clearing resulting in
net-injections P i

∗

j (ts) and local electricity tariff µiP
∗

j (ts), for
real power. A similar set of injections and tariffs are derived
for reactive power as well. Each of these solutions corresponds

3https://www.gurobi.com/

to the net-injection at DCA j, cleared at ts, and holds for
the following period [ts, ts + ∆ts]. Together with these net
injections, the SMO also obtains, as a part of the above opti-
mization procedure, a feasible flexibility δP ij in the real power
injection for node j, and a similar flexibility for the reactive
power injection. Together, the complete set of solutions from
the SMO at secondary feeder j connected to the PMO at node
i is given by Si

∗

j (see fig. 2). These market cleared solutions
are used to establish bilateral contracts between the SMO and
its DCAs, with localized retail tariffs for the power injections,
differentiated for each of them.

Another unique aspect of this SM structure is the commit-
ment score Cij(t). This is determined at every ts, with a score
decrease following every event where the DCA exhibits unmet
commitment. As the goal is to have the SMO i reduce this
score for such events and to reward the DCA j when they do
follow through on their commitment, we propose the following
recursive algorithm for a continuous update of Cij(ts):

Cij(ts) = Cij(ts − 1)−
ẽiPj (ts) + ẽiQj (ts)

2
∀ j ∈ NJ,i (8)

ePj (ts) = JP̂j > P
i∗

j K(P̂j − P
i∗

j ) + JP̂j < P i
∗

j K(P i∗j − P̂j)

+ JP i
∗

j ≤ P̂j ≤ P
i∗

j K max(P̂j − P
i∗

j , P
i∗

j − P̂j) (9)

ẽiPj (ts) =
eiPj (ts)

|P i∗j (ts)|
, ẽiQj (ts) =

eiQj (ts)

|Qi∗j (ts)|
(10)

ẽPi (ts) =
ePi (ts)

‖ePi (ts)‖
, ẽQi (ts) =

eQi (ts)

‖eQi (ts)‖
(11)

where P i
∗

j = P i
∗

j − δP i
∗

j , P
i∗

j = P i
∗

j + δP i
∗

j . Here, the
deviations in DCA injections are first normalized by their true
setpoints in eq. (10), followed by L2 normalization in eq. (11).
These normalizations allow us to assess the relative perfor-
mance of all DCAs under SMO i. The resulting commitment
score serves as a metric of DCA reliability, and is proposed as
a stand-alone indicator of DER commitment or a lack thereof.
Further refinements of the SM could include the use of Cij
for determining suitable penalties to these DCAs as Cij drops
below unity and tightly interconnect with a corresponding
ancillary market structure. Yet another component that could
be coupled with Cij is the DCA’s vulnerability to cybersecurity
breaches. Currently these discussions are omitted, and will be
pursued as part of future work.

B. Interface between SM and PM

P 0
i (tp) =

∑
j∈NJ,i

P i
∗

j (tp), Q
0
i (tp) =

∑
j∈NJ,i

Qi
∗

j (tp) (12)

∆Pi =
[
P i =

∑
j∈NJ,i

P i
∗

j − δP i
∗

j , P i =
∑
j∈NJ,i

P i
∗

j + δP i
∗

j

]
∆Qi =

[
Q
i

=
∑
j∈NJ,i

Qi
∗

j − δQi
∗

j , Qi =
∑
j∈NJ,i

Qi
∗

j + δQi
∗

j

]
As mentioned earlier, an SM is located at each primary

feeder node i, supervised by SMO i, and determines market

https://www.gurobi.com/
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Fig. 3: An illustrative timeline of the proposed LEM, also showing
the interactions and interplay between the primary and secondary
level markets.

clearings for all secondary feeders j connected to this node
with each j assumed to be represented by DCA j in the SM.
The market clearing consists of

(
P i
∗

j (ts), µ
iP∗

j (ts)
)

at each
ts, which corresponds to power injections and local electricity
tariffs for secondary feeder j. The market also returns an
optimal flexibility δP i

∗

j for each j. A similar set of clearing
variables are associated with reactive power too. At each
primary market timestep tp, this SM clearing is completed
before the PM clearing at the same timestep. The SMO i in
turn uses these DCA solutions from its SM in order to form its
own bid into the PM at time tp, representing primary feeder
node i, that is at the upper level of our proposed LEM. The
SMO aggregates power injections from all secondary feeders
as its baseline injection P 0

i , at time tp. The SMO bid also
includes a corresponding aggregated flexibility ∆Pi based on
the DCA-flexibilities δP i

∗

j . The specific bid determinations
are given by eq. (12). These bids and the corresponding PM
clearing are assumed to occur every ∆tp, with the assumption
that ∆tp > ∆ts.

C. PM structure

The starting point for the PM are the SMO bids Pi with
the flexibility δPi, and a similar set of quantities for reactive
power, at each primary feeder node i. The PMO (possibly
at a substation) which has oversight over the entire primary
feeder, accepts these bids, and clears the PM at every tp
at intervals of ∆tp. The PMO clears the market, with an
underlying distributed optimization framework that facilitates
market clearing. This framework includes appropriate cost
functions such as Social Welfare and line losses, and con-
straints that correspond to power physics constraints modeled
with nonlinear DistFlow equations (branch flow model), as
well as various network level constraints.

The underlying optimization problem for the PMO over
a radial distribution grid is defined in eq. (13), where
Pi, Qi, vi are the nodal real power, reactive power, and
voltages, superscripts G and L denote generation and load,
and Pi′,i, Qi′,i, li′,i, Ri′,i, Xi′,i denote the real power, reactive
power, squared current magnitude, resistance, and reactance

of the branch from node i′ to i. These nonlinear constraints
describe the power flow in the radial distribution grid, as-
suming balanced flows, small angles, and a convexification
of the definition of power using second-order cone constraint
programming (SOCP). The remaining constraints describe the
network voltage constraints, and generator and load flexibility
limits.

min
y

fS−W (y) (13)

subject to:

vi − vi′ =
(
R2
i′,i +X2

i′,i

)
li′,i − 2 (Ri′,iPi′,i +Xi′,iQi′,i)

PGi − PLi = −Pi′,i +Ri′,ili′,i +
∑

k:(i,k)∈T

Pi,k

QGi −QLi = −Qi′,i +Xi′,ili′,i +
∑

k:(i,k)∈T

Qi,k

P 2
i′,i +Q2

i′,i ≤ S
2

i′,i

P 2
i′,i +Q2

i′,i ≤ vili′,i
vi ≤ vi ≤ vi
PGi ≤ PGi ≤ P

G

i

PLi ≤ PLi ≤ P
L

i

QG
i
≤ QGi ≤ Q

G

i

QL
i
≤ QLi ≤ Q

L

i

The specific cost function that will be used is as below:

fS−W (y) =
∑
j

[
fLoad-Disutil
i (y) + fGen-Cost

i (y)
]

+ ξ
[∑

k

fLoss
k (y)

]
(14)

fLoad-Disutil
i (y) = βPi (PLi − PL0

i )2 + βQi (Qi −QL0
i )2 (15)

fGen-Cost
i (y) =

{
αPi (PGi )2 + αQi (QGi )2,

λPi P
G
i + λQi Q

G
i , if i is PCC

(16)

fLoss
i′,i (y) = Ri′,ili′,i (17)

where i are the indices for SMOs participating in the PM,
PLi , Q

L
i and PGi , Q

G
i are the loads and generation at node i

respectively, PL0
i and QL0

i are the baseline loads, li′,i and
Ri′,i are the squared magnitude of current and resistance of
line from node i′ to i. The cost coefficients for load disutility
of the SMO are computed as βPi = 1

|NJ,i|
∑
j∈NJ,i

βiPj , where
notation |NJ,i| denotes the cardinality of the set NJ,i, i.e. the
number of DCAs downstream of SMO i, and likewise for
reactive power disutility βQi . The quadratic coefficients for
generating cost are αPi and αQi , and the wholesale price of
power (LMP) from the WEM at the PCC is λP and λQ. The
coefficient of power loss ξ in eq. (14) reflects the trade off
between minimizing line losses versus minimizing disutility
and generation costs. These coefficients would be privately
chosen by the SMO according to their preferences. For our
simulations, we used a constant value of ξ = 100 for all
SMOs. We chose this value in order to balance the tradeoffs
of socioeconomic costs versus line losses. Using a ξ value
that’s too low would devalue the line losses term entirely due
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to relative scaling issues, and a value that’s too high is also
unrealistic because economic and utilitarian decisions drive the
market. During actual implementation, this power loss factor
would likely have to be tuned by each SMO over time, based
on their operational objectives and above mentioned tradeoffs.
Finally, the PMO interfaces with a market operator at the
substation and bids into the WEM every ∆tWEM = 5 min.

The linear cost term in eq. (1a) for the SM accounts for the
retail costs to customers and payments to DGs. However, we
use a quadratic cost in eq. (16) for the PM in order to account
for the additional costs to the SMO for operating the SM and
maintaining its distribution network. These include procuring
reserves, adequate storage, and standby or auxiliary generation
capacity4 for contingencies, e.g. to meet shortfalls in case of
unmet commitments from its DCAs. These fixed and amortized
cost coefficients for the SMOs were chosen to be between
αP,fixedi ∈ [4, 8] $/p.u. [30], [31], with Sbase = 1 MVA.
In addition to these O&M costs, the SMO also adjusts these
cost-coefficients at every tp by a small variable amount αP,vari ,
based on the weighted average of the retail tariffs across all
its DCAs from the previous SM clearing. This variable cost
component reflects the average cost of electricity in the SM
and thus can also be interpreted as a price bid or offer by the
SMO to the PMO, resulting from the SM optimization.

αP,vari (tp) =

∑tp
tp−ns∆ts

∑
j∈NJ,i

µjP
∗

i

∣∣∣P j∗i ∣∣∣∑tp
tp−ns∆ts

∑
j∈NJ,i

∣∣∣P j∗i ∣∣∣ (18)

αPi (tp) = αP,fixedi + αP,vari (tp) (19)

With the costs and constraints as above, the OPF problem
is solved using CVX in MATLAB5 to carry out the market
clearing, which consists of the power injection at each SMO i
and d-LMP, the electricity price corresponding to primary node
i and determined using the dual variable obtained from the
OPF. These clearings are implemented through a distributed
optimization algorithm denoted as PAC [6], [7] which consists
of peer-to-peer communication between neighboring SMOs in
an autonomous manner. This makes the computation more
tractable and also reduces communication latencies. Upon
reaching an agreement with its neighbours, each SMO enters
into a bilateral agreement with its PMO, thereby committing
to deliver or consume the decided amount of power, at the
d-LMP rate. Any net loads consumed by the SMO will be
charged the d-LMP, and equivalently, net generation by an
SMO will be remunerated at the d-LMP. All payments will be
made to/from the PMO.

D. Timelines of SM and PM

The overall time scales of the secondary and primary levels
of our proposed retail market in relation to the real-time
market in a WEM are indicated in fig. 3. Market clearings
of the SM and PM are assumed to be every ∆ts and ∆tp
apart, with ∆ts < ∆tp. For the use-case study, we assume

4Resources like large-scale battery storage, diesel gensets, natural gas
peaker plants, etc.

5http://cvxr.com/cvx/

that ∆tp = ∆tWEM , i.e., the PM and WEM are cleared
together in lockstep. We also assume that ∆ts = 1 min and
∆tp = 5 min, and that the SM clearing occurs arbitrarily
quickly as the complexity and dimensionality of the underlying
optimization problem is low.

E. Assumptions, Observations, and Extensions

The LEM proposed here has been constructed using a hier-
archical structure precisely to address the distinct challenges
that a distribution grid poses in comparison to a transmission
grid. This hierarchical structure allows an efficient incorpo-
ration of multiple objectives and constraints simultaneously
present. Since the SM is closer to the end-user in both location
and time, we constructed the SM to be more consumer-centric,
with costs and constraints pertaining to consumer flexibility
and needs. Since the PM, relatively speaking, has a complex
set of physical network topologies, we pay greater attention to
the physical costs and constraints in its problem formulation.
This allows the DSO, overall, to address the varied roles
of reliability challenged by grid physics, and flexibility and
granularity in location and time challenged by the presence
of disparate consumers with varied needs and constraints. In
this study, we assume that the SM is cleared more frequently
compared to the PM, in order to quickly accommodate any
variations that may occur locally at the DCA level. However,
this condition is not necessary to operate our hierarchical
LEM, allowing both markets to be in lockstep if need be.

In this paper, we considered a single period optimization
problem solved by the SM at each timestep. However, our
market structure can be applied to the multiperiod optimization
setting as well. We are currently working on extensions of
our model where the SMO and PMO perform multiperiod
optimization over a planning horizon into the future, using
an approach inspired by optimal control or model predictive
control (MPC), similar to [32]. For instance, the core structure
of the SM optimization problem would remain the same as in
eq. (1) but would now optimize over several timesteps T into
the future, subject to similar constraints as in eq. (1c)-eq. (1i):

min
~Si
j(t)

τ+T∑
t=τ

∑
j∈NJ,i

{f i1,j(t|τ), f i2,j(t|τ), f i3,j(t|τ), f i4,j(t|τ)}

(20)

where (t|τ) denotes predictions or estimates of quantities
for future periods t made at time τ . Thus, the decision
vector {~Sij(t)}Tt=τ is now higher dimensional since it spans
multiple SM periods. In addition to future flexibility bids
from DCAs, i.e., (P i0j (t|τ), Qi0j (τ),∆P ij (t|τ),∆Qij(t|τ)),
the SMO also needs to predict future PM solutions
(µP

∗

i (t̂p|τ), P ∗i (t̂p|τ), µQ
∗

i (t̂p|τ), Q∗i (t̂p|τ) in order to solve
the SM multiperiod optimization problem. Herein lies the
main challenge of extending to the multiperiod setting. We are
exploring several time series forecasting tools like ARIMA6,
exponential smoothing, etc. for this purpose. This optimization
would result in both binding spot values that apply for the
very next timestep, as well as future values for further into

6Auto Regressive Integrated Moving Average

http://cvxr.com/cvx/
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the planning horizon that are non-binding. One of the main
benefits of the multiperiod approach is that it allows us to
implement more realistic formulations of the budget constraint,
without having to resort to assumptions as described in eq. (7).
For example, the multiperiod version of the budget balance for
active power would be:∑
t∈Ts

∑
j∈NJ,i

µiPj (t)P ij (t)∆ts ≤
∑
t′∈Tp

µP
∗

i (t′|τ)P ∗i (t′|τ)∆tp

(21)

where Ts and Tp denote the set of SM and PM clearing
times within the current planning horizon T , respectively. A
multiperiod approach would also allow us to include inter-
temporal constraints, in order to better optimize the scheduling
of energy storage devices like batteries and EVs as well
as thermostatically controlled loads (TCLs) such as heating,
ventilation, and air conditioning (HVAC) systems and water
heaters [33].

Our focus in this paper has been on real-time energy
markets. We have not addressed issues such as settlements
and billing, as the relevant discussions will have to necessarily
include ancillary markets and reserves to deal with any unmet
commitments and supply-demand imbalances, in real-time.
Extensions similar to co-optimization [34] of these different
markets are expected to be possible. Currently, bids into the
PM are synthesized from the SM clearings through a sim-
ple aggregation process. Advanced game-theoretic approaches
such as [35], [36] have the potential to generate more intel-
ligent bids, and is a topic for future research. The inclusion
of the commitment score in our optimization problem is an
effort to address consumer-centric constraints that could lead
to unmet commitments. This may be due to a variety of
factors such as (i) willful reneging on contracts, (ii) malicious
behavior due to system compromise or security breaches,
and (iii) changes in environmental or weather conditions.
The commitment score could also be potentially used for
determining penalties and tariffs, thereby leading to a more
efficient market design. Details of this effort are part of our
future work as well.

III. RESULTS AND DISCUSSION

A. The Use-case

The hierarchical LEM proposed in section II is evaluated
using a modified IEEE-123 test feeder. A GridLAB-D model7

was utilized to simulate this test feeder over the course of a 24
hour period. Rooftop PV (with smart inverters) was assumed
to be present at nodes 5, 20, 50, 63, and 94, with a total PV
generation capacity of 510.3 kW. This corresponded to a DER
(PV) penetration of about 14%, assuming that the peak load
is at about 3.6 MW [37], [38]. An SMO was assumed to be
present at 79 of the primary feeder nodes (i.e. |NI | = 79), and
that flexible loads were present at all of these nodes with each
DCA capable of up to ±50% deviations around their baseline
injections. We assumed this maximum flexibility based on past
studies forecasting demand response potentials in the US [39].

7https://www.gridlabd.org/

The GridLAB-D model included triplex meters to record P and
Q injections every minute, at each of these 79 nodes. Weather
data for Boston, MA was used to forecast PV generation,
and real-time 5-minute LMPs from ISO-NE for August 28,
2021 were used as input data to the SM and PM optimization
problems [40]. Since no reactive power market currently exists,
we assumed the Q-LMP to be 10% of the P-LMP [41]. The
price ceilings in eq. (1) were set to be µiP , µiQ = 0.2 $/kWh,
which is almost twice the current average retail rate of 0.129
$/kWh charged by Eversource, a utility in Massachusetts8.
The overall test feeder was converted to a balanced 3-phase
distribution network by (i) assuming switches to be at their
normal positions, (ii) converting single phase spot loads to
be 3-phase, (iii) assuming cables to be 3-phase transposed,
(iv) converting configurations 1 thru 12 to symmetric matrices
and (v) modeling shunt capacitors as 3-phase reactive power
generators [6]. A PMO was assumed to be at the slack bus, at
13.2kV, with the SMOs at 4.16kV, and each DCA at 120-240V.

Each SMO was assumed to have anywhere between |NJ,i| ∈
[3, 5] DCAs with the actual number chosen uniformly at
random. The number of DCAs at each SMO i is chosen
independently. We set the baseline injections P i0j , Q

i0
j to be

equal to the results from the GridLAB-D simulations. Since
the injection data was only available up to the primary feeder
node level, we artificially disaggregated the injections at each
SMO amongst its DCAs, with each DCA being either a
net load or net generator. The flexibility bids for the SM
∆P ij ,∆Q

i
j were also randomly generated, allowing each DCA

to offer flexibilities of up to ±50% away from their baseline.
Thus, the upper and lower limits for the bid flexibilities
were set as P ij = P i0j (1 − ∆j

i ), P
i

j = P i0j (1 + ∆
j

i ), where
∆j
i ,∆

j

i ∼ U [0, 0.5]. We focus here on the results for active
power only; similar trends were observed for reactive power.

B. SM scheduling

The first step in our use-case study is the SM structure, and
its market clearing using the optimization problem outlined in
eqs. (1a)-(1i). The bids ~Bij corresponding to these parameters
are shown in fig. 4a for a randomly selected SMO i = 7
having 3 DCAs j = 1, 2, 3. The interval of interest was chosen
to be of a 60-min duration, with the actual hour chosen at
random. The power injections P 7∗

j obtained from solving (1a)-
(1i) as well as the corresponding flexibilities, for each DCA
j, are indicated in fig. 4b. These two figures clearly illustrate
the optimal flexibility range for each of the DCAs, reflecting
the ability of the SM to incorporate the constraints of the
DCAs, and multiple objectives such as utility, monetary costs,
and commitment reliability. The corresponding local electricity
tariffs, µ7P∗

j are shown in fig. 4c for j = 1, 2, 3. Figs. 4b and
4c also illustrate the correlation between injections and prices.
For instance, the tariffs for DCA 3 are consistently higher than
those for 1 and 2, as DCA 3 is more heavily loaded than the
other DCAs. Similarly, tariffs for DCA 1 are lower as its net
generation is higher; the price fluctuations are more or less in
sync with generation and demand patterns.

8https://www.eversource.com/content/ema-c/residential/my-account/
billing-payments/about-your-bill/rates-tariffs/summary-of-electric-rates

https://www.gridlabd.org/
https://www.eversource.com/content/ema-c/residential/my-account/billing-payments/about-your-bill/rates-tariffs/summary-of-electric-rates
https://www.eversource.com/content/ema-c/residential/my-account/billing-payments/about-your-bill/rates-tariffs/summary-of-electric-rates


10

(a) Bids with flexibilities P 7,0
j ,∆P 7

j .

(b) DCA schedules and responses.

(c) Market cleared local retail tariffs.

Fig. 4: SM bidding and clearing for primary feeder node 7, with 3
DCAs j ∈ {1, 2, 3}. The solid lines in fig. 4a and fig. 4b represent
the baseline injection bids and market cleared setpoints, respectively,
while the shaded regions around them are the flexibility ranges. Local
retail tariffs from the SM µ7P∗

j are shown in fig. 4c. The SMO
aggregates these PM schedules to bid into the PMO as in fig. 5a. The
dashed lines in fig. 4b indicate the actual responses of the DCAs in
response to their market cleared schedules.

C. PM scheduling

The optimal injections with associated flexibilities from the
SM clearing in fig. 4b are aggregated across all three DCAs to
form this SMO’s bid P 0

7 ,∆P7 into the primary level market,
as described in eq. (12). The resulting SMO bids are shown in
fig. 5a, where the solid red line indicates P 0

7 and the shaded
area indicates the flexibility range

[
P 0

7 −∆P7, P
0
7 + ∆P7

]
.

These bids are in turn used to solve the PM OPF problem in
eq. (13) using the distributed PAC algorithm, where the SMO’s
flexible bids ∆P7 = [P 7, P 7] set the feasible operational
limits for the power flow constraints in (13). Solving this
optimization problem corresponds to clearing the PM, and
determines the PM schedules for the SMO. The results of
the PM clearing for SMO i = 7 are shown in fig. 5b. Our
two-tier market structure generates two sets of schedules and
prices, every 1 min and every 5 min for the SM and PM,
respectively, shown in fig. 4 and fig. 5. We further note that
both the local electricity tariffs and the d-LMPs determined
by the SM and PM display a high degree of spatio-temporal
variations, as shown in fig. 5c. This illustrates the need for
local primary and secondary markets to capture such changes
with sufficient resolution.

In order to evaluate the impact of the hierarchical structure
that we have included in the LEM, we compare the perfor-
mance of the PM to the case when there is no SM at the
lower level. The ‘without SMO’ scenario consists of only a
PM, with the PMO directly assuming flexibility ranges for
each primary feeder node that best represents an aggregation
of local generation and curtailable loads. In what follows, we
compare the performance of our hierarchical LEM, i.e., the
‘with SMO’ scenario, with the ‘without SMO’ scenario. First,
we compare the inputs into the PM at node 7.

Figure 5a shows that the PMO has a larger flexibility range
that may not be accurate or realizable. The red curve in fig. 5a
shows that the flexibility range with SMO is narrower, and
reflects the true preferences of the DCAs. Furthermore, the
amount of flexibility that the SMO provides to the PMO is
also impacted by other factors like the SM retail costs and the
commitment scores of each of its DCAs, both of which vary
with time. As a result, the ‘with SMO’ case is more performant
as the baseline injection is optimized in comparison to the
relatively ad-hoc choice in the without SMO case (the blue
curve in fig. 5a).

We next compare the performance of our hierarchical mar-
ket across the entire primary feeder consisting of all 79 SMO
nodes, over the course of the whole simulation period of
24 hours. In fig. 6a, the inputs to the PMO are shown (the
red curve), with all SMO solutions aggregated across all 79
primary feeder nodes i ∈ NI and for the entire day. We see
that without the additional visibility and granularity offered by
the SM structure, the PM would assume much larger ranges
for the injection limits in the ‘without SMO’ case (the blue
curve) when compared to the ‘with SMO’ case. These are
less accurate and may also be overoptimistic in terms of
how much flexibility can be realistically expected from the
DCAs, which in turn can cause issues in case of reneged
commitments. It should be pointed out that the amounts of
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(a) Inputs from node 7 for PM clearing.

(b) PM solutions for SMO 7. The solid and dashed black lines are the load
injections, while the red and blue lines are the d-LMPs with and without the
SMO, respectively.

(c) d-LMPs across all SMO nodes over 1d.

Fig. 5: Selected solutions from the PM clearing.

local generation seen in fig. 5 and fig. 7b are above the
installed PV capacity of 510.3 kW. This is because while
generating the synthetic flexibility bids for the DCAs, we
allowed for the possibility of additional DERs like batteries,
EVs and curtailable or shiftable loads, present at each of these
secondary feeders, which weren’t explicitly modeled in the
GridLAB-D simulation.

In fig. 7a, we see that the d-LMPs both with and without the
SMO are generally higher than the LMP, which is expected
since the d-LMPs account for additional costs associated with
congestion, line losses and other delivery charges incurred by
the PMO and DSO in the distribution network, downstream
of the substation. The d-LMP with the SMO does fall slightly
below the LMP between 100-500 minutes (02:00:0700). This
can be explained by the total electricity demand being low
during this period which in turn occurs as the SMOs are able
to curtail flexible loads to a larger extent by coordinating their
DCAs more intelligently and compensate them accordingly at
the local retail tariff rate. In fact, we find that the SMOs are
able to achieve higher levels of load curtailment throughout
the course of the day when compared to the case without
SMOs. Once again, this is likely because the SMO can access
additional information on DCA’s preferences and effectively
utilize any additional flexibility that they’re willing to provide.
The SM allows the SMO to more efficiently allocate resources
amongst the secondary feeders at each primary feeder node,
and take advantage of differences in load and generation
profiles across DCAs over time since they could potentially
complement each other.

The second observation from fig. 7a and fig. 7b is that the
‘with SMO’ case schedules lower levels of local generation
mid-day compared to the ‘without SMO’ case. This may be
due to a combination of multiple objectives utilized in the SM
that include both net costs and flexibility. The optimal behavior
as a result, as predicted by the LEM, is one where more power
is purchased from the main transmission grid rather than from
local generation mid-day. This is also supported by fig. 7a
which shows that such a behavior leads to lower d-LMPs and
reduced distribution network costs with the hierarchical LEM
than without the SMO. This is desirable since the SMOs can
then reduce the retail tariff charged to their DCAs, improving
affordability for customers, as seen in table I. It also ensures
that DSOs aren’t over-compensating prosumers with DERs.
This can help avoid excessive cross-subsidies from consumers
to prosumers which is a major challenge associated with net
energy metering (NEM) programs today [42], [43], and can
thus produce more equitable allocations.

Figures 6b, 7a, and 7b correspond to the main conclusions
of the proposed LEM. In all three figures, the red curves
correspond to the behavior with the LEM while the blue curves
correspond to the ‘without SMO’ case. The red curve in fig. 6b
shows that the LEM schedules generation from the bulk grid
more in the middle of the day and less otherwise; those in
fig. 7b show that it’s advantageous to increase local generation
in the latter part of the day and to curtail load in the earlier
part of the day. The LEM determines that the IEEE-123 feeder
needs to import around 700 kW between minute 400 to minute
850, and less than 300 kW from minute 1000 onward. This



12

(a) Inputs to PM aggregated across all primary feeder nodes except the slack
bus.

(b) PM solutions for net injections at the slack bus.

Fig. 6: Comparison of PM bids (or inputs) and slack bus injections,
with and without SM. The slack bus (node 149) is connected to
the substation and distribution transformer. Positive injections here
indicate that the feeder as a whole is importing power from the main
grid.

TABLE I: Summary financial metrics for our simulations under
different types of market structures.

SM + PM PM only No LEM

Avg. P d-LMP [$/kWh] 0.064 0.116 N/A
Avg retail tariff [$/kWh] 0.082 0.116 0.129

behavior is significantly different from the market structure
without SMOs, as the primary market alone does not have
the granular customer level information to accurately estimate
the power injections and their associated flexibilities. Finally,
fig. 7a shows the optimal d-LMP from the LEM that enables
the overall generation mix as shown in fig. 6b and fig. 7b, and
that it is lower than what the ‘without SMO’ case predicts.

(a) d-LMPs averaged across all 79 primary nodes considered, with and
without the SM, compared to the LMP from the WEM.

(b) PM load and generation injections, summed over all primary feeder nodes
except the slack bus.

Fig. 7: Comparison of PM solutions obtained with and without SM.

IV. CONCLUDING REMARKS

A hierarchical local electricity market (LEM) structure was
proposed in this paper with a secondary market (SM) at
the lower level representing secondary feeders and a pri-
mary market (PM) at the upper level, representing primary
feeders, in order to effectively use DERs. The lower level
SM enforces budget, power balance and flexibility constraints
and accounts for costs related to consumers, such as their
disutility, flexibility limits, and commitment reliability, while
the upper level PM enforces grid physics constraints such as
power balance and capacity limits, and also minimizes line
losses. The hierarchical LEM is evaluated using a modified
IEEE-123 bus with high DER penetration, with each primary
feeder consisting of several secondary feeders. Realistic power
injections and load profiles were obtained over the course of
24 hours from GridLAB-D. The performance of the LEM
was illustrated by delineating the family of power-injection
profiles across the primary and secondary feeders as well
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as the corresponding local electricity tariffs that vary across
the distribution grid. It was shown that the overall LEM is
capable of capturing fine-grain variations across the primary
feeders and even further across secondary feeders so that the
power injections and corresponding variable tariffs accurately
charge or compensate DERs, capture consumer flexibilities,
DER capabilities and constraints, as well as constraints and
costs stemming from power physics.

The proposed hierarchical LEM represents the first step
in formulating a market structure that allows disparate DER
assets to participate and be appropriately compensated. Several
other steps needs to be executed to develop a complete retail
market with various products. First, multiperiod extensions of
our optimization frameworks at both the SM and PM levels
need to be carried out. Next, the co-optimization of our SM
and PM in the real-time market needs to be addressed, along
with other markets for ancillary services and reserves. In doing
so, we also hope to fully address the issues around settlement
and billing in our hierarchical LEM, as well as the handling
of unmet or reneged commitments in real-time. Also required
is the development of advanced game theoretic approaches
that could be used by the SMO to generate its bids into
the PM from the SM solutions, instead of the simple direct
sum aggregation used at present. Similarly, the possibility of
strategic bidding by DCAs in the SM, and methods to counter
this needs to be examined as well. This will also help guide
the design of a consumer-level market within each secondary
feeder, forming the final tier of the proposed hierarchical LEM.
Finally, more realistic distribution-level test cases and datasets
are planned to be developed to validate the overall LEM,
leveraging both simulations as well as real-world data [38],
[44].
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tricity distribution tariffs and distributed generation: Quantifying cross-
subsidies from consumers to prosumers,” Utilities Policy, vol. 37, pp.
23–33, 12 2015.

[44] F. Bu, Y. Yuan, Z. Wang, K. Dehghanpour, and A. Kimber,
“A Time-Series Distribution Test System Based on Real Utility
Data,” in 2019 North American Power Symposium (NAPS). Wichita,
KS, USA: IEEE, Oct. 2019, pp. 1–6. [Online]. Available: https:
//ieeexplore.ieee.org/document/8999982/

https://doi.org/10.1080/01430750.2018.1517675
https://www.lazard.com/media/450784/lazards-levelized-cost-of-energy-version-120-vfinal.pdf
https://www.lazard.com/media/450784/lazards-levelized-cost-of-energy-version-120-vfinal.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0967066121002999
https://linkinghub.elsevier.com/retrieve/pii/S037877961300343X
http://www.osti.gov/servlets/purl/1341727/
https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/lmps-rt-five-minute-final
https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/lmps-rt-five-minute-final
https://www.ferc.gov/sites/default/files/2020-05/04-11-14-reactive-power.pdf
https://www.ferc.gov/sites/default/files/2020-05/04-11-14-reactive-power.pdf
https://ieeexplore.ieee.org/document/8999982/
https://ieeexplore.ieee.org/document/8999982/

	I Introduction 
	I-A Related work
	I-B Our approach
	I-C Our contributions

	II A local electricity market (LEM) 
	II-A SM structure
	II-B Interface between SM and PM
	II-C PM structure
	II-D Timelines of SM and PM
	II-E Assumptions, Observations, and Extensions

	III Results and Discussion 
	III-A The Use-case
	III-B SM scheduling 
	III-C PM scheduling

	IV Concluding Remarks 
	References

