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Abstract—In this paper, we present an exact (i.e. non-
approximated) and linear measurement model for hybrid AC/DC
micro-grids for recursive state estimation (SE). More specifically,
an exact linear model of a voltage source converter (VSC) is
proposed. It relies on the complex VSC modulation index to
relate the quantities at the converters DC side to the phasors
at the AC side. The VSC model is derived from a transformer-
like representation and accounts for the VSC conduction and
switching losses. In the case of three-phase unbalanced grids,
the measurement model is extended using the symmetrical
component decomposition where each sequence individually
affects the DC quantities. Synchronized measurements are
provided by phasor measurement units and DC measurement
units in the DC system. To make the SE more resilient to
vive step changes in the grid states, an adaptive Kalman Filter
that uses an approximation of the prediction-error covariance
estimation method is proposed. This approximation reduces the
computational speed significantly with only a limited reduction in
the SE performance. The hybrid SE is validated in an EMTP-RV
time-domain simulation of the CIGRE AC benchmark micro-grid
that is connected to a DC grid using 4 VSCs. Bad data detection
and identification using the largest normalised residual is assessed
with respect to such a system. Furthermore, the proposed method
is compared with a non-linear weighted least squares SE in terms
of accuracy and computational time.

Index Terms—Linear state estimation, hybrid AC/DC grids,
Kalman Filter, unbalanced networks, micro-grids.

I. INTRODUCTION

HYBRID AC/DC grids are a promising solution to
increase the share of distributed generation in future

power grids that are expected to massively rely on renewable
power generation. Indeed, combining AC and DC creates
the opportunity for more flexible control and increased
system’s efficiency [1]. The knowledge of the system’s state
is a prerequisite for several key operational and control
processes, such as grid-aware optimal power flow (OPF)-
driven control [2], stability assessment, security and post-
contingency analysis [3]. State estimation (SE) in solely AC
grids, both static and recursive, is a well-understood problem
where the literature has provided several solutions [4]. For
hybrid AC/DC systems, instead, the SE still relies on different
approximations as discussed in Section II.

The emerging availability of phasor measurement units
(PMUs) provides synchronised measurements of the AC grid’s
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current and voltage phasors at a rate of tens of frames-
per-second [5]. Only when these phasors are written in
Cartesian coordinates, the measurement model that relates the
measurements to the states can be formulated in a strictly
linear way. At the DC part of the system, DC measurement
units (DMUs) may also provide synchronised measurements.
The DC measurement model of a SE is intrinsically linear. The
VSC model, however, linking the DC quantities to the complex
AC phasors represented in Cartesian coordinates, does not
intrinsically lead to a linear relationship between the states
and the measurements. The VSC representation is, therefore,
the key aspect in SE of AC/DC grids.

In this respect, this paper introduces a method to create a
fully linear measurement model for VSCs using the complex
modulation index of the VSC that links the real and imaginary
parts of the complex phasors to the magnitude of the DC
quantities. Using the symmetric component decomposition,
the linear model is extended to unbalanced three-phase (3-ph)
hybrid grids.

This paper proposes an exact recursive SE, relying on a
Kalman Filter (KF) that uses a measurement model and the
systems time evolution to estimate the unbiased and minimum
variance states [3]. As known, the KF uses all available
measurements, past and presents and it can be analytically
proved that the estimation error of the KF is always lower
than the estimation error of a static SE, provided that the
KF process model hypotheses are correct [6]. The choice of
the KF relies on the nature of the model we propose to take
into account the converter’s losses that, as a matter of fact,
does require the previously computed state making the SE
problem inherently recursive. Details and hypotheses about
this aspect are described in the Appendix A. Furthermore,
the SE is coupled with fast adaptive updates of the process
model covariance matrix and is, therefore, highly suitable for
step-varying states. Bad data in the AC and DC parts of the
system are identified and rejected using the standard largest
normalised residual (LNR) test.

The CIGRE benchmark 14 node AC micro-grid defined
by Task Force C6.04.02 [7] is used to validate the SE.
This benchmark grid is connected in 4 nodes to an 8 node
DC grid using VSCs. The AC/DC hybrid grid is modelled
and simulated in EMTP-RV, the electromagnetic transients
program used to simulate the power system [8] [9]. Within
the context of the European project HYPERRIDE under Grant
agreement ID: 957788, the SE will be implemented into a real
hybrid AC/DC micro-grid hosted at the Distributed Electrical
System Laboratory at the EPFL. This real-life hybrid network
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requires updated state estimates in a fast (i.e. sub-second)
and accurate way for different real-time grid-aware optimal
control algorithms. The real systems topology and location of
the PMUs and DMUs are identical to the ones used in the
simulation for the validation of the state estimation.

The paper is structured as follows: Section II consists of
a literature review on the SE of hybrid AC/DC networks,
the transformer-like VSC model in the time domain and
discusses the adaptive KF that uses the prediction-error
covariance estimation method (PECE) to assess the process
model error distribution. Section III presents the fully linear
measurement model for lossless and lossy VSCs. Section IV
describes the linear SE with bad data identification and an
approximation of the PECE method. In Section V, the hybrid
SE algorithm is validated in the EMTP-RV time simulation
and its performance is compared with a non-linear weighted
least square (WLS) SE. The conclusions are given in Section
VI.

The technical contributions and innovations of this work
include: 1) proposition of an exact and fully linear
hybrid AC/DC network measurement model that includes
the interfacing AC/DC converter losses; 2) proposition of
a computationally-efficient approximation of the Kalman
filter prediction-error covariance estimation (PECE) process
proposed in [10]; 3) a recursive state estimator for hybrid
AC/DC micro-grids capable to track system’s state step
changes including bad data detection and identification.

II. LITERATURE REVIEW

A. State estimation for hybrid AC/DC grids
The first applications of SE for hybrid AC/DC grids refer

to HVDC lines and FACTS. Reference [11] describes a
WLS SE for HVDC. A non-linear model of the VSC is
used to link the AC system with the DC system using
two relations: 1) the converter control inputs, namely the
reference voltage magnitude and angle and 2) the power
balance equations accounting for converter losses. [12] and
[13] describe a solution for a linear SE for thyristor-based
VSCs. Their solution exists in using the product of the voltage
magnitude with the cosine of the firing angle and the excitation
angle as state variables for the rectifier and inverter side.
This approach makes the problem linear, however, its use
is limited to only thyristor-based VSCs. Furthermore, this
solution ignores converter losses. Other works incorporate
the DC measurements using the non-linear power balance
equations and use the modulation index as a measurement to
link the DC voltage to the AC voltage magnitude [14]. [15]
uses the power balance while ignoring the converter losses and
iteratively solves the WLS SE using the partial derivative of
the measurement equations.

When it comes to hybrid AC/DC grids with multiple DC
links and an actual DC grid, fewer solutions have been
proposed in the literature. [16] introduces a decentralised
iterative technique that decomposes the SE problem of hybrid
micro-grids. The authors suggest first to formulate the SE of
the AC and DC part separately and subsequently, solve it
alternated in an optimisation problem using the lossy active
power balance to link the two systems. [17] and [18] follow

a similar approach to solve the hybrid SE problem. [19]
accurately models the conduction and switching losses of the
AC/DC interfacing converter. However, this SE still relies on a
non-linear VSC model. In [20], the authors propose a pseudo-
dynamical hybrid model that can cope better with transient
conditions that occur frequently on hybrid grids with VSCs.
The formulated converter model is based on a lossless power
balance equation and the modulation index, which defines the
relations between the voltage magnitude at the AC side and
the DC side. A more recent work [21] uses the same approach
but includes the converter losses, formulated as a 2nd order
polynomial, into the power balance.

All previously listed SEs make use of non-linear converter
equations to describe the linkage between the AC and the DC
state variables. This results in the need for a SE algorithm that
uses an iterative procedure to find a solution. These iterative
SEs are non-optimal and no unique solution can be guaranteed;

[22] shows that using current magnitude measurements
together with power flow measurements can cause the network
to be not uniquely observable. Furthermore, suitable initial
conditions need to be chosen to ensure convergence. Another
problem in using an iterative algorithm is the computation
time. SEs that run coupled with real-time control applications
should find the optimal solution within time windows ranging
from a few of hundreds of ms to a few seconds. Therefore,
computational efficiency is crucial.

B. Adaptive Kalman Filter
Micro-grids are very often subjected to steps and fast state

variations that violate the process model of recursive SE based
on KF (see Appendix A). Therefore, a correct assessment
of the prediction error covariance matrix P̃ during these
phenomena is crucial for the correctness of the KF. Various
methods have been proposed in the literature to assess the
process noise covariance matrix Q (e.g. [10], [23]–[26]).

This work uses the prediction-error covariance estimation
method (PECE), which is introduced in [10]. The PECE
method only requires the setting of a single parameter and
ensures the positive semi-definiteness of the estimated KF
process covariance matrix (required to guarantee numerical
stability). The method relies on the previous innovations as
defined in (69) and computes an estimate of P̃k without
first making an estimation of the process noise covariance
matrix Qk. The PECE method assumes the process model
is an auto-regressive integrated moving average (ARIMA)
(0,1,0) model [27], the system is fully observable and
the measurement model is linear, fully known and time-
invariant. The measurement covariance matrix R is assumed
to be known. PECE considers that, when a step occurs,
the KF state prediction (62) is inaccurate. Therefore, the
absolute value of the innovations increases and the innovation
covariance matrix approximation (1) changes. Consequently,
the computed estimation covariance matrix P̃k inflates and
thus the Kalman gain too. Therefore, more weight will be
put on the measurements model to instantly respond to
the step change. To guarantee the positive definiteness of
P̃k, a constraint convex optimisation problem based on ML
estimation is solved (2).
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The PECE is summarized here and all the details can be
found in [10] and [28].

1) At time step k the a priori state estimate x̃k is computed
together with the innovation yk = z−Hkx̃k.

2) The covariance matrix of the innovations is given as:

Sk = HP̃kH
T +Rk (1)

Sk can be approximated by Ĉk =
cov (yk,yk−1, . . . ,yk−N+1), with N the number
of considered past innovations. In the static conditions,
the sample covariance matrix Ĉk tends to converge to
the true Sk as N increases.

3) P̃k can now be estimated. Because solving (1) to P̃k

will generally not produce a semi-definite matrix, a more
adequate method has to be used: the authors of [10]
suggest to solve the optimisation problem (2)

min
D

{−log [det(D)] + trace(DE)}

s.t. D real symmetric, D ≻ 0

In −D ≽ 0 (2)

with
R

−1/2
k H = V

(
U

0m−n,n

)
(3)

E =
(
V−1R

−1/2
k ĈkR

−1/2
k V−T

)
(1:n,1:n)

(4)

4) The optimisation problem (2) is solved with YALMIP
using the sdpt3 solver. The estimation for the prediction
covariance matrix can subsequently be computed as:

P̃k =
(
U−1

(
D−1 − In

)
U−T

)
(5)

C. Transformer-like AC/DC converter model
A linear model of the converter is needed to link the

AC phasors with the DC quantities. A transformer-like VSC
model has been proposed in [29], [30]. Fig.1 shows the
model of one inverter leg. The transformer-like model is
derived from the power balance equations and allows to
model the lossless behaviour but also the conduction losses
and the switching losses separately. The modelling of the
losses requires few parameters that can be derived from the
component’s datasheet. [31] further improved the transformer-
like model accuracy by including the dead time and the high-
impedance state. However, simulations show that the influence
of these additional features is small and, therefore, they are not
considered in this work.

Vac

IacI2I1Idc

Is

Vc
V2V1Vdc Vg

Lf

1 : r(t)

Rf

Fig. 1: Transformer-like model of an inverter leg of the AC/DC
converter with RL filter

The lossless two-port time-domain model of an inverter leg
can be derived as shown in (6), in which r(t) is defined as
the leg binary switching function between ’0’ and ’1’. This
variable, averaged over its switching period, is the same as

the modulating function that gives the voltage reference to the
converter legs.[

v2(t)
i1(t)

]
=

[
r(t) 0
0 −r(t)

]
·
[
v1(t)
i2(t)

]
(6)

In the case of a lossy model, the conduction and switching
losses can be included in the two-port model. The conduction
losses account for the voltage drop over each conducting
device. [30] suggests considering these losses as a voltage
source in series with the transformer secondary side. The
value of this voltage source depends on the direction of the
alternating current and the switching function s(t) that defines
the conduction path. The conduction loss voltage drop in the
time domain is represented by the difference between the ideal
and the actual AC voltage (7) is analytically expressed as (8),
in which VT and VD are the forward voltage drops over the
transistor and the diode.

vc(t)= VDCr(t)− vAC (7)

vc(t)= sgn(iAC(t))

[
VT + VD

2

]
+ s(t)

VT − VD

2
(8)

With sgn() the sign function of the current in the time
domain. The forward characteristics of the diode (referred to
by subscript D) and transistor (referred to by subscript T ) are
approximated using a piecewise linear function with V0 the
forward voltage drop and R0 the equivalent series resistance.
Assuming the characteristics of the diode and the transistor
hold, meaning V0 = VD0 = VT0 and R0 = RD0 = RT0, the
conduction losses can be expressed as:

vc(t)= V0 sgn(iAC(t)) +R0 iAC(t) (9)

The switching losses are modelled as a current generator in
parallel with the transformer primary side. Different methods
have been proposed to model these losses [19], [29], [30], [32].
All methods are based on the transistor turn-on and turn-off
losses under the test conditions:

Esw =
EON + EON

VtestItest
IacVdc (10)

The equivalent time commutation constants characterising the
transistors turn-on and turn-off effects under the test conditions
are defined as:

TON =
EON

VtestItest
, TOFF =

EOFF

VtestItest
(11)

The switching losses are to a first approximation, proportional
to the DC voltage and the instantaneous AC current. [29] [30]
propose to model the current losses in the time domain for a
fixed switching period as (12)

is,IGBT (t) =
TON + TOFF

Ts
|iAC(t)| (12)

Other works, [19] and [32] propose to express the
instantaneous energy losses due to the power semiconductor
switching as (13).

Esw,IGBT = (TON + TOFF )Vdc

√
2Irmssin(2πflinet), (13)

where the current through the transistor is approximated as the
fundamental line-frequency component of Iac. Each time the
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transistor switches, some energy is lost. Averaged over one
grid period, the total switching energy is defined as (14):

Esw,IGBT,T = 2(TON + TOFF )Vdc

√
2Irms

N/2∑
n=1

sin
2πn

N
, (14)

with Irms the rms value of the current, N = fs
fline

, fs
the switching frequency and fline the line frequency. Using
trigonometric identities, the energy losses in (14) can be
reformulated as a current in parallel with the transformer
primary side:

Isw,IGBT,T = 2
√
2
TON + TOFF

Ts

1

N
cot(

π

N
)Irms. (15)

The switching current losses for the diode are modelled in a
similar way using the time constant TREC representing the
reverse recovery at turn-off (16).

Isw,Diode,T = 2
√
2
TREC

Ts

1

N
cot(

π

N
)Irms. (16)

The total switching current losses are defined as the sum of
(15) and (16)

III. MEASUREMENT MODEL OF HYBRID AC/DC
NETWORKS

A. Converter Model
1) Lossless
Using the lossless transformer-like converter model Fig.1,

the converter AC side can be linked with the DC side through
the modulation index M . (17) describes the linkage for the
lossless model, where Vac = V2 and Vdc = V1 are the
magnitudes of the AC and DC voltage.

V2= MV1 (17)

Because the AC system states are complex nodal voltages
in Cartesian coordinates, (17) needs to be reformulated. By
considering the modulation index as a complex variable M =
Mre + jMim, the problem can be reformulated so the DC
quantities are linked with the AC phasors in a linear way:

V2,r + jV2,i= (Mre + jMim) V1 (18)

Because it is interesting to infer V1 as a function of the
complex phasors, we define:

M−
re =

Mre

M2
re +M2

im

, M−
im = − Mim

M2
re +M2

im

, (19)

which leads to:

V1 + j0 = (V2,reM
−
re − V2,imM−

im) + j(V2,reM
−
im + V2,imM−

re) (20)

This reformulation leads to two linear relations that link the
DC quantities to the AC complex phasors.

V1= V2,reM
−
re − V2,imM−

im (21)
0 = V2,reM

−
im + V2,imM−

re (22)

The current at the DC side can be analogously related to the
AC current phasor:

I1= − (I2,reMre − I2,imMim) (23)

2) Lossy
In the case of a lossy converter, the loss terms, defined in (9)

and (15), need to be expressed using the phasor representation.
The conduction losses consists of two terms: an ohmic

voltage drop proportional to the current and a constant voltage
drop that changes sign depending on the current direction.
The first term can straightforward be converted in phasor
representation by taking the Fourier transform and only
considering the fundamental frequency (24).

R0 iAC(t)
F−→ R0IAC,re + jR0IAC,im (24)

The second term is a square wave with amplitude V0. Using
the Fourier expansion, the square wave can be represented by
an infinite sum of sine waves. By neglecting the higher-order
terms and taking the Fourier transform of the fundamental
frequency, we can convert the time-domain expression into a
phasor representation (25):

V0 sgn(iAC(t))
F−→ V0

4

π
cos(θI) + jV0

4

π
sin(θI), (25)

with θI the initial angle of the square wave function.
Using trigonometric identities, the voltage drop accounting

for the conduction losses in an inverter leg can be written in
phasor representation as:

Vc,re + jVc,im =(V0
4

π
cos(θI) +R0Iac,re)

+j(V0
4

π
sin(θI) +R0Iac,im)

=(V0
4

π

1

|IAC|
+R0)(Iac,re + jIac,im) (26)

The current magnitude in the denominator is computed
using the states of the previous time step. The introduced
approximation is negligible due to: 1) new states are computed
at a very high frequency (i.e. lager than 1Hz) and in quasi-
static conditions, little difference will be observed between
two consecutive states. 2) In recursive SE, the process noise
can account for this error1. 3) The conduction voltage drop
is at any time smaller than 0.005pu. Therefore, even during
large transients when the state would change abruptly between
two consecutive time steps, the possible introduced error is
very small. To represent the V − I characteristic of the
transistor with better accuracy, the real exponential relation
can be used in preference to a linear piecewise function.
Furthermore, the Req − I characteristic, the ohmic resistance
of the transistor as a function of its current can be derived from
the semiconductor’s datasheet. By using this characteristic, the
value of the equivalent resistor Req is evaluated using the
previously estimated state |It−1

ac | . Using Req , equation (26)
is rewritten as (27).

Vc,re + jVc,im = Req
(
|It−1

ac |
)
(Iac,re + jIac,im). (27)

The switching losses are also converted into Cartesian
phasor representation. Both methods presented in Section II,
(12) and (15) can be converter in a similar way by using
the first-order Fourier expansion. It can be shown that both
methods give the same numerical results.

Isw = 2
TON + TOFF + TREC

Ts

1

N
cot(

π

N
)(

cos(θt−1
I )Iac,re + sin(θt−1

I )Iac,im
)

(28)

1The whiteness of this error is numerically proved in Section V-B
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A filter at the AC side of the converter is required to reduce
the harmonics to an acceptable level. Fig.1 shows the RL filter
together with the lossy converter. The filter also needs to be
included in the measurement model. We can write the voltage
drop of the RL filter in phasor representation as:

Vf,re + jVf,im =(Rf + jωLf )(Iac,re + jIac,im)

=(RfIac,re − ωLfIac,im) +

j(RfIac,im + ωLfIac,re) (29)

Integrating the transistor losses (27) (28) and the filter voltage
drop (29) into the lossless expression derived in (21), we get:

VDC =M−
re (Vg,r + (Rf +Req)Iac,r − ωLfIac,i)

−M−
im (Vg,i + (Rf +Req)Iac,i + ωLfIac,r) (30)

and

IDC =− (Iac,reMre − IacimMim) + Is, (31)

with Is as defined in (28). The exact values of the complex
modulation index can easily be extracted from the VSC control
and will be fed to the SE as a known variable.

Because the states of AC systems are often selected as the
nodal voltages, the DC voltage and current in (30) and (31)
need to be rewritten as a function of the nodal AC voltages
instead of the current flows. We call the nodes of the AC
branch connected to the VSI k and m, with m the node
closest to the VSC. Using the expressions (32), (33) of the real
and imaginary part of the current flow phasors at the branch
between buses k and m, we can formulate the VSC lossy
model representing the DC voltage as a function of the AC
nodal voltage phasors.

Ikm,re =gkm,L(Vk,re − Vm,re)− bkm,L(Vk,im − Vm,im)

+ gkm,TVk,re − bkm,TVk,im (32)
Ikm,im =gkm,L(Vk,im − Vm,im) + bkm,L(Vk,re − Vm,re)

+ gkm,TVk,im + bkm,TVk,re (33)

with g = gkm the conductivity and b = bkm the susceptibility
of the line km. Rewriting (30) using the current flow equations
with Iac,re = Ikm,re and Iac,im = Ikm,im gives for the direct
sequence equivalent (1-ph):

VDC = [M−
re

(
1 + (Rf +Req)(g

L + gT )− ωLf (b
L + bT )

)
+M−

im

(
ωLf (g

L + gT )− (Rf +Req)(b
L + bT )

)
]Vm,re

+ [M−
re

(
−(Rf +Req)g

L + ωLfb
L
)

+M−
im

(
−ωLfg

L + (Rf +Req)b
L
)
]Vk,re

+ [M−
re

(
(Rf +Req)(−bL − bT )− ωLf (g

L + gT )
)

+M−
im

(
1 + ωLf (−bL − bT )− (Rf +Req)(g

L + gT )
)
]Vm,im

+ [M−
re

(
(Rf +Req)b

L + ωLfg
L
)

+M−
im

(
ωLfb

L − (Rf +Req)g
L
)
]Vk,im, (34)

The coefficients C1...4 are introduced to simplify the above
expression:

VDC = C1Vm,re + C2Vk,re + C3Vm,im + C4Vk,im. (35)

3) Unbalanced and 3-ph systems
In case of an AC 3-ph system, the measurement matrix is

extended to included all the a, b, c-phases of the considered
states and measurements. Therefore, the equations (30) and
(31) need to be adapted in order to incorporate the 3-
ph phasors, because one DC quantity needs to be related
to three complex phasors. Using Fortescue’s transformation
to decompose the 3-ph voltages and currents into their
symmetrical components, an elegant and linear solution is
obtained. The complex linear transformation is shown in (36),
where α = e

2
3πj and 0 , 1 , 2 represents respectively the zero,

positive and negative component.[
V0re + jV0im

V1re + jV1im

V2re + jV2im

]
=

1

3

[
1 1 1
1 α α2

1 α2 α

]
·

[
Vare + jVaim

Vbre + jVbim

Vcre + jVcim

]
(36)

Using the symmetrical components decomposition, (21) is
reformulated as (37) where each sequence contributes to the
DC voltage.

VDC =M−
0,reV0,re +M−

1,reV1,re +M−
2,reV2,re

−
(
M−

0,imV0,im +M−
1,imV1,im +M−

2,imV2,im

)
(37)

By solving (36) and substituting the real and imaginary
components of the sequences into (37), a linear relation is
obtained that links the DC voltage to the three complex
phasors in the abc-coordinate system.

For a 3-ph system, the complex modulation indices Mabc

are transformed into their symmetrical components M012

using the Fortescue matrix (36). The variables Ci in (35)
become vectors consisting of

[
C0

i C
1
i C

2
i

]T
, for i ∈ [1 . . . 4].

By re-transforming the variables into abc coordinates, the
expression is obtained that links the DC voltage with the 3-ph
AC phasors, this is directly used in the measurement model:

VDC =


ℜ
(
(C012

1 + jC012
3 )TA−1

)
ℜ
(
(C012

2 + jC012
4 )TA−1

)
ℑ
(
−(C012

1 + jC012
3 )TA−1

)
ℑ
(
−(C012

2 + jC012
4 )TA−1

)

T 

V abc
m,re

V abc
k,re

V abc
m,im

V abc
k,im

 , (38)

with A−1 the inverse of the Fortescue matrix. The terms in
(38) correspond to the submatrices [HV SC−AC HV SC−DC ]
in the hybrid AC/DC measurement model (46) that will be
constructed in the next section.

When VSC only injects the positive sequence component,
the terms M0 and M2 in (37) can be omitted and the model
simplifies. Therefore, the terms C012

i , for i ∈ [1...4] in (38)
only have a positive sequence term: [0 C1

i 0]T and thus the
DC voltage will only influence the positive sequence of the
AC voltage.

It is important to notice that the proposed linear model
allows for representing the VSC independently of its control
variables and parameters. Because the SE is formulated from
the grid’s perspective, the internal voltages and/or currents
within the VSC are not considered. The VSC control scheme
regulates the modulation index to track the preferred set points
for Vdc − Qac, Pac − Qac or Vdc − |Vac|. Therefore, the
states are estimated regardless of the control variables and the
parameters.

B. AC Network Model
Using PMUs for the data acquisition allows formulating the

AC system in a fully linear way. The measurements vector
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consists of phase-to-ground nodal voltages, nodal current
injections and current flows. In this work, the state variables,
defined as the smallest set that fully describes the system, will
be the nodal voltages for the AC network. The structure of the
linear measurement model for the AC network is:

HAC−AC =
[
HV HIinj HIflow

]T
(39)

The construction of these sub-matrices is described in [3].

C. DC Network Model
DMUs are responsible for the data acquisition in the

DC network. The devices are time synchronised with the
PMUs and have the same measurement frame rate. They
provide nodal voltage, current injections and current flow
measurements. Analog to the AC system, the expression of
the current injections in node i connected to s nodes is:

Ii=

s∑
ℓ=1

giℓ (Vi − Vℓ) (40)

The expressions of the current flows at the branch between
busses i and ℓ are:

Iiℓ= giℓ (Vi − Vℓ) (41)

The structure of the measurement model for the DC network
can be written as:

HDC−DC =
[
HV HIinj

HIflow

]T
(42)

The sub-matrices are defined as:

HV = [α ] , where αiℓ =

{
1 if i = ℓ

0 if i ̸= ℓ
(43)

HIinj
= G, with G the conductivity matrix (44)

HIflow
= [ θ δ ] , where

{
θiℓ = giℓ

δiℓ = −giℓ,
(45)

with giℓ the element at the i, ℓ position in the DC network’s
conductivity matrix.

IV. LINEAR STATE ESTIMATOR OF HYBRID AC/DC
NETWORKS

A. Measurement model
The measurement model (46) is constructed using the

submatrices of the VSC model (38), AC grid (39) and DC
grid (42) defined in the previous section.

H =

[ HAC−AC 0
HV SC−AC HV SC−DC

0 HDC−DC

]
(46)

Depending on the grid topology, location of the
measurement devices and the preference of DC state variables,
we can choose to use the VSC voltage (30) or the VSC current
(31) model for the measurement matrix. In case the DC states
are the nodal voltages, we can link the voltage measurement
at the DC side of the VSC to the state variables using a one-
on-one relation. Therefore, the measured DC current can be
related to the states using the current model (31). If the DC
currents are the preferred states, a similar reasoning is made.

Furthermore, the measurement model requires to satisfy
several conditions to preserve linearity. 1) The AC
measurements and states must be expressed in Cartesian

coordinates, idem for the measurement noise. 2) The converter
model requires the complex modulation index that is given as
a known variable by the VSC. 3) To take the VSC losses into
account, the current of the previous time step is evaluated to
compute the equivalent ohmic resistance of the transistor and
diode.

The measurement noise originates from two sources: 1) the
noise coming from sensors and 2) inaccuracies introduced in
the phasor extraction at the PMU level. Table I shows the phase
displacement and ratio error for several accuracy classes of the
voltage transformers according to [33]. Table II summarizes
the noise level for different percentages of magnitude and
phase displacement of the rated current [34]. Because of the
faster dynamic behaviour in micro-grids, P class PMUs are
preferred that are characterized by a fast response. The typical
maximum errors of P class devices with a total vector error of
0.14% are given in Table III [35]. Following the hypothesis
for the summation of uncorrelated normal distributions, the
cumulative maximum errors of the sensors and the PMUs
are computed by summing the corresponding magnitude error
and phase errors. The cumulative standard deviation of the
measurement noise is equal to one-third of the maximum
errors.

TABLE I: Limits of ratio error and phase displacement of the voltage
transformer.

IT class ratio error (%) phase displ. (mrad)

0.1 0.1 1.5

0.5 0.5 6

1 1 12

TABLE II: Limits of ratio error and phase displacement of the
current transformer for different values of the rated current.
IT class ratio error (%) phase displ. (mrad)

% of rated 5% 20% 100% 120% 5% 20% 100% 120%

0.1 0.4 0.2 0.1 0.1 4.5 2.4 1.5 1.5

0.5 1.5 0.75 0.5 0.5 27 13.5 9 9

1 3.0 1.5 1.0 1.0 54 27 18 18

TABLE III: Limits of magnitude and phase error of the P class PMU
and DMU.

Device accuracy (%) mag. error (%) phase error (rad)

PMU (AC) 0.14 0.1 10−3

DMU (DC) 0.14 0.1 -

The PMU measurements are expressed in the Cartesian
coordinate system. Therefore, the corresponding noise
distributions in polar coordinates must also be transformed into
rectangular coordinates as described in [3]. This coordinate
transformation does not preserve the normality of the noise
distribution. However, for small noise levels, as sensors of
classes 0.1−1, the effect is not noticeable and we can assume
the noise in rectangular coordinates is normally distributed.
The diagonal elements of the measurement noise matrix R
are composed of the aforementioned variances.

B. Adaptive Kalman Filter
The PECE method, introduced in [10], relies on finding

the solution of a determinant maximization (MAXDET)
optimisation problem to infer the KF process noise covariance
matrix. This problem, as given in (2), is time-consuming to
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solve and requires specific software. However, by considering
the optimisation variable D as a diagonal matrix, the problem
can be significantly simplified to reduce the computation
time. As the authors of [10] described, the off-diagonal
elements increase the response time and improve the state-
tracking capabilities. However, even without considering these
elements, the performance of the AKF is still significantly
better than the original DKF during step responses. Assuming
D only has diagonal entries the MAXDET problem in (2)
can be simplified to (47) by performing the mathematical
transformations: 1) the logarithm of the determinant of
a diagonal matrix can be rewritten as the sum of the
logarithms of the individual diagonal elements. 2) The trace
is reformulated as the inner product of the diagonal elements
of the two matrices.

min
D

{
−

n∑
i=1

log(Di) +D diag(E)T

}
s.t. 0 < D ≤ 1 (47)

with D a vector with as length the number of state variables.
This is a simple optimisation problem that does not need
any specific solver. This simplification hugely speeds up the
problem so it can be used in a real-time application2.
C. Bad Data Processing

After the estimation process, the presence of bad
measurements is examined. Bad data that corrupts the
measurements, originates from sensors (e.g. malfunctioning,
biases and bad calibration) or telecommunication systems
(e.g. noise and interference). The LNR test is used for the
identification and elimination of these bad data. The test
uses the measurement residuals (48) that are defined as the
difference between the measurement and the reconstructed
measurement computed using the state estimates [36] [4].

ri= zi −Hix̂i, i = 1, . . . ,m (48)

Using (65), the residuals are reformulated and its covariance
matrix can be computed [37]:

z −Hx̂= z −H(x̃+K(z −Hx̃))

= (I−HK)(z −Hx̃) (49)

cov(z −Hx̂)= (I−HK) cov(z −Hx̃) (I−HK)

= (I−HK) S (I−HK) (50)

with S the innovation covariance matrix as defined in (70).
Using the definition of the Kalman gain (64), (I−HK) can
be rewritten as RS−1.

T = cov(z −Hx̂))= (RS−1)S(RS−1)

= RS−1R (51)

Using (51), the normalised residuals are defined by (52), in
which Tii represents the ith diagonal element of the residual
covariance matrix.

rNi =
|ri|√
Tii

, i = 1, . . . ,m (52)

If rNk > c, with k the index of the largest normalized residual,
this measurement will be suspected as bad data. c is the user-
defined identification threshold, set at for instance 4. In case

2A numerical validation showed that the diagonal approximation reduces
the CPU time from 11.5± 0.26 s to 58.7± 2.8 ms.

a measurement is identified as bad data, this measurement is
eliminated and the KF re-estimates the states using the reduced
measurement matrix. The above process is repeated until all
normalised residuals are smaller than the defined threshold.

V. NUMERICAL EXAMPLE

A. Network
The linear SE is validated in an EMTP-RV simulation of

the CIGRE benchmark micro-grid extended with a DC grid.
Fig.3 shows the hybrid grid’s topology with the loads and the
power sources. The AC micro-grid has a base voltage of 400V
and the DC grid 800V, the base power for both networks is
100 kW. Bus B01 is the slack bus that is connected to the
20 kV medium voltage grid through a transformer. The table in
Fig.3 indicates the simulation’s boundary conditions. In order
to consider a more realistic model, a dynamic power injection
profile coming from photovoltaic power generation has been
added to the AC node B09 and the DC node B23. The PV
generation profile is shown in Fig.2 and has been measured
on the EPFL campus. The system unbalance is created by
injecting a total difference of 20 kW between the phases. The
VSC’s control variables are the DC voltage and the reactive
power at the AC side setpoints.

Fig. 2: Profile of the PV generation in nodes B09 and B23

1) Measurements
The PMU and DMU locations are chosen to guarantee the

observability of the system, i.e. the measurement model matrix
H is full rank. On Fig.3, the PMU locations are shown in red
and the DMU locations are in blue. Table IV summarizes the
type of measurements that are provided for each bus.

The PMUs and DMUs provide measurements at 50
frames/s. The measurements are corrupted with white noise
with a power spectral density identical to the noise of the PMU
and the sensors used in the real system. The deployed current
and voltage sensors for the AC and DC system have both
an accuracy class of 0.5%. The measurement noise matrix is
constructed using the corresponding sensors, PMU and DMU
noise levels from Tables I, II and IV where the rated current
of the sensors is chosen as the highest line ampacity in the
network.
TABLE IV: PMU and DMU locations and measurement type in the
Hybrid AC-DC micro-grid.

Network Measurement type Bus #

AC 3-ph Nodal voltage, 1,3,5,9,11,13,14

3-ph Current injections

AC 3-ph Current flows 9-15,13-16,11-17,7-18

DC Nodal voltage 19,20,21,22,23,24,25,26

DC Current flows 19-23,20-24,21-25,22-26
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Fig. 3: Hybrid AC/DC micro-grid with the connected sources and loads, the maximum power rating are
indicated. The table defines the boundary conditions of the simulation.

Parameter Set point
L1 −20 kW, 0 var
B −20 kW,−5 kvar
PV1 Variable profile
SC1 2 kW, 0 var
FC 0W, 0 var
EL −10 kW, 100 var
L2 15 kW, 300 var
PV2 Variable profile
SC2 −5 kW
L3 20 kW, 2 kvar
SC3 −5 kW
L4 800V
f 50.0Hz
V (B01) 400V

2) States
The state vector is composed of the nodal AC voltage

phasors in rectangular coordinates and the current flows in
the DC network:

x =
[
V ℓ
1,re, . . . , V

ℓ
k,re, V

ℓ
1,im, . . . , V ℓ

k,im, Iij , . . .
]
, (53)

with ij the index of the DC current flows between busses
[19−23, 20−24, 21−25, 22−26], ℓ the phases a, b, c and k the
index of the AC-side nodal voltage phasors at the busses 1 to
18 except for bus 6 and 12. These two busses are zero-injection
busses that are removed from the SE using the Kron Reduction
as described in [38]. Reducing the number of non-injection
nodes is required to satisfy the observability criteria. Because
the current is chosen as state for the DC system, the VSC
voltage model (38) is used in the measurement model. For a
3-ph system, this results in 100 states and 120 measurements,
meaning a redundancy factor of 1.2.

3) EMTP-RV time-domain simulation
The uncorrupted measurements and states of the network

are obtained from an EMTP-RV time-domain simulation. The
two-level converter is taken from the power electronics library
and represents a detailed model of the power electronics
switches and associated losses. The VSC is controlled using
a control scheme that manages grid synchronisation under
unbalanced conditions. In the simulation, the converters
only inject the positive sequence currents. Therefore, correct
detection of the voltage positive sequence components
is essential. A double second-order generalized integrator
(DGOSI) extracts the positive and negative sequence
components of the grid voltage. The positive components
are fed to a phase-locked loop (PLL) to extract the phase
and the in quadrature dq voltage components in the rotating
synchronous reference frame. The active and reactive power
references, converted to dq current references using the in
quadrature voltage components, are tracked using two coupled
PI controllers with active saturation. The PI controllers are
tuned using symmetrical optimum. A PWM signal at 5 kHz
controls the switching of the IGBTs. The AC and DC power
sources, representing the different loads and sources are
implemented in the time domain using a controlled current
source. The converter and power sources are characterised by
transient start-up phenomena that are ignored in the SE.

The AC measurement are generated using a discrete Fourier
transform (DFT) that calculates the phasor quantities of the
instantaneous values of the current and voltage signals. The
phasors are calculated over a sliding window of one grid
period equal. Because the time step of the simulation is 1
µs, 20000 samples are used the generate each phasors update.
The measurements from the DMUs are generated similarly.
However, instead of using a DFT to extract the phasor from
the instantaneous signal, a moving average block has been
used. The simulation model is made publicly available on the
DESL GitHub page3.

The process model is the ARIMA (0,1,0) to satisfy the
PECE hypothesises.

B. Validation of the hybrid AC/DC state estimator
The validation of the hybrid SE relies on testing the

assumptions made in (67) for the prediction error and (68) for
the estimation error. If these expressions hold, the expected
distribution equals the actual distribution and the hypothesis
is valid. Therefore, the hybrid KF works properly and can be
validated a posteriori (i.e. by means of the classical hypothesis
verification process to assess the exactness of the SE model).

1) Validation of the estimation error
Fig.4 shows the fitted and expected distribution of the

estimation error. The latter equals the square root of the
diagonal elements of the estimation error covariance matrix
P̂. The results are obtained for a 100 s dynamic time-domain
simulation of 5000 observations with respect to a system state
associated with the boundary conditions given by the table in
Fig.3. We can notice that the fitted distributions are zero biased
and that their distributions are very similar to the expected
distributions. Because of the readability of the figure, several
AC state variables are omitted from the figure, however, these
states exhibit the same behaviour. We can thus conclude that
the hypothesis made in (68) is satisfied.

2) Validation of the prediction error
The actual and the expected prediction error distributions

are shown in Fig.5. The expected distributions equal the
square root of the diagonal elements of the prediction error
covariance matrix. The fitted distribution has a zero mean and

3https://github.com/DESL-EPFL

https://github.com/DESL-EPFL
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Fig. 4: Actual and expected distribution of the estimation error for the DC states and several of the 3-phase AC states.

Fig. 5: Actual and expected distribution of the prediction error for the DC states and several of the 3-phase AC states.

its distribution is very similar to the expected one. The states
that are not shown for the readability of the figure, exhibit
the same behaviour. The hypothesis made in (67) can thus be
validated.

3) Measurement model validation
The correct modelling of the linear VSC model in (37) is

demonstrated on the residuals. The residuals of the DC voltage
measurements define the difference between the measured DC
voltage and the DC voltage reconstructed using the AC state
estimates and the measurement matrix. When the distribution
of the Vdc residuals is zero biased, the model is correct. Fig.6
shows the actual distribution of the residuals of the four DC
voltages in busses B19 to B22, namely the busses connected
to the VSC DC side. The mean value is added to illustrate the
residuals are unbiased and thus can be concluded that the VSC
model is correct. Furthermore, is the expected distribution,
defined in (51) highlighted on histograms to show the correct
assessment of the residual covariance matrix. This implicitly
shows the correctness of the LNR test as we will discuss in
the next section on bad data detection and identification.

The influence of the loss terms on the accuracy of the SE
is illustrated in Fig.7. The norm of the estimation error is
shown for the two SEs: one with a measurement model that
includes the loss term, and one with a model that ignores the
VSC losses. Indeed, the inclusion of the loss term reduces the
estimation error and therefore increases the accuracy of the
estimated states.
C. PECE diagonal approximation

1) Validation of the PECE diagonal method
The approximation of the PECE method is validated by

verifying the estimation error distributions (68). Fig.8 shows
the actual and the expected distributions of the PECE and

Fig. 6: Actual and expected distribution of the residuals of the DC
voltage measurements in nodes 18,19,20,21

Fig. 7: Norm of the estimation error for the lossy and lossless VSC
model. In the latter is not accounted for the switching and conduction
losses.

the PECE diagonal approximation method. Both methods are
initialised by fixing the process noise to 10−6 for N time steps.
The first 2 N time steps, N steps where the process noise is
fixed and N time steps where the PECE is converging, are
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removed from the simulation [10]. N is fixed at 2000 for both
methods. The figure illustrates clearly the matching character
of the distributions. The other state variables are omitted from
the figure for readability, however, these states exhibit the same
behaviour. We can thus conclude that the hypothesis is satisfied
and the diagonal approximation is validated.

The dynamics of the DKF, the PECE and the PECE diagonal
method are compared in Fig.9. After the initialisation time, a
step in the injected power in node 7 is introduced and the
response of the three methods is illustrated. The norm of the
estimation errors clearly shows the large overshoot and the
slow response of the DKF. PECE diagonal approximation has a
larger overshoot than the PECE method but converges rapidly
in less than 0.2 s.

2) Influence of parameter N
Fig.10 shows the influence on the norm of the estimation

errors (left) and the CPU time (right) for different values
of N, the number of elements in the approximation of the
innovation covariance matrix. The error bars define the 10th

and 90th percentile of the computational time. The normalised
error is computed considering a 100 s simulation for different
values of N. The computation time is averaged over the
simulation that is run on an Apple Macbook Pro laptop. The
initialisation of the PECE method is the same as mentioned
above. If N decreases, fewer samples are used in the estimation
of the innovation covariance matrix and the measurement
noise is less effectively filtered out. Therefore, the innovation
covariance matrix is approximated less accurate and the norm
of the estimation errors increases. Despite the lower accuracy,
the dynamic response is faster for smaller N. This occurs
because fewer samples are used and a step will have a
larger influence on the innovation covariance matrix. The
computational time slightly increases for increasing N, mainly
because of the increasing complexity of the covariance matrix
computation.

Fig. 8: Actual and expected distributions of the estimation error of
the PECE method and the PECE diagonal approximation method

Fig. 9: Comparison of the dynamic response of the norm of the
estimation errors between the DKF, PECE, and the PECE diagonal
approximation method for N = 500.

Fig. 10: Norm of the estimation errors and the corresponding
computational time for different values of N in a 100 s simulation.

D. Bad data processing
The bad data identification and elimination capabilities of

the LNR test are evaluated for the proposed SE. The LNR test
identifies a measurement as erroneous when the normalised
residual is larger than a predefined threshold. The optimal
threshold, a compromise between the true positive and the
true negative ratio is iteratively determined for the hybrid
AC/DC grid. The true positive rate (TPR) is the ratio of the
successfully detected bad data point over the total number
of bad data points, while the true negative ratio (TNR) is
the same for the non-erroneous measurement. Having two
characteristics to evaluate the performance is crucial because
a low threshold allows detecting many bad data points, but it
could also misclassify correct measurements.

Erroneous measurements are systematically introduced in
each of the measurement devices. 54 PMUs and 12 DMUs,
defined in Table IV, measure the magnitude (and phase) of the
AC and DC signals. For each measurement unit, a simulation
is performed where several erroneous magnitude and phase
measurements are introduced at random time steps. The
erroneous measurement for measurement unit i at time step t
is defined as |zti |(1+α) with α a positive or negative value (50
% probability) and as absolute value a random sampled value
between (c, 5c] ∗ σi. The value c is the predefined threshold
and σi is the measurement noise. Each simulation is 300 s
and has 100 bad data points. Because of the transformation
of the PMU measurements into rectangular coordinates, the
erroneous measurement will propagate in both the real and
imaginary parts. This will result in two coupled bad data
points. The TPR and the TNR for bad data on the measurement
magnitudes for a threshold of 4.5, are shown in Fig.11. This
threshold is selected a posteriori. Since the value depends
strongly on the system itself, an iterative process has been
performed the find the threshold that exhibits the best bad data
detection capabilities. The LNR test can successfully detect
bad data in the large majority of the cases for both the AC and
the DC system. Furthermore, the TNR shows that only a small
fraction of the good measurements are incorrectly identified as
bad data given this threshold. The measurements of the current
injections in node B01 have a low TPR between 52% and 85%.
These measurements exhibit the following characteristics: the
currents are large, 1.3pu, and the added noise is relatively
small. Especially compared to the noise level of the states
used to reconstruct this measurement. Therefore, the bad data,
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which is proportional to the noise level will also be small
and thus hard to detect. Bad data detection for phasor angles
(not shown here due to space limitations) exhibits the same
characteristics. The TPR is between 0.4 and 1 and the TNR
is between 0.99 and 1.

Fig. 11: True negative rate and the true positive rate of the LNR test.

E. Comparison with existing methods

The proposed linear recursive SE is benchmarked against
existing methods from literature to assess its performance in
terms of accuracy and computational time. A centralized non-
linear WLS-based state estimation is used for the comparison
[16]. For the correctness of assessment, the same simulation
with the same voltage and current measurements is used as in
the proposed SE.

The non-linear WLS is based on the widely adopted active
power balance to relate the DC network to the AC network.
The non-linear relation is included in the measurement model
as a pseudo measurement, as defined in (54).

zpseudo = PV SC
AC + PV SC

DC + PV SC
loss = 0, (54)

The measurement vector is extended with the pseudo
measurements as given in (55). The states x are chosen as
the real and imaginary part of the AC voltages and the DC
voltage magnitude (56).

z = [zAC , zDC , zpseudo] (55)
x = [xAC,re,xAC,im,xDC ] (56)

Due to the non-linearity of the active power balance, the
linearized measurement model needs to be expressed using the
partial derivatives of the active power balance with respect to
the state variables (57):

H =

 HAC,re HAC,im 0
0 0 HDC

∂zpseudo
∂xAC,re

∂zpseudo
∂xAC,im

∂zpseudo
∂xDC

 (57)

The converter losses (58) are modelled similarly as in the
proposed linear measurement model (27), following [31].

PV SC
loss =(Vc,reIkm,re + Vc,imIkm,im) + IswVdc, (58)

with Vc the voltage drop due to conduction losses and Isw the
switching current losses. The loss term Ploss is written as a
function of the state variables as shown in (59):

PV SC
loss =

(
∆V 2

re +∆V 2
im

)
(g2L + b2L)

(
Rf +Req

(
|It−1

ac |
) )

+2
TON + TOFF + TREC

Ts

1

N
cot(

π

N
)Vdc ·[(

cos(θt−1
I )gL + sin(θt−1

I )bL

)
∆Vre

+
(
− cos(θt−1

I )bL + sin(θt−1
I )gT

)
∆Vim

]
, (59)

where the grid parameters are the same as introduced in (32)
and ∆Vre = (Vk,re − Vm,re) and ∆Vim = (Vk,im − Vm,im).

The comparison is made using the time-domain simulation
as introduced in Section V. The measurement noise of the
voltage and current measurements is identical as for the KF.
For the sake of simplicity, the noise level of the pseudo
measurements is set at 10−6, i.e. an extremely low value
that does not make the measurement covariance matrix ill-
conditioned. The non-linear WLS is solved using an iterative
Newton Raphson approach, with a tolerance of 10−5 and
10−6. Table 12 summarizes the root mean squared errors
(RMSE) of the state estimates and the computational time
for the proposed method and the non-linear WLS. It can be
seen that the accuracy of the estimated states of the proposed
recursive SE is almost one order of magnitude better than the
WLS one, with the CPU utilization time that is 5 to 10 times
better. On average, it takes the WLS SE 15.1 iterations to
reach the required tolerance of 10−5; this explains the large
improvement in computational time of the proposed SE.

The maximum estimation error at each time step is shown
in Fig.12, where can be seen that the largest estimation error
is a factor 10 smaller in the proposed method compared to the
NL-WLS.

TABLE V: Accuracy and CPU time comparison between the DKF
and the NL WLS.

RMSE CPU [ms] Iterations

Non-linear WLS (10−6) 1.812 10−2 27.4± 5.6 47.2
Non-linear WLS (10−5) 1.836 10−2 12.2± 4.9 15.1
DKF (proposed method) 1.386 10−3 2.86± 0.40 /

Fig. 12: Comparison of the maximum estimation error between the
proposed DKF and the non-linear WLS SE.

VI. CONCLUSION

In this paper, it is introduced a fully linear measurement
model for the recursive SE of hybrid AC/DC micro-grids.
The measurement model includes a lossy VSC model that
is based on the decomposition of the modulation index into
its real and imaginary parts. The complex modulation index
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can be directly obtained from the VSC controller. The model
is further expanded for AC 3-ph unbalanced grids by using
the symmetrical component decomposition. An EMTP-RV
simulation of the CIGRE benchmark AC micro-grid connected
using 4 VSCs to an 8 node DC micro-grid is used for the
benchmarking of the hybrid SE. The SE and the measurement
model are validated by verifying the hypotheses made on the
prediction and the estimation error distributions. Furthermore,
the influence of the lossy term of the VSC’s model on the
accuracy of the SE is illustrated. A comparison between
the proposed SE and a non-linear WLS SE shows a major
improvement in both CPU utilisation time and accuracy. The
performance of the PECE diagonal approximation is shown
and compared to the PECE method. The paper has also shown
that, for the considered AC/DC grid and estimation frame
rate, the required CPU time makes it suitable for control
applications. Finally, the ability of the bad data detection and
identification using the LNR test is verified for both AC and
DC networks.

APPENDIX A
KALMAN FILTER

The Discrete KF relies on a measurement model and a
process model [4]. The measurement model H relates the
states variables x to the measurements z. The measurement
noise is assumed to be uncorrelated, unbiased, white and
Gaussian with R the measurement noise covariance matrix.
For the system to be observable, H needs to be full rank.

zk = Hxk + ϵ, p(ϵ) ∼ N (0, R) (60)

The process model accounts for the time evolution of the
system states. An ARIMA (0, 1, 0) model [27] is used, which
is very suitable for high-resolution measurements where the
state between two consecutive time-steps does not change
significantly. Because PMUs and DMUs are used that give
newly updated synchrophasors every 20ms, this assumption
is valid. The process noise is assumed to be uncorrelated,
unbiased, white and Gaussian with Qk−1 the process noise
covariance matrix.

xk = xk−1 +wk−1, p(wk−1) ∼ N (0, Qk−1) (61)

Using (60) and (61), the linear KF equations are:
Prediction step:

x̃k = x̂k−1 (62)

P̃k = P̂k−1 +Qk−1 (63)

Estimation step:

Kk = P̃kH
T (HP̃kH

T +Rk)
−1 (64)

x̂k = x̃k +Kk(zk −Hx̃k) (65)

P̂k = (I−KkH)P̃k (66)

Kk is the optimal Kalman gain, namely the value that
minimizes the covariance of the estimation error, x̃k is the
predicted state vector and x̂k the estimated states. P̃k and P̂k

are the covariance matrices of the prediction and estimation
errors and are defined as:

P̃k= E[ẽkẽTk ] (67)
P̂k= E[êkêTk ], (68)

with ẽk = xk−x̃k and êk = xk−x̂k. E denotes the expected
value. These relations are the hypothesis that are verified to
validate the hybrid KF.

The innovation yk (69) is defined as the difference between
the measurement and the reconstructed measurements using
the predicted state. Its covariance matrix is defined as (70).

yk= zk −Hx̃k (69)
Sk= HP̃kH

T +Rk (70)
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