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Abstract—False data injection attacks (FDIAs) are a real and
latent threat in modern power systems networks due to the
unprecedented integration of data acquisition systems. It is of
utmost importance to understand attacking mechanisms to design
countermeasures. To successfully deploy a FDIA, most past FDIA
strategies need privileged power system information, which is
carefully held by the power system operator. Newer approaches
circumvent this issue by solely relying on intercepted measure-
ment data, but they lack mathematical warranties of succeeding.
This paper exposes power systems’ vulnerability by showing that
it is possible to deploy an attack without confidential information
and, at the same time, to have a high probability of being suc-
cessful. We present a scheme that learns (1) the implicit power
system measurement distribution and (2) a surrogate of the
unknown state estimator model. The proposed framework utilizes
a Wasserstein generative adversarial network to learn the mea-
surement distribution and an autoencoder to learn the unknown
state estimator model. Additionally, we present a convergence
proof that ensures that the proposed framework converges to the
power system measurement distribution. The proposed method is
demonstrated to be successful via extensive simulation on IEEE
9-, 14-, 57-, 118-, and 300-bus test cases.

Index Terms—False data injection attack, state estimation, no
system information, adversarial examples, Wasserstein generative
adversarial networks (WGANs), autoencoder (AE).

I. INTRODUCTION

DATA revolution takes place worldwide in different disci-
plines, including power systems. To provide a robust grid

with new but diversified components, modern power grids are
on the road to integrate unprecedented real-time and offline
data for monitoring, control, and protection. However, this
new data-driven outlook makes the power grid more vulner-
able than ever to cyber-attacks with dire consequences. For
instance, the power system operator may take wrong cor-
rective actions that can cause a blackout; wrong actions can
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also cause inaccurate energy prices in a real-time electricity
market [1], [2].

To better protect the system, it is essential to understand
potential attack mechanisms. Among various attack categories
[3], [4], [5], False Data Injection Attacks (FDIA) gained the
attention of the power system community after the work in [6],
which showed that unobservable attacks against DC State
Estimators (SE) are possible. In this type of attack, the attacker
modifies measurement data such that the estimated states are
different from the real ones [7], [8]. These first works have
the following assumptions, which may be impractical:

(i) The attacker has access to the entire network information
(e.g., line parameters, grid topology, state estimator
model, and estimated states) [9], [10]. It is impractical to
think that an attacker can gather all this data without an
insider in the Independent System Operator (ISO). Since
this information is guarded by the power system operator
it is difficult for an attacker to have this knowledge.

(ii) These first studies rely upon the DC power flow
model when power system operators use the AC power
flow model in real-world settings. The reason, AC-
based FDIAs are harder to design and deploy due to
the inherent complexity of the nonlinear power flow
equations [11], [12].

Subsequent work relaxed the first assumption.
Specifically, [2], [6], [13], [14], [15], [16], [17] pro-
pose various frameworks to design FDIAs with only partial
network information, but they still rely on a DC-based model.
To relax the DC model’s assumption, a few studies have
focused on FDIA with an AC-based model [9], [18], [19].
However, all the aforementioned approaches construct an
attack vector relying upon the power system underlying
information; we can call these techniques model-based FDIAs.

Later works showed that it is also possible to deploy FDIA
without knowing privileged power system information such
as power system parameters and topology or the state esti-
mator model. The only needed information to deploy a FDIA
are the power system measurements, and we classify these
kinds of attacks as model-free FDIAs. In modern power system
networks, the information is sent via remote terminal units that
are designed avoid system intrusion [20], [21]. However, con-
ventional approaches such as security software and firewalls
could be insufficient to protect the system against breaches and
cyber threats [12]. For example, in 2015, a cyber-attack was
successfully deployed on Ukraine’s electricity infrastructure.
Around one year before the attack, the attackers gained access
to multiple industrial networks by using the malware tool
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BlackEnergy 3 (BE), [22]. This malware enables unauthorized
network access with valid (stolen) user credentials to move
laterally across internal utilities’ system. In this incident, the
attackers gained access to targeted networks using weaponized
Microsoft Office files by embedding BE in Visual Basic macro
scripts. This latent risk has been recognized by the National
Academies of Sciences, Engineering, and Medicine [23]. In
the same work, they conclude that the United States’ power
system network is vulnerable to cyber-attacks. Thus, for an
attacker, it would be feasible to collect sensor measurements
by exploiting the protection schemes [12].

The authors in [24] showed that it is possible to deploy a
stealthy FDIA by using principal component analysis (PCA).
The extension of this work in [25] proposed a geomet-
ric approach to carry out a FDIA based only on power
system measurements. The authors in [26] proposed a data-
driven attack that learns the system operation subspace from
measurements around a linearized nominal state. The work
in [27] presented a zero-parameter information attack that only
requires power system’s topology information. The works
in [28], [29] employed machine learning techniques to carry
out a FDIA. Specifically, they trained a generative adversarial
network (GAN) to generate tampered power system measure-
ments that will be stealthy with high probability. While the
works in [28], [29] and our work use generative adversarial
networks (GANs) to carry out a FDIA, our approach has some
important differences. Both works in [28], [29] use the DC
linear power flow model. In contrast, our proposed approach
uses the AC non-linear power flow model. Whereas the work
in [29] requires normal and tampered measurements to train
a conditional adversarial network (cGAN), our approach only
requires normal measurements, which is a more reasonable
assumption. This means that our attack is more appealing at
the level of the information needed to train our model.

The difficulty with the model-free FDIAs is that it is hard
to ensure that the model-free approach truly captures some
properties of the power system model to bypass tests, such as
the Chi-squared test to obtain the trust from energy manage-
ment systems. To show the power system vulnerability under
this setting, we introduce a data-driven approach that generates
tampered measurements with the desired properties to deploy
a FDIA, and at the same time, to have mathematical guar-
antees about the model accuracy. We achieve this goal by (1)
implicitly learning the power system measurement distribution
from data; and (2) learning a proxy model for the unknown
state estimator.

Specifically, we aim to design a flexible model that captures
the complex underlying interactions in the power system to
learn the measurement distribution from data. Nonparametric
methods are flexible since they build models from data making
as few assumptions as possible, which usually means utiliz-
ing statistical models that are infinite-dimensional [30]. While
these type of models are flexible by keeping the underlying
assumptions as weak as possible, they are computationally
demanding due to the required increment of number of param-
eters [31], [32]. For example, the work in [33] shows that
their nonparametric model grows in complexity as additional
data is used to train the model. As real power systems could
have thousands of buses and data measurements from many

years, the number of parameters needed in non-parametric
models are computationally intractable [31]. Therefore, we
choose parametric models, which can be designed with a
fixed number of parameters that depend upon the specific
problem. In recent years, these parametric models have had
tremendous success in the ML community because they can
learn complex high-dimensional distributions (for example,
images in high resolution). In power systems, for example, the
work in [34] physics-informed parametrized neural networks
(PINN) to learn the underlying power grid’s parameters. In the
parametric models, we introduce a framework utilizing gener-
ative adversarial networks (GANs) to learn the power system
measurement distribution to create spurious measurements to
deploy a FDIA, as GAN’s loss function is fully specified. As
a comparison, variational autoencoders (VAEs)’s loss func-
tion is only the evidence lower bound (ELBO), which is hard
to be embedded into other learning. Even more importantly,
we can present mathematical proof to show that the GAN
reliably learns the power system measurement distribution.
In specific, we use the Wasserstein Generative Adversarial
Network (WGAN), which is guaranteed to converge under
mild assumptions to the actual observed distribution [35].

In addition, to mimic the data distribution, one knowledge
we do have is the form of residual error test. Therefore, we
propose to boost our attack capability by learning the state
estimator model for the residual error test. However, learning
the state estimator model directly is difficult because neither
the power system nor the state estimator is known. To circum-
vent this issue, we use a surrogate model to mimic the state
estimator. The residual error test and an autoencoder (AE)
share the same mathematical structure. Thus, an AE can be
trained as a proxy to mimic the state estimator. We leverage
this similarity and employ an AE as a proxy for the residual
test error. Specifically, in our proposed scheme, we include
this proxy as a regularization term, which helps to improve
the quality of the created tampered measurements. Finally, a
second regularization term is added to maximize the impact of
the attack. Whereas the model-based attacks need the complete
network information (e.g., line parameters, grid topology, state
estimator model, and estimated states), our proposed model-
free approach needs a dataset of the measurements of the
considered network to work. And such a data set does not
need all the measurements to be included, which is another
advantage.

The performance of the proposed model-free FDIA is ver-
ified by simulations on the standard IEEE 9-, 14-, 57-, 118-,
and 300-bus test networks. Also, to contrast the differences and
advantages between our approach and the existing ones in the
literature, we carry out comparisons between our proposed
FDIA and three other successful methods reported in [9],
[18], [25]. These results show that our proposed model-free is
successful. Specifically, our proposed model-free attack tam-
pers measurements in a way that can fool the power system
operator with high probability.

The rest of the paper is organized as follows: Section II
introduces the problem formulation, Section III presents our
proposed model-free FDIA model, Section IV presents the
convergence proof, Section V shows numerical experiments,
and Section VI concludes the paper.
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II. PROBLEM FORMULATION

To show the proposed model-free FDIA attack, we first
review the model-based approaches based on AC state
estimation.

A. State Estimation With AC Power Flow Model

State estimation (SE) infers the state variables (i.e., voltage
angles and voltage magnitudes) x = (x1, . . . , xn) from a set
of measurements z = (z1, . . . , zm) [36], where n is the num-
ber of buses or nodes in the grid, and m is the number of
measurements. Mathematically, we can describe the problem
as z = h(x) + e, where h(·) is the physical (non-linear) rela-
tionship between state variables and measurements, and e is a
vector that represents white noise from the collected measure-
ments (e.g., SCADA or PMU). In practice, measurements are
collected and sent to the power system operator, which obtains
the estimated states x̂ by solving [37], [38]:

x̂ = arg min
x

(z − h(x))TW−1(z − h(x)) = SE(z), (1)

where, for compactness, we define the state estimator operator
SE(·). The input of this operation is a vector of measure-
ments and its output are the estimated states. However,
the vector of measurements z may contain bad or wrong
data due to telecommunication failures, meter errors, or even
FDIAs [10], [39]. To estimate the states with confidence, the
SE possesses a Bad Data Detector (BDD) module to detect
and filter suspicious data.

1) Bad Data Detector (BDD): The measurement errors are
assumed to follow a Gaussian distribution ei ∼ N (0, σi) [39]
(where σi is the standard deviation of the i-th measure-
ment). Therefore, the squared measurement residual error
r = ‖z − ẑ‖2

2 follows a Chi-square distribution χk, where k
represents the number of independent variables in the power
system, and ẑ = h(x̂) is the vector of estimated measure-
ments. Then, the presence of errors in the measurements can
be detected with the Chi-square test (or residual error test)
[39], [40]. This test works as follows:

(i) Select the detection confidence probability p (e.g., 0.95),
and compute its associated threshold value τ = χ2

k,p with
p = Pr(J(x̂) ≤ χ2

k,p).
(ii) Compute the normalized measurement error J(x̂) =∑m

i=1(zi − hi(x̂i))
2/σ 2

i .
(iii) If the inequality in (2) holds, bad data will be suspected,

or else the measurements are assumed to be free of bad
data.

J
(
x̂
) ≥ τ. (2)

B. Model-Based FDIA in AC State Estimation

A FDIA modifies the estimated states x̂ or measurements
ẑ by changing the original SCADA and PMU measurements
z with a maliciously tampered measurement vector, that is,
za = z + a, where a is an attack vector. The attacker designs
this attack vector to compromise the system’s reliability by
creating a wrong state estimate. For a FDIA to be success-
ful, it must circumvent the bad data detector (2) [41]. The
assumptions in the literature for a model-based FDIA about

the attacker’s knowledge are the following [6], [9], [42]:
(1) the attackers can intercept and alter the power system
measurements that are used to obtain the estimated states
in the grid; (2) the attacker has access to the power system
model, which includes transmission line parameters and topol-
ogy information; and (3) the attacker possess the SE model
or can obtain the estimated states of the network. Under these
strong assumptions, the attacker would be able to launch a per-
fect FDIA [10]. In this perfect FDIA, the attacker can define
the attack vector as a = h(x̂ + c) − h(x̂), where c is the vec-
tor of changes in the estimated states. In this scenario, if the
original measurements z can pass the residual-based bad data
detector test in (2), the corrupted measurements za will also
pass this test [9].

The work in [9] proposed an FDIA needing only partial
power system information. In this context, there are two types
of variables. (1) Measurements and state variables that are not
altered, which are denoted with subscript 1, x̂1 and z1 = h1(·).
(2) Measurements and state variables that are maliciously
altered, which are denoted with subscript 2, x̂2 and z2 = h2(·).
If an attacker constructs the attack vector as

a2 = h2
(
x̂1, x̂2 + c

) − h2
(
x̂1, x̂2

)
, (3)

the tampered measurements will have the same residual error
as the real ones. Note that to create the attack vector in (3), the
attacker must know the estimated values of the state variables
appearing in h2, which is still a strong assumption. There
are other types of FDIA. For example, if a �= h(x̂ + c) − h(x̂)

but (2) holds, then the attack is called a generalized FDIA [43].

III. PROPOSED MODEL-FREE FDIA

Contrary to the model-based FDIAs, the model-free models
only make one assumption [24], [25], [28], [29]: The attackers
can intercept and alter the power system measurements that
are used to obtain the estimated states in the grid. So, in this
section, we show a theoretically sound method to deploy a
FDIA by only using the power system measurements. If we
want to deploy an attack without any underlying power system
knowledge, we have to learn an implicit model through obser-
vations, that is, from power system measurements (SCADA
and PMU). This implicit model should capture the inher-
ent non-linearity relationships between different measurements
based on residual error tests. Also, this model should be able
to create new tampered measurements such that they are over-
looked by the power system operator but change the estimated
states and measurements. To summarize, we present a data-
driven approach based on a WGAN with two regularization
terms. First, the measurement distribution is learned with the
WGAN, z + e. Second, to pass the residual error test, a proxy
of the unknown SE model is embedded into the WGAN as
a regularization term, h(z). Finally, a regularization term is
added to maximize the attack impact.

A. Learning the Measurement Distribution

Reference [44] introduced the idea of generative adversar-
ial networks, which revolutionized the machine learning (ML)
field. GAN is a framework to teach a Deep Learning (DL)
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model the implicit training data distribution so that we can
sample from it and generate new data from that same distribu-
tion; in our case, the power system measurement distribution.
Specifically, rather than sampling directly from an (assumed)
parametric distribution, the target random variable is gener-
ated as a deterministic transformation of a simple, independent
noise source, for instance, a Gaussian distribution. GANs are
made of two distinct models, a generator and a discriminator.
Formally, the minimax objective of the GAN is

min
G

max
D

Ez∼PrEλ∼Pλ

[
log D(z) + log(1 − D(G(λ)))

]
, (4)

where D is a discriminative network, G is a generative
network, Pr is the real data distribution, and λ is the latent
space, which it is sampled from an independent distribution
Pλ; that is, λ ∼ Pλ (usually a Gaussian distribution).

However, GANs have some issues, such as vanishing gradi-
ent and the lack of guarantee to convergence. The work in [45]
presented the Wasserstein GAN (WGAN) that solves these
issues. Also, WGANs possess stronger mathematical guaran-
tees. For example, the authors in [35] proved that (under mild
assumptions) the generator in the WGAN will converge to
the true data distribution Pr. Therefore, in this work, we will
use this type of WGAN. These models are made of two dis-
tinct neural networks, a generator G and a discriminator D (or
critic). The minimax objective of the WGAN is

min
G

max
D∈D

Ez∼PrEλ∼Pλ
[D(z) − D(G(λ))], (5)

where D is the set of 1-Lipschitz functions [45]; Pr is the
real data distribution; λ is known as the latent space, and it is
sampled from an independent distribution Pλ. The generator
G learns the real distribution Pr, which, in our context, this
real distribution is the set of historical observed measurements
Z = {zi ∈ R

m}L
i=1 (where L is the number of elements in the

dataset), where zi = h(xi) + ei. In other words, G implicitly
learns to generate samples from the underlying model z =
h(x) + e.

B. Learning the State Estimator Model

To gain trust from the power system operator, the created
tampered measurements, z̃ = G(λ), must pass the resid-
ual error test in (2). This residual error for the tampered
measurements is given as

r̃ =
∥
∥
∥z̃ − ˆ̃z

∥
∥
∥

2
, (6)

where ˆ̃z = h( ˆ̃x) is the vector of estimated tampered or fake
measurements, and ˆ̃x = SE(z̃) is the vector of estimated states
from tampered measurements. As (2) suggests, the smaller
the residual error r̃, the bigger the probability of passing the
test for a given tampered measurement, z̃. In other words, a
given vector of tampered measurements, z̃, should produce a
similar estimated vector, ˆ̃z = h( ˆ̃x). However, in this model-
free approach, we do not have access to the state estimator
model h(·). This non-linear function h(·) can be thought of
as a mapping from the measurement space to the estimated
measurement space. For a vector of real measurements, the
estimated measurements will be similar so that the residual

error is low. This state estimator function h(·) is unknown.
Still, given its properties, it is possible to learn it from data and
create a proxy to impose the same behavior in the tampered
measurements.

The residual error expression in (6) resembles the loss func-
tion from an autoencoder (AE). Thus an AE model is a natural
option to learn a proxy model of the unknown state estima-
tor function h(·). An autoencoder is a neural network that
aims to produce or replicate its input to its output [46]. To
do this, the autoencoder is trained to learn an encoding for
a particular distribution and then with such encoding, learn
to reconstruct the input distribution. To learn a meaningful
encoding, the model’s architecture prioritizes which traits from
the input should be learned. By this process the autoencoder
learns to ignore superfluous data, which could be noise. We
will see how this autoencoder property improves the genera-
tion of fake measurements in Section V-E. Mathematically,
the autoencoder is represented as a function, that is, AE(·),
and it is trained with the squared loss function:

‖z − AE(z)‖2. (7)

A trained AE with real measurements with (7) will learn the
unknown function h(·) that will minimize the residual error
in (6). Once the autoencoder is trained (denoted as AE∗), the
loss function in (7) can be embedded into (5) to incentivize
the generation of tampered measurements that will produce
similar estimated measurements, and thus lower the residual
error. This can be done by adding the regularization term
‖z̃ − AE∗(z̃)‖2

2 in (5):

min
G

max
D∈D

Ez∼PrEλ∼Pλ

[
D(z) − D

(
z̃
) + ‖z̃ − AE

(
z̃
)‖2

]
,

(8)

where z̃ = G(λ).

C. Maximize the FDIA Impact

The WGAN in (8) implicitly learns the underlying model
that generates the observed data [44], [45]. To train a WGAN
with (8), we need to sample z from the true data distribu-
tion Pr. However, the generator in (8) conventionally takes a
random signal as input and maps it to the true data distribu-
tion space; that is, λ ∼ Pλ, where Pλ is usually a Gaussian
distribution. This means that we do not have any control
over the created fake measurements. To successfully attack
a power system, we want these fake measurements, produced
by our WGAN, to create different states from the actual ones.
The attacker can only see and modify observed measure-
ments. Thus, the attacker can attempt to markedly change the
unobservable states by stealthy and sizeably manipulating the
intercepted measurements to perform a successful FDIA. To
accomplish this, we need to generate tampered measurements
from the observed ones.

If we want to generate tampered measurements from the
observed ones, rather than using a random distribution Pλ as
latent space to feed our generator, we use the power system
measurements as input to the generator, that is, Pλ = Pr. The
result is that the generator’s latent space is not fed with an
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Fig. 1. Proposed model-free architecture with a WGAN and two regularization terms to deploy an FDIA.

arbitrary random distribution: it is fed with the power system
measurement distribution. Specifically, we are conditioning the
WGAN with respect to the actual measurement vector z, as
depicted in Fig. 1. This is desirable because in this way, rather
than creating tampered measurements from an arbitrary dis-
tribution, they are constructed based on the observed ones.
Furthermore, the created tampered measurements will differ
from those received as input due to a regularization term that
we include in our model, as we explain below.

To successfully deploy an FDIA, we want to incentivize the
generator to construct measurements that will produce differ-
ent measurements from those received as input. This will
provoke the SE with high a likelihood to produce erroneous
estimated states, the main objective in a FDIA. To accom-
plish this, we can incentivize the model to generate such
fake measurements with the regularization term wz · d(z, z̃)
in (9) (the first regularization term in Fig. 1 in red), where
z̃ = G(z), d(·) is a distance function (e.g., mean squared
or mean absolute distance), d(z, z̃) represents the distance
between the original measurement and the generated one, and
wz is a hyper-parameter that represents the weight of this
distance. This regularization term incentivizes the WGAN to
produce a tampered measurement vector z̃ that will generate
completely wrong estimated measurements. Finally, we can
explicitly induce sparsity in the attack vector. This sparsity
property is desirable and essential because the attacker has to
alter fewer measurements to successfully deploy a FDIA, [47].
We can add it into the model in (9) in the paper with the reg-
ularization term, wsparse · ‖z − z̃‖1, where wsparse is the weight
of the sparsity regularization term. This leads to the following
loss function

min
G

max
D∈D

Ez∼PrEz̃∼Pg

[
D(z) − D

(
z̃
)

+ ‖z̃ − AE
(
z̃
)‖2

2 + wz · d
(
z, z̃

) + wsparse · ∥
∥z − z̃

∥
∥

1

]
.

(9)

Training the WGAN with regularization terms adds com-
plexity to the training process. If the regularization term
becomes too large with respect to the original WGAN loss,
the generator will struggle to learn the correct distribution. If
the regularization term is too small, it will not have any effect
on the training process. Thus, the regularization term will not
fulfill its purpose. To solve this issue, a dynamic weight is

introduced to control the size of d(z, z̃) throughout the train-
ing phase. This weight must maintain a balance between the
generator loss term D(z̃) and the regularization term d(z, z̃),
so that the WGAN learns the desired distribution, and at the
same time, the regularization term accomplishes its purpose.
We can achieve this balance by setting the regularization term
to be half of the generator loss term. We express this as
1
2 |D(z̃)| = wz · d(z, z̃). Then, the result of such dynamic
weight wz is described in (10) where t > 1 is the iteration
number in the training phase. This dynamic weight adapts
during training, controlling the impact of the regularization
term.

w(t)
z = 1

2
·
∣
∣
∣
∣
∣

D
(
z̃(t−1)

)

d
(
z(t−1), z̃(t−1)

)

∣
∣
∣
∣
∣
. (10)

To summarize, our proposed architecture is shown in Fig. 1
with two stages. First, an autoencoder is trained with historical
SCADA and PMU measurement data. Second, the WGAN is
trained with the same data and the two regularization terms:
(1) one incentivizes the WGAN to produce measurements that
will pass the residual error test and (2) another to maximize
the impact of the attack. More important features are described
below, and the complete algorithm for our proposed FDIA is
in Algorithm 1.

(i) The inputs for the generative network are actual power
system measurements instead of random noise. This
gives us control over the created measurements.

(ii) The generator is incentivized to generate measurements
that will be different than the ones as input, causing an
incorrect estimation of state variables and measurements.

(iii) The generated tampered measurements will have a small
residual error, thus passing the residual error test with
high probability.

Note that our proposed approach can be easily formulated
to deploy an attack on a specific area in the power system, as
proposed in [18]. Specifically, a FDIA can be launched in a
specific area by tampering the measurements within the area
under attack and not modifying the sensor measurements at
boundary buses. In this way, the attacker only has to get the
sensor measurements in the specific area under attack, which
would reduce the amount of collected data. For conciseness
and sake of clarity, we will analyze our proposed FDIA in the
complete power grid.
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Algorithm 1: Training Process of the Proposed Scheme
to Create Tampered Measurements to Deploy a FDIA

Inputs : Dataset M = {zi ∈ R
m}L

i=1, batch size b,
number of iterations of the critic per generator
iteration ncritic, generator and discriminator
learning rates α, clipping parameter c.

Output: Generator (G) network.

1 Train an AE with the real measurements from the dataset
M and the loss function L = ‖z − AE(z)‖2.

2 for number of training iterations do
3 for k = 1, . . . , ncritic do
4 Sample a minibatch of b samples{

z(1)
D , . . . , z(b)

D

}
= {

z(1), . . . , z(b)
} ∼ Pr from the

measurement dataset M.
5 Sample a different minibatch of b samples and

create a minibatch of fake measurements{
G

(
z(1)

G

)
, . . . , G

(
z(b)

G

)}
= {

z̃(1), . . . , z̃(b)
} ∼ Pg.

6 Train the critic (or discriminator): Gradient
ascent on the critic:
max
D∈D

Ez∼PrEz̃∼Pg D(z) − D
(
z̃
)
.

7 Clip discriminator weights in the range [−c, c].
8 end
9 Sample real and fake measurements:{

z(1), . . . , z(b)
} ∼ Pr and

{
z̃(1), . . . , m̃(b)

} ∼ Pg.
10 Train the Generator: Gradient descent on generator:

min
G

Ez∼PrEz̃∼Pg

[
D(z) − D

(
z̃
) + wd · d

(
z, z̃

) + ‖z̃ −
AE

(
z̃
)‖2

2

]
.

11 end
12 Get generator G that creates tampered measurements.

IV. WGAN GUARANTEE FOR THE PROPOSED

REGULARIZATION TERMS

The last section presented a framework to create fake power
system measurements to deploy a FDIA. However, to suc-
cessfully deploy a FDIA without relying upon the underlying
power system model, we need to be confident that our learned
model will produce measurements that look legit so that the
residual error test does not detect them. To show that our
proposed framework converges to the underlying measurement
distribution, we present mathematical proof that certifies the
WGAN convergence to the measurement distribution, thus cre-
ating fake measurements that look real. The only requirement
for this proof to work is to have data to train the WGAN.

Generative adversarial networks can be understood as
minimizing a moment matching loss defined by a set of
discriminator functions [35], mathematically

min
ν∈G

{
dF

(
μ̂m, ν

)
:=

sup
f ∈F

Ex∼μ̂mEx̃∼ν f (x) − f (x̃) + wz · d(x, x̃)

}

, (11)

where μ̂m is the empirical measure of the observed data (in this
case the power system measurements), and F and G are the

sets of discriminators and generators, respectively. The prac-
tical WGANs take F as a parametric function class, that is,
Fnn = {fθ (x) : θ ∈ 	} where fθ (x) is a neural network indexed
by parameters θ that take values in 	 ⊂ R

p.
Notation and Definitions: X denotes a subset of R

d. For
each continuous function f : X → R, we define the maxi-
mum norm as ‖f ‖∞ = supx∈X|f (x)|, and the Lipschitz norm
‖f ‖Lip = sup{|f (x) − f (y)|/‖x − y‖ : x, y ∈ X, x �= y}, and the
bounded Lipschitz (BL) norm ‖f ‖BL = max{‖f ‖Lip, ‖f ‖∞}.
The set of continuous functions on X is denoted by C(X),
and the Banach space of bounded continuous functions is
Cb(X) = {f ∈ C(X) : ‖f ‖∞ < ∞}.

Weak Convergence: If F is discriminative, then dF (μ, ν) =
0 implies μ = ν. This means that the learned distribution is
the same as the observed one. In reality, we cannot strictly get
dF (μ, ν) = 0. Rather, we have dF (μ, ν) → 0 for a sequence
of νn and want to establish the weak convergence ν ⇀ μ.

Theorem 1: Let (X, dX) be any metric space. If spanF
is dense in Cb(X), we have limn→∞dF (μ, νn) = 0 implies
that the learned distribution νn weakly converges to the real
observed distribution μ.

In our context, the observed distribution μ corresponds
to the set of observed power system measurements. Fig. 2
gives the intuition for the convergence proof. The learned dis-
tribution νn (in red) converges to the real one μ (in blue)
as n → ∞. In other words, the WGAN is learning to
create samples that look as taken from the true observed
distribution μ.

Proof: Given a function g ∈ Cb(X), we say that g is
approximated by F with error decay function ε(r) if for any
r ≥ 0, there exists fr ∈ spanF with ‖fr‖F ,1 ≤ r such that
‖f − fr‖∞ ≤ ε(r). We note that ε(r) is a non-increasing func-
tion with respect to r. We know that the closure of spanF is
equal to the space of bounded continuous functions Cb(X), that
is, cl(spanF) = Cb(X), then we have limr→∞ε(r) = 0. Now
denote rn := dF(μ, νn)

− 1
2 , fn := frn and wz = 1/rn. We have

|Eμg − Eνng| + wz · d(x, x̃) ≤ |Eμg − Eμfn| + |Eνg − Eν fn| +
|Eμfn − Eνn fn| + wz · d(x, x̃) ≤ 2ε(rn) + rndF (μ, νn) + wz ·
d(x, x̃) = 2ε(rn)+1/rn +wz ·d(x, x̃). If limr→∞dF(μ, νn) = 0,
we have limr→∞rn = ∞. Given that limr→∞ε(r) = 0, we
prove that limn→∞|Eμg − Eνn g| + wz · d(x, x̃) = 0. Since this
holds true for any g ∈ Cb(X), we conclude that νn weakly
converges to μ. If F ⊆ BLC(X) for some C > 0, we have
dF (μ, ν) ≤ CdBL(μ, ν) for any μ, ν. Because the bounded
Lipschitz distance metrizes the weak convergence, we obtain
that νn → μ implies dBL(μ, νn) → 0, and dF (μ, νn) ⇀ 0.

Theorem 1 guarantees us that the learned distribution ν

by the WGAN will converge to the observed one μ. This
idea is depicted in Fig. 2. The blue points represent the real
measurements, and the red ones represent the fake measure-
ments. At the beginning, the red points are random because
the WGAN is not trained (n = 1). However, as training pro-
gresses, the WGAN produces samples (red points) that look
more similar to the blue ones. Ideally, the fake samples will be
indistinguishable from the real ones. In other words, our model
will create fake measurements that look like real ones. This
means that the WGAN captures the underlying power system’s
interactions that produce the observed measurements.
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Fig. 2. Intuition for the WGAN convergence proof to the true observed
distribution.

V. EXPERIMENTS

This section will show how we deploy FDIAs on power
grids with our proposed WGAN framework without knowing
their mathematical or physical model. To show the contribu-
tions and generality of our approach, we carried out extensive
experiments on different power networks.

First, we train a WGAN with historical SCADA and PMU
measurements to demonstrate that the output of the WGAN
converges to the true distribution of observed power system
measurements, z = h(x) + e. Note that the sampling rate
of PMU measurements is faster than the sampling rate of
SCADA measurements. We use PMU measurements alongside
with SCADA measurements when the SCADA measurements
are available. We will also show that the fake measurements
will pass the residual error test, corroborating the aforemen-
tioned convergence theorem. Second, we show that the trained
WGAN creates different measurements (and therefore states)
from the actual ones. This will show that the regularization
term works, and it is maximizing the FDIA impact. Next,
we show that our proposed framework is more reliable than
the model-based ones by showing that our WGAN produces
more realistic measurements. This implies that our model is
capturing the underlying power system model. Finally, an abla-
tion study is carried out to show that embedding a surrogate
state estimator model, h(x), improves the proposed framework
to create tampered measurements that pass the residual error
test. We carried out the aforementioned experiments in various
test cases with similar results. Specifically, we use the small
IEEE 9-bus test case to illustrate how our framework works.
Then, we perform the same simulations in the IEEE 14-, 57-,
118-, and 300-bus networks to demonstrate that our proposed
method scales well with larger power system networks.

A. Data Generation and Model Architecture

1) Data Generation: For both the 9- and 118-bus test cases,
we consider all the active and reactive power flow measure-
ments through transmission lines and transformers as SCADA
measurements, and voltage magnitudes and angles as PMU
measurements. The 9-bus network has 9 branches, which gives
us 36 SCADA measurements and 18 PMU measurements. The
measurements are arranged as follows: 1–9 correspond to the
sent active power through branches, 10–18 correspond to the
sent reactive power, 19–27 are the received active power mea-
surements, 28–36 are the received reactive power on branches,
37–45 are the voltage magnitudes, and 46–54 are the voltage
angles. The IEEE 118-bus network has 186 branches; thus, 980

Fig. 3. ERCOT hourly normalized load data for 2021.

measurements arranged as follows: 1–186 sent active power,
187–372 sent reactive power, 373–558 received active power,
559–744 received reactive power, 745–862 are the voltage
magnitudes, and 863–980 are the voltage angles.

We obtain the power systems’ measurements by solving
L times the AC power flow under different load conditions
using MATPOWER [48]. To simulate the 24-hour fluctuation,
we use the real yearly load data from the Electric Reliability
Council of Texas (ERCOT) for 2021 [49]. ERCOT reports
8 weather zones: COAST, EAST, FWEST, NORTH, NCENT,
SOUTH, SCENT, and WEST. Fig. 3 depicts the load profiles
of these zones for 2 days in 2021. For our simulations, we
multiply each busload with the normalized loading parameter
associated with a randomly selected area, γ , obtained from
these realistic profiles. Similarly, we also adjust generation
by scaling the generation profiles by multiplying them by the
same loading parameter, γ , [50], [51]. To make it more real-
istic, we add white noise to all measurements according to the
standard deviation associated with the measurement devices.
That is, active power flow: 0.02 p.u., reactive power flow:
0.04 p.u., active power injection: 0.02 p.u., reactive power
injection: 0.04 p.u., PMU voltage magnitude: 0.0001 p.u., and
PMU voltage angle: 0.006 rad, according with [52]. Finally, if
we do not find an AC power flow solution, we do not include
it in the dataset. This data generation approach will give us
rich data variety with the power system under different load
conditions. The same procedure is used to generate data for
the IEEE 14-, 57-, and 300-bus test cases.

2) Model Architecture: The architecture of our proposed
WGAN model is inspired by the architecture of the
DCGAN [53] with the following modifications to adapt it to
our power system data. Since the sensor measurement vectors
are one-dimensional, we use fully connected layers instead of
convolutional layers. The generator, G, consists of 5 layers
with ReLU activation function for all layers except for the
output, which uses tanh. The discriminator, D, is composed
of 5 layers with LeakyReLU activations with the slope of the
leak set to 0.2.

B. Learning the Implicit Power System Measurement Model

This section tests if the learned distribution by the WGAN
converges to the true underlying power system measurement
distribution, z = h(x) + e. We train the WGAN according to
Algorithm 1 with a dissimilarity weight wz = 0.5. We use
the hyper-parameters from [45]: ncritic = 5, learning rates
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Fig. 4. Learning an implicit power system model with the proposed WGAN
architecture for the 9-bus test case using real load profiles from ERCOT [49].

α = 0.00005 (for autoencoder, generator, and discrimina-
tor), clipping parameter c = 0.01, batch size b = 64, and
Adam adaptive learning algorithm [54]. Also, we train the
AE and the WGAN models for all test cases for 10 and 100
epochs, respectively. The normalized load from the Electric
Reliability Council of Texas (ERCOT) for 2021 [49] con-
tains hourly data for one year, which means that there are
8,760 load samples. From these 8,760 samples, we split the
set into a training and a test dataset with 7,760 and 1,000
randomly chosen samples, respectively. This yearly data con-
tains seasonal variation, so it captures the behavior of a real
power system throughout the year. Note that both the AE
and WGAN models are trained with this data, as indicated
in Algorithm 1. Fig. 4(a) shows 100 measurement samples
from the real dataset and 100 created fake measurements for
the 9-bus test case. We can see in Fig. 4(a) generated fake mea-
surements compared with real measurements from our dataset;
the fake measurements (in red) follow the same pattern or
distribution as the real ones (in blue); in fact, they overlap
the real measurements, but they are not exactly the same.
This means that the WGAN learned the true power system
measurement distribution instead of memorizing the dataset.
Note that Theorem 1 guarantees the model convergence with
enough training data. In our numerical experiments, we trained
our models by creating training and testing datasets of 7,760
and 1,000 samples, respectively. With these training datasets
our models successfully learned the underlying power system
measurement distribution. Also note that the our procedure to
create the dataset produces rich distributions of sensor mea-
surements, Fig. 4(a). For example, the measurement no. 1 has
a range from 0p.u. to over 1p.u. (which corresponds to an
active branch power flow measurement).

Fig. 5. Sensor measurement distribution with VRES for the 9-bus test system.

To assess if the trained WGAN learned the implicit power
system measurement distribution, we carry out a power flow
mismatch analysis, as follows. If we add power injection mea-
surements in the set of measurements, the power flow balance
at the i-th bus should be

∑
j∈δ+(i) f p

(i,j) + ej = pinj
i + ei, where

δ+(i) is the set of adjacent buses to bus i, f p
(i,j) is the power flow

on branch (i, j), and ej and ei are the measurement errors asso-
ciated to active power flow and injection, respectively. Under
this setting, the power flow mismatch will not be zero due
to measurement errors, that is, |∑j∈δ+(i) f p

(i,j) − pinj
i | > 0. We

compute this power mismatch error |∑j∈δ+(i) f p
(i,j)−pinj

i | for all
the buses in the system for both real and fake tampered mea-
surements. Fig. 4(b) shows the results, where each bar, blue
for real and red for fake measurements, indicates the average
power flow mismatch in the whole system for one simulation.
In the same figure, we can see that the power flow mismatches
of the real and tampered fake measurements are very close:
2.66 MW for the real measurements and 3.54 MW for the
tampered fake measurements. This is remarkable because the
WGAN does not know the power system topology, and it
does not have information about which measurements should
comply with the power flow balance. Yet, the WGAN pro-
duces fake tampered measurements that are within 1 MW, on
average, with respect to the real measurements, as shown in
Fig. 4(b).

Including variable renewable sources such as wind and solar
generation that vary significally from one day to the next could
produce a more diverse sensor measurement distribution. To
test this idea, we use the 9-bus test case, and we take the nor-
malized wind and solar aggregated generation data from the
RTS-GMLC [55]. Then, we include the wind generation on
bus 5 and the solar generation on bus 6 with different pene-
tration values. For a penetration of 30%, we can see the sensor
measurement distribution in Fig. 5. This distribution looks a
little bit wider than the one without VRES in Fig. 4(a). Notice
that both sensor measurement distributions look alike, which
means that our original procedure to generate datasets cre-
ates rich sensor measurement distributions. Thus, the datasets
for the remaining experiments will be created without adding
VRES into the simulations.

1) Analyzing Attack’s Vector Sparsity: We can test the
attack vector’s sparsity by taking the absolute difference
between the real and tampered measurement vectors, that
is, |z − z̃|. To test this idea, we take the real and tampered
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Fig. 6. Examples of absolute difference vectors.

measurements for the 9-bus test case, with wsparse = 0, and
we show two examples of specific sets of real and tampered
measurements in Fig. 6(b). In the top part of the Figure, we
can see the real and tampered measurements. In the inferior
part of the Figure, we can see the absolute difference vec-
tors, |z − z̃|. Note that even though wsparse = 0, these vectors
contain many zero values indicating the property of sparsity.

We train the WGAN following the same procedure in the
paper for the 9-bus test system with the addition of the spar-
sity regularizer with a weight of 0.5, that is, wsparse = 0.5. To
test the sparsity of the results, we follow the same experiment
design from the last example. Specifically, we take the real
and tampered measurements for the 9-bus test case, and we
show two examples of specific sets of real and tampered mea-
surements in Fig. 7. In the top part of the Figure, we can see
the real and tampered measurements. In the inferior part of the
Figure, we can see the absolute difference vectors, |z − z̃|. As
expected, when sparsity is explicitly taken into account, the
attack vectors (absolute difference vectors in Fig. 7) present
more sparsity than those in Fig. 6(b), where no sparsity is
expressly considered in the model. However, the differences
between real and tampered measurement vectors for the sparse
FDIA are smaller than the FDIA that does not explicitly take
into account the sparsity.

Fig. 7. Examples of absolute difference vectors with the sparsity regularizer
with wsparse = 0.5.

The model’s results without including sparsity, wsparse = 0,
present sparsity and produce more changes in the tampered
measurements. Thus, the remaining experiments will be done
without explicitly including sparsity.

2) Analyzing Attack Vector: We can assess an attack vec-
tor’s impact by taking the absolute difference between the real
and tampered measurement vectors, that is, |z − z̃|. To test this
idea, we take 1, 000 real and tampered measurements for the
9-bus test case, and we show two examples of specific sets of
real and tampered measurements in Fig. 6(b). In the top part of
the Figure, we can see the real and tampered measurements. In
the inferior part of the Figure, we can see the absolute differ-
ence vectors, |z − z̃|. Note that in the 1, 000 samples, the mean
magnitude of the attack vector is 15.05 units. Also, the attack
vector, in specific sensor measurements, dramatically changes
the real values. Under this context, the operator could take
wrong corrective actions that will interfere with the correct
and safe operation of the electric grid. This means that the
attack will damage the system and lead to catastrophic events.

C. Deploying FDIAs Without Power System Knowledge

In the last section, we showed that a WGAN can learn the
power system measurement distribution. This section shows
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Fig. 8. Comparison of passing the residual error test with different methods
for the 9-bus test case.

Fig. 9. Comparison of the tampered measurements by the model-based
Method 1 [9] with our model-free approach for the 9-bus test case.

how we deploy a FDIA with our proposed framework, which
is given by (9) and (10).

1) Deploying a FDIA With Fake Tampered Measurements:
Our objective is to create fake tampered measurements z̃ that
generate estimated measurements and state variables as dif-
ferent as possible from the real ones. At the same time, for
an attack to be successful, these measurements should pass
the residual error test. Fig. 9 shows an instance of a real
measurement vector and a created fake one for the 9-bus test
network. The fake tampered measurements are within the his-
torical range from the dataset and look similar to the real ones.
However, they produce significant changes in voltage magni-
tudes v and voltage angles δ with respect to the real states, as
shown in Fig. 10. Furthermore, the fake measurements pass
the test in (2), which means that the control center will not
notice the FDIA.

2) Comparison Against Other FDIA Methods: To assess
the advantages and differences between our proposed model-
free FDIA framework, we compare it against the model-based
FDIA presented in [9] and described by (3)—we will refer to
this FDIA as Method 1. This model-based attack has the same
residual error as the original measurements as proven in [9].
However, the Method 1 produces measurements that are out
of the historical range from the historical measurements.

To prove the last point, we perform the following experi-
ment. We use the fake vector in Fig. 10, where we can see
that the voltage magnitude in bus 5 goes from 1 to 1.05 p.u.

We use Method 1 to tamper the state v5 = 1.05 p.u. using (3).
Fig. 9 shows the real measurements (in blue), the created tam-
pered measurements by our proposed framework (in red), the

Fig. 10. Example of a real and a fake measurement vector for the 9-bus test
case.

created tampered measurements by Method 1, and the histor-
ical measurement range from our data generation (gray bar).
In the same Figure, we see that the created measurements by
the WGAN are within or very close to the historical range. In
contrast, some tampered measurements by Method 1 are far
away from the real historical measurements. In specific, we
see in Fig. 9 that measurements 18 and 36 show a large dis-
tance from the historical range. The key observation is: Even
though Method 1 produces measurements with the same resid-
ual error as the real ones, these measurements will still look
suspicious. The power system operator would realize that the
tampered measurements 18 and 36 are outliers with respect
to the historical ones, as shown in Fig. 9. In contrast, in the
same Figure, we can see that our fake tampered measurements
are within the range of historical measurements and also pass
the residual error test (for a confidence of p = 0.95). Thus,
making them less suspicious for the power system operator.
This means that our attack design is more advantageous at the
stealth level.

We also carried out a sensitivity analysis for different con-
fidence values p. In this sensitivity analysis, we compare our
method against three techniques in the literature: Method 1
introduced in [9], Method 2 from [25], and Method 3 proposed
in [18]. This sensitivity analysis is carried out with the resid-
ual error test. Thus, the results only depend on the residual
error produced by the FDIA approaches. In other words, the
range of historical measurements does not affect the success
rate. Methods 1 and 2 produce the same residual error as the
real measurements; this means that if the real measurement
passes the residual error test, the tampered measurements by
these methods will pass as well. Method 3 is an attack on a
specific area, and we chose to delimit this area by the buses
5 and 6. An important characteristic of this technique is that
the residual error of the tampered measurements can be lower
than the real residual. The authors in [18] attribute it to the
fact that the tampered measurements will be more consistent
(i.e., free of noise errors); thus, reducing the overall residual
error.
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TABLE I
COMPARISON OF DIFFERENT FDIAS

To compare these methods, we made 1, 000 simulations
with the same procedure described in Section V-A, and
we tamper the real noisy measurements with our proposed
approach and Methods 1, 2, and 3. For a given confidence
value p, we compute its corresponding threshold τ = χ2

k,p, and
obtain the probability of each measurement to pass the resid-
ual error test for the specified threshold, that is, Pr(J(z) ≥ τ).
We repeat this process for each simulation and each aforemen-
tioned method, and we obtain the success rate of passing the
residual error test. This is the probability of the simulations to
pass the error test, and we call it ppass. We repeat this exper-
iment for several values p ∈ (0, 1), and the result is shown in
Fig. 8. We can see that as the threshold τ increases, the prob-
ability to pass the residual error test ppass increases as well.
Given that Methods 1 and 2 (in brown and purple, respectively)
tampered the measurements such that the residual error is the
same as the real one (in blue), they (almost) follow perfectly
the real curve. Method 3 (in green) is close to the real curve
but just slightly above due to the behavior of this technique,
as we previously explained. Note that Methods 1 and 2 pro-
duce the same ppass as the real noisy measurements in Fig. 8.
This is because both methods are guaranteed to have the same
residual error as the real noisy measurements by design, as
indicated in (3) (see proof in [9]).

It is important to note that we trained our model with
noisy measurements, and the method did not have access
to the underlying power system model. The key finding is
that despite using only noisy measurements, our approach
produces tampered measurements with lower residual errors,
outperforming all other methods. We ascribe this due to the
regularization term that contains the AE in (9), ‖z̃ − AE(z̃)‖2

2.
As discussed in Section III-B, an autoencoder has a denois-
ing effect on the on the noisy measurements. This will be
proved with an ablation study in Section V-E. A summary of
the qualitative traits of each of the aforementioned methods is
shown in Table I, where it is shown that our proposed algo-
rithm is the only one that tampers measurements so that they
are within the historical range.

3) Comparison Against Other Model-Free FDIA Method:
To make a fair comparison, we train our proposed model
with the same methodology indicated in the paper with the
difference that we use the DC power flow model as the
work in [29] does. This framework requires normal and tam-
pered measurements to train a conditional adversarial network

Fig. 11. Comparison of passing the residual error test with the cGAN, [29],
for the 14-bus test case.

TABLE II
COMPARISON OF PASSING THE RESIDUAL ERROR

TEST WITH THE CGAN, [29]

(cGAN). However, the work in [29] does not clearly indi-
cate how the dataset of tampered measurements is obtained.
For simplicity, we use the well-known FDIA proposed in [9]
to create the dataset of tampered measurements. We evaluate
both approaches on the 14-bus test. For a given confidence
value p, we compute its corresponding threshold τ = χ2

k,p, and
obtain the probability of each measurement to pass the resid-
ual error test for the specified threshold, that is, Pr(J(z) ≥ τ).
We repeat this process for each simulation and each aforemen-
tioned method, and we obtain the success rate of passing the
residual error test. This is the probability of the simulations to
pass the error test, and we call it ppass. We repeat this exper-
iment for several values p ∈ (0, 1), and the result is shown
in Fig. 11. We carry out the same experiments for the IEEE
9-, 57-, 118-, and 300-bus test cases for a confidence value
p = 0.95. The results are shown in Table II.

4) Validate Scalability of the Proposed Approach: Finally,
we show that our approach scales to bigger power system
networks. To demonstrate it, we test our model-free FDIA on
the IEEE 118-bus network. The created fake tampered mea-
surements pass the residual error test, and Fig. 12 shows that
the created fake measurements provoke significant changes in
the voltage angles, leading to a successful FDIA.

Also, a sensitivity analysis, like the one in the previous
section, is carried out for the IEEE 9-, 14, 57-, 118-, and 300-
bus test cases, and the results are shown in Fig. 13. In the
same Figure, we can see that our FDIA method outperforms
the ones proposed in the literature.

Finally, we validate the scalability of our proposed
approach. As previously mentioned, the AE and the WGAN
models for all the test cases are trained for 10 and 100,
respectively. The number of training samples and the num-
ber of iterations for all test cases are fixed since we used real
yearly load data from the Electric Reliability Council of Texas
(ERCOT) for 2021 [49]. Also, the number of layers is fixed
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Fig. 12. Example of a real vs a fake measurement for the 118-bus test case.
Note that the fake measurements produce different states.

Fig. 13. CDF comparison for many test cases.

to be 5 for both the generator and discriminator for all the
experiments. The only component that varies is the dimen-
sionality, which depends upon the power system size. Thus,
our proposed approach presents good scalability with respect
to the power system size. We can test this by measuring the
training times for the AE and WGAN models. Fig. 14 shows
such training times. We can see that training the surrogate
state estimator (i.e., AE) for 10 epochs takes less than 40 sec
for all test cases. Training the WGAN model for 100 epochs
takes less than 530 sec for all test cases. We can see that the
training times for the models’ convergence for 1 year of data
are low. Thus, our proposed attack could be easily deployed
in real-world settings.

D. Comparison of Different Defenses

The Chi-squared test could be, in some cases, inaccurate due
to the approximations of errors by residuals [39]. So, in this

Fig. 14. Training times for AE and WGAN for different test cases.

Fig. 15. Largest normalized residual statistical test for the 14-bus test system.

section, we show how our proposed algorithm performs against
more sounding defenses. In the literature, there exist numerous
defenses with different traits. For example, defenses that do not
use temporal correlations and ones that make use of them. In
the realm of defenses that exploit temporal patterns to detect
FDIAs, there are works such as the moving-target defense
(MTD) [56], [57] or the work in [41]. However, our proposed
FDIA scheme does not take into account inter-temporal cor-
relation, so it would be unfair to test our attack against such
defenses. Thus, in this section, we choose defenses that utilize
data measurements at a specific time interval to detect spuri-
ous data. Specifically, we test our proposed attack against the
largest normalized residual statistical test (LNRT) [39], [58]
and a recent deep learning-based detector that consists of an
adversarial autoencoder [59].

1) Largest Normalized Residual Statistical Test (LNRT):
The LNRT is more robust than the classical Chi-squared test
for bad data detection and identification [39], [58]. The nor-
malized value of the residual for the measurement i can be
computed as rnorm

i = |ri|√
�ii

, where
√

�ii is the diagonal entry in
the residual covariance matrix. This normalized residual entry
has a standard normal distribution, that is, rnorm

i ∼ N (0, 1).
Then, the largest element in the set {rnorm

i }M
i=1 is compared

against a chosen threshold to decide if bad data is presented.
If this threshold is set to 3, then the confidence level is
99.7%. We carry out this test for the 14-bus test system for
each real and fake measurement, and the results are shown in
Fig. 15, where the average is 99.75% for real measurements
and 99.79% for tampered measurements with our proposed
method. We carry out the same experiments for the IEEE
9-, 57-, 118-, and 300-bus test cases for a confidence value
p = 0.997. The results are shown in Table III.

2) Deep Learning-Based Detector: There are recent
learning-based detectors to detect FDIAs. The work in [59],
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TABLE III
COMPARISON OF DIFFERENT DEFENSE MECHANISMS AGAINST A

FDIA. *p = 0.997, †p = 0.95

Fig. 16. Probability of passing the residual error test for 9-bus test case with
and without AE.

for example, proposed a scheme that consists in an adversar-
ial autoencoder (AEE). The AAE network is trained in three
stages: the reconstruction phase, the adversarial phase, and
the supervised phase. For a model-based FDIA, this AEE has
a detection accuracy of 96.25% and 97.85% for the 13- and
123-bus distribution networks. We test this defense against our
proposed model-free FDIA for the IEEE 9-, 14-, 57-, 118-, and
300-bus test cases, and the results are shown in Table III. In
this table, we can see that our proposed approach has a lower
success rate for the AAE defense than for the Chi-squared and
LNRT. Nonetheless, our method still exhibits a high success
rate (above 80%) for all the tested cases.

E. Ablation Study

This section presents an ablation study to show the impact
of the SE’s surrogate model in the proposed framework. The
experiment design is similar to the one presented in previous
sections. We made 1, 000 simulations with the same proce-
dure described in Section V-A. For a given confidence value
p, we compute its corresponding threshold τ = χ2

k,p, and
obtain the probability of each measurement to pass the resid-
ual error test for the specified threshold, that is, Pr(J(z) ≥ τ).
We repeat this process for each simulation for the real and
proposed framework with and without AE for the 9-bus test
case. Next, we obtain the success rate of passing the residual
error test, ppass. We repeat this experiment for several val-
ues p ∈ (0, 1), and the result is shown in Fig. 16. In the
same Figure, we can see that the model without the AE has
a lower probability of passing the residual error test through-
out all the thresholds. We can also see that the model without
the AE (green line) always have around the same or lower
probability of passing the residual error test than the real mea-
surements. As discussed in Sections III-B and V-C2, whereas
the model with the AE has a denoising effect the model with-
out the AE can only learn from the noisy measurement data.

TABLE IV
IMPACT OF INCLUDING AN AE

We carry out the same experiments for the IEEE 14-, 57-,
118-, and 300-bus test cases for a confidence value p = 0.95.
The results are shown in Table IV, which shows that the
model with the AE has a higher success rate than the one
without it.

VI. CONCLUSION

We presented an architecture to create tampered measure-
ment vectors to carry out a FDIA without knowing the power
system underlying information. The architecture is framed into
an optimization framework that considers the WGAN loss
function and two regularization terms to control the attack
measurement vectors. We validated our proposed framework
with several power systems, in which we created fake measure-
ments to create a bad data injection attack without knowing
the underlying power system model. These fake measure-
ments passed the residual error test to detect bad data and
gave completely wrong estimated state variables and measure-
ments, which would compromise the electric grid’s reliability.
This work proves that for an attacker, it is not required to
have access to all power system information. Thus, more
research is needed to keep power systems safe from these
attacks.
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