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Abstract—An effective distribution electricity market (DEM) is 

required to manage the rapidly growing small-scale distributed 

energy resources (DERs) in distribution systems (DSs). This paper 

proposes a day-ahead DEM clearing and pricing mechanism to 

account for the uncertainty of DERs and the coordination with the 

wholesale electricity market (WEM) through a bi-level model. The 

upper-level model clears the WEM in the transmission system (TS) 

and forms the locational marginal price (LMP) and uncertainty 

LMP (ULMP) for energy and uncertainty/reserve, respectively. In 

the lower level, a robust scheduling model considering WEM-

DEM coordination and uncertainties is proposed to clear the DEM. 

Accordingly, the distribution LMPs (DLMPs) for active power, 

reactive power and uncertainty/reserve are derived to reward the 

energy/reserve provision and charge uncertain resources in the 

DEM, which provide effective price signals for managing not only 

the voltage and congestion, but also the uncertainty in DSs. A 

heterogeneous decomposition (HGD) algorithm is utilized to solve 

the bi-level model in a decentralized manner with limited 

information interaction between TS and DSs, which guarantees 

the solution efficiency and information privacy. The effectiveness 

of the proposed method is verified via numerous case studies. 

 
Index Terms—Coordination, distribution electricity market 

(DEM), distribution locational marginal pricing (DLMP), robust 

optimization, uncertainty, wholesale electricity market (WEM). 

NOMENCLATURE 

Indices, Sets, and Parameters 

Transmission Side: 

𝒢𝒯,𝒲𝒯 , 

𝒟𝒯,𝒟𝒮𝒯 

 Set of thermal generators (TGs), wind farms 

(WFs), load serving entities (LSEs), and DSs 

𝒩𝒯   Set of buses 

Pi,t
W,Pi,t

D   Forecast value of WF/LSE i at time t 

   

Distribution Side: 
𝒟ℰℛ,ℛ𝒟𝒢, 

ℳ𝒯,ℰ𝒮𝒮 

 Set of DERs, renewable distributed generation 

(RDG), microturbines (MTs), and energy 

storage systems (ESSs) 

𝒩,ℒ  Set of nodes and distribution lines 

pr(i),cr(i)  Set of parent and children of node i 

Pi,t
d ,Q

i,t

d
  Active/reactive load demand at node i at time t 

Pi,t

rdg
  Forecast value of RDG i at time t 

 

Variables 

Transmission Side: 

ui,t,vi,t,Ii,t  Startup (1 startup, 0 otherwise), shutdown (1 

shutdown, 0 otherwise), and unit commitment 

(1 online, 0 otherwise) status of TG i at time t 

Pi,t
G ,∆Pi,t

G   Energy/reserve provided by TG i at time t 

δi,t
W

,δi,t
D

  Forecast deviation of WF/LSE i at time t 

   

Distribution Side: 

Pi,t
DS,Q

i,t

DS, 

Ri,t
DS 

 Active/reactive power and reserve demands of a 

DS at bus i in TS and at time t 

Ni,t
cb  Number of operating units in CB i at time t 

ok,t  Position of the tap on OLTC, ok,t = 1 if the tap 

is at the kth position, 0 otherwise 

𝜙i,t, 𝜓t  Status change of CB i  or OLTC at time t (1 

changed, 0 unchanged), respectively 

Pi,t

g
,Q

i,t

g   Active/reactive power of DER i at time t 

𝜖i,t

rdg
  Forecast deviation of RDG i at time t 

I.  INTRODUCTION 

HE rapid growth of distributed energy resources (DERs) 

accelerates the transition of traditional passive distribution 

systems (DSs) to active DSs. High-penetration DERs may 

hinder the normal operation of DSs, causing problems such as 

overvoltage and network congestion. Establishing a distribution 

electricity market (DEM) can provide an effective solution for 

managing large amounts of small-scale DERs in DSs [1]. 

The DEM establishment faces two major challenges. On one 

hand, the uncertainty of renewable distributed generation 

(RDG), e.g., photovoltaics (PVs) and wind turbines (WTs), 

calls for a cost-effective DEM clearing mechanism that can 

internalize uncertainties and provide effective price signals to 

realize uncertainty management and secure operation of DSs. 

On the other hand, new regulations such as the FERC Order 

2222 in the U.S allow DERs with the minimum capacity 

requirement of 100kW to compete in the wholesale electricity 

market (WEM) [2]. Thus, a coordination mechanism is required 

to provide a platform for DERs to participate in not only the 

DEM, but also the WEM. To this end, this paper proposes to 

design a DEM clearing and pricing mechanism considering the 

uncertainty of RDG and WEM-DEM coordination. 

Recently, much attention has been paid to the distribution 

locational marginal pricing (DLMP) mechanism which can 

implement market clearing and pricing as well as optimize the 

operation of DERs in the DEM. In [3], the distribution system 

operator (DSO) calculates DLMPs with the objective of 

maximizing social welfare to alleviate congestion caused by 

electric vehicles (EVs). In [4], the DSO publishes DLMPs to 

Distribution Locational Marginal Pricing Under 

Uncertainty Considering Coordination of 

Distribution and Wholesale Markets 
Zongzheng Zhao, Yixin Liu, Li Guo, Member, IEEE, Linquan Bai, Senior Member, IEEE, and 

Chengshan Wang, Senior Member, IEEE 

 

T 



 2 

aggregators to optimize the scheduling of EVs and heat pumps. 

In [5], a DLMP method for eliminating congestion is introduced 

to dispatch prosumers which are responsive to price signals. 

The above methods adopt DC optimal power flow (DCOPF) in 

the derivation of DLMPs, thus the reactive power and voltage 

are neglected. To address this issue, the authors in [6] utilize 

AC power flow approximation to calculate DLMPs, which can 

be decomposed into energy, congestion, loss, and voltage 

components. A day-ahead DEM clearing and pricing model is 

presented in [1] based on a linearized power flow model 

considering reactive power and voltage constraints. The studies 

in [1], [3]-[6] demonstrate the effectiveness of DLMP in DERs 

management in DSs. However, few studies take into account 

the uncertainty of RDG in DEM clearing and pricing, which 

may hinder the application of DLMP in practice and lead to 

market inefficiencies and economic losses [7]. 

The uncertainty-aware DLMPs can be obtained by methods 

such as stochastic optimization, chance-constrained (CC) 

optimization, and robust optimization (RO). In [8], a stochastic 

method based on scenario-tree technique is proposed to account 

for the uncertainty of RDG, and the DLMPs can reflect the 

influence of RDG on DS operation. In [9], a CC optimal power 

flow (OPF) is used to internalize the uncertainties into DLMPs. 

However, the stochastic method is computationally challenging 

due to the complexity introduced by a large number of scenarios. 

The CC method requires knowing continuous probability 

distribution of uncertain variables, which may not be available 

in practice. In view of these limitations, the RO method is an 

alternative with significantly reduced computation burden, 

which minimizes the worst-case cost within an uncertainty set 

[10]. In [11], DLMPs are derived in day-ahead DEM for 

congestion management through a RO method to account for 

the uncertainty of flexible loads. In [12], a RO-based DEM 

clearing mechanism is presented to calculate DLMPs for 

pricing active power and uncertainty. However, network loss 

and the pricing for reactive power are not considered in [11] and 

[12], which cannot achieve a complete market clearing. 

Another important issue in DLMP calculation lies in the 

coordination between the DEM and WEM. However, most of 

existing articles on DLMPs, such as [1], [3]-[6], [8], [9], [11], 

and [12], assume that the boundary locational marginal price 

(LMP) at the power supply point (PSP) connected to the 

transmission system (TS) is not impacted by the DSO behaviors. 

Separate market clearing in TS and DS without coordination 

may pose some challenges [13]: a) Generation resources may 

be not fully utilized, which impairs the overall benefits of the 

TS and DSs. b) Network congestion may be more serious, 

leading to the increase of LMP. c) Power mismatch may occur 

at the PSP and affects system operation. Several studies take 

into account the WEM-DEM coordination to calculate DLMPs 

[14]-[16]. In [14] and [15], the DLMP calculation based on 

DCOPF iterates between TS and DSs, until no changes occur in 

the cleared energy or prices at the PSP. In [16], a bi-level 

optimization model considering WEM-DEM coordination is 

presented to clear the DEM and calculate DLMPs through the 

equilibrium problem with equilibrium constraints (EPEC) 

approach. However, the uncertainty of RDG as well as its 

influence on DLMPs are not considered in [14]-[16]. 

In this paper, a bi-level optimization model is proposed for 

day-ahead DEM clearing and pricing considering the WEM-

DEM coordination and uncertainty of RDG. In the upper level, 

the transmission system operator (TSO) optimizes energy and 

reserve schemes based on a robust unit commitment (RUC) 

model, then forms LMP and uncertainty LMP (ULMP) for 

energy and uncertainty/reserve, respectively. In the lower level, 

a robust scheduling model based on linearized power flow is 

formulated by each DSO to clear the local DEM and calculate 

DLMPs. The boundary energy/reserve demands of each DS and 

LMP/ULMP are exchanged at the PSPs between TS and DSs. 

The bi-level model is solved iteratively by a heterogeneous 

decomposition algorithm (HGD) in a decentralized manner. 

The main contributions of this paper are highlighted as follows: 

1) A novel DEM clearing and pricing model is proposed to 

account for the coordination with the WEM. The influence of 

large amounts of DERs in DSs on WEM clearing and pricing, 

as well as the influence of LMP/ULMP in TS on DEM clearing 

and DLMP formation are all considered. The coordination 

makes it possible for DERs to participate in both DEM and 

WEM based on the derived DLMPs. 

2) A robust scheduling model is formulated to internalize the 

uncertainty of RDG in DEM clearing and pricing. The reserve 

schemes of DERs are optimized to deal with uncertainties. All 

the derived DLMPs for active power, reactive power, and 

uncertainty (i.e., DLMPP, DLMPQ, and DLMPU) can reflect the 

uncertainty of RDG, which can provide effective price signals 

to incentivize the uncertainty management in DSs. 

3) A sensitivity-based HGD algorithm is utilized to solve the 

bi-level model in a decentralized manner. The sensitivity of 

boundary LMP/ULMP to energy/reserve demands of each DS 

is obtained from previous input and output by a probing method. 

The solution convergency and optimality can be guaranteed. In 

addition, the decentralized method reduces the communication 

burden and protects the information privacy. 

The remainder of this paper is organized as follows: Section 

II proposes the coordinated WEM-DEM framework. Section III 

and Section IV present the clearing and pricing models in WEM 

and DEM, respectively. Section V elaborates the solution 

methods. Section VI conducts simulation studies and Section 

VII draws main conclusions for this paper. 

II.  COORDINATED WEM-DEM FRAMEWORK 

The day-ahead WEM and DEM typically include 24 hours 

with time resolution of 1 hour. In both markets, it is assumed 

that all participants bid at marginal cost. The proposed bi-level 

optimization model is depicted in Fig. 1. 
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Fig.1.  The framework of the bi-level optimization model. 



 3 

In the upper level (Stage 1), the TSO operates the WEM 

which includes participants such as wind farms (WFs), thermal 

generators (TGs), load serving entities (LSEs), and DSs. The 

WFs and LSEs submit day-ahead forecast value and forecast 

deviation to the TSO. Meanwhile, each DSO submits day-ahead 

energy/reserve demands to TSO. P, Q, and R in Fig.1 stand for 

active power, reactive power, and reserve, respectively. 

Accordingly, the TSO adopts the RUC model to optimize 

energy and reserve schemes of TGs with the lowest cost in the 

worst-case scenario, and provides the unit commitment (UC) 

status and worst-case uncertainty realization of load and wind 

power for robust economic dispatch (RED). Then, the Lagrange 

function is obtained from the RED model to derive LMP and 

ULMP. The LMP is employed to price energy. The ULMP is 

introduced to charge uncertainties and reward reserve provision. 

In the lower level, each DSO conducts DS scheduling in 

Stage 2 and DEM pricing in Stage 3. Various types of DERs, 

i.e., energy storage systems (ESSs), microturbines (MTs), and 

RDG bid into the DEM in this paper. In Stage 2, the DSO 

receives the day-ahead forecast value and forecast deviation 

from RDG, and the boundary LMP/ULMP from TSO. Each 

DSO establishes a RO model to schedule ESSs and MTs to 

provide energy and reserve. Meanwhile, the energy/reserve 

demands of each DS are determined and sent to TSO. Stage 1 

and Stage 2 are calculated iteratively by the HGD algorithm 

until the boundary LMP/ULMP converge. Then, the Stage 3 

carries out the DEM pricing based on the linearized power flow 

model to derive DLMPP, DLMPQ, and DLMPU, each of which 

can be decomposed to marginal costs for energy, congestion, 

voltage, and loss, as well as reflect uncertainties. Accordingly, 

this novel DEM pricing mechanism can provide effective price 

signals to manage not only the congestion and voltage, but also 

the uncertainty in DSs, and reflect the WEM-DEM interaction. 

III.  DAY-AHEAD WEM CLEARING AND PRICING 

A.  RUC and RED Models 

The RUC/RED model includes dispatch and redispatch 

processes. In the dispatch process, TGs provide active energy 

according to the forecast value of WFs/LSEs and the energy 

demand of DSs. In the redispatch process, reserve capacity is 

optimized to cope with the forecast deviation of WFs/LSEs and 

the reserve demand of DSs. The RUC model is formulated as: 

min
u,v,I

∑ ∑ (Ci
SUui,t+i∈𝒢𝒯t∈T Ci

SDvi,t)  

+ max
δ∈U1

    min
(PG,∆PG)∈Ω(u,v,I,δ)

∑ ∑ (Ci
G(Pi,t

G )+Ci
R(∆Pi,t

G))i∈𝒢𝒯t∈T    (1) 

s.t. 

∑ Pi,t
G

i∈𝒢𝒯
= ∑ Pi,t

D
i∈𝒟𝒯

+ ∑ Pi,t
DS−∑ Pi,t

W
i∈𝒲𝒯i∈𝒟𝒮𝒯

,∀t (λt
B
)   (2a) 

Ii,tPi,min
G ≤Pi,t

G≤Ii,tPi,max
G ,∀i∈𝒢𝒯 ,∀t     (β

i,t

B−
,β

i,t

B+
)  (2b) 

−ri
RD(1−vi,t)−ri

SDvi,t≤Pi,t
G−Pi,t-1

G       

≤ri
RU(1−ui,t)+ri

SUui,t,∀i∈𝒢𝒯,∀t (αi,t
B−,αi,t

B+)  (2c) 

−Fl≤ ∑ GSFl,i( ∑ Pj,t
G+ ∑ Pj,t

W
j∈𝒲𝒯(i) −∑ Pj,t

D
j∈𝒟𝒯(i)j∈𝒢𝒯(i)i∈𝒩𝒯

  

−∑ Pj,t
DS

j∈𝒟𝒮𝒯(i) )≤Fl,∀l,t (η
l,t
B−,η

l,t
B+)  (2d) 

∑ ΔPi,t
G

i∈𝒢𝒯
= ∑ δi,t

D
+ ∑ Ri,t

DS
i∈𝒟𝒮𝒯

−i∈𝒟𝒯
∑ δi,t

W
i∈𝒲𝒯

 ,∀t (λt
R
)  (3a) 

Ii,tPi,min
G ≤Pi,t

G +ΔPi,t
G ≤Ii,tPi,max

G ,∀i∈𝒢𝒯,∀t (β
i,t

R−
,β

i,t

R+
)  (3b) 

−ri
RD(1−vi,t)−ri

SDvi,t≤(Pi,t
G +ΔPi,t

G )−(Pi,t-1
G +ΔPi,t-1

G ) 

≤ri
RU(1−ui,t)+ri

SUui,t,∀i∈𝒢𝒯,∀t (αi,t
R−,αi,t

R+)  (3c) 

−Fl≤ ∑ GSFl,i( ∑ (Pj,t
G+∆Pj,t

G)+ ∑ (Pj,t
W+δj,t

W
)j∈𝒲𝒯(i) −j∈𝒢𝒯(i)i∈𝒩𝒯

∑ (Pj,t
D+δj,t

D
)j∈𝒟𝒯(i) −∑ (j∈𝒟𝒮𝒯(i) Pj,t

DS+Rj,t
DS))≤Fl ,∀l,t (η

l,t
R−,η

l,t
R+)(3d) 

∑ ui,q
t
q=t-UTi+1 ≤Ii,t,∀i∈𝒢𝒯 ,t∈[UTi,T]             (4a) 

∑ vi,q
t
q=t-DTi+1 ≤1−Ii,t,∀i∈𝒢𝒯,t∈[DTi,T]           (4b) 

ui,t+vi,t≤1,ui,t−vi,t=Ii,t−Ii,t-1,ui,t,vi,t,Ii,t∈{0,1},∀i∈𝒢𝒯,∀t (4c) 

U1 = {δ :
   −ui,t

W ≤ δi,t
W ≤ ui,t

W , ∀i∈𝒲𝒯 ,∀t 

   −ui,t
D ≤ δi,t

D ≤ ui,t
D  , ∀i∈𝒟𝒯 ,∀t 

}          (5) 

where l denotes the line index; Fl is the capacity (MW) of line 

l; GSFl,i is the generation shift factor (GSF) of bus i to line l; 

𝒢𝒯(i), 𝒲𝒯(i), 𝒟𝒯(i), and 𝒟𝒮𝒯(i) denote the set of TGs, WFs, 

LSEs, and DSs connected to bus i; ui,t
W and ui,t

D  are the maximum 

forecast deviation of WF/LSE i respectively. 

For TG i, Ci
G(·), Ci

R(·), Ci
SU, and Ci

SD are the costs of energy, 

reserve, startup, and shutdown, respectively; Pi,min
G  and Pi,max

G  

denote the lower/upper output limits (MW), respectively; ri
RU, 

ri
RD , ri

SU , and ri
SD  denote the maximum ramp-up/down and 

startup/shutdown ramp rate (MW/h), respectively; UTi and DTi 

are minimum up/down time (h), respectively. Ω(u,v,I,δ) is the 

feasible region of (PG,∆PG)  for a given set of (u,v,I,δ). The 

variables in brackets of (2)-(3) are dual variables. 

(1) minimizes the total operation cost, where the outer “min” 

model optimizes UC status, and the inner “max-min” model 

minimizes the cost under the worst-case scenario. (2)-(4) are the 

constraints for dispatch process, redispatch process, and UC 

status, respectively. (2a) and (3a) represent the power balance 

constraints. (2b) and (3b) are the generation limits. (2c) and (3c) 

are the ramping constraints. (2d) and (3d) are the line capacity 

limits. (4a) and (4b) are the minimum up/down time constraints. 

(4c) determines the UC of TGs. (5) is the uncertainty set. 

The RED model is a linear programming (LP) model as 

formulated in (6) by fixing the UC (Ii,t,ui,t,vi,t) and worst-case 

uncertainty realization (δi,t
W

,δi,t
D

) obtained in the RUC model. 

min
PG,∆PG

∑ ∑ (Ci
G(Pi,t

G )+i∈𝒢𝒯t∈T Ci
R(∆Pi,t

G))               (6) 

s.t.  (2)-(3) 

B.  WEM Clearing and Pricing Mechanism 

According to the definition, the LMP at bus i is defined as 

the partial derivative of the Lagrange function obtained in the 

RED model with respect to the forecast value of net load 

considering the energy demand of DSs. 

πi,t
P = ∂ℒ ∂( ∑ Pj,t

D
j∈𝒟𝒯(i)⁄ + ∑ Pj,t

DS
j∈𝒟𝒮𝒯(i) −∑ Pj,t

W
j∈𝒲𝒯(i) )     

=λt
B
−∑ GSFl,i(ηl,t

B+−η
l,t
B−

l +η
l,t
R+−η

l,t
R−)                                    (7) 

The ULMP at bus i is defined as the partial derivative of the 

Lagrange function with respect to the forecast deviation of net 

load considering the reserve demand of DSs. 

πi,t
U= ∂ℒ ∂( ∑ δj,t

D
+ ∑ Rj,t

DS
j∈𝒟𝒮𝒯(i)j∈𝒟𝒯(i) −∑ δj,t

W
j∈𝒲𝒯(i) )⁄   

=λt
R
−∑ GSFl,i(ηl,t

R+−η
l,t
R−)l                                                      (8) 

The redispatch process against uncertainties and DS reserve 

demand is demonstrated in (3), whose dual variables are 

included in (7) and (8). Thus, LMP and ULMP can reflect the 

system uncertainty and DS reserve demand. 



 4 

Based on the definition, LMP and ULMP are employed to 

price energy and uncertainty/reserve, respectively. For a market 

participant i, it is assumed that the active power generation, 

reserve capacity, and uncertainty (forecast deviation) are Pi,t
TS, 

Ri,t
TS, and Ui,t

TS at time t. In the WEM clearing mechanism, the 

revenue of the participant i at bus m and time t is 

REVi,t
TS=πm,t

P Pi,t
TS+πm,t

U Ri,t
TS−πm,t

U Ui,t
TS                     (9) 

The revenue is related to energy, reserve, and uncertainty. 

The uncertainty increases the profit loss of uncertainty sources 

and system operation costs. This WEM clearing and pricing 

mechanism internalizes uncertainties, and can provide effective 

price signals for uncertainty management in WEMs. 

IV.  DAY-AHEAD DEM CLEARING AND PRICING 

This section presents the day-ahead DEM clearing model 

and derives the uncertainty-aware DLMPs. Similar to the WEM 

model, the DEM model also includes two steps. The first step 

develops scheduling schemes considering uncertainties and TS-

DS coordination by a RO model. When the discrete variables of 

capacitor banks (CBs) and on load tap changer (OLTC) as well 

as the worst-case scenario are determined in the first step, an 

LP model is formulated in the second step to derive DLMPs. 

These two steps are analogous to the RUC and RED models in 

the upper level, respectively. In addition, each step also 

includes dispatch and redispatch processes to cope with forecast 

value and forecast deviation (uncertainty) in DSs, respectively. 

A.  Market Participant and Volt/VAR Control Models 

    1)  RDG 

−Pi,t

rdg √1−𝜅2

𝜅
≤Q

i,t

rdg≤Pi,t

rdg √1−𝜅2

𝜅
,∀i∈ℛ𝒟𝒢,∀t        (10a) 

−(Pi,t

rdg
+𝜖i,t

rdg
)

√1−𝜅2

𝜅
≤Q

i,t

rdg≤(Pi,t

rdg
+𝜖i,t

rdg
)

√1−𝜅2

𝜅
,∀i∈ℛ𝒟𝒢,∀t  (10b) 

U2 = {𝝐 :−ui,t

rdg
≤ 𝜖i,t

rdg
≤ ui,t

rdg
 , ∀i∈ℛ𝒟𝒢,∀t}        (10c) 

where Q
i,t

rdg denotes the reactive power of RDG i at time t; 𝜅 is 

the minimum power factor (set to 0.95); ui,t

rdg
 is the uncertainty 

bound in the uncertainty set U2. 

(10a) and (10b) represent the reactive power constraints in 

dispatch and redispatch processes, respectively. (10c) denotes 

the uncertainty set for RDG forecast. 

    2)  MTs 

(Pi,t
mt+∆Pi,t

mt)
2
+(Q

i,t

mt)
2

≤ (Si,max
mt )

2
,∀i∈ℳ𝒯,∀t      (11a) 

−ri
RD≤Pi,t

mt−Pi,t−1
mt ≤ri

RU,∀i∈ℳ𝒯,∀t                (11b) 

−ri
RD≤(Pi,t

mt+∆Pi,t
mt)−(Pi,t−1

mt +∆Pi,t−1
mt )≤ri

RU,∀i∈ℳ𝒯,∀t    (11c) 

where Pi,t
mt, Q

i,t

mt , and ∆Pi,t
mt denote the active/reactive power and 

reserve provided by MT i; Si,max
mt  is the generation capacity. 

(11a) is the generation capacity limit. (11b) and (11c) are the 

ramping limits in the dispatch/redispatch processes respectively. 

    3)  ESSs 

0≤Pi,t
ess,c

≤Pi,max
ess,c

,0≤Pi,t
ess,d

≤Pi,max
ess,d

,∀i∈ℰ𝒮𝒮,∀t        (12a) 

Ei,t=Ei,t-1+η
i
cPi,t

ess,c
−( 1 η

i
d⁄ )Pi,t

ess,d
,∀i∈ℰ𝒮𝒮,∀t       (12b) 

Ei
rSOCi,min≤Ei,t≤Ei

rSOCi,max,∀i∈ℰ𝒮𝒮,∀t          (12c) 

Ei,t=T=Ei,t=0,∀i∈ℰ𝒮𝒮,∀t                     (12d) 

(Pi,t
ess,c

−Pi,t
ess,d

)
2
+(Q

i,t

ess)
2
≤(Si,max

ess )
2
,∀i∈ℰ𝒮𝒮,∀t     (12e) 

where Pi,t
ess,c

, Pi,t
ess,d

, and Q
i,t

ess denote the charge/discharge active 

power and reactive power; η
i
c and η

i
d are the charge/discharge 

efficiency; SOCi,min and SOCi,max are the lower/upper limits of 

state of charge (SOC); Ei,t, Ei
r and Si,max

ess  are remaining energy, 

rated energy capacity, and inverter capacity, respectively. 

(12a) are the charge and discharge power constraints. (12b) 

reveals the relationship of remaining energy between adjacent 

periods. (12c) denotes the SOC limits. (12d) indicates that the 

stored energy at the beginning is equal to that at the end of a 

day. (12e) is the inverter capacity limit. 

    4)  Volt/VAR Control 

The Volt/VAR control is implemented by adjusting CBs, 

OLTC, and static VAR compensators (SVCs), which should 

meet the following constraints. 

Q
i,min

svc ≤Q
i,t

svc≤Q
i,max

svc ,∀i∈𝒮𝒱𝒞,∀t              (13) 

Q
i,t

cb=Ni,t
cbQ

i,step

cb , Ni,t
cb≤Ni,max

cb ,∀i∈𝒞ℬ,∀t         (14a) 

|Q
i,t

cb
−Q

i,t−1

cb | ≥Q
i,t

cb
−Q

i,t−1

cb
, |Q

i,t

cb
−Q

i,t−1

cb | ≥Q
i,t−1

cb
−Q

i,t

cb
,∀i∈𝒞ℬ,∀t (14b) 

|Q
i,t

cb−Q
i,t−1

cb | ≤𝜙i,tNi,max
cb Q

i,step

cb , ∑ 𝜙i,t≤t∈T Ncap,∀i∈𝒞ℬ,∀t  (14c) 

V1,t
2 = ∑ (Vmin+𝛼 ⋅ k)

2K
k=0 ok,t, ∑ ok,t = 1,∀tK

k=0         (15a) 

mk,t≥ok,t−ok,t−1,mk,t≥ok,t−1−ok,t,𝜓t =
1

2
∑ mk,t,∀k,∀tK

k=0    (15b) 

∑ 𝜓t≤t∈T Ntp                              (15c) 

where Q
i,t

svc  and Q
i,t

cb  denote the reactive power of SVC/CB i, 

respectively; Q
i,min

svc  and Q
i,max

svc  are the lower/upper capacity 

limits of SVC i; Ni,max
cb  is the unit number in CB i; Q

i,step

cb  is the 

capacity of each unit in CB i. For the OLTC, V1,t is the voltage 

at the root node; k is the tap position; 𝛼 is the voltage change 

per step; K is the total steps; mk,t is a binary variable indicating 

the action of the kth tap position, mk,t = 1 if the kth tap position 

changes, 0 otherwise. Ncap  and Ntp  are the maximum action 

number of a CB and OLTC, respectively. 

(13) denotes the reactive power limit of SVCs. (14a) is the 

reactive power and the upper limit of CBs. (14b)-(14c) denote 

the linear constraints of action number for CBs. (15a) denotes 

the voltage model of OLTC. (15b) and (15c) represent the linear 

constraints of action number for the OLTC. 

B.  Day-Ahead Robust Scheduling for Each DS 

The day-ahead robust scheduling model for a DS at bus m in 

TS can be formulated as follows. 

min
Ni
cb
,ok

∑ (t∈T ∑ ci
c𝜙i,t+co𝜓t)i∈𝒞ℬ   

+ max
𝝐∈U2

  min
((P,Q,R)m

DS,(P,Q)
i

g
,∆Pi

mt)∈Ω(Ni
cb
,ok,𝝐)

∑ (πm,t
P Pm,t

DS+πm,t
Q

Q
m,t

DS
t∈T   

+πm,t
U Rm,t

DS+ ∑ (c
i

p
Pi,t

g
+ci

q
Q̂

i,t

g
)i∈𝒟ℰℛ + ∑ ci

r∆Pi,t
mt

i∈ℳ𝒯 )             (16) 

𝒟ℰℛ={ℛ𝒟𝒢,ℳ𝒯,ℰ𝒮𝒮} 

s.t.                                       (10)-(15) 

ui,t
b = (Vi,t

b )
2
,wij,t

b = (Iij,t
b )

2
,∀i∈𝒩,∀(i,j)∈ℒ,∀t                          (17a) 

∑ (Pki,t

f,b
−k∈pr(i) rkiwki,t

b ) − ∑ Pij,t

f,b
= Pi,t

d
j∈cr(i) − Pi,t

g
,∀t                 (17b) 

∑ (Q
ki,t

f,b −k∈pr(i) xkiwki,t
b ) − ∑ Q

ij,t

f,b
j∈cr(i)                                                   

= Q
i,t

d − Q
i,t

g − Q
i,t

svc − Q
i,t

cb
,∀t (17c) 

ui,t
b − 2(rijPij,t

f,b
+xijQij,t

f,b
)+(rij

2+xij
2)wij,t

b = uj,t
b ,j∈cr(i),∀i∈𝒩,t      (17d) 

Vi,min
2 ≤ ui,t

b ≤ Vi,max
2 ,∀i∈𝒩,∀t                                                  (17e) 
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0 ≤ wij,t
b ≤ Iij,max

2 ,∀(i,j)∈ℒ,∀t                                                  (17f) 

(Pij,t

f,b
)
2
+(Q

ij,t

f,b
)
2

≤ (Sij,max
f

)
2
,∀(i,j)∈ℒ,∀t                                   (17g) 

‖[2Pij,t

f,b
2Q

ij,t

f,b
wij,t

b − ui,t
b ]

T

‖
2

≤ wij,t
b +ui,t

b ,∀(i,j)∈ℒ,∀t         (17h) 

ui,t
r = (Vi,t

 r )
2
,wij,t

r = (Iij,t
 r )

2
,∀i∈𝒩,∀(i,j)∈ℒ,∀t                          (18a) 

∑ (Pki,t

f,r
−k∈pr(i) rkiwki,t

r ) − ∑ Pij,t

f,r
j∈cr(i)                                                    

= Pi,t
d − Pi,t

g
−𝜖i,t

rdg
− ∆Pi,t

mt
,∀t   (18b) 

∑ (Q
ki,t

f,r −k∈pr(i) xkiwki,t
r ) − ∑ Q

ij,t

f,r
j∈cr(i)                                                   

= Q
i,t

d − Q
i,t

g − Q
i,t

svc − Q
i,t

cb
,∀t (18c) 

ui,t
r − 2(rijPij,t

f,r
+xijQij,t

f,r
)+(rij

2+xij
2)wij,t

r = uj,t
r ,j∈cr(i),∀i∈𝒩,t      (18d) 

Vi,min
2 ≤ ui,t

r ≤ Vi,max
2 ,∀i∈𝒩,∀t                                                  (18e) 

0 ≤ wij,t
r ≤ Iij,max

2 ,∀(i,j)∈ℒ,∀t                                                  (18f) 

(Pij,t

f,r
)
2
+(Q

ij,t

f,r
)
2

≤ (Sij,max
f

)
2
,∀(i,j)∈ℒ,∀t                                   (18g) 

‖[2Pij,t

f,r
2Q

ij,t

f,r
wij,t

r − ui,t
r ]

T

‖
2

≤ wij,t
r +ui,t

r ,∀(i,j)∈ℒ,∀t         (18h) 

Q̂
i,t

g
≥Q

i,t

g
,Q̂

i,t

g
≥−Q

i,t

g
,∀i∈𝒩,∀t                                                    (19) 

where ci
c and co denote the action cost of CBs and OLTCs per 

time respectively; πm,t
Q

 denotes the reactive power LMP at bus 

m in TS; ci

p
 and ci

q
 are active/reactive power bid prices of DERs; 

Q̂
i,t

g
 is the absolute value of Q

i,t

g ; ci
r and ∆Pi,t

mt are the reserve bid 

price and reserve capacity provided by MT i; rij and xij are the 

resistance and reactance of line ij ; Vi,min  and Vi,max  are the 

minimum/maximum nodal voltage limits; Iij,max is the current 

limit of line ij; Sij,max is the capacity of line ij; Vi,t is the voltage 

of node i; Iij,t  is the current of line ij; ui,t  and wij,t  denote the 

square values of Vi,t  and Iij,t  respectively; Pij,t

f
 and Q

ij,t

f  are 

active/reactive power flow on line ij; the superscripts “b” and 

“r” correspond to dispatch/redispatch processes respectively. 

(16) minimizes the total costs of regulating CBs and OLTC, 

purchasing active/reactive energy and reserve from the WEM, 

and scheduling the active/reactive power of DERs and reserve 

of MTs, respectively. The outer “min” model calculates the 

discrete variables, while the inner “max-min” model determines 

the continuous variables and worst-case uncertainty realization. 

(17) and (18) are constraints for dispatch and redispatch 

processes, respectively. (17b)-(17c) and (18b)-(18c) are nodal 

active/reactive power balance constraints. (17d) and (18d) are 

nodal voltage equations. (17e)-(17f) and (18e)-(18f) indicate 

voltage and current limits. (17g) and (18g) are line power flow 

limits. (17h) and (18h) is a second-order-cone form for the 

relationship between line power flow, current and voltage. (19) 

linearizes the reactive power of DERs. 

C.  DEM Clearing and Pricing Mechanism 

After solving the scheduling model (10)-(19), the worst-case 

uncertainty realization and discrete variables can be determined 

and will be fixed to establish an LP model for DEM pricing 

based on the following linearized power flow model. 

    1)  Polygonal Inner-Approximation Method 

A polygonal inner-approximation method is utilized to 

linearize the quadratic capacity constraints (11a), (12e), (17g), 

and (18g), which can be formulated as follows [17]: 

αc,0P+αc,1Q+αc,2S≤0,∀c∈{1,2,…,12}          (20) 

where αc,0, αc,1, and αc,2 are the linearized coefficients. 

    2)  Branch Flow and Voltage Sensitivity Factors 

Branch flow and voltage can be expressed as [1]: 

P f = LSF⋅Pinj,Q
 f = LSF⋅Q

inj
                 (21) 

∆V = RP f+XQ f = R⋅LSF⋅Pinj+X⋅LSF⋅Q
inj

     (22) 

where Pinj and Q
inj

 are nodal active/reactive power injections; 

∆V is the voltage change relative to the root node; R and X are 

the resistance/reactance matrix between any two nodes on the 

path; LSF is the load shift factor indicating the ratio of line 

loading change with respect to the injected nodal load. 

The sensitivity factors (SFs) are derived from (21) and (22). 

SFvp =
∂∆V

∂Pinj
= R⋅LSF, SFvq =

∂∆V

∂Qinj

= X⋅LSF       (23) 

SFlp =
∂P f

∂Pinj
= LSF, SFlq =

∂Q f

∂Qinj

= LSF           (24) 

where SFvp and SFvq are the SFs of nodal voltage change with 

respect to nodal active/reactive power injections; SFlp and SFlq 

are the SFs of line flows with respect to nodal active/reactive 

power injections. 

    3)  Delivery Factor and Fictitious Nodal Demand 

To account for the network loss in DSs, the delivery factor 

(DF) and fictitious nodal demand (FND) are utilized in the 

linearized power flow model. DF is a ratio representing the part 

of injected power that can be actually transmitted in the network 

considering the losses. Based on the DS scheduling results, the 

DF for active/reactive power at node i can be expressed as [1]: 

DFi,t
p

= 1−∑ 2Pl,t

 f ∗
l∈ℒ rl ∑ SFlp,l−ii∈𝒩               (25) 

DFi,t
q

= 1−∑ 2Q
l,t

 f ∗
l∈ℒ xl ∑ SFlq,l−ii∈𝒩              (26) 

where Pl,t

 f ∗
 and Q

l,t

 f ∗ are the active/reactive power flow of line l 

in the DS scheduling results. Note that all the variables with * 

represent the fixed values obtained in the DS scheduling model. 

FND is a virtual nodal demand to stand for network losses 

which assigns the power loss of a line to its nodes at both sides 

equally. The FND for active power and reactive power can be 

expressed as: 

Fi,t
p

=
1

2
∑ rijj∈𝒩(i) (P

ij,t

 f ∗
)
2
, Fi,t

q
=

1

2
∑ xijj∈𝒩(i) (Q

ij,t

 f ∗
)
2
  (27) 

    4)  DEM Clearing and Pricing Mechanism 

The LP model for DEM pricing can be formulated as: 

min C(x∗,𝝐∗,y)                               (28) 

∑ DFi,t
p,b

i Pi,t

g
−∑ DFi,t

p,b
i Pi,t

d −Ploss
b∗ = 0,∀i∈𝒩,t            (λp,t

b
)  (29a) 

∑ DFi,t
q,b

i Q
i,t

g −∑ DFi,t
q,b

i Q
i,t

d −Q
loss

b∗ = 0,∀i∈𝒩,t           (λq,t
b

)  (29b) 

Pi,min

g
≤Pi,t

g
≤Pi,max

g
,∀i∈𝒩,t                                (β

p,i,t

b−
,β

p,i,t

b+
)  (29c) 

Q
i,min

g ≤Q
i,t

g ≤Q
i,max

g ,∀i∈𝒩,t                              (β
q,i,t

b−
,β

q,i,t

b+
)  (29d) 

Vmin≤V1,t−∑ SFvp,i−j,tj (Pj,t
d −Pi,t

g
+Fi,t

p,b
)                                           

−∑ SFvq,i−j,tj (Q
j,t

d −Q
i,t

g +Fi,t
q,b

)≤Vmax,∀t    (μ
i,t
b−,μ

i,t
b+)  (29e) 

αc,0 ∑ SFlp,l−i,ti (Pj,t
d −Pi,t

g
+Fi,t

p
)+αc,1 ∑ SFlq,l−i,ti (Q

j,t

d −Q
i,t

g +Fi,t
q

)        

+αc,2Sl,max

f
≤0,∀i∈𝒩,l∈ℒ,t,c     (η

l,c,t
b )  (29f) 

∑ DFi,t
p,r

i (∆P
i,t

g
+𝜖i,t

rdg
)−(Ploss

r∗ −Ploss
b∗ ) = 0,∀i∈𝒩,t         (λp,t

r
)  (30a) 

Pi,min

g
≤Pi,t

g
+∆Pi,t

g
≤Pi,max

g
,∀i∈𝒩,t                      (β

p,i,t

r−
,β

p,i,t

r+
)  (30b) 

Vmin≤V1,t−∑ SFvp,i−j,tj (Pi,t
d −(P

i,t

g
+∆Pi,t

g
)−𝜖i,t

rdg
+Fi,t

p,r
)                      

−∑ SFvq,i−j,tj (Q
j,t

d −Q
i,t

g +Fi,t
q,r

)≤Vmax,∀t    (μ
i,t
r−,μ

i,t
r+)  (30c) 
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αc,0 ∑ SFlp,l−i,ti (Pi,t
d −(P

i,t

g
+∆Pi,t

g
)−𝜖i,t

rdg
+Fi,t

p,r
)+αc,1 ∑ SFlq,l−i,ti (Q

j,t

d    

−Q
i,t

g +Fi,t
q,r

)+αc,2Sl,max

f
≤0,∀i∈𝒩,l∈ℒ,t,c     (η

l,c,t
r )  (30d) 

where C(x∗,𝝐∗,y) corresponds to the objetive function (16), x, y, 

and 𝝐 denote the discrete variables, continuous variables, and 

uncertainty set, respectively; Ploss
∗  and Q

loss

∗  are the total 

active/reactive power losses; the superscripts “b” and “r” 

correspond to the dispatch/redispatch processes respectively; 

the variables in brackets are dual variables. 

(28) is the objective function. (29) and (30) are constraints 

for dispatch/redispatch processes, respectively. (29a), (29b), 

and (30a) are power balance constraints. (29c), (29d), and (30b) 

denote the generation limits. (29e) and (30c) represent voltage 

limits. (29f) and (30d) denote the linear capacity constraints. 

The Lagrange function of the LP model can be obtained 

easily. Similar to the WEM pricing, the DLMPP/DLMPQ at 

node i are defined as the partial derivative of the Lagrange 

function with respect to the forecasted active/reactive load. The 

DLMPU is defined as the partial derivative of the Lagrange 

function with respect to the forecast deviation of net load at that 

node. The DLMPP, DLMPQ, and DLMPU are derived as follows. 

𝜒i,t

p
= ∂ℒ ∂Pi,t

d⁄ =λp,t
b
+∑ SFvp,i−j,tj (μ

i,t
b−−μ

i,t
b++μ

i,t
r−−μ

i,t
r+)  

+∑ ∑ αc,0SFlp,l−i,t(cl η
l,c,t
b +η

l,c,t
r )+λp,t

b
(DF

i,t

p,b
−1)                   (31) 

𝜒i,t

q
= ∂ℒ ∂Q

i,t

d⁄ =λq,t
b
+∑ SFvq,i−j,tj (μ

i,t
b−−μ

i,t
b++μ

i,t
r−−μ

i,t
r+)  

+∑ ∑ αc,1SFlq,l−i,tcl (η
l,c,t
b +η

l,c,t
r )+λq,t

b
(DF

i,t

q,b
−1)                   (32) 

𝜒i,t
u = ∂ℒ ∂(−𝜖i,t

rdg⁄ )=λp,t
r
+∑ SFvp,i−j,tj (μ

i,t
r−−μ

i,t
r+)  

+∑ ∑ αc,0SFlp,l−i,tηl,c,t
r

cl +λp,t
r

(DFi,t
p,r
−1)                              (33) 

Each DLMP contains energy, voltage, congestion, and loss 

components, which is consistent with the traditional DLMP 

method to ensure the practicability. In addition, each DLMP 

includes μ
i,t
r+/μ

i,t
r− and η

l,c,t
r , which are the dual variables related to 

voltage and congestion in redispatch process (30) to deal with 

uncertainties. Thus, this DEM pricing mechanism internalize 

uncertainties to extend the application scope of traditional 

DLMP method to uncertainty management in DSs. 

It can be found from (31)-(33) that different nodes in a DS 

have the same energy component for any of the three DLMPs. 

The diversity of each DLMP in a DS depends on the difference 

in voltage, congestion, and loss components for different nodes. 

According to the definition, DLMPP/DLMPQ/DLMPU are used 

to price active energy, reactive energy and uncertainty/reserve, 

respectively. The active/reactive power generation, reserve, and 

uncertainty (forecast deviation) of a participant i at node m and 

time t in DEM are assumed as Pi,t
ds , Q

i,t

ds , Ri,t
ds , and Ui,t

ds , 

respectively. Its cleared revenue can be expressed as 

revi,t
ds=𝜒m,t

p
Pi,t

ds+𝜒m,t
q

Q
i,t

ds+𝜒m,t
u Ri,t

ds−𝜒m,t
u Ui,t

ds             (34) 

The revenue of a participant can be decomposed into terms 

not only for active/reactive power, reserve, and uncertainty, but 

also for energy, voltage, congestion, and loss. This DEM 

clearing and pricing mechanism accounts for the system 

uncertainties and provides different feasible decomposition 

ideas for the revenues of participants, which can guide the DS 

management clearly and efficiently. 

V.  SOLUTION METHODOLOGY 

Each level of the bi-level model include two steps, where the 

first step conducts scheduling based on RO methods, and the 

second step is an LP model for market pricing. The RO model 

in the form of “min-max-min” solves the optimization problem 

in the worst-case scenario. The first “min” model determines 

the discrete variables. The following “max-min” model 

determines the continuous variables and worst-case uncertainty 

realization. The RO model can be solved effectively by the 

column-and-constraint generation (CCG) algorithm [18]. 

The information interaction and coordination optimization 

between TS and DSs for the bi-level model is realized by the 

HGD algorithm, which is demonstrated as follows. 

A.  HGD Algorithm 

The HGD algorithm presented in [13] decomposes the bi-

level model into TS subproblem for TSO and DS subproblems 

for each DSO, which can be formulated as follows respectively: 

min
xTS

cTS(xTS)                              (35a) 

s.t.                         ATSxTS+ATBxDB=aTS                       (35b) 

BTSxTS+BTBxDB≥bTS                       (35c) 

ETSxTS≥eTS                            (35d) 

min
xDS,xDB

cDS(xDS) +ξTB
T
xDB                    (36a) 

s.t.                        ADSxDS+ADBxDB=aDS                    (36b) 

BDSxDS+BDBxDB≥bDS                    (36c) 

EDSxDS≥eDS,EDBxDB≥eDB                 (36d) 

where xTS and xDS are decision variables in the TS subproblem 

and DS subproblem respectively, xDB is the boundary demands 

of DSs; A, B, and E are the coefficient matrices of operation 

constraints; a , b , and e  are constant column vectors; the 

subscripts TS, TB, DB, and DS of A, B, E, and e indicate that 

the matrix/vector corresponds to xTS, xDB in TS level, xDB and 

xDS in DS level, respectively; the subscripts TS and DS of a and 

b represent that the column vectors are in TS and DS levels, 

respectively; ξTB=−ATB
T λaT

−BTB
T ωbT

, λaT
 and ωbT

 are the dual 

variables of constraints in (35), ξTB is verified as LMP in [13]. 

The RUC model (1)-(5) and the RO scheduling model (10)-

(19) can be transformed to the TS subproblem (35) and DS 

subproblem (36), respectively. As stated in [13], ξTB stands for 

the boundary LMP/ULMP calculated by TSO, and xDB is the 

energy/reserve demands of DSs in this paper. ξTB and xDB are 

exchanged at the PSP, and the bi-level model can be solved 

iteratively by the HGD algorithm. The convergence criterion is  

max|ξTB,k−ξTB,k−1|≤ε                          (37) 

where k is the iteration number; ε is the convergence tolerance. 

However, the convergence of the bi-level optimization is a 

challenge. When the boundary prices in TS increase, the DS 

demands may decrease accordingly to reduce costs. In this 

condition, the boundary prices would fall back. That is, the 

boundary prices oscillate (rise-fall-rise) over the iterations and 

the DS demands will decrease-increase-decrease accordingly. 

This solution oscillation issue eventually leads to the 

divergence, which has been revealed in [13]. 

B.  LMP/ULMP-Sensitivity-Based HGD Algorithm 

To ensure the convergence, an LMP/ULMP sensitivity-

based HGD algorithm is proposed in this paper. It is a natural 

idea that, if the boundary LMP/ULMP (ξTB) is evaluated by 
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DSOs before DS scheduling in each iteration, the DS demands 

calculated in DS subproblems will not increase/decrease in the 

way to cause divergence. Inspired by [19], ξTB can be evaluated 

by the sensitivity Sξ−xDB
 of ξTB to xDB, which is expressed as: 

ξ̃TB,k+1=ξTB,k+Sξ−xDB,k(xDB,k−xDB,k−1)               (38) 

where ξTB,k is calculated by TSO; ξ̃TB,k+1 is the estimated value. 

A probing mechanism is utilized to calculate the sensitivity 

which is a response function of the previous boundary prices in 

TS and the DS demands. Each DSO records previous boundary 

data, and estimate Sξ−xDB,k  after the third iteration in a 

distributed manner with light communication/computational 

cost, which is formulated as: 

Sξ−xDB,k= ( ∑ ( (ξ
TB,i+1

−ξ
TB,i

) (xDB,i−xDB,i−1)⁄ )k−1
i=2 ) (k-2)⁄ ,k≥3  (39) 

In (36a), replace ξTB with ξ̃TB,k and multiply the coefficient 

of the last term in the expansion formulas by 0.5. Then the 

objective function for each DS subproblem is reformulated as:  

min
xDS,xDB

cDS(xDS)+(ξ
TB,k

−Sξ−xDB,kxDB,k−1)
T
xDB+

1

2
xDB

T Sξ−xDB,kxDB (40) 

The coefficient 0.5 of the last term in (40) guarantees the 

solution optimality [19]. The calculation flowchart of the bi-

level model is shown in Fig. 2. 
Start

Initialize the boundary LMPs/ULMPs ξTB,k , k=1

DS1: Solve the 

scheduling 

model (10)-(19)

DS n: Solve the 

scheduling 

model (10)-(19)

DS 2: 

Solve 

(10)-(19)

 

ξTB,k ξTB,k ξTB,k 

Solve scheduling models in parallel

TS: Solve the RUC model (1)-(5)

xDB,k xDB,k xDB,k

TS: Solve the RED model (2)-(3), and (6) to 

derive LMPs/ULMPs ξTB,k+1

Converge (37) ?
Next iteration, 

k=k+1

No

End

Yes

WEM

DEM

 
Fig.2.  The calculation flowchart of the bi-level model. 

VI.  CASE STUDIES 

The effectiveness of the proposed DEM clearing and pricing 

mechanism is verified by the T5D33 and T118D69 systems in 

this section. All simulations are performed in MATLAB 2020a 

with YALMIP interface and MOSEK 9.2 on a computer with 

Intel(R) Core (TM) i7-10700F CPU and 16 GB RAM. 

A.  Simulation Settings 

The T5D33 system is comprised of a modified PJM 5-bus 

TS depicted in Fig. 3 and 100 identical IEEE 33-node DSs, in 

which one half are at bus C and the other half are at bus D in 

the TS. Fig. 3 shows the capacity and bid prices of TGs. The 

other parameters are given in [20]. The ratio of the forecasted 

base load of LSEs at buses B, C, and D is 3:3:4. The maximum 

forecast deviation of the LSEs at buses B, C, and D is 10%, 5%, 

and 0% to their forecasts. A 200MW WF is located at bus E. 

For the IEEE 33-node DS, the parameter configuration of 

load demands, line, SVCs, CBs, and OLTC are given in [1]. 

Each DS includes eight PVs with capacity of {0.6, 0.6, 0.5, 0.6, 

0.5, 0.8, 0.6, 0.8} MW at nodes {4, 7, 11, 15, 18, 25, 28, 32}, 

two WTs with capacity of {0.2, 0.2} MW at nodes {13, 20}, 

two MTs with capacity of {0.8, 0.8} MW and ramp up/down 

rate limit of {0.4, 0.4} MW/h at nodes {17, 32}, two 3MW×2h 

ESSs at nodes {3, 29}. The voltage magnitude of the root node 

is set to 1.0 p.u.. The voltage limits are [0.95, 1.05] p.u.. 
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Fig.3.  The modified PJM 5-bus system. 

The WF in TS and the PVs/WTs in DSs follow the forecast 

profiles considering uncertainty in [21]. The MTs and ESSs bid 

at 15 $/MWh and 20 $/MWh for active power and 3 $/MVArh 

and 4 $/MVArh for reactive power, respectively. The TGs in 

TS and MTs in DSs provide reserve capacity at half of their 

active power bid prices [22]. The reactive power price in WEM 

is set to 10% LMP [1]. The LMPs for active and reactive power 

in WEM are denoted as LMPP and LMPQ, respectively. The 

action costs of CBs and OLTCs are 0.24 $/time and 1.40 $/time, 

respectively [23]. The optimality gaps for each level of the bi-

level model is set to 1%, as well as the HGD algorithm. 

In order to verify the effectiveness of the proposed method, 

several cases are designed for comparison. Case 1 applies the 

above parameters settings and is regarded as a benchmark case. 

The parameter settings of other cases are as follows. 

Case 2: There is no uncertainty of RDG in DSs. 

Case 3: The maximum forecast deviation of RDG in DSs is 

set to twice that in Case 1. 

Case 4: The DEM and WEM conduct clearing and pricing 

separately [1]. In the WEM, the boundary DS injection is 

regarded as a constant. The initial energy demand of a DS is 

equal to the load demand minus the forecasted power of RDG, 

regardless of the output of MTs and ESSs. The initial reserve 

demand of a DS is equal to the sum of worst-case forecast 

deviation of RDG, ignoring the reserve provision of MTs. 

Based on this boundary information, the TSO clears the WEM 

and sends the boundary LMP/ULMP to DSs. Accordingly, each 

DSO conducts self-scheduling and DEM pricing. 

The other parameters in Cases 2-4 are the same with Case 1. 

Section VI-B/C illustrates the DEM/WEM clearing and pricing 

in Case 1. Section VI-D performs the sensitivity analysis on 

uncertainty by comparing Cases 1-3. Sections VI-E reveals the 

necessity of TS-DS coordination by comparing Cases 1 with 4. 

B.  WEM Clearing and Pricing 

The LMP/ULMP is shown in Fig. 4. Network congestion 

leads to different prices at different buses in hours 1-2, 7-8, and 

17-24. The prices at bus D are the highest, followed by bus C. 

The active energy and reserve demands of each DS at buses 

C and D are shown in Fig. 5. The “initial” curve denotes the net 

load of load demand, PVs, and WTs except GTs and ESSs. Fig. 

5 (a) indicates that the active energy demand decreases under 
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high LMP and vice versa to reduce costs, which is achieved by 

dispatching MTs and ESSs. Fig. 5 (b) reveals that the reserve 

demands of DSs decrease with the reserve provision from MTs. 
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Fig.5.  (a) Active energy and (b) reserve demands of each DS. 

Table I shows the purchased energy/reserve of each DS from 

WEM and the charge/discharge energy of ESSs. Table II lists 

the operation costs of each DS. It can be seen that although bus 

D has a higher LMP than bus C, the DS at bus D purchases more 

active energy from WEM. The main reason is that the LMPP at 

bus D has a more significant price spread. Thus, the ESSs in the 

DS at bus D charge/discharge more active energy to reduce DS 

cost and gain more arbitrage. The loss in ESS charge/discharge 

process leads to a greater active energy demand from WEM to 

fill this gap. Because the LMPQ is lower at bus C and higher at 

bus D, the DSO at bus C purchases reactive energy and the DSO 

at bus D sells residual reactive energy from/to WEM. In terms 

of the reserve of DSs purchased from WEM, it is larger at bus 

C due to the lower ULMP. Due to the price differences in WEM, 

the DSO at bus D pays more costs on active energy and reserve, 

and can make a profit from WEM by selling reactive energy. 
TABLE I 

PURCHASE OF DSS FROM WEM AND CHARGE/DISCHARGE ENERGY OF ESSS 

Each DS 

Active 

energy 

(MWh)  

Reactive 

energy 

(MVarh) 

Reserve 

(MW) 

Charge 

energy 

(MWh) 

Discharge 

energy 

(MWh) 

@ Bus C 12.02 6.37 8.05 3.49 2.82 

@ Bus D 13.01 -20.42 7.95 7.41 6.01 

TABLE II 

OPERATION COSTS OF EACH DS AT BUSES C AND D ($) 

Each DS Active Power  Reactive Power Reserve Total 

@ Bus C 816.69 28.17 121.69 966.55 

@ Bus D 925.50 -1.61 135.02 1058.91 

C.  DEM Clearing and Pricing 

DLMPs in each DS are shown in Fig. 6-Fig. 8. It can be seen 

that DLMP profiles are closely related to the boundary prices 

which has been shown in Fig. 4. The DLMPs in the DSs at buses 

C and D are different due to the different location in TS. 

Different nodes in a DS have the same energy component of 

DLMPs. From the DS perspective, TS is a virtual source whose 

marginal cost is LMP/ULMP. When DSs trade with TS and the 

traded energy/reserve is not congested by substations, TS can 

be regarded as the marginal unit in DSs. Thus, the boundary 

LMP/ULMP is equal to the energy component of corresponding 

DLMPs, which is the case in most hours in Case 1. However, 

in hours 1-3, 5-6, and 9-10, all DSs trade no reserve with TS. 

Their reserve demand is supplied by MTs, which determine the 

energy component of DLMPU. In this situation, the boundary 

ULMP is not equal to the energy component of DLMPU, which 

is shown in Table III by taking a DS at bus D as an example. 
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Fig.6.  DLMPP in each DS at (a) bus C and (b) bus D. 
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Fig.7.  DLMPQ in each DS at (a) bus C and (b) bus D. 
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Fig.8.  DLMPU in each DS at (a) bus C and (b) bus D. 

TABLE III 
ENERGY COMPONENT (E.COM.) OF DLMPU

 AND BOUNDARY ULMP ($/MWh) 

Hour 1 2 3 5 6 9 10 

E.Com. 23.81 23.91 9.26 8.51 9.52 9.20 9.54 

ULMP 26.11 26.11 12.00 12.00 12.00 12.00 12.00 

The diversity of DLMPP/DLMPQ/DLMPU in a DS depends 

on the difference in voltage, congestion, and loss components 

for different nodes, which provide price signals for managing 

voltage, congestion, and loss considering uncertainties. Taking 

node 18 in a DS at bus D as an example, the voltage/loss 

components in DLMPs and nodal voltage in certain hours are 

shown in Table IV. “V.” denotes the voltage, “Ba.” and “Re.” 

denote dispatch/redispatch process in DS scheduling. The 

congestion component in DLMPs is zero in these hours. 
TABLE IV 

VOLTAGE/LOSS COMPONENTS IN DLMPS AND NODAL VOLTAGE AT NODE 18 

Hour 
DLMPP  DLMPQ  DLMPU  Voltage 

V.Ba. V.Re. Loss  V.Ba. V.Re. Loss  V.Re. Loss  Ba. Re. 

1 -0.33 -3.55 2.02  -0.29 -2.93 0.12  -3.55 1.20  1.05 1.05 

4 0 0 -0.40  0 0 0.03  0 -0.18  0.98 0.99 
13 -1.20 0 1.07  -1.00 0 -0.01  0 0.16  1.05 1.03 

14 0 -1.20 1.02  0 -1.00 0  -1.20 0.65  1.03 1.05 

It can be seen that overvoltage in dispatch/redispatch process 
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leads the related voltage component to be nonzero. For instance, 

the voltage reaches the upper limit caused by the uncertainty of 

RDG in redispatch process in hour 14. Accordingly, the voltage 

components in redispatch process (V.Re.) are negative, which 

indicates that increasing nodal load injection at node 18 can 

reduce the DS cost on voltage and therefore alleviate voltage 

issue. In this way, the voltage component in DLMPs motivates 

market participants to increase/decrease output to implement 

voltage management while considering uncertainties. Similarly, 

the congestion component also reflects dispatch/redispatch 

processes, which can provide price signals for congestion 

management considering uncertainties. For the loss component 

in Table IV, the positive values indicate that decreasing the 

nodal load injection/uncertainty at node 18 can reduce the DS 

cost on loss and therefore reduce losses, and vice versa. 

The above analysis reveals that uncertainty is internalized in 

DLMPs and their decomposition, which can provide effective 

price signals to DSO for managing voltage, congestion, and loss 

as well as the uncertainty. 

D.  Sensitivity Analysis of Uncertainty Level in DSs 

Table V shows the DEM results for each DS at bus D in TS, 

and Tables VI presents the WEM results, in Cases 1-3. It can be 

seen that high uncertainty in DSs increases not only the price 

directly related to uncertainty in DEM, i.e., DLMPU, but also 

DLMPP/DLMPQ and LMP/ULMP in both markets. The reason 

is that the uncertainty in DSs affects the overall reserve demand 

in TS, resulting in the change of ULMP. The coupling between 

uncertainty/reserve with active/reactive power and the TS-DS 

interaction lead to the change of LMP/DLMPP/DLMPQ. On the 

other hand, high uncertainty of RDG reduces their profit, and 

increases the profits of MTs and ESSs. Furthermore, high 

uncertainty and the increased reserve demand of DSs increase 

the reserve cost and total operation cost in both TS and DSs. 
TABLE V 

DEM CLEARING AND PRICING RESULTS OF EACH DS AT BUS D IN TS 

Case Case 1 Case 2 Case 3 

Average 

Price 

DLMPP ($/MWh) 30.77 30.33 37.50 

DLMPQ ($/MVArh) 2.94 2.89 3.57 
DLMPU ($/MWh) 17.16 0.00 22.05 

Revenue of 
PVs ($) 

Active Power 380.44 356.95 685.81 

Reactive Power 2.17 3.49 1.33 
Reserve  -97.61 0.00 -457.41 

Profit 284.99 360.45 229.74 

Revenue of 

WTs ($) 

Active Power 228.26 224.54 277.07 
Reactive Power 4.22 6.92 1.62 

Reserve  -51.56 0.00 -131.05 

Profit 180.91 231.46 147.64 

Revenue of 

MTs ($) 

Active Power 1028.64 1042.85 1187.07 

Reactive Power 0.00 0.00 0.00 

Reserve  59.39 0.00 226.75 

Profit 675.62 658.87 937.43 

Revenue of 
ESSs ($) 

Active Power 194.19  178.55  177.83  

Reactive Power 161.02  151.65  161.70  

Profit 111.34  106.94  115.62  

Purchase 

from WEM 

Active Power (MWh) 13.01 11.73  16.03  
Reactive Power (MVArh) -20.42 -19.48  -14.76  

Reserve (MW) 7.95 0.00  12.46  

Operation 

Cost of the 
DS ($) 

Active Power 925.50 923.78 981.50 
Reactive Power -1.61 -9.98 3.27 

Reserve  135.02 0.00 393.03 

Total 1058.91 913.80 1377.79 

The above results illustrate that the uncertainty in DSs affect 

not only DEM clearing and pricing, but also WEM clearing and 

pricing. High uncertainty of RDG reduces their profit, increases 

the operation cost and electricity prices in both TS and DSs. The 

proposed DLMP mechanism can stimulate uncertainty sources 

to improve forecast accuracy and provide effective price signals 

to incentivize the uncertainty management in DSs. 
TABLE VI 

WEM CLEARING AND PRICING RESULTS 

             Case Case 1 Case 2 Case 3 

Average Price 

($/MWh) 

LMP 21.71 21.42 25.03 

ULMP 12.75 11.48 15.26 

Operation Cost of 

the TS ($) 

Energy 206311.91 207058.77 207883.14 

Reserve 26891.83 16913.12 42423.13 
Total 233203.74 223971.88 250306.27 

E.  Necessity Analysis of WEM-DEM Coordination 

Fig. 5 also shows the initial/actual demand before/after self-

scheduling for each DS. The large mismatch between the initial 

and actual demands indicates the power imbalance at the PSP, 

which argues that the separate scheduling is not feasible for the 

coordinated TS-DS system. 

Fig. 9 shows the power flow of line D-E in TS in Cases 1 

and 4. Congestion occurs 8/12 times in Case 1 and 14/16 times 

in Case 4 in dispatch/redispatch process, which indicates that 

congestion can be alleviated by TS-DS coordination. 
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Fig.9.  Power flow of line D-E in TS in (a) dispatch and (b) redispatch processes. 

Table VII shows the average prices in Cases 1 and 4, which 

indicates that TS-DS coordination can effectively reduce the 

electricity prices in both WEM and DEM. Tables VIII lists the 

operation costs in TS and DS levels. Compared with Case 4, the 

total costs in TS and DS level are reduced by 3.38% and 29.39% 

in Case 1, which confirms that the TS-DS coordination can 

effectively reduce the overall operation costs. 
TABLE VII 

AVERAGE ELECTRICITY PRICES 

Case 
LMP 

($/MWh) 
ULMP 

($/MWh) 
DLMPP 

($/MWh) 
DLMPQ 

($/MVArh) 
DLMPU 

($/MWh) 

Case 1 21.71 12.75 30.77 2.94 17.16 

Case 4 27.03 15.67 41.99 3.65 22.52 

TABLE VIII 

OPERATION COSTS IN TS LEVEL (WEM) AND DS LEVEL (DEM) ($) 

Case 
DS level (DEM) TS level (WEM) 

Active Reactive Reserve Total Energy Reserve Total 

Case 1 925.50 -1.61 135.02 1058.91 206312 26892 233204 

Case 4 970.16 -40.04 165.86 1095.98 294040 36087 330128 

The above results verify the necessity and benefits of TS-DS 

coordination, which is achieved by iterative calculation 

between TS and DSs. The T5D33 system in Case 1 requires 6 

iterations and 88.2 seconds. Taking the LMP and energy 

demand of a DS at bus D as an example, the convergency 

performance is shown in Fig.10. It can be seen that LMP is 

inversely correlated with the energy demand, especially in the 

first two iterations. The convergence is significantly accelerated 

with the sensitivity considered after the third iteration. The 
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iteration process reveals that high LMP caused by heavy load 

or congestion in TS can stimulate large amounts of DERs in 

DSs to increase generation to reduce the total demand and the 

operation cost of DSs. In turn, the decreased DS demand 

alleviates the heavy load and congestion. Accordingly, LMP 

and the operation cost in TS will fall. The DS demand in TS 

scheduling is equal to the actual demand of DSs after self-

scheduling through the coordination. Power balance is satisfied 

at the PSP and energy mismatch is eliminated. Consequently, 

DERs in DSs are fully utilized to reduce the operation costs and 

electricity prices, as well as improve the system operation in TS 

and DSs. The balance of energy and interests is realized through 

TS-DS coordination. 
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Fig.10.  Convergency performance in a DS at bus D. 

The parameters of the T118D69 system are given in [24]. It 

requires 10 iterations and 804.32 seconds. Thus, the proposed 

method meets calculation requirements in day-ahead market. 

VII.  CONCLUSION 

This paper proposes a novel day-ahead DEM clearing and 

pricing mechanism considering the uncertainty of RDG and the 

coordination with the WEM. The effectiveness of the proposed 

method has been verified by case studies and some conclusions 

can be drawn: 1) DLMPs internalize the uncertainty of RDG 

into the marginal costs of energy, voltage, congestion, and loss. 

Thus, the proposed DEM pricing method can provide effective 

price signals for managing not only the voltage, congestion, and 

loss, but also uncertainty. 2) High uncertainty of RDG reduces 

their profits, and increases electricity prices and operation costs 

in WEM and DEM. DLMPs can stimulate uncertainty sources 

to improve forecast accuracy. 3) The WEM-DEM coordination 

contributes to congestion mitigation and reduction of electricity 

prices. The total costs can be reduced by 3.38% in TS and 29.39% 

in DSs as compared with the separate case. 

The proposed method provides a way to integrate WEM and 

DEM into a unified power market. LMP/ULMP and DLMPs 

are similar in form and can provide effective price signals for 

settlement in electricity markets considering uncertainties. This 

novel market mechanism establishes a platform for DERs to 

participate in the WEM based on the derived DLMPs. 
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