
1

OpenGridGym: An Open-Source AI-Friendly
Toolkit for Distribution Market Simulation

Rayan El Helou∗, Kiyeob Lee∗, Dongqi Wu∗,
Le Xie‡, §, Srinivas Shakkottai† and Vijay Subramanian†

{∗Student Member, †Senior Member, ‡Fellow}, IEEE

Abstract—This paper presents OpenGridGym, an open-source
Python-based package that allows for seamless integration of
distribution market simulation with state-of-the-art artificial in-
telligence (AI) decision-making algorithms. We present the archi-
tecture and design choice for the proposed framework, elaborate
on how users interact with OpenGridGym, and highlight its value
by providing multiple cases to demonstrate its use. Four modules
are used in any simulation: (1) the physical grid, (2) market
mechanisms, (3) a set of trainable agents which interact with the
former two modules, and (4) environment module that connects
and coordinates the above three. We provide templates for each
of those four, but they are easily interchangeable with custom
alternatives. Several case studies are presented to illustrate the
capability and potential of this toolkit in helping researchers
address key design and operational questions in distribution
electricity markets.

Index Terms—Distribution Electricity Market, Open-Source
Platform, Artificial Intelligence, Demand Response.

I. INTRODUCTION

MODERN electric grids are shifting from a centralized
to a more distributed architecture. This brings up a new

set of operational challenges due to the expected rapid growth
of a diverse set of distributed energy resources (DERs), such as
rooftop photovoltaics (PVs), electric vehicles (EVs), and stor-
age systems at the grid edge. It also introduces more decision-
makers (agents) into the picture who could strategically game
the system under decentralized electricity market designs.
Adding decision-makers such as DER owners, flexible loads
and aggregators may significantly influence both physical and
market operations. Thus, it is indispensable to understand in
modern grids the implications of different market design and
operational issues.

In particular, distribution grids are more susceptible to such
evolution than transmission grids, as the latter is more capable
at dampening intermittencies in load and generation than the
former. It is necessary to focus more of our efforts on the
design of distribution-level markets, and to explore alternatives
to traditional approaches that rely on outdated assumptions of
the distribution grid. There is a wide range of candidate market
mechanisms for modern distribution grids, primarily due to the
fact that much more decision-makers are involved, each with
more constraining requirements than those of a transmission-
level aggregator.

Rayan El Helou, Kiyeob Lee, Dongqi Wu, Le Xie and Srinivas Shakkottai
are all with the Department of Electrical and Computer Engineering, Texas
A&M University, College Station, TX, USA.

Vijay Subramanian is with the Department of Electrical and Computer
Engineering, University of Michigan, Ann Arbor, MI, USA.
§ Corresponding Author: Le Xie, email: le.xie@tamu.edu

For example, conventional electric consumers at the dis-
tribution grids are fixed rate payers with the rate determined
a-priori by the regulatory agencies. Local electric utilities plan
the distribution grid capacities accordingly based on expected
load growth. However, such a mechanism may be rendered in-
effective due to the lack of clear incentives to encourage time-
varying load flexibility at the operational stage. To address the
need for new institutional design at the distribution grid level,
alternatives to this pricing mechanism have been proposed
in [1] where prices dispatched to prosumers (i.e. two-way
power usage) are driven by their consumption patterns over
time, measured using smart meter data. Nonetheless, demand
in the short run is assumed to be inelastic. Similar market
mechanisms for a wholesale market-like distribution locational
marginal pricings (DLMPs) have also been introduced and
conceptually investigated in the literature [2].

While there is a growing body of literature that advocates
the use of DLMPs and theoretical properties of DLMPs
have been investigated [3]–[5], concrete comparisons with
alternatives to DLMPs are missing and are yet to be analyzed
both theoretically and empirically. This is an important gap
between the conceptualization of how market clearing and
pricing should be done via DLMPs and its implementation
in practice. Moreover, while game theory offers analytical
tools to investigate strategic interactions on how DER, DER
aggregators and flexible demands may participate in future
electricity markets, without making substantial assumptions on
how decision-makers strategically interact, analysis of game
theoretic models is intractable in many settings [6].

Similar to the LMP calculation in bulk transmission sys-
tem market operation using Optimal Power Flow (OPF),
the approach and formulation have been proposed for the
computation of DLMP in [7] [8] for distribution networks,
using the DistFlow power flow model for radial networks, with
the objectives to minimize either power loss or generation cost.
In reference [5], the properties of convex relaxations using the
DistFlow model are investigated, and Distribution Locational
Marginal Pricing (DLMP) is formulated, and results reveal the
nature of DLMP distribution relative to physical constraints. In
[2] the degradation cost of transformers is explicitly factored
in the LMP calculation for distribution networks.

The inelastic nature of electricity demand is frequently the
binding constraint of LMP-based mechanisms in OPF-based
power system planning, where many ultra-high marginal price
result from the necessity to meet invariant local demand either
by using expensive reserve or sub-optimal dispatch. Demand

ar
X

iv
:2

20
3.

04
41

0v
1

 [
cs

.A
I]

 6
 M

ar
 2

02
2

2

response (DR) programs can incentivize end-users in real-
time to adapt their power consumption to the availability of
electric power generation and delivery and introduce elasticity.
References [9], [10] and [11] propose a novel DR program
where end-users receive coupons as incentives to shift power
consumption from peak hours to off-peak hours. This approach
has been tested by conducting a case study on real users in
Texas, with results that suggest that people respond positively
to such incentives. Such programs can be easily implemented
using our proposed simulation framework.

Fig. 1. Envisioned distribution grids with DERs participating in local markets.

A. Existing Approaches to Electricity Market Simulation

There already exists a set of widely-used open-source tools
for simulating physical operations of both transmission grids
(e.g. MATPOWER [12] and pandapower [13]) and distribution
grids (e.g. OpenDSS [14] and GridLAB-D [15]), and a pro-
posed set of tools for electricity market simulation (e.g. AMES
test bed [16]). All these tools work well under a traditional
assumption of weak coupling between physical and market
models of electric power grids. This assumption needs to be re-
visited in modern grids due to the intermittence of electricity
generation and consumption, as well as the likely participation
of a variety of large and small agents.

In this paper, we provide a simulation toolkit that can help
researchers simulate and compare the outcomes of various
market mechanisms for realistic distribution grids. As implied
in Figure 1, we rely on a framework that enables modular
representation of grids, markets, and DER-controlling agents,
which could potentially participate either in market or physical
grid operations. In contrast, the existing set of tools is either
not friendly to learning-based algorithms, or does not pro-
vide an easy-to-interchange modular structure which enables
experimenting with various models for both grid and market
operations.

B. Our Contributions

To account for the multiplicity of agents in distribution elec-
tricity markets, we propose a new formulation where demand
and supply entities are agents that submit bids or offers into
the market, and prices are dispatched to them by a market
operator. We develop an OpenAI Gym-like [17] benchmark
for testing such multi-agent environments and invite machine
learning (ML) and power systems experts to test the use of
reinforcement learning (RL) to fulfill user-defined objectives.
A similar effort has been made by RTE France with their
Grid2Op platform, an environment popularized by the L2RPN
competition [18], but the platform is restricted to physical

operations, and does not include market operations. Reference
[19] reviews the use of RL in electric power systems, and
the aim in our proposed work is to provide a benchmark
environment for distribution electricity market simulations.

Here are the key contributions of our work:

• We propose a framework to serve as a benchmark for joint
market and distribution grid simulation in a competitive
multi-agent setting.

• We provide an open-source Python-based user-friendly
toolkit for performing simulations with trainable AI-
driven agents, with use cases to demonstrate it.

The remainder of this paper is organized as follows. In
Section II, we introduce our proposed Python-based package,
OpenGridGym [20], and we provide a high-level overview
of its architecture and user interface. In Section III, we dive
deeper into the definitions of each simulation module and how
those modules interact with one other to deliver a user-friendly
experience. In Section IV, we present three different use cases
of OpenGridGym that showcase its extensibility. In Section V,
we provide concluding remarks and future directions.

II. OPENGRIDGYM

A. Motivation

As distribution grids continue to modernize, the need to
reconsider traditional market mechanisms grows, and some
questions need to be raised. For example, should local markets
be based on peer-to-peer transactions, or should the distribu-
tion grid be governed by DLMP-based mechanisms, and what
are the implications of such propositions? To answer these
questions in a consistent manner, we should be able to easily
integrate models of physical distribution grids with market
models in a unified framework which is accessible to all
researchers in this domain. Moreover, what role does artificial
intelligence (AI) play in shaping the future of electricity
markets? By using a programming language like Python, an
entire ecosystem of AI-friendly tools is inherently available to
a researcher who seeks to answer such questions.

With our proposed modular Python-based simulation pack-
age, OpenGridGym [20], it is easy to swap out market
mechanisms while keeping the same physical grid model,
and vice-versa, to answer questions such as the ones asked
above. The name “OpenGridGym” refers to the fact that we
provide an open-source environment to exercise various grid
and market designs, and to train agents to meet their objectives.
By leveraging existing open-source simulation tools already
developed by researchers (e.g. OpenDSS by EPRI [14]),
OpenGridGym is able to account for new modalities such
as real-time monitoring of substations, distributed storage,
photovoltaics, electric vehicles, and more. Off-the-shelf AI-
friendly tools for learning and optimization, such as PyTorch
[21] and CVXPY [22], are readily available to the user, unlike
with existing non-Python-based market simulators. We provide
use cases in Section IV to illustrate the use of OpenGridGym.

B. Proposed Architecture and Design Decisions

In this subsection, we present the high-level architecture
design of our simulation framework, and in the section that

3

follows, we go deeper into how each of its components (Grid,
Market and Agents) operate individually and collectively.

Fig. 2. User interface and simulation flowchart. The terms slower and faster
indicate that market negotiations occur much more frequently than post-
market-clearing interactions with the grid.

The goal of this tool is to introduce a framework for
simulating electricity markets. We suggest the use of Python
as the main programming language partly because it is open-
source, but mainly because it hosts an ecosystem of AI- and
ML-friendly tools which are readily available to the user.
Our work is inspired by the well-known OpenAI Gym [17],
which facilitates the simulation of Markov Decision Processes
(MDPs) and testing reinforcement learning (RL) algorithms.
OpenAI Gym provides the user with two main contributions:
1) A set of (empty) base classes which the user can fill in to
represent their simulation environment, and 2) a set of use
cases to demonstrate multiple examples of how such base
classes can be filled in by the user to provide meaningful
outcomes. We aim to contribute similarly in our work.

In the section which follows, we introduce the Python-
based base classes for simulating electricity grids, market
mechanisms, and various agents’ behaviors which influence
the two. Our design philosophy is the following. Each user of
OpenGridGym should be given as much flexibility as possible
over what they’d like to simulate, while simultaneously main-
taining a level of consistency in the framework under which all
researchers would operate. The implications are twofold. First,
there needs to be minimal constraints on users’ choice of grid
format, market mechanism, and agents’ behaviors. Second, we
provide entirely Python-based easy-to-edit base classes which
act as building blocks for the user to implement their own
version of a market simulation. Additionally, we do provide
a set of templates, showcased in the Section IV, where we
demonstrate how OpenGridGym could be used.

C. User Interface

As labelled on the left of Figure 2, there are three steps
the user needs to follow to begin the simulation process (to
create a grid, a market, and agents). Each of these steps involve
creating their own or selecting from existing modules. The
order specified in the figure is based on the principle that the
physical grid is lower-level than the market which acts on top
of it. Here is the order:

1) The user selects a grid from some case file or folder
which contains the full detailed model of the physical
system (indicated by the Physical Grid Model block).
This implicitly means that the user also selects which
simulator they prefer to use (e.g. OpenDSS [14]). The
Scenario Files block indicates any exogenous input that
might affect the grid state, e.g. weather and load data.
Hence, it points to the Exogenous Agents block.

2) The user selects or creates a module to represent the
market mechanism. For each market mechanism in gen-
eral, there is a set of rules which dictate the prices
dispatched to all participants. More specifically for elec-
tricity markets, since distribution (or transmission) grids
are physical systems with constraints that need to be
obeyed, any responsible market mechanism should also
somehow model the grid to take those constraints into
account. Such a model of the physical grid could be
simple for market clearing purposes. This is indicated
by the Simplified Grid Model block in the figure.

3) The user initializes a list of agents in the environment.
Those agents are each an object in Python and they do
not need to share the same decision-making policies.
For each agent listed, the user either selects or creates
a module to capture how they interact with either the
physical grid directly or just with the market. Here is
where Python’s AI-friendly ecosystem can be utilized.
For example, the Controllable Agents block refers to the
fact that agents are not parametrized by a predetermined
set of files (e.g. the Scenario Files). Rather, a learning
algorithm can be associated with them so that each agent
can individually seek its personal objective. This implies
that such agents are effectively players in a stochastic
game provided that there’s more than one of them.

Fig. 3. Two-timescales for agent participation, one for negotiating in the
market, and one for acting on the physical grid after the market clears.

Once those three steps are complete, the environment can
run as shown in the fourth step of the figure. We employ a two-
timescale discrete-time sequential process which simulates the
interplay between the metaphysical market and the physical
grid. This is illustrated in Figure 3. The exact formulation
of this process is shown in Algorithm 1 in the section that
follows, but simply put, negotiations in the marketplace occur
much more frequently than changes to the physical grid which
are governed by market clearing. Our philosophy behind this
is the following. The physical grid is governed at every
time step by choices made by individuals who are faced
with various opportunities, namely to increase or decrease
electricity consumption (or production). We assume that those
choices are determined as a result of negotiations made in a
marketplace. For this simple reason, we model the market with
a faster time-scale. To be clear, when we say one step is taken

4

in the physical grid, we refer to time scales closer to those
of tertiary control in power grids, not to those of primary and
secondary control. Transient control can still occur in between
time steps marked by the term Market Clearing in Figure 3,
but we do not impose any restrictions on such control in our
proposed framework.

III. PYTHON-BASED MODULES
In this section, we define all the modules involved in

the simulation process and explain how they tie together to
provide a reasonable user experience. There are four modules
involved in any instantiation of our proposed framework, and
for each of those, we will describe the concept and show some
minimal snippets of Python code to illustrate the ease of their
implementation. The four modules are Grid, Market, Agent
and Environment, as discussed earlier at a higher level in the
previous section.

In contrast with OpenAI Gym’s framework [17] for mod-
elling discrete-time sequential processes, we do not propose
that agents submit actions directly to the Grid object and
receive observations or rewards in return. Rather, each agent
sets their actions in their local memory, and the environment
is expected to pull them as needed. OpenAI Gym’s approach
works well in single-agent settings with one environment
module involved. However, when there are several players
(Grid, Market and multiple Agents), building an explicit com-
munication layer is cumbersome. Our simple solution is that
each of those players or objects has direct access to an object
we call the Environment, which in turn can access all other
objects, as shown in Figure 4. One of the implications of this
is that all objects can implicitly talk to one another, thanks to
Python’s built-in pointer system.

Fig. 4. Implicit access of Python objects to one another via the Environment
object. The head of an arrow is accessible as an attribute by the object on the
tail of the arrow. Note: agent-to-agent communication is inherently possible.

Off-the-shelf reinforcement-learning (RL) packages can
still be used to train agents under this new frame-
work. For each agent, the user would just need to en-
sure that they can extract actions, observations and re-
wards at any time step. For example, for an agent
to access observations, say voltages, from the grid, we
can simply write agent.env.grid.get_voltages()
in Python. Similarly, for the Market object to re-
ceive actions from some agent, the user simply calls
market.env.agent.get_market_actions().

There is no strictly correct way to model any of the four
objects introduced in the following subsections, as argued in
the previous section. However, we propose that if the user fol-
lows the template we provide, then they can more consistently

control experiments to compare market mechanisms with one
another, agent behaviors with one another, and grid models
with one another.

A. Grid

We propose that each grid object the user instantiates must
have at least two functions implemented: reset and step.
This is shown in the snippet code below.

class CustomGrid(BaseGrid):
def __init__(self, dss_case='',

scenarios=''):
self.dss = DSS(case=dss_case)
self.scenarios = scenarios
...

def reset(self):
self.t = -1
...

def step(self):
...
self.dss.solve()
...

At the beginning of each episode, the environment auto-
matically calls env.grid.reset() to reset the state of the
grid. This includes resetting timing, weather information, any
control equipment’s states, scenarios, etc. At every iteration,
the environment automatically calls env.grid.step() to
execute all agents’ actions, to solve power flow, to update
its states and to store any relevant information as a result of
agent’s actions.

The actual model of the grid, labelled as CustomGrid in
the snippet of code above, is either created (and filled in) by
the user or selected from existing templates which we provide.
For example, for a use case we show later in this paper, we
rely on an IEEE 34-bus distribution grid in which the step
function collects agents’ actions and uses those to update the
OpenDSS-based model accordingly.

Under this framework, leaving the step function empty
is equivalent to simulating scenarios where agents do not
influence the physical grid at all. This could be useful when
experimenting with market-only interactions.

B. Market

Similar to the grid object, the market object also expects two
functions to be implemented by the user: reset and step.

class CustomMarket(BaseMarket):
def __init__(self):

...
def reset(self):

self.t = -1
...

def step(self):
...

That is, there is no restriction on how the market is mod-
elled, provided that the user specifies in the reset function
how the market initializes any states or information it may
derive based on the grid, and that the user specifies in the
step function how the market uses agents’ actions to dispatch

5

electricity prices and quantities to be consumed or produced
by all participants.

As shown in Algorithm 1, this market object iterates through
a sequential negotiations process, but at no point in the process
is the physical grid affected. Once the market negotiations
terminate, we declare that the market has cleared. Based on
this, agents can then determine the actual amount to consume
or produce as described in the following subsection.

C. Agent

The minimal requirements on agents is that they are able to
state what actions they’d like to apply on the market and on the
grid. During the environment’s market updates, agents’ actions
are expected to be declared in the set_market_actions
function. Similarly, during grid updates, agents’ actions are
expected to be declared in set_grid_actions.

class CustomAgent(BaseAgent):
def __init__(self):

...
def set_market_actions(self):

...
def set_grid_actions(self):

...

That is, by implementing those two functions for some
agent, users would have completely modelled the behavior of
said agent. Of course, those functions could internally rely
on other local functions, which the user is free to create in
Python. We provide examples of agents in the use cases. One
example is a producer agent which submits actions in the form
of supply curves that the market uses to determine optimal
price and quantity dispatch.

D. Environment

Finally, the environment object, which ties the Grid, Market
and Agent objects together is presented here. We illustrate this
in Algorithm 1.

Algorithm 1 Environment Episode
1: Instantiate the following objects in Python:

• grid . e.g. with connection to OpenDSS
• market . constrained by simplified grid model
• agents . with scenarios and user profiles

2: Reset grid state.
3: while grid episode not complete do
4: Reset market state.
5: while market episode not complete do
6: agents submit bids, offers.
7: market dispatches prices and quantities.
8: end while (market clears)
9: agents submit grid actions.

10: grid updates state.
11: end while

From an object-oriented programming perspective, it is
redundant to explicitly create an object to represent this envi-
ronment if it simply iterates over all other objects. However,
the environment object can provide the user with a much

cleaner and easier-to-use interface. To highlight this, we show
in the snippet of code below how to set up and simulate an
environment having previously defined grid, market and
[list of] agents according to the previous sections.

env = Environment(grid, market, agents)
env.reset()
for t in env.iterate():

pass

We go into further details in the code’s documentation about
the different capabilities afforded by this style of interaction
with the environment, such as the use of callbacks for example
to easily save or extract data mid-simulation.

As shown in Figure 4, the environment can be accessed
by all other objects and can access each of them. The figure
appears to suggest that observation and control are proposed
to be centralized. Indeed, we propose that in simulation, all
objects should be able to access one another via a central
Environment, whereas in practical implementation there should
be explicit communication networks that restrict this.

Our justification for this is that during simulation, ultimately
there is only one user, which is the person using this platform.
The best experience for them involves being able to easily
access everything, as enabled by this ‘centralized’ environment
object. However, with that we must emphasize that we do not
enforce that the user’s implementation of the Grid, Market and
Agent objects satisfy the user’s desired outcomes. Simply put,
by providing flexibility under the framework, we hand over
the responsibility to the user to ensure they are implementing
the simulation the way they want to. Nonetheless, as shown
in the section which follows, we provide templates that can
aid users in designing their own use cases.

IV. USE CASES
In the previous section, we provided a blueprint for setting

up and executing distribution electricity market simulations. In
this section, we provide a few use cases of OpenGridGym for
two main purposes: 1) to express the variety of simulations
that could be executed, both in complexity and in relation
to real-world problems, and 2) to show how OpenGridGym
can be used to test and train AI-based approaches to solving
problems in this domain.

Furthermore, we wish to convey to the reader that it is
the simulation platform and its capabilities which we seek
to highlight, rather than the use cases themselves. Neither the
market mechanisms used nor the agent behaviors assumed in
the use cases are suggested to be ideal. We provide those
simplified use cases to reflect how users might interact with
OpenGridGym to investigate the impact of possible designs
and mechanisms that they may desire to experiment with.

A. Use Case 1: Topology-Induced Market Power

Here are the three goals of this use case:
• Investigate the impact of network constraints in distribu-

tion grids on electricity pricing in a competitive market.
• Explore price-responsive elastic demand as an antidote to

network congestion.

6

• Showcase the use of OpenGridGym’s framework in set-
ting up and executing a simulation environment to enable
such inquiries.

To set up this use case, we follow the blueprint described in
the previous section. That is, we first define the underlying
model of the physical grid. Second, we suggest a market
mechanism for dispatching prices and quantities based on con-
sumer/producer input. Third, we introduce different kinds of
agents to participate in this market, and describe their behavior.
Finally, we show the results of the simulation extracted from
the environment object.

1) Grid Model

We rely on the standard IEEE 34 node feeder as one specific
model of a physical grid, and use OpenDSS to simulate
power flow corresponding to different load and generation
profiles. This distribution grid model is represented by a 69
kV feeder, a substation transformer which step-down to 24.9
kV, a mixture of single- and multi-phase unbalanced loads (28
in total), single- and three-phase distribution lines, capacitors
and regulators.

OpenDSS offers the capability to connect directly to it using
Python, and we supplement that with a user-friendly interface
for the user to more seamlessly interact with it. That is, when
agents submit what we referred to as ‘grid actions’ in this
paper, OpenDSS is called to solve power flow and return the
results corresponding to those actions.

For the purposes of this specific use case, we are more
interested in how agents interact in the market, rather than with
the physical grid. Therefore, we reduce the grid model here
to single-snapshot power flow, as opposed to a time-series.

2) Market Mechanism

In today’s distribution grids, most consumers of electric-
ity participate in local retail markets where a regional load
serving entity offers them prices for consumption that could
remain fixed for months or even years. With the increase of
power demand on distribution grids, especially now with the
introduction of fast-charging electric vehicles, there needs to
be either an increase in the grid’s capacity or some form of
demand response to counteract that.

We explore a market mechanism which models consumers
as price-responsive. In this model, consumer agents submit
elastic demand curves as bids to the market, and the market is
expected to dispatch demand corresponding to the submitted
bids to ensure, using a simplified DC power flow model, that
none of the distribution lines overflow. Let qbusi represent
net quantity consumed at bus i, and let qlinei,j represent the
quantity of power flowing from bus i to bus j. A consequence
of radial topology is the following equality.

qlinei,j = qbusj +
∑
k∈C(j)

qlinej,k (1)

where C(j) is the set of buses ‘children’ to j (i.e. downstream
from the feeder). Knowing the topology, the market optimizes
over all quantities consumed/produced in attempt to enforce
thermal line limit constraints.

The market object is expected not only to dispatch the
amounts of power consumed or produced by each participant,

but to also dispatch electricity prices. Due to page limits for
this paper, we defer the detailed formulation of the price-
quantity optimization problem to a separate document, but
here is the short summary. Consumers submit bids as demand
curves, producers submit offers as supply curves, and for each
of those, we rely on a simplified parametric model to define
the curves. Supply and demand curves are chosen as affine
relationships between price and quantity as follows (s for
supply, d for demand):

ps =
pmax − pmin

qmax − qmin
(qs − qmin) + pmin (2)

pd =
pmin − pmax

qmax − qmin
(qd − qmin) + pmax (3)

pmax ≥ pmin (4)
qmax > qmin (5)

where (pmax, pmin, qmax, qmin) sufficiently parametrize either
supply or demand curves. That is, for each bid or offer,
an agent submits a quadruple of scalars to represent their
participation in the market. Note that supply curves are strictly
non-decreasing and demand curves are strictly non-increasing.
Finally, it is the market’s role to ensure that all participants
are minimally satisfied while leaving no money on the table,
expressed as follows:

(ps, qs) on or above supply curve (6)
(pd, qd) on or below demand curve (7)∑
d

pdqd =
∑
s

psqs (8)

The objective used in the market’s optimization problem
is to maximize the sum of net consumer and net producer
surpluses. We know from classical economics that in cases
without any network constraint, i.e. no limit on exchange
of quantity between supply and demand, the optimal price-
quantity dispatch is the intersection of aggregated supply and
demand curves. However, in case of network constraints, the
optimal solution becomes less trivial. The purpose of this
use case is not to advocate for this market mechanism, but
rather to test the impact of demand and supply flexibility (or
elasticity) on consumer prices. We say a consumer is less
price-responsive the steeper their demand curve is.

3) Agent behavior

To compare price-responsive to price-unresponsive con-
sumers, we use the parametrization of demand curves de-
scribed in the market formulation. Each consumer agent sub-
mits a quadruple of scalars (pmax, pmin, qmax, qmin) provided
that pmax ≥ pmin and qmax > qmin, and in doing so, they
declare their bid to the market. Producer agents do the same
with parametrized supply curves to declare their offers to the
market.

Each agent seeks to maximize their own personal rewards,
which are made up of two components. For each price-quantity
dispatch from the market, supply agents receive a net amount
of money equal to the product of price, payed for by the
demand agents. Furthermore, for each supply agent, there is
an opportunity cost cs(qs) for each quantity qs dispatched by

7

the market. This quantity is hidden from everyone but the
agent. Similarly, for each demand agent, there is a hidden
utility ud(qd) in consuming dispatched quantity qd. From these
quantities, we define the market dispatch-based reward signal
r for each agent as follows:

rs (ps, qs) = psqs − cs(qs) (9)
rd (pd, qd) = ud(qd)− pdqd (10)

Economics theory suggests that in purely competitive mar-
kets, it is in the interest of producers to submit supply curves
that most closely reflect their ‘true’ opportunity costs, to
remain competitive. When faced with network constraints
however, it is possible for producers with market power to
capitalize and submit much higher prices than their cost, which
we explore in this use case. Nonetheless, in general, it is left
to the user to utilize Python’s AI-friendly ecosystem to train
this agent to maximize its rewards.

4) Environment Results

For this use case, we initialize 28 demand bids (one per
load) as inelastic, and we introduce a total of 5 supply units
with equal supply capacity, spread uniformly across the grid.
One supply unit is located at the feeder node of the distribution
network with a horizontal supply curve, i.e. fixed price for
all quantities, derived from transmission-level wholesale, and
assumed to be exogenous to our simulation environment. The
other four supply units are price-responsive, i.e. their supply
curves are increasing. Under this scenario, we observe that
all consumers are dispatched a price of 4.3 ¢/kWh with no
congestion in the network.

Next, we iterate through the market, where agents update
their bids and offers, and we purposefully instruct consumer
agents to keep their demand inelastic. The results are shown
in Figure 5. The natural consequence is that prices must go up
since generators increased their price offers with no objections.
The figure shows us two things. First, we see that not all
consumers now pay the same price ({4.6, 4.8 and around 6.9}
¢/kWh). Second, even though the feeder node remained fixed
price (and cheaper than other supply), consumers still buy at
more expensive prices, simply due to network congestion.

Since the network is congested, it limits the amount of cheap
power deliverable to certain pockets of load in the network,
thus creating an advantage to local pricey generators. This is
a fundamental property of congested radial networks. We do
not wish to go deeper in this use case to analyze this market
mechanism. However, we’d like to continue this example to
show how consumer price-responsiveness can serve as an
antidote to this topology-induced price increase.

Proceeding in the simulation, supply agents still submit
relatively high prices, but the demand agents now submit more
elastic demand curves. As a result, the market dispatches lower
consumption quantities, even though the network remains
congested. This is shown in the updated supply/demand curves
of Figure 6.

A natural question that may arise is, how much demand
flexibility is needed to lower the prices? To answer this, we
do not change supply agents’ offer for now. We just randomly

Fig. 5. Market dispatch for inelastic demand and elastic supply. Prices
increase for most consumers due to line congestion.

Fig. 6. More elastic demand curves lead to lower prices.

select bid offers by demand agents such that some of them are
flexible, and some not. We consider two scenarios, one with
8% flexible, and one with 75%. As shown in Figure 7, for
the former case, the average consumer price is 6.64 ¢/kWh,
whereas for the latter, the average price is 5.28 ¢/kWh.

To conclude this use case, here are three takeaway messages
we wish to deliver. First, by following OpenGridGym’s frame-
work to set up this use case, we can very easily separate and
debug each of the grid, market and agent simulation objects.
Second, by loading a pre-defined OpenDSS-based IEEE test
case, we didn’t need to create the actual network, rather just
specify it. This means the user can repeat this experiment on
different standard grids easily, or of course create their own.
Third, we were able to simulate a meaningful experiment
using this framework. Namely, in this case, we were able
to show that even in congested radial networks, via demand
flexibility you can reduce the prices by some margin. Granted,
this specific market mechanism calls for much more in-depth
exploration, but here, the purpose is to provide a template for
users to get an idea of how OpenGridGym works.

8

Fig. 7. Average consumer price for a congested network with different levels
of demand flexibility.

B. Use Case 2: Learning in Peer-to-Peer Markets

Consider a market of the sharing economy [23], [24] where
market participants can switch roles between producers and
consumers depending on availability of their resources. For
example, PV home owners generating extra energy could
shortly serve as producers by providing additional resources to
the grid and they could also serve as consumers in this market
when they do not produce energy from PVs. Thus, market
participants are turned into prosumers who can both produce
and consume resources. In this use case, we model such PV
home owners as agents and consider the Peer-to-Peer (P2P)
market. Here, geographic locations and weather determine
which agents shift from being producers to consumers; If there
are no available PV home producers, consumers can also buy
the electricity from a utility provider. In this market, the role
of the market maker is to match the producers and consumers
so that a producer-consumer pair can negotiate to make a
transaction if agreed. The objective of the market maker is to
serve as a middleman between producers and consumers while
respecting physical grid constraints. In this market, agents are
concerned with a simple collection of tasks that they negotiate
(bargain) the agreed price with other agents.

1) Grid Model

We use the same grid model used in Use Case 1.

2) Market Mechanism

The role of this P2P market is to match producers and
consumers so that a producer-consumer pair goes through a
number of negotiation steps to find an agreement on the price.
If they both agree on the price, trade happens; otherwise
they fail to make a trade. To be specific, the market maker
allows a matched pair of producer and consumer to bid a
number of negotiation steps, denoted by T ∈ N. For each
market negotiation step t < T , an agent (either producer

or consumer) can explore to learn an optimal action, which
depends on the opponent’s strategies and vice versa. Given a
matched pair, denote bid offers from producer and consumer
by bp,t and bc,t respectively at time t. If bp,t ≤ bc,t, the
market maker says a trade is successful. Producer p receives a
reward rp,t = bp,t−cservice and consumer c receives a reward
rc,t = ub− bp,t− cservice where cservice is a fixed service fee
in the market and ub is an utility price that consumer can
alternatively purchase from. If bp,t > bc,t, then both producer
and consumer receive a reward rp,t = rc,t = −close as a
penalty when the transaction is not successful.

Lastly, we note that the market performs random matching
between producers and consumers without considering agents’
locations, generation amount or consumption demand.

3) Agent behavior

We make a number of assumptions about agent behavior
for simplicity of demonstration. First, we assume that all
producers are homogeneous and generate the same fixed
amount of electricity, say 3 kWh, and consumers purchase
the same quantity. If this assumption is not met, the market
maker can do a maximum weight matching or other alternative
matching algorithms with respect to generation amount and
demand. When agents are matched by the market maker
with an opponent and negotiate, we assume that they have
finitely many arms (options) to choose from in their bid
offers. Finally, we assume that all agents implement the Upper
Confidence Bound (UCB) algorithm [25]. That is, when agents
are matched by the market, a matched pair of producer and
consumer take actions according to the UCB algorithm which
is described as follows: Let Ti(t − 1) denote the number of
samples from arm i up to time t− 1 and µ̂i(t− 1) denote the
empirical mean (received rewards) from that arm i up to time
t− 1. Now, define UCBi(t− 1, δ) for each arm i as follows:

UCBi(t− 1, δ) =

{
∞ if Ti(t− 1) = 0

µ̂i(t− 1) +
√

2 log(1/δ)
Ti(t−1) otherwise.

(11)
where δ is the error probability. At negotiation time t, each

agent takes an action a ∈ arg maxi UCBi(t−1, δ), updates the
empirical mean µ̂i(t) for arm i, and repeats this negotiation
steps until t = T . For details about the UCB algorithm and
analytic results, we refer readers to [25].

4) Environment Results

Using the Grid, Market and Agent formulation above,
we implement the environment and demonstrate negotiations
between a matched pair of producer and consumer. We show
a multi-period negotiation between matched pairs. For each
market step, the producer and consumer agents negotiate for
a trade over the next several grid steps. At the time of the
negotiation, generation and load forecast time series are used
for the producers and consumers respectively. If a consumer
cannot get enough energy from its paired producer for either
supply deficiency or unsuccessful negotiation, the energy defi-
ciency is cleared using grid power drawing from the substation
at the retail price from the utility company. This formulation
is able to account for the thermal inertia of loads across

9

different market intervals and uncertainty of future renewable
generation after the power transaction settlement. The reward
and action trajectories for the multi-period case are shown
below in Figures 8 and 9, both plotting the moving average of
the past 200 iteration steps of agent actions and rewards. The
reward trajectories for both producers and consumers in Figure
8 show that they are successful at negotiation and receive
positive rewards, instead of negative rewards when negotiation
is unsuccessful. This is evident from agents’ action trajectories
in Figure 9 where consumers’ actions are always higher than or
equal to the producers’ actions after around 2000 negotiations
steps. Thus, the power transactions are successful and rewards
are positive for agents in the market.

Fig. 8. Reward trajectories of producers and consumers.

Fig. 9. Action trajectories of producers and consumers.

It is also noticed in numerical experiments that under certain
operating conditions the settled bilateral transactions cannot be
realized in the grid step. In radial distribution networks there
is usually one electric path between producers and consumers
at different buses, when the power being traded exceed rating
of any line in the grid model the power flow results become
infeasible. Under such conditions, market transactions can
potentially impact the operation of physical distribution grid.

C. Use case 3

The third use case attempts to establish a general compre-
hensive market structure for future distribution systems where
prosumers in the network trade their power generation and
consumption with fellow prosumers or with the transmission
grid. There are three roles for any prosumer to participate in
the market: as a power producer, power consumer or demand
response provider. Power producers are able to inject net
positive real power into the network with distributed energy
sources such as PVs, diesel engines or charged batteries. Power

consumers have net negative real power capacity that need to
be supplied by the transmission grid or other producers. In
the case of network congestion which results in high price or
insufficient supply, demand response providers at certain parts
of the network can voluntarily reduce their power consumption
in exchange for a profit, which is paid for by other consumers
that benefit from such reduction.

1) Grid Model

The IEEE 37-node feeder benchmark system is used in this
case study. This system is a 4.8kV mid voltage distribution
with around 2200kW total load. This network is characterized
by a all-delta configuration with one large three-phase load
and many spot single-phase loads. The system information is
automatically extracted and processed using OpenGridGym.

2) Market Mechanism

Using our proposed framework, we demonstrate a possible
market mechanism for distribution system operators (DSOs)
that utilizes the concept of Distribution Locational Marginal
Prices (DLMPs). As with LMP’s in current transmission
systems, power producers submit a convex cost function that
maps their net power production to desired revenue. The DSO
then runs security-constrained optimal power flow (SCOPF) to
determine the exact dispatch for every producer in the network
that minimizes the total energy cost. A distinctive feature in
distribution systems compared to transmission systems is the
existence of an infinite source. Most if not all distribution
networks are connected to the transmission system through
a transformer in a substation whose capacity rating is large
enough to supply the entire distribution network. However,
the price to use power from the transmission system can
also change with time, as the price may be affected by the
transmission system LMP. The detailed problem formulation
of SCOPF is as follows:

min
PG,PD

LMP sourcemax(0, P source)+

cgen(P g) + cDR(P d − P d) (12)
subject to:

P source = 1T (P d − P g) (power balance) (13)
P gmin ≤ P

g ≤ P gmax (generator limit) (14)

0 ≤ P d ≤ P d (demand response) (15)

∆p = ∆P g −∆P d (bus injections) (16)

∆f line = H∆p (power transfer) (17)

−fmax ≤ f line ≤ fmax (line flow limits) (18)

where cgen and cDR are the cost functions of distributed
generators and demand response providers; P source is the total
power drawn from the substation transformer; P d and P g are
the power consumption and generation at each bus, while P d
is the initial load value before demand response; f line is the
real power flow in lines and must not exceed the ratings; H is
a matrix computed from the network topology that maps net
real power injections at each bus to real power flows at each
line.

10

3) Agent behavior

In a learning problems, the cost curves (which may be
parameterized as polynomial of piecewise functions) of power
producers and demand response providers are determined by
agents. During every market clearance interval, each agent ob-
serves market information disclosed by the DSO and determine
the parameters of its cost curve, cgen or cDR. After the DSO
solves the SCOPF problem, each agent receives a dispatch that
specifies how much power they are allowed to produce and
consume. The reward of each agent is then calculated based
on their net energy consumption, production or reduction and
the DLMP at their bus.

4) Environment Results

OpenGridGym provides an implementation using CVXPY
[22] and NetworkX [26]. At each market step, the DSO uses
the agents’ input to compute a DLMP for every load bus in the
network, which is then used to calculate the cost and revenue
of all market participants. An example of DLMP distribution
in a simple radial network is shown in Fig. 10.

Fig. 10. Distribution of DLMPs in the IEEE 37-Node Feeder

V. CONCLUDING REMARKS

This paper presents a simulation platform, OpenGridGym,
for scalable multi-agent market simulation for future distri-
bution systems. This platform is open-source and based on
user-friendly Python toolkit. This platform could serve as
a benchmark for the research community to simulate and
analyze the outcome of various market mechanisms with direct
access to AI-friendly ecosystem via Python.

Building upon this open-access toolkit, many interesting
research questions in distribution market design and outcome
could be quantitatively analyzed. To showcase OpenGridGym,
we present different use cases and demonstrate how users can
easily integrate trainable AI-driven agents into their simula-
tion. Future work on OpenGridGym includes expanding the
use cases to provide users with even more templates to follow,
and to assist the design of alternative market mechanisms to
address challenges faced in modern distribution grids.

REFERENCES
[1] A. Venkatraman, A. A. Thatte, and L. Xie, “A smart meter data-driven

distribution utility rate model for networks with prosumers,” Utilities
Policy, vol. 70, p. 101212, Jun. 2021.

[2] P. Andrianesis and M. Caramanis, “Distribution Network Marginal
Costs: Enhanced AC OPF Including Transformer Degradation,” IEEE
Transactions on Smart Grid, vol. 11, no. 5, pp. 3910–3920, 2020.

[3] L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, “Distribution locational
marginal pricing (dlmp) for congestion management and voltage sup-
port,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4061–
4073, 2018.

[4] A. K. Zarabie, S. Das, and M. N. Faqiry, “Fairness-regularized dlmp-
based bilevel transactive energy mechanism in distribution systems,”
IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6029–6040, 2019.

[5] A. Winnicki, M. Ndrio, and S. Bose, “On convex relaxation-based
distribution locational marginal prices,” in 2020 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT). IEEE,
2020, pp. 1–5.

[6] S. Bose and S. H. Low, “Some emerging challenges in electricity
markets,” in Smart Grid Control. Springer, 2019, pp. 29–45.

[7] L. Gan, N. Li, U. Topcu, and S. H. Low, “Optimal power flow in tree
networks,” in 52nd IEEE Conference on Decision and Control. IEEE,
2013, pp. 2313–2318.

[8] ——, “Exact convex relaxation of optimal power flow in radial net-
works,” IEEE Transactions on Automatic Control, vol. 60, no. 1, pp.
72–87, 2014.

[9] H. Ming, B. Xia, K.-Y. Lee, A. Adepoju, S. Shakkottai, and L. Xie,
“Prediction and assessment of demand response potential with coupon
incentives in highly renewable power systems,” Protection and Control
of Modern Power Systems, vol. 5, pp. 1–14, 2020.

[10] B. Xia, H. Ming, K.-Y. Lee, Y. Li, Y. Zhou, S. Bansal, S. Shakkottai,
and L. Xie, “Energycoupon: A case study on incentive-based demand
response in smart grid,” in Proceedings of the Eighth International
Conference on Future Energy Systems, 2017, pp. 80–90.

[11] J. Li, B. Xia, X. Geng, H. Ming, S. Shakkottai, V. Subramanian, and
L. Xie, “Energy coupon: A mean field game perspective on demand
response in smart grids,” in Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, 2015, pp. 455–456.

[12] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on power systems,
vol. 26, no. 1, pp. 12–19, 2010.

[13] L. Thurner, A. Scheidler, F. Schäfer, J.-H. Menke, J. Dollichon, F. Meier,
S. Meinecke, and M. Braun, “Pandapower—an open-source python tool
for convenient modeling, analysis, and optimization of electric power
systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–
6521, 2018.

[14] R. C. Dugan and D. Montenegro, “The Open Distribution System
Simulator™(OpenDSS), Reference Guide,” Electric Power Research
Institute (EPRI), 2018.

[15] D. P. Chassin, K. Schneider, and C. Gerkensmeyer, “GridLAB-D: An
open-source power systems modeling and simulation environment,” in
2008 IEEE/PES Transmission and Distribution Conference and Exposi-
tion. IEEE, 2008, pp. 1–5.

[16] L. Tesfatsion. The AMES Wholesale Power Market Test
Bed. [Online]. Available: http://www2.econ.iastate.edu/tesfatsi/
AMESMarketHome.htm

[17] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 2016.

[18] A. Marot, I. Guyon, B. Donnot, G. Dulac-Arnold, P. Panciatici,
M. Awad, A. O’Sullivan, A. Kelly, and Z. Hampel-Arias, “L2RPN:
Learning to Run a Power Network in a Sustainable World NeurIPS2020
challenge design,” 2020.

[19] M. Glavic, “(Deep) Reinforcement learning for electric power system
control and related problems: A short review and perspectives,” Annual
Reviews in Control, vol. 48, pp. 22–35, 2019.

[20] R. E. Helou, K. Lee, D. Wu, L. Xie, S. Shakkottai, and V. Subrama-
nian, “OpenGridGym,” https://github.com/tamu-engineering-research/
OpenGridGym, 2022.

[21] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[22] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42–60, 2018.

[23] B. Xia, S. Shakkottai, and V. Subramanian, “Small-scale markets for
a bilateral energy sharing economy,” IEEE Transactions on Control of
Network Systems, vol. 6, no. 3, pp. 1026–1037, 2019.

[24] R. Henriquez-Auba, P. Hidalgo-Gonzalez, P. Pauli, D. Kalathil, D. S.
Callaway, and K. Poolla, “Sharing economy and optimal investment
decisions for distributed solar generation,” Applied Energy, vol. 294, p.
117029, Jul. 2021.

[25] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Uni-
versity Press, 2020.

[26] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of

http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
https://github.com/tamu-engineering-research/OpenGridGym
https://github.com/tamu-engineering-research/OpenGridGym

11

the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

	I Introduction
	I-A Existing Approaches to Electricity Market Simulation
	I-B Our Contributions

	II OpenGridGym
	II-A Motivation
	II-B Proposed Architecture and Design Decisions
	II-C User Interface

	III Python-based Modules
	III-A Grid
	III-B Market
	III-C Agent
	III-D Environment

	IV Use Cases
	IV-A Use Case 1: Topology-Induced Market Power
	IV-A1 Grid Model
	IV-A2 Market Mechanism
	IV-A3 Agent behavior
	IV-A4 Environment Results

	IV-B Use Case 2: Learning in Peer-to-Peer Markets
	IV-B1 Grid Model
	IV-B2 Market Mechanism
	IV-B3 Agent behavior
	IV-B4 Environment Results

	IV-C Use case 3
	IV-C1 Grid Model
	IV-C2 Market Mechanism
	IV-C3 Agent behavior
	IV-C4 Environment Results

	V Concluding Remarks
	References

