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Abstract—Packetized energy management (PEM) is a demand
dispatch scheme that can be used to provide ancillary services such as
frequency regulation. In PEM, distributed energy resources (DERs)
are granted uninterruptible access to the grid for a pre-specified time
interval called the packet length. This results in a down ramp-limited
response in PEM for DERs that can only consume power from the
grid. In this work, a linearized virtual battery model of PEM is
provided that is capable of predicting the down-ramp limited output
of PEM and is used in a model predictive control (MPC) framework
to improve the performance of PEM in tracking an automatic
generation control (AGC) signal. By performing statistical analysis on
the AGC regulation signal, PJM Reg-D, an ARMA model is derived
as a predictor for the MPC-based precompensator. Finally, as an
alternative to MPC, it is shown that by varying the packet length
as a function of time, for example through packet randomization,
frequency regulation can be improved under PEM.

Index Terms—Packetized Energy Management, Model Predictive
Control, Frequency Regulation, Ancillary Services

I. INTRODUCTION

The availability of connected and controllable distributed energy
resources (DERs) has made it possible for grid operators to consider
DERs in grid operations. Coordinating DERs in distributed control
schemes engenders flexible demand that can deliver grid services
while also ensuring the quality of service to the end-user [1], [2].
The capability to provide services to the grid such as, but not limited
to, peak-load reduction, energy arbitrage, and ancillary services with
flexible demand is termed demand dispatch [3], [4]. This manuscript
focuses on ancillary services, specifically, frequency regulation.

Traditionally, frequency regulation or simply regulation is used to
correct mismatches between load and supply by adjusting the power
output of generators at fast time scales through automatic generation
control (AGC). The regulation provided by generators is generally
expensive. Aggregations of DERs, on the other hand, are a less
expensive yet fast-acting alternative to generators that can provide
regulation via demand dispatch [5]. Regulatory authorities such
as Pennsylvania-New Jersey-Maryland interconnection (PJM) [6],
which is part of the Eastern Interconnection in the United States,
generates an “energy-neutral” regulation AGC signal (i.e., whose av-
erage over a sufficiently large period is almost zero), typically every
two seconds, called Reg-D [7]. This AGC signal is then transmitted
to the DER coordinator, which in turn modifies the power output
of DERs so that the aggregate power consumption tracks the AGC
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signal as accurately as possible. PJM has recently implemented an
incentive-based ‘pay-for-performance’ model that rewards resources
that can provide regulation with high performance [8]. PJM mea-
sures performance using a combination of three metrics, Accuracy,
Delay, and Precision, called Performance Score [7]. Here, the Ac-
curacy score represents the maximum correlation between the input
and output of the resource, taking into account a 10 s delay. The De-
lay score represents the time delay at which correlation is the highest.
Finally, the Precision score effectively represents the mean absolute
tracking error between input and output. The service provided by
DERs via demand dispatch is also gauged using the same metrics.

Several demand-dispatch schemes have been proposed that aim
to accurately track the AGC signal to meet regulatory requirements.
These schemes generally differ in the amount of information
needed to be transmitted between the coordinator and demand-side
resources. Furthermore, the coordinator can be centralized, where
a single entity generates ON/OFF commands and transmits them to
the fleet [9], [10] or it can distributed, where each DER determines
its control action depending upon local information and a common
control signal from the coordinator [11]–[26]. For example, in [25],
the operating temperatures of refrigerators and their energy consump-
tion, are modified dynamically, within a safe range, in response to
frequency fluctuations. In [26], a stochastic controller is developed
to randomly switch TCLs to control the average power consumption.

In distributed coordination, the aggregate dynamics of DERs
are first modeled by discretizing a system of partial differential
equations resulting in a state bin transition model [11]–[13], [17],
[18], [24]. Then, the control signal consisting of a vector of transition
probabilities for DERs is obtained from control schemes such as
the minimum variance controller [9], model predictive control [11]
or internal model control [24]. Each DER then measures its local
state of charge (SoC) and switches its operating state according to
the control input. However, the vector of probabilities needs to be
broadcast to all DERs which can be a communication burden. To
avoid transmitting an entire vector, the concept of switching rate
actuation is developed in [12] that only requires a pair of turn-ON
and turn-OFF probabilities. Similarly, the authors in [14] propose a
scalar control signal that changes the DER’s transition probabilities.

In some cases, the information needed to generate the control
input raises privacy concerns for the end-user. Therefore, privacy-
aware dispatch has been proposed in [17] that uses differential
privacy to protect the end-user’s information. Privacy-preserving
coordination has also been proposed in [19], [20] in which each
DER determines its ON/OFF state locally using partial information
from its neighbors. A fitness metric has been proposed in [15] in
which DERs are dispatched depending upon their availability and
quality of service they provide. In general, these schemes follow
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a top-down approach where a central coordinator or controller
broadcasts the control signal to the entire fleet.

This paper focuses on a bottom-up device-driven architecture
known as packetized energy management (PEM). In PEM, the
DERs request the coordinator to consume power for a specified,
fixed epoch, called packet length. The requests are either accepted
or denied by the coordinator to regulate demand depending upon
the provided power reference signal [27]. Packetized energy
management has been developed and modeled in the author’s earlier
work [22], [23], [27], [28]. Specifically, population-based models
and virtual battery (VB) models of PEM have been developed
in [22] and [29], respectively. Control architectures for diverse
PEM fleets are presented in [23]. Whereas the population-based
models require a large number of states, a VB model represents the
dynamics of the fleet using a small number of key quantities, such
as states for the average energy and aggregate power. That is, VB
models are suitable for predicting the aggregate behavior of PEM
for control applications such as model predictive control (MPC).

In particular, one major challenge with PEM is that as packet
requests are accepted by the coordinator, it locks devices ON for
their packet length. This causes the aggregate response of DERs
to become down ramp-limited. The down ramp-limited response
is more prominent in DERs that can only consume power from
the grid such as thermostatically controlled loads (TCLs) as the
coordinator has no active mechanism through which it can reduce
the load. That is, the aggregate power consumption of the TCL
fleet can only decrease when a packet is completed and the TCL
transitions to its OFF state. As a result, tracking error can increase
when the reference signal decreases rapidly. The goal of this
manuscript is to improve the tracking performance of PEM for fast
frequency regulation, such as PJM’s Reg-D.

In this paper, PEM is augmented with a novel MPC framework
that enables DERs to provide fast grid services such as frequency
regulation. The focus is on TCLs such as electric water heaters
(EWHs) that have a down-ramp limited response. An MPC-based
precompensator is first proposed that adjusts the power reference
signal based on the past information and future prediction of the fleet
as well as the requested regulation service, AGC (e.g., PJM’s Reg-
D). A challenge with this is that since PEM dynamics are essentially
nonlinear, incorporating them as is into the MPC framework would
lead to computational problems and possibly non-unique solutions.
Hence, PEM dynamics are modeled using a linearized virtual
battery model, whereas the AGC signal is either assumed to be
known (perfect forecast) or predicted using time-series forecasting.
PJM’s performance scores as well as mean squared error (MSE) are
used to gauge PEM’s response to AGC. Simulation-based analysis
has been conducted using the MPC-based precompensator together
with an ARMA-model-based predictor derived through statistical
analysis of the PJM regulation signal, Reg-D. Results show that
the tracking performance of PEM improves significantly even in
the case of the ARMA-based Reg-D forecast.

In addition to an MPC precompensator, we also present a novel
packet randomization scheme with which the tracking performance
of PEM can be improved. The scheme allows the coordinator to
accept packet requests and randomly select the packet length from a
known distribution. Packet randomization engenders improved track-
ing during down-ramps by the availability of packets with shorter
duration. Simulation results indicate that packet randomization has

an added benefit of (slightly) reducing the number of times a TCL cy-
cles between ON/OFF states, which can decrease wear-and-tear [30].
Note that the packet randomization technique that is presented here
is different from randomization approaches proposed in other papers.
In this paper, the packet length (which is the duration for which
DERs are allowed uninterrupted access to the grid) is randomized,
whereas for example, in [31], the switching of DERs is randomized.

The original contributions of this manuscript are as follows:

• The aggregate power dynamics of PEM is described by a
novel virtual battery model that captures the down-ramp
limited nature of PEM. Specifically, the model adapts [29] to
an MPC-ready model that is suitable for frequency regulation
timescales. This is enabled by transforming the input from
packet acceptance rate to power reference.

• An MPC-based precompensator is designed using the above
model to improve tracking of PEM by “corner-cutting” the
AGC, as we will show.

• A detailed statistical analysis of PJM Reg-D is provided to
justify an ARMA model.

• Sensitivity studies are conducted with the MPC-based
precompensator with respect to packet length and MPC
prediction horizon, and also PJM performance scores.
Specifically, the MPC framework enables PEM with a
5-minute packet length to outperform conventional PEM with
a 3-minute packet length and improves PEM performance as
the packet-length increases (by as much as 10% with a perfect
forecast). This is significant as longer packet lengths lead to
fewer device switches and a lower communication burden on
the PEM scheme. Moreover, there were no observed cases
in these sensitivity studies where the performance deteriorates
compared to the case where there is no MPC-based
precompensator (i.e., the performance improvement is robust).

• A new randomization mechanism is developed for PEM’s
packet length. Interestingly, using extensive numerical simula-
tions, it is shown that employing randomized packet lengths im-
proves both tracking performance and reduces device cycling.

The outline for the rest of the paper is as follows: Section II
provides a brief overview of Packetized Energy Management (PEM).
Section III describes the PEM linearized VB model, develops the
MPC-based precompensator and ARMA model for AGC, and
reports simulation results with different packet lengths and MPC
horizons. Section IV introduces time-varying packet length as an al-
ternative method to improve tracking performance of PEM and inves-
tigates the cycling of devices. Finally, Section V concludes the paper.

II. OVERVIEW
OF PACKETIZED ENERGY MANAGEMENT FOR DERS

PEM for diverse DERs has been presented and modeled in the
author’s earlier work [22], [23], [27]. A brief description of PEM
is presented next.

A DER with a local state-of-charge (SoC) z[k], such as
temperature for the case of electric water heaters, is designed to
operate within a dead-band [z, z]. PEM’s device-driven packet
request mechanism is shown in the block diagram in Fig. 1 and
summarized below:

i) A DER measures or estimates its local SoC z[k].
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Fig. 1. Closed-loop feedback system for PEM with Pref provided by the grid or
market operator and the aggregate net-load Pdem measured by the coordinator.

ii) If the SoC is within the dead-band, z ∈ [z, z], the DER
probabilistically requests the PEM coordinator to either
consume power from the grid (charging) or inject power into
the grid (discharging) for a pre-specified epoch and results
in the notion of an energy packet. The epoch corresponding
to the energy packet is called packet length and denoted as
δp. While the packet length was previously set to be a constant
time interval (e.g., 5 minutes) [27], this work introduces
time-varying packet lengths. Irrespective of how the packet
length is chosen, after a time equal to the packet length, has
elapsed, the DER stops charging or discharging.

iii) If the SoC is outside the deadband, z /∈ [z, z], the DER
automatically and temporarily opts out of PEM to guarantee
Quality of Service (QoS) and reverts to a conventional control
mode until the SoC is returned within limits after which it
returns to PEM operation.

iv) The PEM coordinator asynchronously accepts or denies the
DER’s packet request depending upon the reference tracking
error. If the request is denied, go to i); else, consume the
energy packet and then go to i).

Based on the previous description, a DER can be in either one of
four modes; charging, discharging, OFF or opt-out. Furthermore, the
probability that the DER with SoC z[k]∈ [z,z] and desired set-point
zset ∈ (z,z) over time k (for discretization time-step ∆t) makes a
request is given by a cumulative distribution function given by:

Preq(z[k]):=1−e−µ(z[k])∆t, (1)

where µ(z[k])>0 is a rate parameter dependent on the local SoC.
For charging packet requests,

µ(z[k])

=


0, if z[k]≥z
mR

(
z−z[k]
z[k]−z

)
·
(
zset−z
z−zset

)
, if z[k]∈(z,z)

∞, if z[k]≤z
, (2)

where mR > 0 [Hz] is a design parameter that defines the mean
time-to-request (MTTR) for z=zset. A similar expression follows
for µ(z[k]) and Preq(z[k]) in the case of discharging packets.

A. Aggregate power dynamics of PEM

In this section, the virtual battery model of PEM developed
in [29], [32] for aggregate power dynamics of PEM is adapted to
obtain a model that is suitable for the MPC formulation developed
in the next section. The virtual battery model [29] for a fleet of
DERs with state vector x∈RK is:

x[k+1]=f(x[k],u[k−Td]), y[k]=Cx[k] (3)

where f is a non-linear mapping, f :RK+1→RK, C∈R1×K is a
row vector, y∈R is the total power of the fleet, u∈R is the input
(Pref) to the virtual battery as shown in Fig. 1, and Td≥0 is the delay
between the input and output of PEM. This can account for commu-
nication delays between the system operator generating the AGC
and PEM coordinator and can be generally assumed to be constant,
and the specific value can be determined from the regular operation
of the system. A delay is also assumed by PJM while computing
the performance score [7] that benefits resources unable to comply
with the requirements. Both the cases with (Td 6= 0) and without
delays (Td=0) are considered. The state vector consists of nx states
corresponding to aggregate quantities and np states corresponding to
the timer associated with packet requests, that is,K=nx+np. The
model of a DER fleet that can both charge and discharge consists
of nx =4 states, corresponding to aggregate quantities (SoC, charge,
discharge and opt-out), and np =

δp

∆t timer states. For DERs that can
only charge, such as EWHs, nx =3, and excludes the discharge state.
Thus, for a fleet of EWHs, the virtual battery model is given by:

x1[k+1]=x1[k](1−∆t

τ
)+

∆txamb

τ

− 1

cρL

(
Q−Prate

N
(x2[k]+x3[k])

)
, (4)

x2[k+1]=
u[k−Td]
Prate

−x3[k] (5)

x3[k+1]=x3[k](1−a2)+a1Preq(x1[k])(N−xon[k])

−a1

(
u[k−Td]
Prate

−xon[k]

)
, (6)

where x1 is the average SoC of the population, x2 is the total
number of EWHs whose requests have been accepted and are
charging, and x3 is the total number of EWHs that have opted
out of PEM. Recall that in PEM, EWHs opt-out of PEM if their
local SoC is outside of the allowed deadband (e.g., in the case of
EWHs, this occurs when they get too cold or too hot). In the opt-out
mode, EWHs charge without making any requests until their SoC is
sufficiently recovered. In (6),Preq(x1[k]) models the total number of
requests received by the coordinator. Furthermore, in (4), Prate is the
rated power of the fleet,Q is the average heat loss from the tank due
to customer-driven water usage and is modeled as a Poisson random
pulse process [22], τ is the time constant related to heat-loss from
the insulation of the water tank in seconds,L is the tank size in liters,
c=4.186 (kJ)(kg◦C)−1 is the specific heat constant and ρ=0.990
kgL−1 is the density of water when close to 50◦C. The dynamics
of the opt-out population is captured in (6) with parameters a1 and
a2 [29]. For simplification, xon is introduced and is given by,

xon[k] :=x2[k]+x3[k]−znp[k] (7)

where znp accounts for the EWHs that have just finished their
packets and are turning OFF. Then,N−xon[k] is the total number
of EWHs in OFF mode and Preq(x1[k])(N −xon[k]) models the
proportion of EWHs that are making a request. Since EWHs can
only charge for a time equal to δp, np timer states are added starting
from z1, ... , znp , to keep track of EWHs that have consumed a
packet, resulting in the following simple dynamics,

z1[k+1]=
u[k−Td]
Prate

−xon[k], (8)

zi[k+1]=zi−1[k], ∀i=2,....np, (9)
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The full state vector is then x :=[x1,x2,x3,z1,...,znp]
> and f in (4)

is given by the RHS of (4)-(6), (8)-(9).
Note that (5) contains the total number of EWHs that are

charging at time k and the state z1 contains the newly accepted
packets. Since the timer state, z1, in (8) cannot be negative, the
following constraint applies to the control input u[k] and captures
the down-ramp limited nature of PEM,

u[k−Td]≥Prate(xon[k]). (10)

Similarly, z1 cannot exceed the maximum number of packet requests
received at time k, resulting in the following upper bound on u[k],

u[k−Td]≤Pratexon[k]+PratePreq(x1[k])(N−xon[k]). (11)

When tracking an AGC signal over short periods such as an hour, it
is reasonable to assume that the AGC signal has been appropriately
scaled so that (11) is generally not a binding constraint. This
means that the coordinator receives a sufficient number of requests
to enable upward ramps. Finally, the opt-out dynamics in (6)
are nonlinear due to the probability of request (1). Furthermore,
the AGC signal considered in this work is the Reg-D regulation
signal provided by PJM, which is energy-neutral, as discussed
in section III-C. Therefore, the state of charge x1 is not expected
to vary significantly over an hour and justifies the linearization
of (4)-(6) for MPC as shown in the next section.

III. MODEL PREDICTIVE
CONTROL OF PACKETIZED ENERGY MANAGEMENT

In this section, the PEM virtual battery model developed in
the previous section is used to formulate an MPC to improve the
tracking performance of PEM.

A. Linearization of the VB model

In order to formulate the linear MPC problem, the virtual battery
model (4)-(9) is linearized as follows,

dx[k+1]=(f0−x0)+Adx[k]+Bdu[k−Td] (12)
y[k]=y0+dy[k]=C(x0+dx[k]) (13)

u0+du[k−Td]≥Cm(x0+dx[k]), (14)

where dx[k] =x[k]−x0, du[k] =u[k]−u0, and (x0,u0,y0) is the
nominal operating point, which is obtained by solving the nominal
optimization problem discussed in [22]. Furthermore,A= ∂f

∂x

∣∣∣
x0,u0

andB= ∂f
∂u

∣∣∣
x0,u0

are the Jacobians corresponding to the state and

input respectively, and Cm = [0 1 1 0 ··· 0 −1]> as obtained from
(7) and (10).

B. MPC Formulation

Consider a reference AGC signal r[k] that is to be tracked by
a fleet of DERs under PEM. The aim of this subsection is to design
a precompensator that generates an optimal input u[k] for PEM,
such that its output y[k] tracks r[k]. The proposed block diagram is
shown in Fig. 2, and is based on a Model Predictive Control (MPC)
approach.

The linearized VB model developed in the previous subsection
is utilized as the prediction model for the MPC. Assuming that

MPC PEMPredictor
R[k] u[k]r[k] y[k]

Fig. 2. MPC-based Precompensator

the prediction horizon is n, the objective of MPC is to generate
an optimal input trajectory U [k] ∈ Rn for the PEM model such
that the tracking error between the model output Y [k]∈Rn, and
the reference trajectory R[k]∈Rn over the prediction horizon is
minimized in some sense. Specifically in this paper, the focus is
on two commonly used metrics, the 1-norm and the 2-norm of the
tracking error, i.e., ‖Y [k]−R[k]‖1 and ‖Y [k]−R[k]‖2 respectively,
as cost functions for the MPC. The 2-norm is a standard metric
used in control theory, e.g., the linear quadratic regulator (LQR),
while the 1-norm is used in the PJM precision score [7].

Since the PJM precision score is defined to incentivize tracking
of the past reference (which amounts to a delay), it is advantageous
to utilize the Td previously occurred samples of the signal r[k]
as part of the reference trajectory R[k] for MPC, and predict
the remaining part of R[k], containing n − Td samples, using
a predictor, for example, an ARMA model. Thus, R[k] =
[r[k−Td+1], r[k−Td+2], ..., r[k], r∗[k+1], ... r∗[k−Td+n]]>,
where r∗[k] are predicted values of the reference in the future.
Using (12)-(14), the MPC problem can then be formulated as:

minimize ‖Y0+dY −R‖pp
over dx,du
subject to: dY −MydU=Gy

MudU�Gu1−Gu2

(15)

where:

Y0 =[1 ··· 1]>y0

dY =

 Cdx[k+Td+1]
...

Cdx[k+Td+n]

, dU=

 du[k]
...

du[k+n−1]



My=


CB 0 ··· 0

CAB CB
. . .

...
...

. . . . . . 0
CAn−1B ··· CAB CB



Gy=


C(f0−x0)

C(f0−x0+A(f0−x0))
...

C
(
f0−x0+···+An−1(f0−x0)

)


Mu=


−1 0 ··· 0

CmB −1
. . . 0

...
. . . . . .

...
CmA

n−2B ··· CmB −1


Gu1 =

 1
...
1

(u0−Cmx0)
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Gu2 =


0

Cm(f0−x0)
Cm(f0−x0+A(f0−x0))

...
Cm
(
f0−x0+···+An−2(f0−x0)

)


and p=1 (linear objective) or 2 (quadratic objective). Note that the
Jacobians in Section III-A are re-linearized (e.g., the Hessians are
recomputed) at every time step of the simulation using observed sys-
tem data, and the MPC states re-initialized at the new nominal oper-
ating point, (x0,u0,y0). Solving the MPC problem (15) results in the
optimal control inputU [k], only the first element of which is applied
at every time step as the input to PEM. Furthermore, in simulations
presented in this paper, it is assumed that the state vector x[k] is mea-
sured. Specifically, apart from the reference signal, the MPC needs
to have access to estimates of the mean temperature (SoC) of the
devices, the number of devices that are charging and have opted out,
as well as the timer states. In an earlier work [33], we showed that
the nonlinear VB model is strong locally observable, which enables
construction of an Extended Kalman Filter (EKF) to accurately pro-
vide these estimates. In the subsequent time steps, the total number
of charging population and the deterministic timer dynamics follow
directly from the control input U [k] and the total number of opt-out
EWHs are provided by PEM. However, the SoC may not be mea-
sured but can be obtained from the VB model. This is because SoC is
not expected to vary significantly over an hour provided an accurate
initial estimate. This completes the description of MPC for PEM.
The next subsection presents an example predictor of AGC for MPC,
obtained using the ARMA modeling of the AGC signal, PJM Reg-D.

C. PJM Reg-D statistics and ARMA modeling

As shown in the previous subsection, we need a prediction
model for the AGC signal to generate a prediction of AGC over
a horizon that can be used by the MPC-based precompensator
to generate the optimal modified AGC. In this subsection, we
provide an example forecasting model for a commonly used AGC
signal that can be used for the MPC-based precompensator. The
AGC regulation signal used in this paper is a scaled and biased
version of Reg-D, which is one of the regulation signals provided
by PJM [7] (since Reg-D is normalized between −1 and 1, 1
representing the maximum and−1 the minimum power bid into the
market, it needs to be scaled and biased by the appropriate power
to generate the actual AGC signal). Compared to the Reg-A, which
is another, slower, PJM regulation signal that is meant to recover
larger, longer fluctuations in system conditions, the Reg-D is a fast,
dynamic signal whose hourly average tends towards zero (i.e., it
is energy-neutral) but requires resources to respond rapidly [7].

The prediction model for the AGC is assumed to be an
autoregressive moving average (ARMA) model [34]:

r[k]=µ+φ1r[k−1]+...+φpr[k−g]
+a[k]−θ1a[k−1]−...−θqa[k−h] (16)

where r[k] is the AGC time-series, φi are the autoregressive
coefficients, θi are the moving-average coefficients, a[k] is a
standard Gaussian white noise process, and µ is the mean level of
the ARMA process. To find the order (g,h) of the ARMA model,
the autocorrelation function (ACF) and the partial autocorrelation

(a) Autocorrelation (b) Partial Correlation

Fig. 3. Autocorrelation and Autocorrelation functions of PJM Reg-D. The lag
considered for the ARMA model is shown by the red vertical dotted line.

Fig. 4. Forecasting Reg-D. Times are in hh:mm format.

(a) Minutely Variance (b) Hourly Variance

(c) Daily Variance (d) Monthly Variance

Fig. 5. Variability of PJM Reg-D

function (PACF) are plotted for PJM Reg-D from January 2019.
They are shown in Fig. 3. The ACF of a stationary real stochastic
process r[k] at a lag l is defined as: ρl=E((r[k−l]−µ)(r[k]−µ)).
The PACF Φll of r[k] at a lag l is defined as the “partial correlation”
between r[k] and r[k− l], which is the correlation between r[k]
and r[k− l] that is not accounted for by the intermediate values
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r[k−l+1], r[k−l+2], ..., r[k−1], and is computed by solving:
1 ρ1 ··· ρl−1

ρ1 1
. . .

...
...

. . . . . . ρ1

ρl−1 ··· ρ1 1



φl1
φl2

...
φll

=


ρ1

ρ2

...
ρl


where ρi is the autoregressive coefficient at lag i. The PACF is
often encountered in the literature of system identification. Details
can be found in [35], [36]. It can be seen that the ACF tails off
(and does not cut off), while the PACF cuts off after about 3 lags
(or 6 s, for a sample time of 2 s). This suggests an autoregressive
model of order 3 (i.e., AR(3)) or more for the AGC signal. In this
study, the lag of 3 time steps is considered on grounds of parsimony.
The autoregressive coefficients can then be selected using, e.g.,
Yule-Walker equations [34], to fit historical Reg-D data. Fig. 4
shows a snapshot of PJM Reg-D being forecasted using an AR(3)
model. It can be seen that the actual signal is within 1 standard
deviation of the mean prediction. From studies on predicting PJM
Reg-D signals using AR(3) model, it is found that the error in
predicting the value of Reg-D 1-min ahead is less than 15%.

To ascertain the validity of this model for different segments
of AGC, the variability of the Reg-D signal was investigated on a
minutely, hourly, daily and monthly basis. Specifically, the mean
variance of Reg-D across different minutes of the hour, hours of the
day, days of the week, and months of the year from July 2018 to June
2019 were evaluated. The results are shown in Fig. 5. Fig. 5a shows
that there is a peak in variability at the beginning of every hour. This
can correspond to changes in the electricity market every hour, result-
ing in step changes in generator set-points and consequently in power
flows. Fig. 5b shows that Reg-D changes rapidly from being the least
variable at 7 pm (after the sun sets) to the most variable at midnight.
The daily variability is fairly constant, as can be seen from Fig. 5c.
The monthly variability of Reg-D (Fig. 5d) changes from the lowest
before summer (around March) to the highest after summer (around
September). From all the subfigures of Fig. 5, it can be seen that the
change in variability of Reg-D is less than 10% of its range, which is
equal to 2 (-1 to 1). This provides confidence that the ARMA model
is effective in predicting the AGC over multiple time segments.

D. Simulations with No Time Delay

Simulations were conducted on PEM, equipped with the MPC-
based precompensator, first with Td = 0, to test its performance
for different packet lengths. To take into account a variety of AGC
signals that are representative of different times of the day and
seasons of the year, twelve 1-h PJM Reg-D signals from twelve
different months and times of the day, starting from July 2018 and
ending in June 2019, were taken. The PJM Reg-D signals, ranging
from -1 to 1, were scaled by 1 MW around the nominal power
consumption of the fleet of 6000 DERs, which is 3.7 MW.

Hence, AGC signals with a maximum value of rmax =4.7 MW
and a minimum value rmin =2.7 MW were considered for the tests.
The sample time of the simulations was taken to be 2 s, which
is the same as that of the AGC data. This is acceptable since the
discretization errors are not significant.

(a) With Linear Cost (b) With Quadratic Cost

Fig. 6. Performance Map of MPC with perfect forcast

(a) Intersection at Down Ramps caused
by MPC

(b) Effect of AGC range on MPC
performance

Fig. 7. Performance MPC-based precompensator

1) Linear Objective Function: The results for p=1 in (15) are
shown in Figs. 6a, assuming a perfect forecast for MPC. The y-axis
plots the relative mean absolute error, defined as:

RMAE=
1

12

12∑
i=1

(∑m
k=1|yi[k]−ri[k]|
m(rmax−rmin)

)
, (17)

where ri and yi refer to the ith AGC reference signal (out of the
12 signals considered around the year) and the corresponding PEM
output signal respectively. m is the number of samples present in
the AGC signal in one hour. It can be seen from Fig. 6a that with
a perfect forecast, there is a performance improvement of up to
3.5% for a 5 min packet length (consider the red and green lines).
With AR(3) forecast, the corresponding performance improvement
reduces to 1.1%.

2) Quadratic Objective Function: Similarly, the results for
p=2 in (15) are shown in Fig. 6b for a perfect forecast. The y-axis
reports the relative root mean squared error:

RRMSE=
1

12

12∑
i=1


√

1
m

∑m
k=1(yi[k]−ri[k])

2

rmax−rmin

 (18)

where ri, yi, m, rmax, and rmin are the same as in Section III-D1.
It can be seen from Fig. 6b that with a perfect forecast, there is a
performance improvement of up to 9.8% for a 5 min packet length,
which is much larger than that obtained using a linear cost function.
This makes sense since the quadratic cost function penalizes large
errors heavily. With AR(3) forecast, the corresponding performance
improvement was lesser (as expected): around 2%, but still higher
than the corresponding case with a linear objective function.

The above analyses indicate that an accurate forecast can
significantly improve tracking performance. Specifically, with a
perfect forecast, we can obtain up to 4% improvement in RMAE
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and 10% improvement in RRMSE with a 5 min packet length.
While an ARMA forecasting model is described here to illustrate
the method, future work includes the development of improved
forecasting tools (e.g., using neural networks, VARMA models).

3) Intersection at Down-ramps: The improvements due to MPC
are mainly because of the intersections between the AGC and the
MPC output occurring at down-ramps, which is illustrated in Fig.
7a. Since the output of PEM is down-ramp limited, if it can be
predicted when a down-ramp event will occur, the MPC-based
precompensator can instruct PEM to track the down-ramp ahead of
time, resulting in the PEM output intersecting the AGC as it ramps
down. Hence, essentially, the predictor anticipates when the AGC
down-ramps and MPC uses that information to precompensate the
AGC for that down-ramp.

4) Effect of AGC range: To quantify the effect of AGC range
on MPC tracking performance, simulations were conducted on the
same twelve 1-h AGC samples but scaled accordingly such that
they ranged from 1 to 4 MW. The MPC horizon was fixed to be
3 min and the packet length was also considered to be 3 min. The
size of the fleet was kept to be the same as before, namely 6000
DERs, and was held constant. The effect of the range of AGC is
illustrated in Fig. 7b for a perfect forecast. It can be seen that the
performance improvements with MPC are larger when the range of
AGC increases. This is expected because when the range is small,
PEM is less down-ramp limited and hence itself tracks well so that
the performance improvement with MPC is smaller in such a case.

5) Run Time: The MPC optimization takes less than 0.5 s to be
solved. Specifically, using Gurobi solver [37] on a laptop with a 2.2
GHz processor, it took around 400 ms at the worst-case time-step
for 5 min packet length. With packet lengths equal to 3 min, the
worst-case time was far smaller, less than 50 ms.

E. Simulations with Time Delay: PJM Performance Scores

To quantify the performance of a regulating resource in tracking
a dispatch signal, PJM utilizes a “Performance Scoring” mechanism
[7], on a scale from 0 to 1. This scoring currently incorporates a
10-s delay between the input and output of the resource, arising,
e.g., due to communication delays. The PJM composite score
is the average of three scores: the accuracy, precision, and delay
scores. The accuracy score represents the maximum correlation
between the input and output of the resource, taking into account
the 10 s delay. The delay score represents the time delay at which
correlation is the highest. Finally, the precision score effectively
represents the mean absolute tracking error. The definitions of these
scores are reviewed in detail in the Appendix since the authors were
unable to find an archive of these formulae in the literature.

Since the PJM scores consider a 10 s delay between the input
and output, in the formulation (15), a value of Td=5 (for a sample
time of 2 s) is used, as opposed to Td=0 in the previous subsection.
The value of p is taken to be 1 in this case since the PJM precision
score uses a term that involves (but is not exactly) the mean absolute
error between the input and the output, and not the mean squared
error. Furthermore, it should be mentioned here that the exact PJM
precision score [38] leads to a nonconvex cost function. However,
investigation of the exact form of the PJM precision score is out
of the scope of this paper and is deferred to future publications.
The same simulation scenarios as in the previous subsection are

(a) Packet Length: 1 min

(b) Packet Length: 3 min (c) Packet Length: 5 min

Fig. 8. Comparision of PJM Performance Scores for different methods. The
legends describe different input signals provided to PEM, generated with/without
a precompensator. “Precision”, “Accuracy”, “Delay” and “Composite” scores are
different performance metrics.

considered next. Moreover, a delay-based precompensator is also
attempted that essentially delays the AGC by 10 s before sending
it to PEM. Fig. 8 shows the results from all the methods. In this
figure, “Baseline” stands for raw AGC (i.e., the shifted and scaled
PJM Reg-D), “Delay-PC” stands for a 10 s delayed AGC generated
using the delay-based precompensator, “MPC-PF” stands for AGC
passed through the MPC-based precompensator using a perfect
forecast, and “MPC-AF” stands for that using AR(3) forecast, as
the respective inputs to PEM.

It can be seen in Fig. 8 that if the forecasts are perfect, the PJM
precision score increases by up to 10% for 5 min packet length over
that obtained using a delay-based precompensator and up to 15%
over that obtained with no precompensator. For the same packet
length but with an AR(3) forecast, the performance improvement
is about 1% over that obtained using a delay-based precompensator,
and about 5% over that obtained using no precompensator. Similar
trends can be observed in the PJM composite score as well.
Moreover, with AR(3) forecast, we also obtain robust performance
improvement (specifically, there were no observed cases in which
the performance of the MPC-based precompensator deteriorated
compared to the case when there is no precompensator). These
observations indicate that having a better forecast will improve the
performance of the precompensator significantly (the investigation
of which, as mentioned earlier, is a topic of future research).
Furthermore, it is observed that MPC can make PEM with 5 min
packet length achieve similar or better performance as that of a 3 min
packet length, and 3 min as that of PEM with 1 min packet length.

IV. TIME-VARYING PACKET LENGTH IN PEM

The previous section presented an MPC formulation to improve
the tracking performance of PEM when tracking an AGC signal
by the intersection at down-ramps. This section shows that tracking
performance in PEM can also be improved by varying the packet
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Fig. 9. Effect of Packet Length on PEM Response

length. First, the effect of different packet lengths on tracking
error is quantified. Then, a time-varying packet length scheme is
proposed for the PEM system that improves tracking performance.

A. Effect of packet length

In PEM, shorter packet lengths allow for better tracking
performance than longer packets. The reason is that PEM has a down
ramp-limited response, as discussed in the previous section. Shorter
packets expire faster and allow the coordinator to make adjustments
to the accepted requests so that tracking error is minimized.

Consider the snippet of the AGC signal shown in Fig. 9 and
the response of PEM for different packet lengths. Recall that in
PEM, the coordinator is not allowed to interrupt a packet once it
has been accepted. Therefore, this effect is more prominent in the
case of 5 min packets (purple dotted line), where the coordinator
is locked into requests accepted at and before minute 49.5 in Fig. 9
resulting in a larger tracking error as compared to the case of 3
(yellow dash-dotted line) and 1 min (thick red dashed line) packets.

Although tracking performance improves with shorter packets,
however, it increases device cycling. A DER cycles between ON
and OFF mode as its request is accepted and then the packet is
subsequently consumed. DERs are usually limited by physical
constraints that reduce their lifetime as cycling increases. Reducing
packet length increases the number of times a DER transitions
between ON and OFF modes, thereby increasing device cycling,
as shown in Fig. 10 (left plot), where packet length is varied
from 1 min to 5 mins. In Fig. 10 the y-axis is with respect to 1
min packet length. Furthermore, the tracking RMSE increases as
the packet length increases as expected since due to down-ramp
limited response in case of longer packet lengths. Cycling can be
included as a constraint in demand dispatch, which is especially
important in the case of coordinating air-conditioners and HVAC
thermostats [30], [39]. The next subsection shows that introducing
randomization on packet lengths surprisingly reduces cycling.

B. Packet randomization

Time-varying packet lengths are introduced in PEM logic by
allowing each DER’s requested packet length to vary according to a
specific distribution. Particularly, this work focuses on uniform distri-
bution U(δp−δa,δp+δa) where δp is the mean packet length and δa
is the offset corresponding to the edges of the uniform distribution.

From an implementation perspective, packet randomization
can be realized either at the PEM coordinator or at the DER’s
local controller. In the first method, the coordinator assigns each

Fig. 10. Effects of packet length on device cycling and tracking error. (Left)
illustrates that increasing packet length reduces device cycling significantly. (Right)
shows increasing tracking error with increasing packet length.

Fig. 11. Effect of packet randomization on device cycling with mean δp =3 min
(left) and δp=5 min (right). The packet length is drawn from a uniform distribution
U[δp − δa,δp + δa] and the width is equal to to 2δa which is the length of the
interval corresponding to the uniform distribution. Also, zero width means no packet
randomization.

DER whose request has been accepted a specific packet length by
embedding this information in the response to DER’s request. The
coordinator assigns packet lengths to the requesting DER randomly,
from a known distribution with bounded support.

For the second method, each DER’s local PEM logic is
modified so that the requested packet length is drawn from the
uniform distribution and this information is embedded into the
request message. Both of these methods improve PEM’s tracking
performance as discussed next.

The response of the PEM system when packet length is drawn
from a uniform distribution U[2.5,3.5] min with a mean of 3 min
is shown in green in Fig. 9. Compared to the case when each
packet is 3 min long and without randomization, the tracking
performance improves with randomization due to the presence of
shorter packets that allows tighter tracking. Furthermore, it can
be seen from Fig. 9 that PEM’s response in green dashed line,
with packet length U[2.5,3.5] min, is closer to the case when
packets are 1 min long. As the variance of the width of the uniform
distribution increases to 2 min, with a mean of 3 min, the tracking
performance improves (blue dash-dotted line), although after that
the performance improvement saturates.

Remark 1: Although the packet length of requests made by
DERs in Fig. 9 is randomized according to a uniform distribution at
each time step, this scheme can also be implemented by generating
a string of requests drawn from the same uniform distribution for
the entire duration at the start of the simulation and for all DERs.
The DERs can then cycle deterministically through the string of
packet lengths while requesting the PEM coordinator resulting in
similar tracking performance.
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Fig. 12. Performance Map with Packet Randomization. Packet lengths are drawn
from a uniform distribution U[δp−δa,δp+δa] where δp is the mean packet length
and 2δa is the width of the uniform distribution interval.

C. Device cycling in time-varying packets

Introducing randomization in packet lengths not only improves
tracking error but also has the added benefit of reducing device
cycling. Tracking error improves due to the availability of shorter
packets. Consider the case of packets distributed according to
U[2.5,3.5]. Compared to the case with only a single packet length
of 3 min, randomization allows packets less than 3 min, resulting in
better tracking of down-ramps. Surprisingly, cycling also decreases
due to the availability of a range of packets in the interval [2.5,3.5]
min which has the combined effect of reducing the overall number of
accepted requests and hence the number of times a device transitions
between ON and OFF states. Fig. 11 shows that for two different
mean packet lengths, the device cycling decreases with time-varying
packets as the width of the uniform distribution increases compared
to the case without time-varying packets. The plots in Fig. 11
compare a single realization of the PEM system for each of the mean
packet lengths. The next subsection quantifies the tracking improve-
ments due to packet randomization by conducting sensitivity studies.

D. Tracking Performance

Simulations were performed with the same twelve 1-h AGC
signals considered in Section III-D but with packet randomization
and no MPC. The packet lengths were drawn from a uniform
distribution. The results are shown in Fig. 12. It can be seen that
there is a mean improvement in RMAE of around 1% when
the mean packet length is 5 min and the width of the uniform
distribution is 1 min, i.e., the packet lengths∼U[4.5,5.5] min. The
mean improvement in RMAE is more for 3 min for a width of 1
min, i.e., around 2%. This is because in that case, smaller packets
are available for tracking. Moreover, the performance improves
uniformly with the width of the uniform distribution. Comparing
Fig. 12 with Fig. 6a or 6b, we can see that the performance
improvement is lesser with packet randomization with respect
to MPC-based precompensator for the same packet length and 1
min-width. Note that the red line of Fig. 12 (representing plain
PEM) does not match exactly that of Fig. 6a (which corresponds
to an MPC prediction horizon of 2 s) at 5 min packet length, due
to a slight plant/model mismatch that increases with packet length.

V. CONCLUSION

In this paper, packetized energy management has been augmented
with a model predictive control framework for providing fast grid ser-
vices. The MPC-based precompensator uses a linearized VB model

for PEM and a prediction model for AGC and is shown to improve
performance by about 4% in RMAE, 10% in RRMSE, and 15% in
PJM performance scores when the forecast is perfect. Essentially, the
effect of MPC on PEM (with perfect forecast) is similar to reducing
packet length by two minutes. This is important, as it reduces the
switching and communication burden on the coordination scheme,
which is beneficial from an implementation perspective. Further-
more, a passive time-varying packet-length mechanism is also de-
veloped for PEM. Simulation results show that time-varying packet
length improves tracking performance by 1-2%, due to the presence
of shorter packets. Future work includes developing a VB model
for PEM for randomized packet lengths, developing improved AGC
forecasting tools, and combining the methods of MPC and packet
randomization to achieve further improved tracking performance.

APPENDIX
PJM PERFORMANCE SCORES

We provide here the definitions of the PJM performance scores
that are depicted in Fig. 8. They were obtained from the Excel
sheet provided in [38]. In the following, TREG refers to the total
regulation capacity of the fleet, AREG the PJM-assigned regulation
capacity, r the reference AGC signal, rmax and rmin the maximum
and minimum values of r respectively, r0 the economic basepoint,
r0 the ramp-limited economic basepoint, RR10 the ramp-limit,
URES the unit resource response, UREG the unit-specific share
of the regulation signal (i.e., the ideal response expected from
the resource), and y the output of the resource. The step size for
computing PJM performance scores is considered 10 s, so that if
a smaller sampling time is used, as done in the simulations in this
paper, averaging may be used to combine the data points.

1) Precision Score: The PJM precision score is given by:

Precision Score=
1

360

360∑
k=1

pprec[k]

where:

pprec[k]=

{
0, TREG[k]=0

p̃prec[k], TREG[k] 6=0

p̃prec[k]=


0, max{r[k],...r[k+60]}

=min{r[k],...r[k+60]}
p̂prec[k], otherwise

p̂prec[k]=min
{

max
(

0,1−|URES[k]−UREG[k]|
UREG[k]

)
,1

}
if min{AREG[k],...AREG[k+30]} 6=0

URES[k]=y[k]−r0[k]

UREG[k]=

{
AREG[k]
TREG[k] r̂[k], TREG[k] 6=0

0, TREG[k]=0

r̂[k]=2
r[k]−r0[k]

rmax−rmin

UREG[k]=
1

240

239∑
i=0

|UREG[k+i]|
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r0[k]=



r0[k], |r0[k]−
r0[k−1]|<RR10[k]

r0[k−1]

+sgn(r0[k]

−r0[k−1])RR10[k], otherwise

and sgn is the signum function.
2) Accuracy Score: The accuracy score is given by:

Accuracy Score=
1

360

360∑
k=1

pacc[k]

where:

pacc[k]=

{
0, TREG[k] 6=0

p̂acc[k], otherwise

p̂acc[k]=


0, max{r[k],...r[k+60]}

=min{r[k],...r[k+60]}
ρ̃[n[k],k], otherwise

ρ̃[m,k]=

{
ρ[m,k], x̂[k]≥0.05

µ[m,k], x̂[k]<0.05

x[k]=


0, TREG[k] 6=0

1, r̂[k]
TREG[k]>1

−1, r̂[k]
TREG[k]<−1

r̂[k]
TREG[k] , otherwise

x[k]=
1

31

30∑
j=0

x[k+j], k[k]=
1

31

30∑
j=0

(k+j)

x̂[k]=
1√
30

√√√√ 30∑
j=0

(x[k+j]−x[k])
2

ρ[m,k]=

∑30
j=0v1[k,j]v2[m,k,j]√∑30

j=0v1[k,j]
2∑30

j=0v2[m,k,j]
2

v1[k,j]=UREG[k+j]−v1[k]

v2[m,k,j]=URES[k+m+j]−v2[m,k]

v1[k]=
1

31

30∑
j=0

UREG[k+j]

v2[m,k]=
1

31

30∑
j=0

URES[k+m+j]

µ[m,k]=1−|µ̃[k]−µ̂[m,k]|

µ̃[k]=

∑30
j=0

(
k+j−k[k]

)
(x[k+j]−x[k])∑30

j=0

(
k+j−k[k]

)2
µ̂[m,k]=

∑30
j=0(j−15)v3[m,k,j]

2480
v3[m,k,j]=URES[k+m+j]−URES[m,k]

URES[m,k]=
1

31

30∑
j=0

URES[k+m+j]

n[k]= argmax
m∈{0,...,30}

{
1

3
max(min(1,̃ρ[m,k]),0)

+
1

3
p̂del[m]

}
p̂del[m]=min

(
1−m−1

30
,1

)
3) Delay Score: The delay score is given by:

Delay Score=
1

360

360∑
k=1

pdel[k]

where:

pdel[k]=

{
0, p̂acc[k]=0

p̂del[n[k]], otherwise

if min{AREG[k],...AREG[k+30]} 6=0

and p̂del[m], n[k], and p̂acc[k] are as used in the definition of the
accuracy score.

4) Composite Score: Finally, the composite score is the average
of the accuracy, delay and precision scores:

Composite Score=
1

3
(Accuracy Score+Delay Score

+Precision Score)
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