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Evaluate DC Meter Adoption for
House-Level Storage Devices

Yang Weng , Senior Member, IEEE, Shuman Luo, Student Member, IEEE, Qiushi Cui , Member, IEEE,
Robert Trask, and Hao Wang , Member, IEEE

Abstract—Although batteries are increasingly adopted in indi-
vidual households, utilities typically do not know the real
behaviors of the customer-owned batteries. Therefore, it is hard
for the utilities to evaluate the necessity of adding a DC meter
on the DC side of the battery. Meanwhile, the customers do not
know the benefits they can get, so they cannot make an adoption
decision of DC meters. To solve these practical problems, this
paper aims to provide a DC meter evaluation tool for utilities
and customers to calculate their costs and revenues. Specifically,
we formulate a bi-level optimization framework that considers
the battery incentive design and physical law simultaneously. To
reflect the reality, the optimization is also based on data-driven
constraints based on big utility data and accurate performance.
While the optimization problem is complex, we enforce convexity
via various designs to provide the optimal solution for incentive
planning. Through simulation, the battery incentive design model
is tested to be valid under different market rates and case studies.
The proposed optimization model provides a promising tool for
utilities and customers to evaluate DC meter adoption decisions.

Index Terms—DC meter, data-driven constraint, battery incen-
tive, social benefit, bi-level optimization.

NOMENCLATURE

Indices

i Index of user
t Index of time slot in the planning horizon

Parameters

ηb
i Battery storing efficiency

ηc
i Battery charging efficiency

ηd
i Battery discharging efficiency

πE Unit cost for charging and discharging of the
battery $/W2
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πr, t Electricity retail rate $/kWh
πw,t Wholesale electricity price at time t $/kWh
emax

i Maximum power stored in battery kWh
emin

i Minimum power stored in battery kWh
Lt

i True load of the user i at time t kWh
N Total user number
pbd,t

i Power discharged from battery to meet unmet
demand at time t of user i kW

pbr,t
i Power used to charge battery at time t of user i

kW
pcmax

i Maximum charging power kWh
pdmax

i Maximum discharging power kWh
pgd,t

i Electricity bought from the grid at time t of
user i kW

pgr,t
i Total power sold to grid at time t of user i

kW
psd,t

i Power generated by solar panel at time t of
user i

kW
T Total time intervals

Variables and Functions

πc, t Tariff for charging battery $/kWh
πd, t Tariff for discharging battery $/kWh
πe, t Rate for selling energy to grid $/kWh
C(pgd,t

i , pgr,t
i ,

pbr,t
i , pbd,t

i )

Total electricity bill for user i $

et
i Power stored in battery kWh

I. INTRODUCTION

RECENTLY, the growing penetration of renewable energy
sources has revealed that renewables can play a sig-

nificant role in energy supply, especially in the electricity
market [1]. With more photovoltaic (PV) and wind power
generators installed in the power grid, it is challenging to bal-
ance the electricity demand and the power supply [2], [3].
One of the ideal solutions is the battery, which has become
an essential component of the power grid [4]. Batteries can
flexibly store and discharge power to balance fluctuations and
coordinate power generation and consumption [5]. Mandates
and incentives for electricity storage have increased dramati-
cally these days [6]. According to the International Renewable
Energy Agency (IRENA), the total stock of electricity storage
capacity will grow to 11.89 − 15.72 TWh if the renewable
energy doubles in the energy system by 2030 [7].
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Electricity storage can not only participate in frequency
regulation, energy arbitrage, or spinning reserves from the
grid’s side but also play an important role in load shifting and
peak shaving from customers’ side [8]. References [6], [9],
[10] illustrate that energy storage can participate in demand
charge reduction. Reference [11] designed an algorithm for
battery storage management to help demand-side management.
References [12] developed a storage virtualization model to
benefit both the aggregator and the customers. Based on the
aforementioned facts, electricity storage has attracted more
considerable attention nowadays. The producers and the cus-
tomers will be more involved in exploring the benefits energy
storage can bring. However, most of the existing literature,
i.e., [13]–[15], used simulated data and make assumptions of
the parameters of the batteries to support their ideas, which
cannot precisely quantify and monitor the operation of the
battery in the real world.

The simulated data of the battery largely depends on the
models designed by the toolkit and can not accurately describe
complex real-world situations of battery use behavior. For
example, [13] only relies on the residential net metering and
cannot capture the power exchange between the battery and
residential load; while [15] considers self-consumption but has
no realistic battery usage data from Sweden to acquire real-
istic battery behavior. Consequently, to address this issue, it
is important for the utilities to have a tool for evaluating DC
meter adoption decisions and accurately determining the way
of incentivizing customers with batteries.

This motivates us to create a tool for utilities to evaluate the
adoption decision of an extra meter at the storage device. The
decision is naturally supported by the battery incentive design.
There is literature discussing the impact of different incen-
tive schemes on the PV and battery system, like [16]–[18].
Alternatively, in [19], the author emphasized the importance
of taking market price and peak charges to determine the size
of PV battery systems. However, the value of DC meter adop-
tion is not discussed in those papers. Thus, we focus on the
added value of DC meters and include specific incentives to
guide the customers’ battery usage according to the utilities’
needs so that a win-win situation can be guaranteed.

A good battery incentive model considers the physical
law and energy arbitrage rules. Many related works create
common models to design the tariffs. References [20], [21]
design a lower and upper level model barging against each
other to optimize both profits. In distributed models, the pri-
mary problem is divided into two subproblems consists of the
electric companies and consumers. The final objective is to
maximize social welfare, i.e., the sum of the benefits of util-
ity and consumers [22]. The game theory model is deployed
for optimal time-of-use electricity pricing [23]. Those mod-
els reflect reality in some ways but have assumptions when
building the models. Those assumptions can be addressed
by applying data-driven models to improve the optimization
results. As the objective of this paper is to examine the inter-
actions between the utility and the customers under certain
incentives provided by the utility, we form a bi-level model to
formulate the behavior of each side using data-driven modeling
methods.

To solve tariff models, [16] relies on a special solver
for the mixed integer linear programming problem, [23]
uses backward induction to compute the equilibrium,
and [24] applies particle swarm optimization algorithm to
find the optimal prices. However, there is no sophisti-
cated design to guarantee the convex shape of the proposed
optimization problem. Furthermore, if one follows the tradi-
tional optimization method, modeling errors evaluation can be
accumulated due to many factors that are not considered [25].
Also, if the data is evaluated statically, overfitting can occur
due to the data limitation. After all, we cannot design a method
that simply combines the traditional method with simple data
analysis, since that may cause bias and even error propagation.
Past works ignore the variance of the constraint in the original
design [16], [23], [24].

Therefore, we envision a systematical design for utilities’
decision-making of DC meters to ensure (1) model gener-
ality to avoid overfitting, (2) robustness over limited data
volume, and (3) adaptivity for automatic model fixing. The
contributions of this paper, thus, include three points:

• A realistic mathematical model for battery incentive
design that extracts added value from DC meters to sat-
isfy the physical law. We design a novel model of battery
incentive and balance the load demand by considering
social benefits that view utilities and customers as a
whole.

• We integrate big data processing and physical laws into
our optimization method at various operating points of the
model. The past work does not have precise modeling on
house-level batteries. In this work, the objective function
and constraints are data-driven and designed in such a
way for precise modeling and easy implementation.

• The modeling accuracy and convergence guarantee are
preserved in our designed model. We maintain a good
balance between the model accuracy and the requirements
of convex functions in the proposed model. Based on
this, we conduct a sensitivity analysis for the impact of
battery cost on charging/discharging incentives to adjust
this model for DC meter adoption evaluation.

Although the problem under study seems a common
optimization problem, the highlights of this paper is the battery
modeling enabled by the deployment of DC meters. With DC
meters, the traditional optimization issue can get rid of unre-
alistic battery assumptions. The paper outline goes as follows.
In Section II, a battery incentive mechanism for battery incen-
tives is formulated. Section III presents the numerical results
of this paper, followed by the Conclusions in Section IV.

II. BATTERY INCENTIVE DESIGN MECHANISM

FORMULATION

For the customers that only have AC meters (smart meters
installed on the AC side of the AC/DC converter) for net
metering, there is a lack of bidirectional information about how
much energy is bought from the grid and how much energy
is provided by the solar panel and the battery. Also, the bidi-
rectional information about how much energy is used to serve
the backup load panel is unclear. However, DC meters provide
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Fig. 1. Future Meter Placement Demonstration. The highlighted red meters
are fictitious positions for DC meters.

bidirectional behavior of the battery and directly monitor the
battery operation, thus making big data analysis of the bat-
tery health condition possible. Fig. 1 gives the recommended
future placement of DC meters of our partner utility. The DC
meter will be installed by the utility to gain the full observabil-
ity of the battery operation. The aim of such investment is to
discover new business opportunities that involves batteries to
encourage the transformation from the traditional power grid
to the modern smart grid. We extract some of the typical load
profiles from the smart meters that directly measure the bat-
tery or measure the battery and solar panel. The billing meter
is located before the main load panel which is not drawn in
the figure.

The introduction of DC meters enables the novel battery
incentive design through precise measurement. The past work
did not embed the meter data knowledge into the battery
incentive design, therefore, to realize a feasible and solvable
data-driven design, we propose a tool for battery incentive
design, data-driven constraints, and convex guarantee, as shown
in Fig. 2. The proposed method is based on DC meter, data
analytics and optimization techniques. Next, we systematically
develop a flowchart as shown on the right hand side of Fig. 2.
First, prior knowledge about the networks, including topologies,
policies, etc., is obtained from utilities. As we know, batteries
can benefit homeowners by storing excess generations for later
use to reduce electricity bills and provide backup power in
case of emergency. Batteries also benefit utilities by relieving
the grid from short-term high demand if battery owners are
motivated wisely. Based on this knowledge, it is necessary
to design a model that considers the benefits of the utilities
altogether with the customers, namely the social cost.

Therefore, we build a customer-utility bi-level model as the
backbone. The upper level is the utility model, which decides
the pricing of electricity and other rewards to incentivize the
battery and PV generation. After receiving the incentives and
rewards signals, the customer model calculates the energy
scheduling strategy that maximizes its own benefits while
using the PV and battery. Furthermore, the energy scheduling
information is sent to the utility, and then the utility designs
reasonable incentives that minimize the social cost. Third, the
bi-level model is further polished by adding data-driven con-
straint modeling inspired by utility data. We analyze the load,
solar generation, and battery efficiency behavior to provide a
precise model. Lastly, we design the objective function and
constraints into a convex shape for solving convenience. The
four steps achieve a battery incentive design for social benefits,
accurate performance with data-driven constraints, and convex
guarantee with real-time sensitivity.

The purchase of DC meters and their calibration should be
the responsibility of the utilities. Through the social benefit
model, the adoption of DC meters reduces total energy costs
for the society, which in turn improves the operation efficiency
of the utilities who are mostly not-for-profit. For homeowners
who are willing to participate in the DC meter program, they
can sign contract with the utility to improve mutual benefits.
But, this does not mean the homeowners give their full control
of batteries to the utility. The utility monitors the battery usage
but does not control the batteries. For those who are not willing
to participate the DC meter program, they can choose not to
ask the utility to install the DC meter for them. There are three
assumptions made in this paper:

• The customers are rational and cooperate with the utility
to reduce social costs.

• The battery degradation cost follows a quadratic relation-
ship with the battery usage.

• There are a limited number of customer behavior groups
to be modeled into battery incentive models.

In the rest of this section, we first elaborate on the data-
driven constraint development, then on the customer and utility
model of the proposed pricing mechanism. After that, we
merge the two models and provide the solution method.

A. Data-Driven Modeling

The power systems are dynamic, and it is hard for the
deterministic optimization formulation to capture the char-
acteristics. Consequently, we design a data-driven modeling
approach to precisely quantify the customer and utility model.
The data used in this part of the analysis is from our partner
utility in Arizona. The data contains the solar meter, battery
meter, and billing meter data of about 500 customers. The data
starts from May 2018 to October 2019. We remove the badge
number of the meters so that anything relevant to the location
of a user is eliminated. We also use min-max normalization
to scale the data to a number between zero and one to hide
the user information while preserving the characteristics of the
user behavior. For the rate design in later sections, we refer
to our partner’s rate plan [26] and generalize it using the scal-
ing method. K-means clustering algorithm is applied to the
data after min-max normalization. By using Elbow method,
we conclude 3 to 4 different behavior patterns of charging and
discharging from the battery of the AC coupled system with
a backup load panel. We also extract 3 to 4 different behavior
patterns of battery charging and aggregate solar and battery
exporting of DC-coupled system with no backup load panel.
The preliminary results are shown in Fig. 3. Each line with
different colors and line styles in the figure shows one spe-
cific using pattern. For Fig. 3 (a), there are 4 patterns, where
7.5% of the customers share pattern 1, 7.5% of the customers
share pattern 2, 42.5% of the customers share pattern 3, and
42.5% of the customers share pattern 4. For Fig. 3 (b), there
are 3 patterns, where 25% of the customers share pattern 1,
12.5% of the customers share pattern 2, and 62.5% of the
customers share pattern 3. For Fig. 3 (c), there are 4 patterns,
where 14.0% of the customers share pattern 1, 36.0% of the
customers share pattern 2, 14% of the customers share pattern
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Fig. 2. Overview of the proposed method.

Fig. 3. Raw data and clustered battery meter data patterns. The x-axis is
the hours during a whole day. The y-axis is the value of the raw data after
min-max normalization.

3, and 36.0% of the customers share pattern 4. For Fig. 3 (d),
there are 3 patterns, where 24.0% of the customers share pat-
tern 1, 18.0% of the customers share pattern 2, and 48.0% of
the customers share pattern 3.

1) Data-Driven Modeling in the Objective Function: The
DC meters enable the accurate modeling of battery usage. To
match this advancement, battery degradation needs to be con-
sidered. However, battery degradation is sensitive to battery
types, battery sizes, manufacturers, and the stage of its life.
So, our design considers the charging and discharging cycles
that are directly related to the life span of batteries. This means
the battery system cost is proportional to |pbr,t

i | + |pbd,t
i |. The

absolute value is not friendly when solving the complicated
customer and utility model. Then, we make them quadratic

terms to preserve a convex shape [27]. The battery degrada-
tion term then becomes proportional to (pbr,t

i )2 + (pbd,t
i )2. The

question is how to choose the battery degradation coefficient.
We employ a data-driven method to get the coefficient that
has an artificial unit of $/W2 if we want to match the vari-
ables in the degradation term. Users bear the cost of using
battery due to degradation denoted as πE

2 ((pbr,t
i )2 + (pbd,t

i )2),
in which πE denotes the coefficient for the quadratic term
of charging and discharging. This coefficient will be selected
based on the big data collected from battery manufactures.
For example, a utility like SRP has information of the reg-
istered battery brand of customers, then πE can be estimated
from the battery manual and customer’s user behavior. We then
estimate the coefficient πE

2 using a simple data analytics tech-
nique. Concretely, since the unit of the coefficient is artificial
– $/W2, we fit the battery data into a regression model for two
reasons: (1) keep the model simple and avoid overfitting with
complicated data-driven methods, and (2) preserve the convex-
ity of the objective function for model practicality. Therefore,
we build the relationship between the battery degradation cost
(yDi) and the battery power usage (xDi = (pbr,t

i )2 + (pbd,t
i )2):

yDi = α + πE
2 xDi +σi, where α and πE

2 are the y-intercept and
the slope of the regression line. To quantify the unobserved
values in the battery degradation model, an error term of σi is
introduced. With n data pairs of xDi and yDi, the slope value of
πE
2 can be estimated through the ordinary least squares method:
πE
2 = (

∑n
i=1 xDiyDi)/(

∑n
i=1 x2

Di). This model is justified under
multiple battery brands with our utility partners.

It is important to make sure the battery is not charging and
discharging at the same time. First, it’s common to assume that
selling prices are lower than the purchasing prices [28], such
that users cannot manipulate buying and selling grid power in
the same time slot to make profits. When the user needs more
energy, it will have positive net purchase; otherwise, it will
have positive net selling. Second, the battery degradation cost
and additional penalty term [12] will penalize any unneces-
sary charge and discharge. For example, charge and discharge
at the same time will cancel out a certain amount charge or
discharge, resulting in the same net purchasing or selling, but



468 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 1, JANUARY 2023

lead to a higher battery degradation cost and penalty, which is
not optimal. Therefore, charge and discharge won’t happen at
the same time due to the additional cost. Also, the quadratic
function can lead to a unique solution to the optimal charge
and discharge [12].

2) Data-Driven Modeling of Constraints: Since the solar
generation amount (denoted as psd,t

i ), total load (denoted as
Lt

i), energy efficiency (denoted as ηb
i , η

c
i , η

d
i ) needs accurate

prediction to better design the entire model, a data-driven
method is utilized to design these constraints. Concretely, we
fully consider the physical laws that these parameters need
to stand for, including conservation of energy, Ohm’s Law,
Kirchhoff’s Current Law, Kirchhoff’s Voltage Law, etc. For
example, the power that the grid received from the customer
(pgr,t

i ) is impossible to be larger than the sum of the solar-
generated power and the battery output (psd,t

i +pbd,t
i ); the total

generation should be balanced with the customer load and the
battery efficiency has a natural process in time series. Although
other papers also uses those laws, we embed those laws into
the DC meter enabled battery incentive design framework. To
satisfy the three physical constraints, we use a data-driven
method to estimate the solar generation behavior, the total
load, and the battery efficiency parameters. Specifically, based
on the analysis of the characteristic of data, we adopt the adap-
tive nonlinear local regression (ANLR) method from [29] to
conduct the data-driven parameter prediction in our designed
constraints.1 In ANLR, a decision-making procedure is estab-
lished to select the most suitable algorithm according to the
result of the analysis: if the linear degree of the regression
model is high, the linear regression algorithm will be selected;
if the linear degree is low, quadratic programming will be cho-
sen; if the nonlinearity is obvious, SVM will be implemented.
By choosing the most appropriate algorithm according to the
linearity of the model, the deviation forecasting model can be
solved more precisely and efficiently compared with the direct
usage of SVM, in which how to choose the most appropriate
kernel function and corresponding parameters is still unsolved.

B. Customer Model

For a residential customer that owns a PV and battery
system, a residential customer diagram is shown in Fig. 4.
In residential areas where only net metering is available, the
detailed power generation and consumption information for
the PVs and batteries is unknown. However, with the help of
the DC meter and PV meter, the bidirectional power delivery
from/to the grid, battery, and PV can be measured. With the
additional information, utilities can provide services such as
system failing early warnings to prompt customers to check
their systems in advance and avoid unexpected interruptions.
A display of the readings of solar panels and battery meters
can also be added to a user interface, which is a dashboard
where customers can log in to view their usage in daily or
hourly increments. This can increase the user experience and
build a solid foundation to ensure the interactions between the
utilities and customers.

1The solar generation can be estimated through many algorithms. In this
paper, the PVWatts method [30] by NREL is adopted.

Fig. 4. A residential customer diagram.

Each customer i aims to minimize the daily operating
cost by scheduling the local PV power use and battery. The
operating cost of user i is defined as

C
(

pgd,t
i , pgr,t

i , pbr,t
i , pbd,t

i

)

=
T∑

t=1

[
πr, tp

gd,t
i − πe, tp

gr,t
i − πc, tp

br,t
i − πd, tp

bd,t
i

+ πE

2

((
pbr,t

i

)2 +
(

pbd,t
i

)2
)]

+ πp max
t∈[1, T]

pgd,t
i , (1)

where πc, t ≥ 0 and πd, t ≥ 0 are rewards set by the util-
ity for incentivizing customers’ charging and discharging. We
formulate the objective function as

min C
(

pgd,t
i , pgr,t

i , pbr,t
i , pbd,t

i

)
+

T∑

t=1

β

2

(
pgd,t

i

)2
. (2)

Note that
∑T

t=1
β
2 (pgd,t

i )2 is a regularization term that is
designed for customers’ variables pgd,t

i to address the multiple-
solution problem and the regularization term does not change
the optimality of customers’ cost minimization problem when
the coefficient β is set to be small enough.

Equation (1) is a model of a collaborative customer. When
this customer is not responding to utility signals, the customer
model becomes:

Cnon−coll

(
pgd,t

i , pgr,t
i , pbr,t

i , pbd,t
i

)

=
T∑

t=1

[

πr, tp
gd,t
i − πe, tp

gr,t
i + πE

2

((
pbr,t

i

)2 +
(

pbd,t
i

)2
)]

+ πp max
t∈[1, T]

pgd,t
i , (3)

If the utility is not able to design a realistic πc, t and πd, t
rate pair for its demand response program due to the lack of
DC meters, the non-collaborative customer cannot save its cost
in such a way. Through the comparison of these two scenarios,
the customer with DC meter is able to gain benefits out of the
πc, tp

br,t
i + πd, tp

bd,t
i term. It satisfies πc, tp

br,t
i + πd, tp

bd,t
i > 0,

where the utility makes sure πc, t > 0, πd, t > 0. Driven by
this, the customers are guaranteed to obtain benefits through
the installation of DC meters. Therefore, this model becomes
practical and the money can end up in the homeowner’s hands
through utility’s direct and dynamic credit compensation.
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C. Utility Model

The utility aims to minimize its cost by providing
incentives {πc, t, πd, t} to users to schedule their bat-
teries. Users respond to the incentives by optimally
scheduling their energy use, and we denote users’
optimal energy scheduling as functions of the incen-
tives, i.e., pgd,t

i (πc, t, πd, t), pbr,t
i (πc, t, πd, t), pbd,t

i (πc, t, πd, t).
Specifically, the utility’s cost consists of two parts: the cost of
purchasing power from the wholesale market and the reward
provided to users. Over the time horizon, the utility cost is
defined as

CU
(
πc, t, πd, t

) =
T∑

t=1

(

πw, t

N∑

i=1

pgd,t
i

(
πc, t, πd, t

)
)

+
T∑

t=1

(

πc, t

N∑

i=1

pbr,t
i

(
πc, t, πd, t

) + πd, t

N∑

i=1

pbd,t
i

(
πc, t, πd, t

)
)

.

(4)

The utility also collects revenue from users for
selling electricity shown as RU(πc, t, πd, t) = ∑N

i=1
(
∑T

t=1 πr, tp
gd,t
i (πc, t, πd, t) + πp maxt∈[1, T] pgd,t

i (πc, t, πd, t)).
The utility’s payoff maximization problem is formulated as

max RU
(
πc, t, πd, t

) − CU
(
πc, t, πd, t

)

s.t. 0 ≤ πc, t ≤ π̄c, 0 ≤ πd, t ≤ π̄d. (5)

We then update the objective for the utility in the bi-level
problem to be social cost directly, which determines the
optimal reward strategy {πc, t, πd, t} for users’ battery energy
management. Note that the rewards {πc, t, πd, t} are both
non-negative and bounded.

The utility represents the public interest and thus minimizes
the social cost consisting of the utility’s costs and users’ costs.
However, the utility cannot directly control users’ energy man-
agement in practice. Thus the utility incentivizes the charging
and discharging of users through the bi-level optimization
problem as follows.

min
T∑

t=1

(

πw, t

N∑

i=1

pgd,t
i − πe, t

N∑

i=1

pgr,t
i

)

+
N∑

i=1

T∑

t=1

πE

2

((
pbr,t

i

)2 +
(

pbd,t
i

)2
)

+
N∑

i=1

T∑

t=1

β

2

(
pgd,t

i

)2

(6)

subject to

pgd,t
i ≥ 0, (7a)

0 ≤ pgr,t
i ≤ psd,t

i + pbd,t
i , (7b)

0 ≤ pbd,t
i ≤ pdmax

i , (7c)

0 ≤ pbr,t
i ≤ pcmax

i , (7d)

emin
i ≤ et

i ≤ emax
i , (7e)

et
i = ηb

i et−1
i + ηc

i pbr,t
i − pbd,t

i /ηd
i , (7f)

pgd,t
i − pgr,t

i + pbd,t
i − pbr,t

i + psd,t
i = Lt

i, (7g)

eT
i = e0

i , (7h)

Variables: pgd,t
i , pgr,t

i , pbr,t
i , pbd,t

i , et
i,

where
∑T

t=1 πw, t(
∑N

i=1 pgd,t
i ) is the cost of utility’s cost of pur-

chasing power from the wholesale market and πw, t is the mar-
ket price. For consumers,

∑N
i=1

∑T
t=1

πE
2 ((pbr,t

i )2 + (pbd,t
i )2) is

the total cost of battery operation.
The developed incentive signals provide more flexible oper-

ation of users’ batteries to the utility compared to the tradi-
tional energy arbitrage pricing design. In traditional energy
arbitrage, a time-of-use or dynamic pricing is designed for
energy purchase. Then the users schedule their batteries to
perform energy arbitrage, i.e., charging at low prices and dis-
charging at high prices, such that energy purchase (recorded
in smart meters) leads to the minimum cost. In this work, we
study the benefit of installing a third meter for battery storage.
In this scenario, the utility has access to more information on
users’ energy scheduling, including how users consume energy
for various appliances and also how users operate their batter-
ies. Therefore, instead of sending one energy purchase signal
to users, the utility can send additional incentive signals for
users’ batteries to better unlock the value of users’ batteries
in the system operation.

D. Proof of Convex and Solution Method

Based on our careful design, we manage to prove that the
proposed optimization problem can be proved to be convex.

Theorem 1. The social cost model, including equation (6)
and (7) for both the utility and the user is a convex function.

Proof: First, we show that all constraints in (7) are con-
vex sets. Constraints (7a)-(7e) are all half-spaces, therefore,
they are all convex. Constraints (7f)-(7h) are all hyperplane,
therefore, they are all convex. Since the intersection of all
convex sets is convex, all constraints belong to convex sets.
Second, the objective function in (6) is a quadratic function
in high-dimensional space, therefore, it is a convex function.
In all, the social cost model is a convex function with all con-
straints belonging to a convex set [31]. The social cost model
is convex.

To solve the proposed bi-level model, we first search for the
optimal charging and discharging incentives using the gradient
descent method. The gradient descent direction of this search
is to minimize the customer function in Section II-B. When
minimizing the customer function, a sequential quadratic pro-
gramming (SQP) method is used. In this method, the function
solves a quadratic programming (QP) subproblem at each
iteration. SQP is an iterative procedure which models the
nonlinear optimization problems (NLP) for a given iterate
xk, k ∈ N, by a QP subproblem, solves that QP subproblem,
and then uses the solution to construct a new iterate xk+1.
This construction is done in such a way that the sequence
(xk)k∈N converges to a local minimum x∗ of the NLP (5),
(6a)-(6h) as k → ∞. In this sense, the NLP resembles the
Newton and quasi-Newton methods for the numerical solution
of nonlinear algebraic systems of equations. It updates an esti-
mate of the Hessian of the Lagrangian at each iteration using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [32],
[33]. Next, the results – the power generation and consumption
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TABLE I
RETAIL PRICES IN THREE TEST CASES

information from/to grid and battery – are sent to the utility’s
social cost model for the gradient descent search.

E. Working Mechanism

Similar to the Day-Ahead Energy Market, the utility can
announce the battery incentive rate one day or more days in
advance for the customer to follow the rate and design an eco-
nomic battery use plan. The utility sends rate plan or signals
to a Web portal. A homeowner has a customer-defined algo-
rithm that downloads day-ahead utility battery incentive rate
everyday and recommends best battery use options for the cus-
tomers. The customer-defined algorithm can be programmed
in the battery management system so that the customers do
not need to have rich electricity market knowledge and just
need to confirm which price-following plan to choose. This
can be done with algorithms in an automatic way without
jeopardizing the existing battery use schedule of customers.

To motivate the customers to participate, two ways of com-
pensation can be used. First, even if the utility does not directly
control the battery, users’ battery schedule can indirectly ben-
efit the system by absorbing excessive solar PV generation
and reducing peak load. The utility is happy to provide some
compensation as incentives to users, e.g., through financial
programs. Second and most importantly, in our work, given
battery incentive rates, users respond to it to schedule their
batteries to minimize total energy costs.

III. NUMERICAL RESULTS

Numerical results include four parts. The parameter settings
to conduct the validation are first shown. To show the effective-
ness and reflect the physical law, results are exhibited through
the base case and incentive tests of customer model behav-
ior analysis. Next, a comparison is made between data-driven
and deterministic constraint design. Last, we present the con-
vex guarantee with real-time sensitivity for DC meter adoption
evaluation.

A. Parameter Setting

To validate the proposed model in real scenarios, we design
the value for the parameters based on actual utility data to

validate the proposed approach. In the overall problem, we
divide the parameters into three categories: market rate, battery
cost, and customer generation/consumption. In the electric-
ity market parameters, there are three primary parameters:
retail price (πr), solar sell-back price (πe), and wholesale
price (πw). Table I summarizes the electricity prices from
utilities. They represent three rate plans during summer and
winter.

Without loss of generality, we have tested the proposed
method in various parameter settings. Here, we show a rep-
resentative group of parameter settings in the case study. We
define the designed retail prices as the time-of-use (TOU) pric-
ing, super TOU pricing, and flat pricing. As is shown in the
table, the on-peak time for case 1 - TOU pricing of the winter
season is from 5:00 AM to 9:00 AM and from 5:00 PM to
9:00 PM. There is no peak time for flat pricing as the price
will be the same all the time. For each of the cases, we scale
the base price between 0.055$/kWh and 0.115$/kWh with a
step size of 0.01$/kWh. When it is winter season, we scale the
rate between the on-peak price and the off-peak price between
1.2 and 1.7 with a step size of 0.1. When it is summer season,
we scale the rate between the on-peak price and the off-peak
price between 2.7 and 4.1 with a step size of 0.2. We design
such setups to allow a reasonable variation that considers as
many real scenarios as possible.

In addition to the retail price, for customers who export
power, any excess energy they generate is credited at a fixed
price and subtracted from their bill. To increase the generality
of the analysis, we conduct simulations under two different
feed-in tariffs. One is 0.0285 $/kWh, which is about one-third
of the lowest retail price. The other is 0.068 $/kWh, which is
about 80% of the lowest retail price. For the wholesale price,
some typical historical public data from our partner utility is
employed and shown in [34]. Lastly, the battery cost is impor-
tant. Most of the customers in the configurations that have
isolated battery meters, and solar meters use Tesla Powerwall
2.0. The price per powerwall is $6, 500 and an additional
$1, 100 supporting hardware is also required. U.S.$ per war-
ranted kWh: 0.17 [35], [36]. Moreover, we demonstrate typical
Arizona customer loads and PV generation scenarios for this
paper in the Appendix.
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Fig. 5. Results for the customer model. Each line in the figures shows the
result of one specific scaling value on top of the base retail price. The left
column shows the bi-level consumption information of power delivered from
the grid to the customer (pgd) and from the customer to the grid (pgr). The
middle column shows the battery discharging (pbd) and battery charging (pbr).
The right column is the residual energy of the battery (e). (a) the base case
customer model performance reflected by residual energy of battery. πc = 0 $
at the time. (b) the incentive case where πc = 0.4 $ when t = 16. (c) the
incentive case where πd = 0.4 $ when t = 5 and πc = 0.4 $ when t = 18.

B. Battery Incentive Design for Social Benefits

1) Base Case of Customer Model Behavior Analysis: The
base case exhibits customer behavior without utility incentives.
Battery cost πE is assumed to be negligible, 0.000001 $/kWh.
The customer load is assumed to be a constant number,
1.5 kWh, for testing purposes. Due to the limitation of the
space, we show only one case as an example as the other
cases follow the same tendency. Fig. 5(a) shows the base case
of super TOU pricing in the summer season, where the base
retail price is fixed to be 0.085 $/kWh and the retail price used
for simulation is scaled by values in range [2.7, 4.1] with a step
size of 0.2. Based on many conducted experiments, we illus-
trate the performance of the profit-pursuing customer through
the measurements of the billing meters, DC meters, and battery
residual energy. It is observed through many case studies that
the customer purchases less power when the wholesale price
is high during peak hours, and the energy source is shifted to
the battery.

2) Incentive Tests for Customer Model Behavior Analysis:
After introducing the base case, the validity of the customer
model is tested. We first provide a single incentive at a cer-
tain hour to see whether the customer behavior changes or not.
Here, we send a battery charging incentive signal of 0.4 $/kWh
at the sixteenth hour over the base case. From Fig. 5(b), it is
observed that the customer purchases from the grid a signifi-
cant amount of power to charge the battery. By doing this, the
customer obtains the profit due to the high charging incentive.

Multiple charging incentives are employed as well to
demonstrate the response of the customer model as shown
in Fig. 5(c). The customer model exhibits an instantaneous

TABLE II
SOCIAL COSTS UNDER FIVE INDIVIDUAL HOUSEHOLD LOADS

Fig. 6. Battery charging incentives under three test cases.

response and is tested to be responsive to the incentive
change. We also believe constant loads are okay for algo-
rithm testing. Realistic customer consumption testing is a
good way to validate the proposed method. Therefore, five
individual household load profiles are added from NREL
database [37] for further testing. The simulation results are
shown in Table V.

3) Bi-Level Model Behavior Under Different Utility Retail
Prices: To illustrate that the battery incentive design satisfies
physical laws, we show here the bi-level model’s behavior
under three comprehensive retail price plans in Fig. 6 accord-
ing to the parameters in Table I. The off-peak price ranges
from 0.055$/kWh to 0.115$/kWh with a step size of 0.01. The
on-peak price will be scaled by a coefficient ranging from 1.2
to 1.7 with a step size of 0.1 in winter season or 2.7 to 4.1
with a step size of 0.2 in summer season. The information in
Table I is based on the rate plan of our partner utility. Different
scaling values are designed for reality and generality. The sum-
mer season is from May to October and the winter season is
from November to April. In Case 3 – the flat pricing plan, the
charging incentive is the flattest one among the three curves. In
the two TOU-related plans, the utility is continuously sending
charging and discharging incentive signals to affect the cus-
tomer’s battery using behaviors. It requires higher incentives
for the utility to instruct the customers that participate.

To avoid the negative incentives, the utility and customers
could add a constraint to prevent the customers from charging
at wrong time. In fact, negative prices occur in both the real-
time market and in the day-ahead market [38]. Additionally,
it is hard to predict the future and we could view this as an
economics game that customers decide to participate or not.
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TABLE III
COMPARISON BETWEEN DATA-DRIVEN CONSTRAINTS AND

DETERMINISTIC CONSTRAINTS

Educated customers eventually will know this and would save
more money by using their energy scientifically.

C. Accurate Performance With Data-Driven Constraints

The data-driven constraints provide precise modeling of the
battery incentive design problem. To show the advantage of
the data-driven constraints, we conduct extensive experiments
to test the performance of the data-driven constraints. Here,
we demonstrate the results in Table III according to the retail
prices of Case 3 in Table I. There are many factors to evalu-
ate model accuracy. Since this paper considers the social cost
of the combined utility and customers, we adopt the objec-
tive function value in (6). With true parameters, which means
the optimization parameters are all real values. The objec-
tive function value is calculated at 0.0586. Then, we evaluate
the objective function value as the three data-driven param-
eters change. With deterministic constraints, the constraints
are determined based on experience, whose estimation error
is assumed to be at least 10% ([29], algorithm MI). With
the ANLR method, we inserted the predicted value (standard
error: 4%) into our proposed constraints to get the results for
data-driven constraints. The time horizon is 24 hours.

D. Real-Time Sensitivity Analysis for the Impact of Battery
Cost on Charging/Discharging Incentives

Battery cost plays a critical role in battery incentive design
for customers that own batteries. As the battery technology
evolves, its price may diminish. Therefore, our method com-
putes the charging and discharging incentives in real-time as
the battery cost goes from 1 $/kWh to 0.001 $/kWh. A rel-
atively broad range is selected to show the robustness and
flexibility of the proposed method. Also, the following extreme
cases are considered: (1) battery allowance and incentives to
households, and (2) the addition of EV as a “free” or cheap
battery source in V2G scenarios, if the cost of EV is calcu-
lated separately. Therefore, the battery cost may be super low
in those scenarios and other scenarios that have not been con-
sidered yet. In Fig. 7, we can see that the battery charging is
leveraged with the least amount of incentive since the battery
cost is so low that the utility does not need to pay at a high rate
to cover the battery cost so that the customer changes its power
consumption behavior. When the battery cost is comparable
with the three market rates, the charging incentive calculation
gets complicated. The incentive can oscillate between charging
and discharging due to the current market rate environment.

We provide customer costs as a reference for customers’
decisions on DC meter adoption under three rate plans. To
realize this goal, the proposed customer model in Section II-B

Fig. 7. The impact of battery cost on the battery incentive design. Case 1
retail price is used.

Fig. 8. Customer cost under varying DC meter estimation error.

is adopted. DC meter estimation error (DCEE) is defined as

DCEE(t) = |Pbatt
real,t−Pbatt

est ,t|
Pbatt

real
, where Pbatt

real,t is the real battery

usage, either charging or discharging, at time t, Pbatt
est,t is the

estimated battery usage, either charging or discharging, at time
t. It is assumed that 0 DC meter estimation error means DC
meters are adopted to provide reliable and accurate battery
usage information. Whereas non-zero estimation errors exhibit
the quantified estimation inaccuracy. Such an inaccuracy rate
exists in cases where DC meters are not installed. As shown
in Fig. 8, we show the simulation results under a DCEE range
from 0 to 1. In this scenario, the demand charge plan shows
the lowest customer cost. However, no matter in which plan,
adopting a DC meter indicates the lowest customer cost. In
the long run, the error of battery usage estimation increases
as the customer costs grow.

E. Strengths and Weaknesses of the Proposed Method

To show the feasibility and strengths of the proposed
method, we conduct a cost benefit analysis in Table IV. A
baseline without DC meters is created and the battery incentive
remains flat at 0.0081$. Also, we assume the estimation error
of the battery without DC meter to be 10%. The social costs
with and without DC meter and its incentive optimization are
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TABLE IV
THE COST BENEFIT ANALYSIS FOR DC METERS

TABLE V
SWOT TABLE OF THE PROPOSED METHOD

4.4804$ and 4.6997$. Therefore, after installing DC meters,
the social cost saves 4.6997−4.4804 = 0.2193$/day. It means
the annual revenue is 0.2193×365 = 80.04$. If we assume the
DC meter costs 100$, it takes 100/80.04 = 1.25 years to recu-
perate the DC meter cost. This is a simple case study. This is an
encouraging result. If the rate difference at the peak and valley
gets larger, the return of investment can be further decreased.
To recuperate the DC meter cost, utility and energy policies of
such an upgradation play an important role. However, research
should not go behind the technology reformation. This paper
presents a variety of possibilities once DC meter is adopted
for the reference of the utilities and customers.

To comprehensively evaluate the proposed method, we
include a SWOT (strengths, weaknesses, opportunities and
threats) analysis in this paper. Table V shows the analysis
results. The proposed method formulates a realistic mathe-
matical model for battery incentive design that extracts added
value from DC meters to satisfy the physical law and bal-
ance the load demand by considering the social benefits that
view the utility and the customers as a whole. There are three
limitations associated with the proposed theory.

• The proposed method requires historical data to determine
its parameters. It is not based on old models that rely on
experience and fixed parameters.

• The proposed method requires battery manufacturer
information to determine parameters like πE. This is
based on past battery usage records or battery factory’s
testing report and user manual.

• The proposed method requires homeowners who agree
with the goal of benefiting society and are willing to
follow utility signals.

IV. CONCLUSION

This paper evaluates the value of DC meter adoption by
introducing the energy exchange information of the battery. In
such a way, we formulate a bi-level battery incentive design

Fig. 9. Customer loads and PV generation scenarios.

by considering the social cost and tying the cost of utility
and customer together. We take advantage of the large volume
of underutilized data from utility and discover its relevance
and fitting rule. The customer model response indicates that
the charging and discharging incentives easily drive the cus-
tomers to alter their power usage whenever needed such as
peak shaving. Under different retail prices, we find that it
requires higher incentives for the utility to instruct the cus-
tomers that participate in the TOU-related plan. Furthermore,
a cheaper battery cost in the future demands a sophisti-
cated incentive design related to rates and switching between
charging and discharging incentives. This paper provides an
effective tool for the DC meter adoption evaluation of the
utility and customers. Future works can include the following
aspects:

• The study on the impact of interaction and coupling of
battery usage behavior and household PV systems on
incentive rates.

• The demand response study with the existence of DC
meters.

• Further work can be done to analyze the customer
behaviors for customer portrait.

APPENDIX

CUSTOMER LOAD AND GENERATION

SCENARIOS EXAMPLE

See Figure 9.
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