
2262 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 3, MAY 2023
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Abstract—The landscape of energy systems is ever changing
due to the introduction of distributed energy resources (DERs)
on the generation side and new demand-response technologies on
the demand side. This ever-changing landscape calls for accurate
real-time monitoring of distribution networks. However, the low
observability in the secondary distribution grids makes mon-
itoring hard, due to limited investment in the past and the
vast coverage of distribution grids. To recover measurements
for robustness, past methods proposed machine learning mod-
els by approximating mapping rules. However, mapping rule
learning using traditional machine learning tools is one way
only, from measurement variables to the state vector variables.
Usually, it is hard to be reverted, thereby losing information
consistency. This loses the physical relationship on invertibility
for applications, such as state estimation. Hence, we propose
a structural deep neural network to provide a robust two-way
functional approximation. The proposed alternative auto-encoder
includes constraints in the latent layer according to available
voltage measurements for ensuring two-way information flow
and utilizes symbolic regression using the latent variables for
explainability. For using physics to regulate the mapping rule,
we embed non-linear power flow kernels into the decoder of
a variational auto-encoder to regulate both forward and inverse
mapping simultaneously. The proposed method of system physics
recovery is validated extensively using the IEEE standard dis-
tribution test systems. Simulation results show highly accurate
two-way information flow.

Index Terms—Distribution system state estimation (DSSE),
alternative auto-encoder, two-way information flow, symbolic
regression.

I. INTRODUCTION

D ISTRIBUTED energy resources (DERs) in the United
States have grown almost three times faster than the net

total generation capacity from 2015 to 2019 [1]. The global
annual investments in DERs are projected to increase by 75%
by 2030 as well [2]. With this growth, the penetration of
renewables and DERs is projected to increase almost two-
fold by 2030 and by more than three-fold by 2050 [3]. With
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more active devices in the distribution grid, new dynamics are
introduced into the grid. Due to this, traditional passive con-
trol methods need to be adapted into active control methods
to maintain the sustainability of the distribution grids [4], [5]
and prevent outages [6].

For controlling power systems, state estimation is the
key [7]. But, the prerequisite for state estimation is the need
for complete system information, which does not hold for dis-
tribution grids in general, especially in secondary distribution
grids. It is primarily due to two major factors. First, the lim-
ited instrumentation at the edge of the grid [8], [9] results in
a scarcity of measurements [10], [11]. It poses a challenge
to estimating the voltage phasors of all buses, which repre-
sent the distribution system state estimation (DSSE) task [12].
Hence, to know the accurate state of the system, real-time
measurements have to be augmented with a high number
of pseudo-measurements when performing DSSE [9], [13].
However, pseudo-measurements are much less accurate than
real-time measurements and adversely affect the accuracy of
the state estimates [14]. Second, in addition to the issue of lim-
ited measurements, network topology and line parameters are
typically assumed to be perfectly known in the DSSE frame-
work [14], [15]. But, such a fact does not hold for secondary
distribution grids due to aging network infrastructure and lack
of system monitoring [16], [17]. Considering these challenges,
innovative and robust state estimation methods are crucial,
especially for secondary distribution networks for sustainable
system operation [18].

One way to do state estimation is to use discriminative
learning to learn the regression rule from the set of mea-
surement variables to the set of state vector variables. To this
end, a number of works have explored using the measure-
ment data itself. These methods use machine learning as a
tool. For example, probabilistic and data-driven methods uti-
lize the detection and identification of physical topology [19],
[20], [21], [22], [23], [24], [25]. In addition to using topolog-
ical information, one can embed physics in the mapping rule
learning with various machine learning tools [15], [26], [27],
[28], [29], [30]. Although these methods show some physical
understanding of learning, they can not handle inconsistency in
the two-way mapping rule learning for physical systems. This
is due to the challenge with data-driven learning algorithms in
which typically the mapping is one way only, from measure-
ment variables to the state vector variables, and can not be
reverted. To resolve this issue, auto-encoders are introduced
into the state estimation for distribution systems. These mod-
els map measurement variables to state vectors, which have
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the capability to reconstruct measurement variables to create
a two-way mapping.

When the system is observable in a well-monitored area,
there are past works utilizing auto-encoder. For example,
[31], [32] assume full system knowledge and uses an auto-
encoder to reconstruct missing data in state estimation with
auto-encoders for smart grid. In addition, to reconstruct
missing information for new inputs, an auto-encoder based
approach for noisy dataset in [33], [34] focuses on trans-
mission grids, and a probabilistic deep auto-encoder based
approach in [35], reconstructs power system measurements
to capture the uncertainty information of the measurement
data. But these methods still assume good system knowledge.
Therefore, it remains open on how to design auto-encoder
for systems with unobservability, with confidence. In addition,
many physics-informed learning methods are time-consuming
due to excessive parameter tuning process and a lot of data
for training. To resolve this issue, [36] proposes a compos-
ite regularization-based network selection approach to select
features to reduce the time of the parameter tuning process.
But, these methods still do not take into account the system
physics consideration, which can help with narrowing down
the learning space further.

Considering the advantages of the two-way information
flow, we implement the same by designing a structural deep
neural network container to perform forward and inverse map-
pings in a partially observable system. As the system is only
partially observable, we embed knowledge of the network size
into the latent layer. The structural neural network utilizes
a data-driven method to learn the mapping functions of the
system, and the symbolic regression learns the system param-
eters. The main contributions of the proposed method are
four-fold. [i] The first innovation we provide is a two-way
mapping function using a structural deep learning container
to introduce physical knowledge to regularize the learning of
forward and inverse mapping consistency for future operat-
ing points in a partially observable system. [ii] Second, the
latent unit is created to embed knowledge of the network size
into the latent layer. [iii] Third, we improve the computational
complexity by utilizing the spatial data of location and topol-
ogy corresponding to the observable nodes obtained from the
GIS information database. [iv] Finally, to provide confidence
for system operators on the edge using our design, we show
how to bound the uncertainty systematically.

Based on the contributions of the proposed model discussed
above, these are validated numerically in a diverse selection
of power grid transmission and distribution test cases from
MATPOWER [37]. The test cases include 4-bus, 5-bus, 9-bus,
14-bus, 18-bus, 22-bus, 33-bus, 69-bus, 85-bus, 123-bus, 141-
bus and 8500-bus IEEE test cases. Using numerical tests
on this wide selection of power system cases, the proposed
method is validated for its effectiveness and robustness. Hence,
the introduction of constraints improves the learning capability
for the mapping to very high accuracy.

The remainder of this paper is organized as follows. The
problem modeling is described in Section II. The specifics
of the proposed method are presented in Section III. To
understand the forward-mapping component of the network,

it is explained in Section III-A. To infer the partial knowl-
edge in presence of unobservability, the setup is described
in Section III-B, and the inverse mapping is discussed in
Section III-C. The integration of the forward, intermediate, and
inverse mappings along with the combination of the symbolic
regression is presented in Section III-D. Section IV presents
the proof of the uncertainty quantification to bound the uncer-
tainty of the model. The numerical validation is presented in
Section V. Finally, we draw the conclusion in Section VI.

II. PROBLEM MODELLING

In a power distribution system, when a node is partially
observable, the voltage magnitude and voltage phase angle
values are unknown. This partial observability in the topology
impacts the calculation of active and reactive power injec-
tions at the neighboring buses. Although the power injection
is coupled to the voltage components algebraically, it becomes
difficult to use the power flow method to realize the alge-
braic relationship in the presence of partial observability.
Therefore, in the absence of any algebraic relationship, a data-
driven method needs to be employed to obtain the relationship
between the power injection and the voltage components
to estimate the system parameters. In obtaining the system
parameters, knowledge of the physical system that governs the
relationship between the power and voltage measurements is
used. This, in turn, can be utilized to determine power injection
by the neighboring buses to the unobservable nodes, which
otherwise would not have been possible to obtain by solv-
ing power flow equations. In model-X, the voltage and power
components may not necessarily be from the same observ-
able bus. The way we deal with it has been discussed in
Section III-B.

The DSSE relies on a general model [13], which can
be represented as: y = f (x) + ε, where y represents the
vector of the measurements obtained from the network as
well as from the pseudo-measurements. x represents the state
vector, f in general represents the vector of non-linear mea-
surement functions, and ε represents the measurement noise
vector, which is usually assumed to be composed of indepen-
dent zero-mean Gaussian variables. In practical cases, most
state estimation programs are formulated as over-determined
systems of nonlinear equations. These types of systems are
solved as weighted least squares (WLS) problems [38]. In the
WLS approach, the estimation of state x is usually obtained
by the minimization of the weighted sum of the squares
of the residuals. The residual is defined as the difference
between the measurement variable, yi and the value obtained
by using the model, f (xi), which is described as follows:

arg min
x

k∑

i=1

wi(yi − fi(x))
2, (1)

where wi denotes the weight associated with the ith measure-
ment, and k is the total number of available measurements. In
a distribution system, complete system information is usually
not available for monitoring and control purposes, especially in
the secondary distribution grids. So, when a node is partially
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observable, the state vectors corresponding to the unobserv-
able subsystem are unknown. This partial observability in the
topology impacts the calculation of measurement variables at
the neighboring buses. In a distribution grid with underlying
physics governing the system, the measurement variables are
coupled with the state vectors algebraically. However, in pres-
ence of partial observability, it becomes difficult to realize the
algebraic relationship. Therefore, as discussed in Section I,
with partial observability in a system, a data-driven method
needs to be employed to obtain the relationship between the
measurement variables and state vectors to estimate the system
parameters. However, approximation of the system parameters
using traditional machine learning methods has three disad-
vantages. First, it does not consider the relationship between
variables, thereby ignoring the system physics. Second, it
results in inconsistent mapping through one-way information
flow. Thereby losing the information by one-way information
flow, as the measurement variables in the system are not repro-
ducible. Lastly, it is combinatorial in nature and is thereby
computationally complex. Hence, we have designed an algo-
rithm that uses a two-way information flow for a consistent
mapping to solve the system equation without an accurate
system model.

In addition, system parameters are utilized to determine
sensor measurements corresponding to neighboring buses to
the unobservable nodes, which otherwise was not possible by
solving parametric system equations. Thus, Model-X has the
capability to estimate parameters associated with the unobserv-
able nodes, which otherwise was not possible. The reason to
estimate all the system parameters is that the work is focused
on secondary distribution grid. The parameters in the case
of secondary distribution grid are usually unknown. So, these
parameters are not present in the database. Even if the param-
eters are available in the database, those values cannot be
trusted. This argument is applicable even to primary distri-
bution grids, where the parameters are known only at certain
locations.

Since only physical laws can create a two-way mapping
with consistent results, so we design a structural deep neural
network container to perform forward and inverse mappings
in a partially observable system. Although the system is only
partially observable, we embed knowledge of the system size
into the latent layer. There are two benefits of such a design.
One is that we can ensure that the learner keeps enough
information to recover the encoder input at the output side
of the decoder. This is a critical design in our physics-auto-
encoder, as our primary rule is not to compress information
in the latent layer but to maintain just the right information
in the latent state layer. Another benefit of embedding system
size into the latent layer is to make the latent layer with a
physical meaning of the system state. So, these state measure-
ments will guide the rest of the latent variables to recreate
latent units that can uniquely recreate all the measurements
for the distribution system uniquely. This has been discussed
in detail in Section III-B of the paper.

The specific benefits the two-way information flow pro-
vides, are two-fold. First, two-way mapping considers physical
knowledge to regularize the learning of mapping rules for

future operating points. This is possible due to the learning
that is physically meaningful. Thus, the mapping rule hence
learned can work in the future with arbitrary operating points.
And, second, the two-way mapping rule considers system
physics to create the forward and inverse mappings with con-
sistent results. Thus, it is possible to achieve superior mapping
capability to learn the underlying physical information of the
systems, even with limited observability. This leads to design
consistency and trust in machine learning tools on the edge of
the grids.

NOTATION

The bold letters are used to denote vectors and vector func-
tions; lower case letters denote scalars and scalar functions.
Subscripts are used to indicate a subset. The term x̂ indicates
the expected value of x. The use of curly braces represents a
set of variables. Furthermore, we denote p = {p1, . . . , pn}T ,
q = {q1, . . . , qn}T , y = {pT , qT}T , and v = {v1, . . . , vn}T ,
φ = {φ1, . . . , φn}T , x = {vT ,φT}T , with n being the num-
ber of buses in the power system case under consideration.
In addition to the description of the problem structure, O
and Ō represent the notations for the set of components in
the observable and unobservable subsystems, respectively. In
the observable subsystem the corresponding set of variables
are represented as {(xi

O, yi
O)}k

i=1, with k being the number of
samples in the observable subsystem. Similarly, in the unob-
servable subsystem, the estimate of the corresponding set of
variables is represented as {(xi

Ō
, yi

Ō
)}k′

i=1, with k′ being the
number of samples in the unobservable subsystem.

III. PROPOSED METHOD - MODEL-X FOR SYSTEM

MONITORING IN PARTIAL OBSERVABILITY

For the proposed method, to solve forward and inverse map-
ping consistency, the first innovation we provide is a two-way
mapping function using a structural deep learning container.
First, the mapping from measurement variables y to state
vectors x is referred to as a forward mapping. So, forward
mapping is defined as a projection from measurement vari-
ables to the state vectors via a structural deep neural network.
Second, the mapping from state vectors x to measurement
variables y is referred to as inverse mapping. Using this, the
measurement variables of the system are reproducible. Thus,
inverse mapping involves the mapping from the state vectors
to the measurement variables, thereby reconstructing the mea-
surement variables. Therefore the name is two-way, one way
for mapping measurement variables to the state variables, and
the other way for reconstructing the measurement variables.

Therefore, the proposed approach learns the underlying
system physics using a machine learning model with phys-
ical meaning, and the hidden state simultaneously. Further, to
ensure consistent mapping rules, we implement the forward
and inverse mappings together when optimizing the machine
learning model. This is an extension of the traditional state
estimation process, which targets mapping for voltages only.
However, to deal with the uncertainty arising out of the unob-
servability in the system, intermediate mapping is used. The
mapping from state vectors x to latent units is referred to as an
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Fig. 1. General architecture of the auto-encoder for model-X.

intermediate mapping. Hence, the sensor information is used
to map from the state vectors xO to learn the latent units
x
Ō

. This involves embedding the network size into the latent
layers, which is discussed in detail in Section III-B.

However, neither the forward nor the intermediate map-
ping, estimate any system parameters explicitly. So, the next
innovation we provide is performing the inverse mapping
using symbolic regression to estimate the system parameters.
Hence, inverse mapping from the latent variables xO, x

Ō
to

the measurement variables y yields the estimation for system
parameters by using symbolic regression. Therefore, the mea-
surements are reconstructed by using the state vectors and
the latent units in the latent layer. As x

Ō
is unobservable

throughout the mapping, the estimate of x
Ō

obtained from the
intermediate mapping is considered for the inverse mapping
for estimation of system parameters. As the data mining tech-
nique used here does not require any system parameters, the
need for an accurate system model is eliminated as a result.

The general framework of the auto-encoder architecture for
model-X is shown in Figure 1. In our design, the input to the
encoder and the output of the decoder are the same, which
are the measurement variables. In the literature, different state
variables such as voltages, currents, and powers have been
considered for the modeling problem in different forms of
polar or rectangular coordinates, depending on the need and
the availability. In the case of model-X, the active and reactive
power components are considered as measurement values at
the encoder input and decoder output owing to their availabil-
ity and relevance in the physical systems. Further, the voltage
magnitude and phasor values are considered as the state vec-
tors at the latent layer of model-X. In addition, although the
system is only partially observable, we embed knowledge of
the network size into the latent layer. So, the state vectors help
in the generation of the latent units to estimate the uncertainty
in the system arising out of the unobservability. As a result, the
state measurements will guide the rest of the latent variables to
extract a state set called latent units that can uniquely recreate
all the measurements in the distribution system uniquely.

It is important to note here that in the case of model-X,
measurements associated with observable nodes are utilized
for the estimation, while those associated with unobservable
nodes introduce noise. Therefore, the noise for model-X comes
from the unobservability alone. In addition, model-X involves
the mapping of information corresponding to observable nodes
and it has the capability to estimate the system parameters
associated with the unobservable nodes. Hence, independent
of whether the observable parameters are reliably stored in
the database, model-X will be able to perform well, by either

utilizing the advantage of the mapping function or by using
the reliable parameters corresponding to the observable nodes.

A. Forward Mapping: Physics Informed Analytic Network

To estimate the model of a system utilizing a data-driven
method, the mapping functions of the system need to be
learned. To learn the mapping functions, an analytical model
will be used, which would enhance the understanding of the
system. To this end, a network structure is set up to under-
stand the system mathematically. Let us consider a generalized
equation to represent the structure of the system model. Hence,
to understand the network structure, a generalized mapping
function is utilized to map the power measurements y to the
voltage measurements x of the system, which is represented
by the Equation x = fθ (y)+ ε. For the mapping, the network
information for the analytic network is represented by fθ ,
where the function fθ represents the underlying physics of the
system, and ε represents the additive noise.

As we define forward mapping as a projection from mea-
surement variables to the state vectors via a structural deep
neural network. Therefore, the encoder is mapping the mea-
surement variables to the state vectors in the latent layer.
Mathematically, the set of {yO, xO} variables are coupled
algebraically. Considering this coupling, the forward mapping
between these variables can be inferred upon exploring the
observable subsystem. The forward mapping from measure-
ment variables to the state vectors involves the optimization,
as shown in Equation (2).

arg min
θ1

∥∥fθ1

(
yO

) − xO
∥∥2

2 (2)

where θ1 denotes the set of learned parameters of fθ1 . The
target function denoted by f ∗

θ1
: yO → xO satisfying xO =

f ∗
θ1
(yO) learns the forward mapping function.

B. Intermediate Mappings: Preserving Complete Information
on Physical States

The forward mapping can be inferred from the alge-
braic coupling between observable measurements. However,
in the presence of partial observability, one needs additional
information to infer knowledge about the partial state of the
system. Therefore, in model-X, knowledge about the latent
layer is vital to understanding the physics of the distribution
system. Different than the normal auto-encoder, we constrain
the latent layer and create an intermediate mapping in the
model-X. The intermediate mapping will map from limited
but observable state vectors to the latent units in the latent
layer. Therefore, we utilize limited sensors in the latent layer
to guide other latent variables to create state sets called latent
units, keeping the capability of full physical reconstruction
and unit consistency. We constrain the total number of system
states including both the state vectors and latent units to be
equal to the physical network size. This means that we can
determine the number of latent units needed to make the model
more physical. Therefore, the intermediate mapping function
in the model-X is defined as the mapping using which the
latent unit is created to embed knowledge of the network size
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Fig. 2. Framework of constrained neural network model.

into the latent layer. The benefit of such a design is that we can
ensure that the learner keeps enough information to recover
the encoder input at the output side of the decoder. This is a
critical design in our physics-auto-encoder.

Such a constraint design is critical to the performance of
model-X, because of the following reasons. If we place less
than the sufficient latent units, there is a data compression
property like the auto-encoder. However, our objective is not to
compress the information, but to compactly represent all possi-
ble variables of the energy system in the model-X. If we place
more than the adequate number of latent units, then it will dis-
tort the physical meaning, e.g., create features that distort the
physical meaning of the latent units. Additionally, constraining
the number of latent variable to be the same as the network
size makes the system states useful. This is because some of
the state vectors are observable, which guide the latent units
within the latent layer and estimate them. The mathematical
formulation is as shown in Equation (3).

arg min
θ2

∥∥∥x
Ō

− fθ2(xO)
∥∥∥

2

2
, (3)

where θ2 denotes the set of learned parameters of fθ2 . The tar-
get function denoted by f ∗

θ2
: xO → x

Ō
satisfies x

Ō
= f ∗

θ2
(xO)

and learns the intermediate mapping function for obtaining
state vector correlation.

The model-X is robust to the distribution of load pro-
file and variability in line impedance and requires a rational
assumption of correlation of load demand in the power dis-
tribution grid. This is to ensure an accurate intermediate
mapping because as the load demands are correlated, the volt-
age phasors obtained are also correlated. The assumption of
the correlation can be attributed to the behavior of individ-
ual nodes, which exhibits a mutual correlation because of
many coupling factors, as mentioned in [39]. These factors
include outside temperature, the destination of use, time of
the day, etc. To understand the mappings and the logical flow
of the proposed data-driven model, the basic framework for
the model-X is shown in Figure 2.

C. Inverse Mappings: Embedding All Physical Possibilities

By using forward and intermediate mapping, the mapping
function and the latent units are obtained. However, to estimate
the system parameters, inverse mapping of the state vectors

to the measurement variables is required. Hence, the inverse
mapping objective function involves the optimization as shown
in Equation (4).

arg min
θ3

∥∥∥yO − fθ3

(
xO, x

Ō

)∥∥∥
2

2
, (4)

where θ3 denotes the set of learned parameters of fθ3 . The
target function denoted by f ∗

θ3
: {xO, x

Ō
} → yO satisfies

yO = f ∗
θ3
(xO, x

Ō
) and learns the inverse mapping function.

The term x
Ō

indicates the estimated value of the latent unit. To
understand the mappings and the logical flow of the proposed
data-driven model, the basic architecture for the model-X is
shown in Figure 2.

However, the explainability of model-X is due to the sym-
bolic regression portion of the proposed method. So, the
symbolic regression is performed with the optimization to
recover the inverse mapping function. For the inverse map-
ping, we employ symbolic regression using all possible basis
functions (�). The symbolic library function consists of all
possible polynomial terms resulting from a combination of
voltage components. The voltage components are the result
of combined voltage terms corresponding to the observable
nodes as well as the latent units hence obtained by using
the intermediate mapping. However, power systems provide
us with a piece of unique knowledge about the special
quadratic relationship between the voltage and power com-
ponents, which are known before modeling. Therefore, using
this knowledge about the power systems inverse mapping
is performed. The inverse mapping includes an �1 regular-
ized regression which is performed to select the components
responsible for or contributing to the inverse mapping. Due to
the �1 regularized regression, useful feature selection happens
in terms of voltage component terms contributing to the power
component estimation. This represents the system parameters
associated with the observable as well as the unobservable
subsystem of the power grid.

The symbolic library function (�) is formed by using a
combination of terms from xO, and x

Ō
based on the prior

knowledge about the system, which includes the physical
laws governing the system. Therefore, the basis functions are
selected based on that prior knowledge, which represents the
underlying physical model of the system. This selection is
made by performing an �1 regularized regression. Thus, the
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Fig. 3. Architecture of the proposed Model-X, a physics constrained neural network integrated with a symbolic regression.

Equation (4) is transformed to Equation (5).

arg min
w

∥∥yO − wT�
∥∥2

2 + β‖w‖1, (5)

where β is the hyper-parameter for �1 regularization with w
representing weights of the variables corresponding to the
symbolic function terms. The reason for using �1 regular-
ization for inverse mapping in this work as opposed to �2
regularization is that the �1 norm performs better than a �2
norm in terms of useful feature selection. In model-X, the
functional mapping fθ3 is obtained by optimizing the inverse
mapping using symbolic regression. Therefore, using symbolic
regression improves the explainability of model-X in terms of
the library function, which contributes to the estimation of
the physical laws corresponding to non-zero coefficient val-
ues only. Whereas those coefficients corresponding to all the
other terms become zero, thereby indicating the set of coupling
terms responsible for the physical relationship between the
measurement variables and state vectors. Hence, the explain-
ability is achieved in terms of those voltage terms which
contribute towards the power components estimation, whose
byproduct is the power systems parameters.

D. Combined Objective for the Proposed Model X

The architecture of the detailed model is visualized in
Figure 3. The complete objective function for the model-X
proposed in this work, using a symbolic regression for the
inverse mapping, is described in Equation (6). This equation
is obtained by combining Equations (2), (4), and (5). This
equation represents the objective function to be optimized for
estimating the system parameters.

arg min
ψ

{∥∥xO − fθ1

(
yO

)∥∥2
2 +

∥∥∥x
Ō

− fθ2(xO)
∥∥∥

2

2

+ ∥∥yO − wT�
∥∥2

2 + β‖w‖1

}
, (6)

where ψ = {θ1 ∪ θ2 ∪ w} denotes the set of learned parame-
ters of the model with � denoting the symbolic library terms
obtained from the set of {xO, x

Ō
}. In Equation (6), the first

term performs the forward mapping operation, and the sec-
ond term performs the intermediate mapping operation for

estimating x
Ō

. The third term in Equation (6) performs the
estimation of system parameters. Therefore, by introducing
a latent variable, we are able to estimate the state of the
observable subsystem and extract useful features from the
unobservable subsystem simultaneously.

This is a fundamental change to the problem of system
model approximation. With this system model approximation,
system parameters are estimated from measurement variables
alone. In Equation (6), xO, and yO are the known terms, while
� depends on the estimates x

Ō
. The mapping functions fθ1 ,

fθ2 , and the model parameter w are the target variables of
the optimization function. The objective of the optimization
function is to obtain the term w, which contains the system
parameters. Thus, by combining a symbolically informed
latent layer with the proposed constrained neural network, an
improvement in the model approximation is achieved, which
is presented in Section V-C. This improvement is applica-
ble to components corresponding to both the observable and
unobservable subsystems.

The algorithm for the proposed method is summarized in
Algorithm 1.

E. Algorithm Overview

The Algorithm 1 considers the values for nodal voltage and
power measurements corresponding to the observable nodes as
input. It is important to note that the parameters correspond-
ing to the observable nodes can be computed by using linear
regression. However, to estimate the parameters corresponding
to the unobservable nodes, we need model-X.

F. Requirements for Amount of Data Points

For each of the IEEE standard power system models, the
number of data points required for accurate estimation of
the system parameters is determined. This determination is
performed based on a hyper-parameter which is the size of
the inverse mapping parameter space. Based on that hyper-
parameter, the required instances of data points are generated.
Each generated instance represents a randomly generated set
of values for the power and voltage measurements correspond-
ing to all the buses. Considering these measurement values, the
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Algorithm 1: Training Algorithm for Physics Constrained
Symbolic Network via �1 - Norm

Data: G = {yO, xO} such that G is the set of power and
voltage measurement variables in the observable
subsystem.

Result: Forward and Inverse mapping yielding System
parameters

begin
Check: G �= ∅
while Error converges do

1. Map yO to xO using a deep neural network.
2.a. Estimate x

Ō
from xO using physically

informed latent constraint:
arg minθ2 ‖x

Ō
− fθ2(xO)‖2

2;
2.b. Create symbolic library function using xO
and x

Ō
: (�).

3. Combine the physically informed latent
constraint with a symbolic regression:
arg minw{‖yO − wT�‖2

2 + β ‖w‖1}.
4. Using GIS information, obtain the observable
system parameters wO:
arg minwO {‖yO − wT

OxO‖2
2}.

5. Perform multi-objective optimization upon
combining the objectives from Step−1, and
Step−3, and by considering the constraints from
Step−4, to estimate the complete system
parameters (w).

end
end

active and reactive power injections at each of the nodes are
calculated using Equation (9). Followed by this, a power flow
study is performed for each measurement data case to obtain
the steady-state voltage magnitude and voltage phase angle
at all the buses for that particular measurement data. This is
detailed in Section V-B. Since one of the buses is assumed as
an unobservable component, it cannot be observed for analysis
purposes. It is important to note that the power flow calcula-
tions are performed by maintaining the ground truth for all
the nodes, including the unobservable nodes. It impacts the
real and reactive power injection calculations. However, anal-
yses are performed by considering the unobservable nodes as
unknown. As a result, the unobservable nodes are considered
as optimization parameters. The theoretical guarantee provid-
ing invertibility of library function matrix and the matrix sizes
for the different model-X components are presented below.

1) Ensuring Invertibility Theoretical Guarantee:
Considering there are nNOI number of nodes directly
interacting with the unobservability, there are nNOI sets of
susceptance and conductance values associated with the set
of unobservable nodes, which need to be estimated using the
model-X. Those (2 × nNOI) number of parameters that are
needed to be estimated, are the parameters of the optimization.
However, each of the nNOI sets of active and reactive powers
will need to have its own sets of equations consisting of
(2 × nNOI) number of parameters. Thus the total number of

parameters that need to be estimated using the optimization
objective is (2 × nNOI)

2. This is the minimum number of
observations needed to maintain the number of equations to
be equal to the number of unknowns in the inverse mapping
component of model-X. Thus, maintaining this minimum
number of observations provides a theoretical guarantee to
obtain unique solutions for those unknown parameters by
ensuring invertibility of the library function matrix.

2) Matrix Sizes for Model-X Components: The matrices
x and y are time series data. The structure of the matrix
y consisting of active and reactive power measurements is
(Number of measurements × 2 × Dimension of the system).
The 2 in the dimension of the system is to account for the
components corresponding to both the active and reactive pow-
ers of the corresponding nodes of the system. The matrix
x consisting of the real and imaginary components of the
voltage phasor of a particular node is a time series data.
The structure of the matrix is (Number of measurements ×
2 × Dimension of the system). The 2 in the dimension of
the system is to account for both the u and w, represent-
ing the rectangular coordinates of the voltage phasors of the
corresponding nodes of the system.

G. GIS Information Usage

The prior information about the parameters associated
with the observable nodes using GIS information aid the
performance of the mapping functions. As described in
Step 4 of Algorithm 1, the prior information about the
parameters associated with the observable nodes using GIS
information reduces the computational burden, thereby aiding
the performance of the mapping functions. This is achieved by
using the spatial data of location and topology corresponding
to the observable nodes obtained from the GIS database. The
goal is to narrow down the parameters for estimation. As a
result, the parameters corresponding to the observable nodes
are estimated using the regression-based parameter learning
approach. Using the parameter values as constraints in the
latent layer results in estimating the parameters associated
with the neighboring buses to the unobservable nodes. This
results in the reduction of the computational complexity of the
optimization algorithm based on the amount of unobservabil-
ity, independent of the dimension of the system. Therefore,
the prior information about the parameters associated with
the observable nodes by using GIS information reduces the
computational burden. Using this prior information as a con-
straint in the complete optimization objective, parameters
corresponding to the unobservable nodes are then estimated.
Therefore, the prior information about the parameters asso-
ciated with the observable nodes aids the performance of
the mapping functions. The numerical result for the reduc-
tion in the computational burden due to GIS is presented in
Section V-D.

IV. PERFORMANCE GUARANTEES FOR

QUANTIFYING UNCERTAINTIES

Considering the structural architecture of the proposed
model-X, we need to measure the uncertainty of the model to
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ensure confidence in the performance of the model. As latent
space is typically used to generate new samples with simi-
lar properties, the latent node generated by the intermediate
mapping is used to incorporate this uncertainty using the
Bayesian perspective [40]. Hence, the uncertainty quantifi-
cation is performed using a Bayesian architecture inspired
by [41] and [42]. The proof for the confidence interval of
the proposed method is introduced in the Theorem 1.

Theorem 1 (Confidence Interval for the Model-X): For d ∈
N representing the dimensionality of yO, �+ representing the
pseudoinverse of E[�], and ν = min {NMC, d} degrees of free-
dom for the chi-squared distribution of the probability P for the
χ2(P) function, the confidence interval for the reconstructed
y(m)O ∀ m ∈ [1, d] is:
[
E

[
y(m)O

]
−

√
χ2
ν (P)

∥∥∥uT
n S

1
2

∥∥∥
2
,E

[
y(m)O

]
+

√
χ2
ν (P)

∥∥∥uT
n S

1
2

∥∥∥
2

]

where uT
m denotes the mth row of the matrix U, where E[�] =

USUT , by using singular value decomposition.
Proof: Based on [41], the posterior distribution for the

decoder part of Model-X, P(yO | xO) is predicted using the
following.

P
(
yO

∣∣ xO
) = lim

NMC→∞

∫
P

(
yO

∣∣∣ x
Ō
, xO

)
P

(
x
Ō

∣∣∣ xO
)

dx
Ō

= 1

NMC

NMC∑

j=1

P

(
yO

∣∣∣ x(j)
Ō
, xO

)
. (7)

The sampling from latent space has been used to esti-
mate the confidence region for prediction uncertainty of the
trained model. Using the Monte-Carlo estimator, the mean
prediction value E[yO] and the empirical co-variance matrix
E[�] can be obtained. The empirical standard deviation is
σ̂ = √

diag(E[�]). To estimate the confidence interval, let
us assume P(yO|xO) ∼ N (μ, σ ), where E[yO] and E[�] are
approximations to μ and σ , as obtained above from NMC sam-
ples. Hence, the confidence interval estimate for yO is given
as follows:

y(i)O ∈ R
d :

(
yO(j) − E

[
yO(j)

])
�+(

yO(j) − E

[
yO(j)

])T

≤ χ2
ν (P), (8)

where χ2(P) is the quantile function for probability P of the
chi-squared distribution with ν = min {NMC, d} degrees of
freedom. Here, d ∈ N represents the dimensionality of yO, and
�+ represents the pseudoinverse of E[�]. Now, using singular
value decomposition, E[�] = USUT , where uT

m denotes the
mth row of the matrix U. Hence, the interval for y(m)O ∀ m ∈
[1, d] is:
[
E

[
y(m)O

]
−

√
χ2
ν (P)

∥∥∥uT
n S

1
2

∥∥∥
2
,E

[
y(m)O

]
+

√
χ2
ν (P)

∥∥∥uT
n S

1
2

∥∥∥
2

]

The theorem provides the upper and lower bound on the
estimation error for the reconstruction of the measurement
values. The bounds are defined by the expected value of the
reconstructed measurements with the deviation characterized
by the quantile function for the probability of the chi-squared

distribution and the empirical covariance matrix of the recon-
structed power values using the latent variables, which can
be obtained by using the Monte-Carlo estimator. The recon-
struction is performed by considering the unobservability as
latent units. Thus, by using additional information the knowl-
edge about the partial state of the system is inferred, which
bounds the uncertainty in the reconstruction of the measure-
ment values. The numerical result for the uncertainty bound
of the proposed method is presented in Section V-E.

V. SIMULATIONS

The contributions of this work are validated numerically
for a diverse selection of power grid distribution test cases
from MATPOWER [37]. For these MATPOWER test cases,
the proposed method is trained to optimize the objective given
in Equation (6).

A. Training Method for Model-X

To optimize the objective function, the backpropagation
algorithm, as described in [43] and Levenberg-Marquardt
optimization algorithm [44], are used as the training func-
tions. With the training function as described above, the mean
squared error function is used as the performance function
to achieve optimization of the objective function. To improve
the conditioning of the optimization problem, the data is pre-
processed by normalizing the data to the interval [−1, 1].
The data is randomly divided into training, testing, and val-
idation data sets. The first 70% of the data is assigned for
training the model, 15% for the validation set to generalize
the model, and the remaining 15% of the data is used for an
independent testing of the model generalization. The training,
validation, and testing data are obtained from the same observ-
able nodes to maintain consistency of the mean squared error
calculations for model training and generalization. The loss
in the estimation of the system parameters is considered the
performance metric for comparing the different scenarios. All
scenarios are trained for a maximum solver iteration of 400
using a Precision 5820 Tower Workstation, implemented with
1e−6 being the lower bound on the change in the value of the
objective function during a step.

For optimization of the objective function in Equation (6),
the parameters of the network are initialized randomly. A
neural network with a symbolic regression algorithm is imple-
mented to form the combined forward and inverse mapping
objective function. The number of neural network layers is
considered as five throughout the experiment. For the analysis,
the number of hidden nodes is determined based on a hyper-
parameter using a heuristic method, which is dependent on
the number of observable nodes in the system. This accounts
for the rectangular coordinate representation of the physical
law-based power flow mapping as described in Equation (10)
in the paper.

However, as the level of unobservability changes the model
need not be changed. When the model is initialized with
the number of hidden nodes depending on the number of
observable nodes in the network, the hidden nodes learn the
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TABLE I
COMPARISON OF PERFORMANCE FOR THE MODEL WITH AND WITHOUT

USING BLENDING TECHNIQUE TO TACKLE CHANGES IN TOPOLOGY

representation associated with the observable nodes for the for-
ward mapping function. However, as the observability changes
moderately, the model does not need to change as the exist-
ing number of hidden nodes are still capable of learning the
representation for the observable nodes associated with the
new level of unobservability. The model tackles the chang-
ing observablility by using a sample-wise dynamic network
method based on blending network parameters while main-
taining a fixed model architecture [45]. The way this has
been achieved is by considering the model parameters associ-
ated with the common topological nodes before the topology
change and blending those parameters for training the model
considering the new topological change. The result show-
ing the performance in terms of reconstruction loss with and
without using the parameter blending technique is shown in
Table I. Therefore, upon using the parameter blending tech-
nique, when the level of unobservability changes, the forward
mapping information obtained from the model using the orig-
inal level of unobservability will be further enhanced by the
new information obtained from the changing observability.
This new information will be obtained from the changing
representation learning by the hidden nodes in response to
the changing observability. As a result, this makes the model
more robust and helps in reinforcing the new information on
the foundation of the earlier learning. In addition, the rectifier
or ReLU activation function is used for training the neural
network in the forward mapping part of model-X. ReLU acti-
vation function is defined as: f (a) = a+ = max(0, a), where
a is the input to a neuron. Levenberg-Marquardt training, as
discussed in [46], is used to optimize the objective function
in Equation (6).

With the training method described above, IEEE standard
power system models are introduced for the experiment. The
proposed method is relevant to the power systems domain
primarily because of three premises. First, in the case of
power systems, there exists a form of physics in terms of
voltage and power mapping, which results in latent variables
interacting with particular basis functions only. Second, the
estimation of the unobservability as a function of known power
measurements is possible because there exists an inherent
knowledge about the unobservability. This knowledge about
the unobservability is derived partially from the power mea-
surements. Third, the introduction of the latent layer increases
the learning capability of the model by learning the inverse
mapping, thereby estimating the system parameters. A detailed

description of the problem setup and the data preparation for
a power system test case is described below.

B. Data Generation for Model Evaluation

With the training method described above, unobservability
is randomly selected among the nodes of the system. It repre-
sents the components that creates partial system observability.
In addition, one of the buses is selected as the slack (refer-
ence) bus, as one bus in the power system topology needs to
be the slack bus; the phase angle values for all the observa-
tions corresponding to that particular bus are considered as
zero radians. This is used for the initial calculation of the
measurements. The set of equations representing the physi-
cal power flow mapping in a power system is represented in
Equation (9).

pi =
n∑

k=1

|vi||vk|(gik cosφik + bik sinφik),

qi =
n∑

k=1

|vi||vk|(gik sinφik − bik cosφik), (9)

where i = 1, . . . , n, n being the number of buses in the system.
pi and qi represents the total real and reactive power injections
at bus i, gik and bik represent the conductance and the suscep-
tance values corresponding to the (i, k)th element of the bus
admittance matrix, δi is the phase angle for the ith bus voltage,
δk is the phase angle for the kth bus voltage, and φik is the
difference of the phase angles for the ith and kth bus, defined
as φik = δi − δk. To use the symbolic regression-based inverse
mapping, the rectangular coordinates of the voltage phasors
have been used to represent the power-flow mappings, as the
rectangular coordinate representation simplifies the trigono-
metric functions to polynomial functions [15]. The physical
law-based power flow mapping is represented in Equation (10).

pi =
n∑

k=1

(uiukgik + wiwkgik + wiukbik − uiwkbik),

qi =
n∑

k=1

(wiukgik − uiwkgik − uiukbik − wiwkbik), (10)

where ui = |vi| cosφi, and wi = |vi| sinφi, denote the real
and imaginary components of the voltage phasor of node i
respectively.

To analyze the performance robustness of model-X against
unobservability, multiple levels of unobservability are intro-
duced into the test systems under consideration. For the
different networks considered for simulating model-X, a vari-
able number of unobservable nodes within a percentage of
10% to 50% has been selected. The consideration of the unob-
servability within a percentage of 10% to 50% is selected
based on the input provided by our utility partners. The unob-
servable nodes in this case introduce the noise in the system.
To analyze the impact of unobservability on the performance
of model-X, we have compared the performance of model-X as
the unobservability in the system increases. We have presented
the result in Figure 4. The result is in terms of the normal-
ized error magnitude for the estimation of system parameters,
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Fig. 4. Comparison of performance for multiple levels of unobservability in
a partially observable system.

Fig. 5. Comparison of performance for the individual phases of multiphase
system in a partially observable system.

averaged over all the test cases. From the analysis, it can be
observed that the analysis based on the level of unobserv-
ability is very important to the study of the performance of
model-X, which suggests that the level of unobservability does
not weaken the capability of model-X.

With the above problem setup, we introduce IEEE stan-
dard power system models in the high-level simulation toolbox
MATPOWER [37] based on MATLAB. For the experiments,
we considered IEEE 4-bus, 5-bus, 9-bus, 14-bus, 18-bus,
22-bus, 33-bus, 69-bus, 85-bus, 123-bus, 141-bus and 8500-
bus test case systems. The 123-bus and 8500-bus multiphase
unbalanced systems do not exist in MATPOWER. So we used
the test cases from [47]. We extended the proposed method for
the three-phase system by considering the complete system for
simulation as well as performing the simulation on individual
phases of the 3-phase system test case. The performance of
model-X on the individual phases of the 123-bus test case
has been visualized in Figure 5. The 3 phases behave in a
similar manner as that of independent single phases, thereby,
verifying the generalizability capability of model-X. Further,
the scalability and applicability of the proposed method in
real-life applications have been verified. This is achieved by
verifying the performance of model-X using systems up to
the IEEE 8500-node test case. Hence, these results verify the
generalizability capability of model-X.

Fig. 6. Comparison of performance in a partially observable system. Model-
X: Proposed Method, SINDY based on [48], SVR based on [15], SMR based
on [29], LSE based on [30].

Fig. 7. Comparison of model-X performance against SINDy [48] and the
method proposed in [30] in a partially observable system.

C. Forward and Inverse Mapping: Estimation of System
Parameters

By using model-X, the estimation of parameters correspond-
ing to the buses, which are not connected to the unobservable
bus directly, is accurate, with no noise in the estimation.
In addition, the parameters associated with the unobservable
nodes are also estimated, which was otherwise impossible to
find using simple regression or even an optimization involv-
ing inverse mapping only. Considering the strengths and the
advantages of model-X, the comparison of different methods
against model-X in estimating the system parameters is visu-
alized in Figures 6, 7 and 8. From those figures, it can be
observed that the model-X outperforms the methods proposed
by [15], [29], or [30].

For the purpose of validation, we have used the SINDy
algorithm [48] based on a compressive sensing based tech-
nique as discussed in [49], and the methods proposed in [15],
[29], and [30], for comparing the performance of the proposed
model-X. The analysis is performed on multiple power system
cases with 25 runs each, and the mean and variance of the error
values are shown in Figures 6, 7, 8. The performance com-
parison of model-X against the earlier methods is shown to
validate the consistently perfect system parameter estimation
capability of model-X, which proves the forward and inverse
mapping capability of model-X.
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Fig. 8. Comparison of model-X performance against the method proposed
in [30] in a partially observable system.

Fig. 9. Comparison of computational time.

D. Improvement in Computational Complexity

By using GIS data as a constraint for the optimization func-
tion in Equation (6), the required number of system states is
reduced for estimating the unobservability. Obtaining an ade-
quate number of system states using GIS results in reducing
the number of library functions to estimate the system param-
eters using symbolic regression. This helps in reducing the
complexity of optimization. Hence, by using GIS information,
the computational complexity of the model is improved by
embedding the network size into the latent layers. It leads to
an improvement from exponential growth to linear growth in
terms of the number of parameters, with an increase in the
number of dimensions for the cases under consideration, as
shown in Table II. The comparison of computational time for
using GIS information is shown in Figure 9. This validates
the significant improvement in the computational complexity
of the model-X. In Figure 9, the OoM (Out-of-Memory) time
points are determined by mapping the known computational
time against the number of parameters to be optimized using
non-linear regression.

E. Estimation Confidence of Model-X

The estimation of parameters corresponding to the nodes
which are connected directly to the unobservable bus is
obtained accurately by using the two-way information flow,

TABLE II
COMPARISON OF NUMBER OF PARAMETERS WITH AND WITHOUT

USING GIS INFORMATION

Fig. 10. Confidence of Model-X in two-way information flow in presence
of an unobservable component.

which otherwise would not be possible using the existing
methods. The confidence interval (CI) for the performance of
model-X in terms of the two-way information flow is shown
in Figure 10. It is important to note here that, the y-axis scale
while obtaining the confidence interval is determined by data
points in terms of estimation error for the posterior distribu-
tion. So, the plot revolves around the zero value because the
mean value of the error revolves around zero. However, as
certain points in terms of the posterior estimation error also
falls beyond the zero mean value due to the variable standard
deviation, this is captured by the confidence interval region as
shown in the Figure 10. Hence, to improve the clarity of the
posterior estimation error with different distribution networks,
an improved figure based on a logarithmic scale for the y-axis
has also been plotted, which is shown in Figure 11. This cap-
tures the mean value of the posterior estimation error with
improved clarity.

VI. CONCLUSION

We present a solution to the problem of providing robust
monitoring capability for secondary distribution systems in
data-limited scenarios by inferring system physics information.
It has played a key role in a variety of research direc-
tions. These include controllability of the energy grid, state
estimation, attack detection in a power grid, enhancing the
functionality, and performance of the grid edge system, etc.
This work shows that it is possible to achieve superior map-
ping capability to learn the underlying physical information of
the systems, even with limited observability using consistent
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Fig. 11. Logarithmic Confidence of Model-X in two-way information flow
in presence of an unobservable component.

two-way mapping and the latent layer design with network
size and latent units. The proposed method shows strong
performance on the benchmarks in the power domain. In addi-
tion to the improved mapping performance, the method focus
on understanding the relationship of latent units to measure-
ments. Based on the numerical results, the proposed method is
capable of estimating the system parameters with high accu-
racy in presence of partial observability of the system. It
involves all system components, including those interacting
directly with the unobservability. Moreover, the improvement
in the computational complexity achieved by embedding the
network size into the latent layers applies to a wide range of
results using GIS information. It suggests that the proposed
model can adapt to any dimension of power system cases.
Improvement of the mapping and computational capability
ensures a robust and accurate model for a sustainable and
reliable energy system operation. This model provides con-
fidence in the mapping. Thus, the model has the potential to
form the next generation of power grid management systems
with design consistency, maximized physical explainability,
and confidence. This will instill trust in the AI for distribution
system edges with unobservability.
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