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Abstract—Unmanned Aerial Vehicle (UAV) swarms are often
required in off-grid scenarios, such as disaster-struck, war-torn
or rural areas, where the UAVs have no access to the power
grid and instead rely on renewable energy. Considering a main
battery fed from two renewable sources, wind and solar, we
scale such a system based on the financial budget, environmental
characteristics, and seasonal variations. Interestingly, the source
of energy is correlated with the energy expenditure of the UAVs,
since strong winds cause UAV hovering to become increasingly
energy-hungry. The aim is to maximize the cost efficiency of
coverage at a particular location, which is a combinatorial
optimization problem for dimensioning of the multivariate energy
generation system under non-convex criteria. We have devised
a customized algorithm by lowering the processing complexity
and reducing the solution space through sampling. Evaluation is
done with condensed real-world data on wind, solar energy, and
traffic load per unit area, driven by vendor-provided prices. The
implementation was tested in four locations, with varying wind
or solar intensity. The best results were achieved in locations with
mild wind presence and strong solar irradiation, while locations
with strong winds and low solar intensity require higher Capital
Expenditure (CAPEX) allocation.

Index Terms—Coverage Maximization, Drone Swarms, Energy
Balancing, Photovoltaics, UAV Base Station, Wind Turbines.

I. INTRODUCTION

The use of UAVs, in particular the multi-copter drones, has
been praised for the ability of providing modular, adaptable
and scalable wireless communications services as they can
easily be redeployed, target specific users and load balance
existing cellular architectures, [1], [2]. Unfortunately, UAV-
mounted small base stations (UAVSBSs) are not a feasible
replacement to traditional base stations in urban areas, mainly
due to safety, privacy and noise concerns. Opposed to this,
UAVSBSs are crucial in scenarios that result in service outages
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such as war-torn or disaster-struck areas [3] and traffic surges
in weakly serviced areas [4]. In these cases, it should be
expected that the existing infrastructure is unable to support
the energy requirements of the UAVSBS system. Moreover, to
satisfy the service constraints of the area, which generally vary
during the day [5], the deployments require multiple UAVs
(a.k.a. swarm).

Since UAVs require a lot of energy (stored in a battery) to
fly, the goal of this work is to evaluate the feasibility of self-
sustainable energy systems for long-term persistent (uninter-
rupted) operation of UAV swarms. This is targeted for areas
where fixed infrastructure is unavailable and a UAVBS-based
solution is deemed acceptable. As such, we aim to provide
a design solution by finding the ideal scale of the system
for a particular location, while maximizing the coverage area
discounted by its financial cost. This is a nuanced problem, as
it solves complex interactions between the energy generation
and consumption systems.

A. Literature Overview

The effect of using UAVSBSs that are positioned to offer
service to ground customers has already been well investi-
gated in [2], [6]–[13]. In [6]–[8] the focus is on improving
spectral efficiency when exploiting the temporal and spatial
mobility of UAVs for servicing user hotspots. In our previous
works [9], [10], we demonstrated the benefit of horizontally
positioning a standalone UAVSBS, equipped with a tilting
directional antenna. Moreover, the work in [11] focused on
the energy efficiency for UAVSBS deployment, while the
authors in [14] and [15] studied the problem of placement
optimization of a single cell and interference-limited multi
UAVSBS deployments, respectively. While the aforementioned
works are concerned with optimizing deployment locations of
the UAVs once they are in the air, they generally ignore the
problem of short service time.

Ever since the proliferation of drones into the mass mar-
ket, there has been a strive towards persistent UAV services
[16] with several methods. The most prominent one assumes
automated battery swapping [17]. In [18], the authors solve
the optimal trajectory for patrolling UAVs that thoroughly
exploits the battery swapping mechanism connected to the
grid mains. In [19], the authors consider a mother ship-like
UAV that houses and orchestrates the deployment of a swarm
of smaller UAVs, where the mother ship ensures that the
energy requirements for the entire system are satisfied. While
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Fig. 1. Schematic of the energy system at the central station (CS) that consists of wind turbines (WT), photovoltaic (PV) panels, a central circuit (CC),
ground battery (GB) and a UAV battery charger (UAVBC) that represents the load. The service scenario illustrates a deployment in a mountainous region.

such mother ship systems are genuinely useful for achieving
unlimited mobility, the creation of one is complex and it
assumes technical innovation on several fronts, which is a
significant shortcoming and would become very costly to
implement. On the other hand, the authors of [20] consider
a ground-based central unit that serves as a backbone to the
UAVs and has solar panels to manage the energy requirements
on the ground. The shortcoming of the previous work is that
it does not consider the impact of wind and the energy needed
to offset it. In [21], the authors propose a cost-efficient UAV
system for data harvesting from IoT systems, but this is not
directly related to general communication services. In [22], we
previously investigated the optimal arrangement for UAVs that
need to provide persistent service by interleaved recharging at
a ground station. However, the analysis was limited to a single
UAV, and without the impact of wind.

We note that per [2], UAV Base Stations are able to alleviate
capital and operating expenditures (CAPEX & OPEX) of
telecom operators up to 52% and 42%, respectively. To serve
disaster-struck, remote, or underdeveloped areas, we focus
on works that involve sizing sustainable energy generation
systems for wireless communications. As such, the authors of
[23] and [24] proposed alleviating the energy requirements of
multi-tier cellular implementations supported with renewable
energy. The work of [25] comes the closest to our goal of
providing cellular connectivity in rural zones. Moreover, the
authors consider an architecture composed of UAV-based BSs
to provide cellular coverage, ground sites to connect the UAVs
with the rest of the network, solar panels, and batteries to
recharge the UAVs. The [25] approach is generally simplistic,
does not maximize coverage, and does not account for the
impact of wind. And, finally, the work [26] analyzes a mother

ship-orchestrated UAV swarm for wireless communications,
where the goal is to minimize the overall weighted distance
traveled by the mother ship for UAV recharge. This work does
not provide a realistic overview of the capital expenses, and
omits the impact of wind.

B. Off-grid Redeployable UAV Communications System
The proposed communications system is shown in Fig. 1,

and is intended to provide persistent services to rural, suburban
and low-rise urban areas, by deploying a central station (CS)
that supports and coordinates the UAV swarm. Once deployed,
the UAVs hover and provide a satisfactory service rate for
the entire area. When a UAV nearly depletes its battery, it
flies back to the CS to replace the energy spent. As in [27],
we consider an automatic battery swapping mechanism that
replaces the depleted batteries, as shown in c) in Fig. 1.

To ensure a long-term persistent deployment, the system
needs to compensate the power requirements. As illustrated
in Fig. 1, our proposed implementation of a CS has five
energy modules. The wind turbines (WT) and photovoltaic
(PV) panels generate energy to be stored into a central ground
battery (GB). The system is interconnected by a central circuit
(CC) module that directly links the load of the system, which
is an automatic UAV battery charger (UAVBC) that charges
the hot-swappable UAV batteries. Finally, we assume that the
CS acts as a sink/middle-haul for the wireless service that the
UAVs offer, which is over-provisioned and provided by low
earth orbit (LEO) satellites [28].

C. Main Contributions & Paper Outline
This work provides a fresh perspective on UAV swarm

implementations for persistent wireless service, such as:
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TABLE I
ABBREVIATIONS USED IN THIS WORK.

Abbreviation Meaning
BS Base Station
CA Coverage Area
CC Central Circuit
CCEE Cheapest Combination of Energy Elements
CS Central Station
GSS Greedy and Sparse Search
IoT Internet-of-Things
LoS Line-of-Sight
MEL Minimum Energy Load
MPPT Maximum Power Point Tracker
NLOS No-Line-of-Sight
NOC Nominal Operating Conditions
PV Photovoltaic
QoS Quality of Service
ST Standard Testing conditions
UAV Unmanned Aerial Vehicle
UAVBC UAV Battery Charger
UAVSBS UAV-mounted Small Base Station
WT Wind Turbine
ZDD Zonal Datarate Density
CAPEX Capital Expenditure

• We consider long-term standalone deployment of UAVs
for remote areas with a realistic model for the impact
of wind onto the energy consumption of the UAVs. This
is the first work in the area to consider wind intensity,
accounting for both altitude and terrain roughness.

• We model the system as totally self-sustainable and
including PV- and WT-based energy generation modules.
This is the first work to introduce WTs that have the ca-
pability of offsetting the UAV’s extra energy expenditure
due to wind speed.

• We aim to provide coverage in the most efficient manner
for a potential capital investment. To achieve this, we
formulate a novel problem that maximizes the wireless
coverage area discounted by the cost of the system. The
goal of solving the problem as coverage maximization is
to understand the scalability of such a complex system
in the many different possible deployment environments.
This is a nuanced multi-variate optimization problem
and it is entirely based on real world data and current
commercial climate.

• We propose a computationally light algorithm that uses
greedy sampling and binary search to find the optimal
configuration that is a combination of covered area, wind
turbines, PV panels, cells in the ground battery, and UAVs
in the swarm.

Common abbreviations are contained in Tab. I, and com-
monly used symbols are contained in Tab. II. Symbols in-
troduced later in the papers are contained in a table within
that section. The rest of the paper is organized as follows.
In Section II, we describe the UAV based communications
services and its energy expenditure. In Section III, we in-
troduce the energy generation and management system. In
Section IV, we define both the formal problem and the
proposed algorithmic solution. In Section V, we display the
results of the implementation, and finally draw the conclusions
in Section VI.

TABLE II
NOMENCLATURE OF THE SYMBOLS USED IN THIS WORK.

Symbol Meaning and unit of measurement
Aeff Antennas’ effectiveness in fitting the CA
Cbat Battery capacity (Wh)
Dj Horizontal Distance of the j-th UAV from CS (m)
Dmax Diameter of coverage area (m)
EUAVs,h,i UAV swarm energy consumption at time h and day i (Wh)
EEAC Energy Efficiency of Annual Coverage (m2/Wh)
F Total cost of the system (C)
Fa Cost of each type of wind turbine (C)
FE Cost of battery system (C)
FPV Cost of photovoltaic system (C)
FUAV Cost of UAVs (C)
FW Cost of wind system (C)
h Hour of the day
i Day of the year
kh Number of UAVs in a swarm
` Path loss (dB)
na Number of wind turbines of each type
nPV Number of solar panels
nUAV Fleet size - Number of available UAVs
pj Hovering location of the j-th UAV
R Instantaneous Data rate (Mbps)
Rh,min Minimum datarate requirement (Mbps)
vwind
h,i Wind speed at time h and day i (m/s)
η Mean large scale fading coefficient (dB)
θ Elevation angle at the cell edge (°)
λh Zonal datarate density (Mbps/m2)
τfly Air-time of a UAV (% of hour)

II. MODELING UAV SERVICE AND ENERGY

The coverage area (CA), which is a circle of radius Dmax,
contains an arbitrary number of users that we model in terms
of zonal datarate density (ZDD). The ZDD is defined as λh,
which represents the requested datarate per unit of area, in
Mbps/m2, for hour of the day h = 1, 2...24, which is uniform
for the entire area. The goal of ZDD is to properly scale
it for larger time-lengths in the order of hours and adapt it
per type of residency area, such as in [5], [29]. This allows
scaling the traffic demand for different sizes of Dmax without
having to assume a stochastic point process. As a result, the
minimum datarate requested for the entire CA Rh,min, for hour
h, is: Rh,min(Dmax) = λhπD

2
max. Note that we do not consider

different rates between days of the year i = 1, 2, ..365, since
such a metric is difficult to obtain and challenges the privacy
of users. Considering a fleet of available drones nUAV, a swarm
size of kh ≤ nUAV UAVs is released so that each UAV j is
given an equal amount of area to serve with rate R(kh, Dmax).
We can thus linearly scale the traffic load on each UAV with
the swarm size, so that it satisfies:

Rh,min(Dmax)

kh
≤ R(kh, Dmax), ∀h (1)

under the condition that maxh (Rh,min) ≤ nUAV ·
R(nUAV, Dmax) is satisfied. The data rate depends on kh and
Dmax because the radius of coverage of each UAV in the swarm
varies within the bounds of 0 < D(kh, Dmax) ≤ Dmax.

A. UAV Hovering Locations

The coverage region for each UAV in the swarm is a
circle of radius D(kh, Dmax), which is derived from a packing
algorithm [30]. In order to avoid leaving any part of the
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Fig. 2. Overlapping packing patterns for UAV regions (blue) with radius
D(kh, Dmax) fully covering the CA (red) with radius Dmax.

area without service, the circles of individual UAV cover-
age are packed in an overlapping manner that fully covers
the CA. Making each UAV j ∈ {1, 2, .. kh} equally rel-
evant, we assign the same radius D(kh, Dmax) = Dj ∀j.
Thus, as per the packing provided in [30], the radius oc-
cupies discrete values D(kh, Dmax) = Dmax

γkh
, where γkh =

1, 1, 1.1547,
√

2, 1.641, 1.7988, 2, for kh = 1, 2, 3, 4, 5, 6, 7,
respectively, and Dmax

1+2cos
(

2π
kh−1

) for kh = 8, 9, 10.

Setting the center of the CA as the center of our coordinate
system (0,0), the centers of the kh = {3, 4, 5, 6} circles are
located at {pj(kh, Dmax) = (xj , yj)} where,

xj =D(kh, Dmax)cos
(

2π(j − 1)

kh − 1

)
∀ j ∈ {1, 2, ...kh} , (2)

yj =D(kh, Dmax)sin
(

2π(j − 1)

kh − 1

)
∀ j ∈ {1, 2, ...kh} . (3)

For the case of 7, the centers of the smaller circles of
radius D(7, Dmax) that cover the region have coordinates
{pj(7, Dmax) = (xj , yj)} where,

xj = D(7, Dmax)
√

3cos(
2π(j − 1)

6
) ∀ j ∈ {1, 2, ...6} , (4)

yj = D(7, Dmax)
√

3sin(
2π(j − 1)

6
) ∀ j ∈ {1, 2, ...6} , (5)

(x7, y7) = (0, 0). (6)

As such, the horizontal distance from the CS can be calculated
as dj(kh, Dmax) =

√
x2j + y2j . Finally, for kh = {8, 9, 10},

one circle is concentric with the region and the centers of
the other circles are situated in the vertices of a regular
(n − 1)-gon at a distance of dj(kh) = 2sin( π

(j−1) ) for j ∈
{1, 2, ...(kh − 1)} from the center of the region. The circle
packing formations are shown in Fig. 2. In order to achieve
coverage regions with radius D(kh, Dmax), we adjust the UAV
hovering height H(kh, Dmax), which is dependent on the
propagation environment in the CA, and it is covered below.

B. Propagation Characteristics with a Directional Antenna

UAV based communication links discriminate two propaga-
tion groups, users with direct line-of-sight (LoS) or no-LoS
(NLoS). As such, the path loss ` is a sum of the free space
path loss (FSPL) and the additional large-scale shadowing

coefficient for each one of the propagation groups. The mean
large scale fading coefficients for each propagation group are
ηLoS and ηNLoS and come as a consequence of the typology’s
features [12]. Thus, the path loss between a user at horizontal
distance D and a UAV with altitude H can be expressed as:

`LoS =− 10 log(Gt) + 20 log(
√
D2 +H2) + C + ηLoS, (7)

`NLoS =− 10 log(Gt) + 20 log(
√
D2 +H2) + C + ηNLoS, (8)

where Gt is the antenna gain, log is a shortened version of the
common logarithm log10, and the term C is a substitute for the
carrier frequency fc constant in FSPL C = 20 log ( fc4π

c ). Fi-
nally, averaging the two propagation groups by the probability
of a LoS occurring gives:

10 log[L] = PLoS(ηLoS − ηNLoS) + `NLoS, (9)

where the LoS probability is given by the s-curve model [13]:

PLoS =
1

1 + a exp(−b[arctan
(
H
D

)
− a])

, (10)

where a and b are constants dependent on the topological
setting.

Each UAV has a downwards facing antenna with gain Gt =
Aeff10 log(GI), where the ideal conical antenna has gain:

GI =
2

1− sin (θ π
180 )

, (11)

where θ = arctan(HD ) is the elevation angle at the cell´s edge
and Aeff is the antennas’ effectiveness in fitting an ideal conical
beamwidth. This results in the final path loss expression:

10 log(L) =
ηLoS − ηNLoS

1 + a exp {−b[θ − a]}
+20 log

(√
D2 +H2

)
−Aeff10 log

[
2

1− sin (θ π
180 )

]
+ C + ηNLoS. (12)

In order for all the users within the area with radius D to be
served, we optimize the elevation angle of θ = arctan(HD )
from the perspective of a user located exactly at distance D.
Thus, as in [9], we can extract an optimal ratio of D and H ,
through the angle θ, by solving:

0 =
π tan (θ π

180 )

9 log(10)
+
a b(ηLoS − ηNLoS) exp(−b(θ − a))

a exp(−b(θ − a) + 1)2

−Aeff
π cos (θ π

180 )

18 log(10)(1− sin (θ π
180 ))

. (13)

This makes it easy to calculate the hovering height as H =
D tan(θ), which formulates the path loss only as a function
of the horizontal distance L(D). Finally, the serving rate for
a user at distance D = D(kh, Dmax) becomes:

R(kh, Dmax) = B log2

[
1 +

Pt

BN0L(D(kh, Dmax))

]
, (14)

where Pt is the transmission power, which is assumed to be
identical at both user and UAV side, while N0 is the noise
spectral density linearly scaling the noise with the channel
bandwidth B. Since the packing is done in an overlapping
manner, we must account for a total available spectrum of
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TABLE III
UAV FLIGHT PARAMETERS.

Label Definition Value
W Weight of the UAV in Newton 23.84 N
NR Number of rotors 4
Fn Upward thrust by the nth rotor -
vhfly UAV’s horizontal flying velocity 10 m/s
vtip Tip speed of the rotor 102 m/s
Af Fuselage area 0.038 m2

ρ(H(kh, Dmax)) Air density -
CD Drag Co-efficient 0.9
Ar Rotor disc area 0.06 m2

∆ Profile drag coefficient 0.002
s Rotor solidity 0.05
vc UAV’s vertical flying velocity 10 m/s
Pvfly Vertical flight power -
Phfly Horizontal flight power -
vhov Flying speed to counteract wind (m/s) -

Btot ≥ 3 · B to avoid inter-UAV-cell interference. Finally, we
note that, even though the coverage circles of two UAVs using
the same bandwidth may overlap, such overlap occurs outside
both coverage regions, and is thus not harmful towards the
spectrum reuse in the packing algorithm, as it can be seen in
Fig. 2.

C. UAV Power Consumption Model

Most of the UAV’s power consumption is absorbed by its
rotors, while the power spent for communications is negligible
[22]. To hover, the UAV may have to counteract the wind
speed vwind

h,i , for hour h at day i, to achieve net zero speed
is remarked as flying horizontally with non-zero velocity.
Here we differentiate the wind intensity with regards to the
daily variations, since such data is readily available, and has
very strict seasons. We also expect that the horizontal speed
required to counteract the wind speed increases with altitude
[31]:

vhov,h,i = vwind
h,i

[
H(kh, Dmax)

H0

]Ew

, (15)

where H0 is the measurement altitude of the wind velocity
vwind
h,i , and Ew is the empirical coefficient derived relative

to the roughness of the surface in the area. To reach the
hovering position pj(kh, Dmax), the UAV ascends vertically
with a velocity of vc to the designated height H(kh, Dmax),
and flies horizontally with a velocity of vhfly the horizontal
distance dj(kh, Dmax). Near the end its air-time τfly, the UAV
descends at −vc, that is, with negative velocity with regards
to the coordinate system.

All the parameters used in the following equations are de-
fined in Table III, and, with the goal to reduce equation clutter,
the variables H(kh, Dmax) and dj(kh, Dmax) are reduced to H
and dj , respectively. The power consumed by the UAV when
flying horizontally with speed v is derived using the axial

momentum theory, while assuming identical rotors [22] as,

Phfly(v) = NRPb

(
1 +

3v2

v2tip

)
︸ ︷︷ ︸

Pblade

+
1

2
CDAfρ(H)v3︸ ︷︷ ︸

Pfuselage

+ W

(√
W 2

4N2
Rρ

2(H)A2
r

+
v4

4
− v2

2

) 1
2

︸ ︷︷ ︸
Pinduce

, (16)

where Pb =
∆

8
ρ(H)sArv

3
tip, ρ(H) = (1 −

2.2558.10−5H)4.2577. Pblade and Pfuselage are the powers
required to overcome the profile drag forces of the rotor
blades and the fuselage of the aerial vehicle that oppose its
forward movement, respectively, while Pinduce represents the
power required to lift the payload.

The power required by the aerial vehicle to climb vertically
with a rate vc m/s is expressed as,

Pvfly(vc) =
W

2

(
vc +

√
v2c +

2W

NRρ(H)Ar

)
+NRPb. (17)

The energy consumption for the entire flight of UAV j
occurring at hour h, day i, is Ej,h,i(kh, Dmax) and can be thus
segmented into the three parts, ascent, hovering, and descent:

Ej,h,i(kh, Dmax) = Pvfly(vc)
H

vc
+ Phfly(vhfly)

dj
vhfly︸ ︷︷ ︸

ascent

+Pvfly(−vc)
H

vc
+ Phfly(vhfly)

dj
vhfly︸ ︷︷ ︸

descent

+Phfly(vhov,h,i) ·
(
τfly − 2

(
H

vc
+

dj
vhfly

))
︸ ︷︷ ︸

hover

, (18)

where τfly is the designated flight time that the UAV must
complete, and 2

(
H
vc

+
dj
vhfly

)
< τfly. For convenience, we use

a flight duration τfly of half an hour, which is reasonable for
state-of-the-art UAV models, since our wind, solar and traffic
data are quantized at each hour of the day. This means that,
at hour h on day i, the UAV consumes a total energy of:

EUAVs,h,i(kh, Dmax) =
1

τfly

kh∑
j=1

Ej,h,i(kh, Dmax). (19)

Finally, we note that some of the flight time is spent on
flying to and back from designated hovering positions. To
avoid service outage and add leeway for battery swapping, we
assume that the process of positioning occurs at different times
for each UAV. To afford such mobility, the system requires one
spare auxiliary UAV.

III. ENERGY GENERATION AND MANAGEMENT AT THE
CENTRAL UNIT

The electricity generated and stored in this system is pro-
portional to its size, and therefore to its financial budget.
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The service availability detailed in the previous section thus
becomes a function of the financial budget, which is spent on
energy generation and storage systems for the CS.

1) Load: Once the UAV lands on the CS, after spending
τfly time in the air, it releases its depleted battery through
an automated battery exchange system and receives a new,
fully charged, one, as shown back in Fig. 1 part c). The
old battery is then fully charged, making each recharge cycle
duration τcharge = Cbat

Pcharge
, where Cbat is the battery capacity,

and Pcharge is the charging power. The lithium polymer (LiPo)
on-board batteries have a predominantly linear charging be-
haviour [32]. Therefore, the power drawn by a single battery
unit is assumed to be constant, and the overall load profile
will look like a step function of the number of batteries
recharging at the same time. The time required for each
battery to be guaranteed operational for τfly must satisfy
max (Ej,h,i(kh, Dmax)) ≤ Cbat ∀ j, h, i, where Cbat should be
kept to a minimum with some margin for errors. Therefore,
the number of UAV batteries per single UAV that are required
by the system is defined by the ratio τcharge/τfly. The maximum
number of replaceable on-board batteries is:

bmax =

⌈
nUAV

(
τcharge

τfly
+ 1

)⌉
, (20)

which has to be reflected in the purchasing price per UAV in
the fleet.

2) PV: The solar energy generation units are represented
by a set of photovoltaic (PV) panels placed in parallel, all of
the same type [33] and with the same working conditions.
All parameters used in these equations are summarized in
Table IV. Their behaviour is simulated using a simplified
version of the 5 parameters model [34], which neglects the
shunt resistance and allows to calculate the maximum power
voltage (Vm) and current (Im) provided at any irradiation (Girr)
and ambient temperature (Ta) conditions. This is made possible
using the conservative assumption of a maximum power point
tracker (MPPT) with average efficiency εMPPT = 95% [35].

Vm,h,i = Vm,ST − β (TC,h,i − TST) + Vt,h,i log
Girr
h,i

Girr
ST
, (21)

Vt,h,i = ncells
kbnITC,h,i

q
, (22)

Im,h,i = Im,ST

(
Girr

ST

Girr
h,i

)
+ α (TC,h,i − TC,ST) , (23)

TC,h,i = Ta,h,i +
TC,NOC − Ta,NOC

Girr
NOC

Girr
h,i. (24)

Knowing Vm and Im from (21) and (23), as well as the cell
temperature TC, allows to calculate the output power as:

PPV,h,i(nPV) = nPV · Vm,h,i · Im,h,i · εconv · εMPPT. (25)

In the above equations, the subscript ST means standard test
conditions (Girr

ST = 1000W/m2, Ta,ST = 25◦C), whereas
NOC stands for nominal operating conditions (Girr

NOC = 800
W/m2, Ta,NOC = 20◦C). The cell temperature at standard test
conditions TST, was calculated using (24), but using Ta,SC
and Girr

ST instead of Ta and G. The list price for a single
panel, pre-VAT, is C 202 resulting in a PV system cost

TABLE IV
PV PARAMETERS FROM [33].

Label Definition Value
α Thermal coefficient of SC current 0.0474 %/°C
β Thermal coefficient of OC voltage -0.285 %/°C
εconv Converter efficiency 95%
ncells Number of PV cells 60
nI Diode ideality factor 1.5
kb Boltzmann constant 1.380649 · 10−23 J/K
q Electrical charge of an electron 1.602176634 · 10−19 C
Girr

NOC Irradiation at NOC 800 W/m2

Girr
ST Irradiation at ST 1000 W/m2

Im,ST Maximum power current at ST 8.85 A
Ta,NOC Ambient temperature at NOC 20°C
TC,NOC Cell temperature at NOC 45°C
TC,ST Ambient temperature at ST 25°C
Vm,ST Maximum power voltage at ST 31.8 V
εMPPT Maximum Power Point Tracker 95%
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Fig. 3. The wind power curves for two types of horizontal-axis WTs (blue),
and UAV power consumption for hovering at different altitudes (red).

that scales linearly with the number of solar panels nPV, as
FPV = 202 · nPV.

3) Wind: In favor of precision, the power output of a wind
turbine is not calculated with an analytical model, but by
interpolating the generation data found in the data sheet [36],
and shown in blue in Fig. 3. Two types of wind turbines are
considered and treated as distinct elements of the system:
• A horizontal axis small-WT with standard power output

of 500W (unit cost FW500 = C 1, 429.95);
• A horizontal axis medium-WT with standard power out-

put of 1kW (unit cost FW1000 = C 2, 738.76);
The list prices displayed above are pre-VAT, and were provided
by Aeolos Wind Energy Ltd [36]. Such costs also include a
9 m pole and a rectifier and control system. Finally, the total
power output of the system is scaled to:

PWT,h,i(nW500, nW1000) =
∑
a

naPa(vw,h,i), (26)

where a ∈ {W500,W1000} depicts the type of the turbine out
of the two suggested ones, and na is the number of turbines
of each type, giving a total cost of FWT =

∑
a Fa · na.

4) Ground Battery: In order to provide continuous service,
an energy storage system with capacity Ecap is needed. The
load is powered by the generation elements when possible,
with the storage elements receiving any excess energy and
providing back-up when the power generated is too low.
Therefore, at the end of a time slot the net energy in the sys-
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tem is Enet,h,i = [PPV,h,i(nPV) + PWT,h,i(nW500, nW1000)] δt −
EUAVs,h,i(kh, Dmax), where δt = 2τfly is the length of the time
interval. Thus, in case of net positive or negative energy, the
battery capacity at the next time step E(h+1)%24,i+(h+1)/24

(where % is the modulo operator and / is integer division) will
increase or decrease by min(Ecap(ncell), Eh,i + εb,h,iEnet,h,i),
with,

εb,h,i =

{
εconv, Enet,h,i ≥ 0
1
εconv

, Enet,h,i < 0
(27)

where Ecap is the total capacity of the battery as a function
of the number of cells in the system ncell, and εb,h,i is the
overall efficiency of the storage system. The Li-ion battery
cells are cylindrical LG MJ1, with unit cost of C 5.75 and
capacity of 12.6 Wh, resulting in a maximum ground battery
(GB) capacity of Ecap = 12.6 · ncell requires spending FE =
5.75 · ncell.

IV. PROBLEM DEFINITION AND METHODOLOGY

The goal of this paper is to find the best system con-
figuration for providing as much coverage as possible in a
geographical region. We thus consider the problem of sizing
the entire system as a combination of six variables: 1) number
of communication UAVs in the fleet nUAV; 2) number of 500W
WTs nW500; 3) number of 1kW WTs nW1000; 4) number of PV
panels nPV; 5) number of battery cells in the GB ncell; and
6) the radius of the circular CA Dmax. In order to evaluate
the quality of the system, we use the area πD2

max, in which
the guaranteed communications rate is satisfied, and the total
upfront cost F for the system needed to provide that service
is lower than a given threshold.

Since accurately calculating the total capital expenditure of
the system is crucial, the cost of the UAV swarm plays a
big role. Since we use the DJI matrice 100/200 models as
a reference, we take a reference price of C 4000 per UAV,
resulting in a total cost for UAV equipment of FUAV = 4000 ·
nUAV. Moreover, this budget also covers spare batteries bmax =
3 · nUAV that are required for battery swapping. Finally, to
guarantee operability in case of defects in one of the UAVs in
the fleet, and to offer better interleaving for battery swapping
[22], there needs to be one spare UAV in the fleet nUAV ≥ 2. To
avoid inconsistencies in the service, a simple timing difference
in the UAV swapping time can be employed. To elaborate,
not all UAVs have to do the battery swap at the same exact
instant, as this would result in a total outage of the system. To
circumvent this issue, the UAVs deployment is desynchronized
by a few minutes. Finally, in case of a scheduling failure, the
redundant UAV can substitute the designated UAV in the air.

(P1) : maximize
{nPV,nW500,nW1000,ncell,nUAV,Dmax}

πD2
max

F
,

s.t. Rmin,h(Dmax) ≤ khR(kh, Dmax), (28)
11 ≥ nUAV ≥ 2, (29)
nUAV ≥ max

h
(kh) + 1, (30)

Eh,i ≥ 0, (31)
F = FPV + FWT + FUAV + FE ≤ Fmax, (32)
Dmax ≥ Dlb, (33)
Dmax ≤ Dub. (34)

The (P1) objective function maximizes the coverage of the
deployment normalized by its CAPEX; boundary (28) guaran-
tees the quality of service for the whole area; boundary (29)
maintains eligibility of the number of UAVs in the swarm;
boundary (30) defines the size of the swarm; boundary (31)
guarantees no system outage due to lack of energy; boundary
(32) defines the financial budget; boundaries (33) and (34)
define the minimum and maximum required coverage. We
note that if the problem is infeasible, the system is inadequate
for the application scenario. Finally, as per (28) and (31),
the system does not allow for any outage tolerance given
the provided data. This is because mismanagement of energy
allocation will not result in a total outage, but in a reduced
quality of service. Since our goal is to provide average service
to most users, accounting for outages would not be aimed
towards constraining outages for that hour altogether, but a
separate problem of QoS maximization instead of coverage
maximization. So, in cases of sub-average performance of the
system, it will operate in a best-effort mode.

Given a fixed coverage area, the problem can be separated
into two sub-problems that construct the CAPEX-efficient
coverage maximization, and thus solution-searching can be
done iteratively. The easier problem of the two is searching
for the minimum energy load (MEL).

(MEL) : minimize
{kh}

min
kh

EUAVs,h,i(kh, Dmax) ∀h, i,

s.t. R(kh, Dmax) ≤ Rmin,h(Dmax), (35)
10 ≥ kh ≥ 1. (36)

The MEL problem guarantees coverage for a specific area
by satisfying the lower datarate bound. Extracting the load
profile of the entire system for a single area size is a constant
complexity operation, since the number of hours and days for
coverage are fixed. As such, the search of the entire space
of eligible coverage areas has linear complexity, where the
complexity of that operation scales with the size of the eligible
space between both boundaries (28) and (29).

The second sub-problem is finding the cheapest combination
of energy elements (CCEE) W500 and W1000 WTs, PVs,
and battery cells that satisfies the load profile. An exhaustive
search on the CCEE problem has quartic complexity, which,
summed with an exhaustively searched MEL, creates an un-
reasonably complex problem. In addition, checking the MEL
+ CCEE sub-problems for every possible coverage multiplies
the complexity by the size of the space, Dlb ≤ Dmax ≤ Dub.
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Fig. 4. EEAC for servicing coverage area, at a suburban/remote setting, in
the presence of weak wind with expected velocity of 3.6 m/s, overlay.

Therefore, it is necessary to find a more efficient way to solve
(P1). We approach this by performing greedy sparse search to
reduce the solution space, and simpler algorithms to find near-
optimal solutions. Approximate methods, such as the Genetic
Algorithm (GA) implemented in [37], did not yield a satisfying
performance and are thus left out of this work. However, the
computational performance of a GA is given at the end of
Section V.

To elaborate better, there are many challenges that come
from solving the realistic design for a combination of a UAV
swarm supplied with unreliable energy, such as renewables, in
particular wind. The first challenge is that the swarm has a
varying size during the day. The second challenge is that the
energy expenditure has a non-monotone relationship with wind
speed. The third challenge is that the energy generation also
varies in a non-monotone manner with wind speed. However,
the biggest challenge of all is that all aforementioned chal-
lenges do not scale linearly with the size of the coverage area.
Thus, solving the optimal combination problem for all possible
sizes of cellular coverage is non-tractable. Nonetheless, we
developed an efficient way to find the most economical system
configuration based on the service demand and the available
resources whose data is region-specific and is obtained from
European Commission’s information system. The methods are
elaborated in the following subsection.

A. Greedy and Sparse Search (GSS) Algorithm

We define a search algorithm that uses sparse searching
of coverage areas where maximum coverage per unit cost is
likely to occur, and uncover a simplified way to solve CCEE.
Specifically, we investigate the energy efficiency of annual
coverage (EEAC) for each size of coverage area as a proxy-
heuristic metric:

EEAC =
πD2

max∑
h,iEUAVS,h,i

, (37)

where EUAVS,h,i is given by the MEL problem. Looking at
Fig. 4, it is noticeable that EEAC is neither a monotonic
nor a convex function of the coverage area. Therefore, it is
convenient to sparsely search for a solution where EEAC is im-
proving. Furthermore, we can use a greedy approach to shrink
the number of samples that will be searched for a solution to
the ones that offer the best improvement with regards to the
last sample. Thus we select only the samples whose second

Algorithm 1: GSS

1 IMPORT: {MEL, BINARY-SEARCH,
SAMPLE-mono, SAMPLE-2ndder ,
SAMPLE-comb}

2 Input: all-constants, all-data, Dlb, Dub max budget;
3 j=0
4 Dmax = Dlb
5 step size=1;
6 while Dmax ≤ Dub && kh ≤ nUAV do
7 j=j+1
8 (loadh,i [j] ,FUAV [j])
9 =MEL(EUAVs,h,i(kh, Dmax) ∀h, i)

10 EEAC [j]= πD2
max/

∑
h,i loadh,i [j]

11 Dmax = Dmax + step size

12 SAMPLE-mono (EEAC,EEAC*):
13 EEACmnt ← monotonic samples
14 SAMPLE-2ndder (EEACmnt,EEAC*):
15 Dmax sparse, addr← positive 2nd derivatives
16 j=0
17 for Dmax in Dmax sparse do
18 j=j+1
19 loadh,i = loadh,i [addr[j]]
20 FUAV = FUAV [addr[j]]
21 Fcomb = 0
22 F = max budget
23 solutions = []
24 flag==True
25 while flag==True do
26 (nPV, nW500, nW1000), flag ← SAMPLE-comb
27 Fcomb = FPV + FWT + FUAV
28 ncell = b(F − Fcomb)/5.75c
29 if Eh,i(ncell, nPV, nW500, nW1000, load) ≥ 0 then
30 BINARY-SEARCHminimize ncell s.t.
31 Eh,i(ncell, nPV, nW500, nW1000, load) ≥ 0
32 Fcomb = FPV + FWT + FUAV + FE
33 APPEND

(Dmax, ncell, nPV, nW500, nW1000, nUAV, Fcomb)
34 TO solutions
35 F = Fcomb

36 fin sols[j] = minFcomb (solutions)

37 Output: fin sols

order derivative is larger than zero. In this way, we still solve
the MEL problem for the whole Dlb ≤ Dmax ≤ Dub space
beforehand, with the goal of reducing the search space for
the multi-variate CCEE sub-problem by a significant factor
ranging between 100-1000, depending on the scenario we
investigate.

The CCEE problem is harder to simplify. However, we
can exploit the fact that the budget can be dedicated to two
different purposes: energy generation and storage. We can
easily reduce the complexity of searching the viability of
storage once we have sufficient energy generation supporting
the system. Thus, we decrease the dimensionality of the
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Fig. 5. Daily evolution of requested data traffic [5], [29].

space by increasing the budget until battery storage becomes
relevant, i.e. the power generation profile is able to keep up
with the load profile. Since we are looking to minimize the
financial cost, the first eligible solution where battery storage
is relevant becomes our new and smaller search space. A
simplified representation of the algorithm is shown in Alg. 1.
The GSS approach does not guarantee to always find the global
maximum for the coverage area due to the sampling of Dmax.
Despite this, GSS managed to find the global optimum for
all the scenarios that we tested. This is mostly due to the
well sampled areas and the exhaustive search SAMPLE-comb
function for sampling combinations of WTs and PVs, which
are monotonously increasing in cost.

V. NUMERICAL RESULTS AND CASE ANALYSIS

We aim to accurately evaluate the feasibility of the system
across seasons or years. However, due to data sensitivity, the
traffic data requested by the populace is only reflected on a
daily cycle λh and does not vary with location, as shown
in Fig. 5. Moreover, we distinguish two possible types of
areas that may need coverage: Suburban and Urban. These
have the (a, b, ηLoS, ηNLoS) propagational parameters of values
(4.88, 0.43, 0.2, 24) and (9.61, 0.16, 1.2, 23), for Suburban and
Urban respectively [12]. The rest of the testing parameters are
included in Table V. Antenna directivity Aeff is considered
as a split variable, since it may impact the aerodynamics of
the UAV in ways that the power consumption model cannot
predict, and a system integrator may only have a few available
types.

For the case analysis, four testing locations with diverse
wind speed and solar irradiation patterns were chosen. Two
locations are in regions that are prone to grid and system fail-
ures, like the earthquake ridden region around the Italian town
of Amatrice and the fjord/floodplains of Western Denmark. We
also suggest the placement of the system in common off-grid
locations, such as sparsely populated areas in Western Texas
and the touristic region of the Faroe Islands. We also refer to
the Faroe Islands and Western Denmark as windy locations,
and Amatrice and Western Texas as sunny locations.

In Fig. 6 we illustrate the EEAC across the four scenarios
for four different antenna directivity coefficients Aeff that have
negligible impact to the UAVs’ aerodynamics. More efficient
antennas expect higher optimal altitudes, thus consuming more
energy for vertical flights and expecting higher wind velocities.
Additionally, a larger Dmax implies larger swarms, that have a
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Fig. 6. EEAC for all four locations in a suburban environment.

TABLE V
SIMULATION PARAMETERS [38], [39]

Label Definition Value
fc Channel carrier frequency 5.8 GHz
c Velocity of light 3 · 108 m/s
B Channel bandwidth 80 MHz
H0 Nominal height for wind measurements 10 m
Ew Environment roughness coefficient 0.335
Btot Available spectral width 480 MHz
N0 Noise spectral power -174 dBm/Hz
Pt Transmission Power 23 dBm
Dlb Lower bound of coverage size 0 m
Dub Upper bound of coverage size ∞ m
Pcharge Power of the charger 180 W
Fmax Total expendable budget C 100000

lower flying altitude. As discussed in the previous section,
thanks to the aerodynamics of the UAV, the low speed of
horizontal wind reduces the power consumption for hover-
ing and proves beneficial for the flying swarm. This effect
provides interesting results in the case of the more windy
locations, such as the Faroe Islands, which shows a distinct
improvement in energy efficiency for the coverage of areas
with 3500 m ≤ Dmax ≤ 4250 m.

All implementations are tested for full annual service on a
specified location. This is the most difficult test for the system
as it considers diverse weather patterns of all four seasons. The
productivity of each energy source, wind harvested by WTs
and solar harvested by PV panels, is tied to the geographical
location of the CS and the time of year. Therefore, we use
measurement-driven data provided by the European Commi-
sion’s Photovoltaic Geographical Information System1 to ex-

1https://re.jrc.ec.europa.eu/pvg tools/en/#MR
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Fig. 7. Implementation feasibility of the off-grid system in a suburban or urban environment.

tract the annual measurements of 2015. This way, by avoiding
multi-year averages, correlation between hourly samples is
retained. Moreover, we expect solar irradiation and wind speed
to be inversely correlated, as per the study in [40].

Since we have set the bound for CA as infinite, in Fig. 7 we
plot the entire solution space of eligible area CA sizes searched
by the GSS. This is done to better illustrate how the cost
efficiency varies when different coverage bounds are imposed.
The first impressions are that there is an obvious advantage in
installing the system in an area where the use of solar panels
is feasible. In both sunny locations, the cost-feasibility of the
system is improved by better allocating the available budget,
which in turn allows for exploiting the improved packing
efficiency when using bigger swarms. The most cost efficient
deployments are found in the Texan planes, where energy can
be captured through both wind and solar technologies. Namely,
bigger deployments in this setting do not need as much PV
panels nor wind turbines as the other three locations to satisfy
the energy requirements of the UAV swarm.

Analyzing the impact of wind, we find that deployments
in windy locations tend to have more volatile solution space,
as opposed to the two sunny locations. The fluctuations in the
curves as the CA gets larger are due to three non trivial effects
of wind onto the energy generation and expenditure of the
entire system. The first effect is the combination of the three
non-monotonous curves for energy generation/expenditure in

Fig. 3. The second effect that causes the strong fluctuations
are the variability in wind speed for energy generation, which
in some cases warrants use of solar panels to satisfy average
QoS. The final effect is that denser deployments (when CA
is larger it requires a bigger UAV swarm) tend to have a
lower flying altitude. This is particularly impactful in windy
environments, as the wind gets logarithmically stronger with
the flying altitude, and thus increases the energy expenditure
of the swarm.

Furthermore, both windy locations do not find use for PV
panels, and generally tend to use the bigger 1000W turbines.
The first reason for this is that wind turbines offset the
added wind expenditure of UAVs hovering in high winds;
secondly, it makes more sense to exploit the natural resource
with the higher energy output. We note that, the behaviour
between W500 and W1000 WTs is in fact non-linear (it has
a specific profile) and W1000 can operate very efficiently
in higher winds, as it was shown back in Fig. 3. To add,
the UAV energy expenditure initially dips for weaker winds,
as it negates negative effects from poor aerodynamics. This
means that W1000 turbines are better suited for cancelling
the high energy expenditure of winds stronger than 10 m/s.
Even in the cases of sunny deployments, a certain degree of
wind power is necessary, usually with the W500 WTs. This
is done to offset the higher energy expenditure in scenarios
where the wind-speed becomes more challenging, such as
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when hovering at higher altitudes. As such, the flying altitude
is the main culprit for the comparative efficiency between
windy and sunny locations when the altitude of the UAVs
becomes high, and wind speeds become the main cause of
battery exhaustion.

The analytic impact of service in urban and suburban situa-
tions varies due to two effects. The first is the difference in the
propagation properties of the environment that impact the large
scale fading. Tougher propagation environments, such as the
urban environment, have more solid structures and thus expect
higher hovering altitudes. The second effect is that urban-
type environments expect larger data traffic requirements, as
represented in Fig. 5, which results in smaller coverage areas
for the same swarm size.

As we can see in Fig. 7, the difference in efficiency between
the sunny and windy locations in suburban areas is not so
drastic when the UAVs have antennas with high directivity
Aeff = 0.9. In accord, deployment efficiency between the
windy and the sunny locations is much closer, mostly due
to the higher altitudes of the UAVs. Nonetheless, UAV swarm
deployments are more costly in windy locations and generally
require much higher budgets than the C 100000 to achieve
coverage areas over 2700 m or 3200 m in radius when using
Aeff = 0.6 or Aeff = 0.9 respectively. We note that this is an
already high cost and thus we do not recommend the use of
UAV swarm wireless communications for covering big windy
areas. In contrast, the scenario in Western Texas is not limited
by the upper CAPEX limit, due to the mild wind presence and
reliable solar irradiation.

Moving over to the Urban environment, we can see that,
due to the increased user density and the worse propagation
environment, the coverage for the urban implementations
usually has much smaller CA of radius between 2000−2700 m.
Moreover, the implementations’ efficiencies of the windy and
sunny locations are much closer. However, the budget of
scaling the system to a bigger coverage area in a windy
location takes a great toll on CAPEX and exceeds the initial
allocation of F = C 100 000. Therefore, serving windy urban
areas sees no use for the case of Aeff = 0.6. Again, as seen in
Fig. 7, the performance for the windy location improves when
using better antennas, allowing for larger swarms.

It is important to note that the reliability of the system
entirely depends on the data taken in the tested environments.
In this work, we use four different sets of statistical data
points, wind intensity, solar irradiation, temperature, data
traffic pattern, based on averages over an hour. Therefore, the
solutions provided by our analysis will give average estimates
on communication service performance. This means that an
unexpected fluctuation will not result in total system failure,
but only in below-average performance in the communication
service for that time slot. In the same way, unexpected
peaks in the energy supply will make the system capable of
providing better service than needed, and therefore provide
above-average performance. These fluctuations in service are
to be expected in an off-grid system, and due to the lack of
available data and complex interactions we can address in the
following way.

In the current results, the system design is targeted at
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Fig. 8. The expected service rate offering for 15 different levels of λh
provision (x in P(λh < x)) for the suburban setting.

offering normally provisioned service. In detail, given that
λh is a random variable with mean µh the aforementioned
analysis covers the case where λh = µh Mbps/m2. Re-
gardless, the pre-deployment system analysis is designed to
give more significance to better resource allocation through
overprovisioning, or give more weight to the financial aspect
by underprovisioning. As this work is focused on finding the
optimal scale of deployment that makes the most financial
sense for offering resource Rh,min(Dmax) = λhπD

2
max, the

uncertainty provisioning is embedded through sampling the
empirical distribution of λh. To elaborate, improving the
system for robustness to day-to-day variations in datarate
and/or energy outage implies sampling the datarate request
distribution at different points in the empirical cumulative
distribution function P(λh < x). In Fig. 8 we showcase the
above-average (x > µh) resource demand sampled for 15
different levels of x to illustrate the variability in resource
provision.

Finally, we compared the performance of our custom made
GSS algorithm to an exhaustive search solution and a GA
implementation. An exhaustive search solution is the equiv-
alent to independent planning where: first the UAV swarm
configuration is solved for some specific area size, then the
micro-grid system cost is minimized for that configuration, and
the process is repeated for all possible area sizes. The perfor-
mance comparison is in terms of processing time on the same
machine with CPU execution, where the CPU was Intel(R)
Xeon(R) Silver 4208 CPU @ 2.10GHz. The processing time
for the case analysis of Western Texas was 51.88 minutes for
GSS. An unrestrained exhaustive search solution containing
the same solution space resolution as GSS was calculated to
take approximately 3.64 years, which is unreasonable. A more
practical, reduced resolution exhaustive search that was used
to verify the GSS results took roughly 14 days of computation.
A comparison with a GA with the following parameters was
also carried out: population per generation of 30, number of
parents in every generation 5, number of mutating offspring
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(in addition to the rest) 15, minimum consecutive generations
when goal is reached 5, and minimum improvement desired by
user 0.001 (the algorithm stops after no improvement higher
than 0.001 has been made for 5 consecutive generations). The
GA approach took 3.1 days of computation while providing
results that were far from the optimal values.

VI. CONCLUSION

In this paper we considered deploying a UAV swarm that of-
fers persistent wireless services in an entirely off-grid setting.
We formulated the problem as CAPEX efficient coverage area
maximization, which is a multi-variate optimization problem
for solving the load profile based on real world data. We
considered energy generation from two sources, wind and
solar, which are also taken from real world data. In this paper
we have emphasized the importance of accounting for the
impact of wind onto the deployment. Moreover, we consider
the hourly wind intensity as a function of elevation and terrain
roughness, and account for its impact on UAV deployments for
long duration hovering. We have proposed the GSS algorithm,
which is computationally easy, combining greedy sampling
and binary search to find the optimal combination of wind
turbines, PV panels, cells in the ground battery, and UAVs in
the swarm. Using GSS we have calculated the feasibility of
the system in four different locations where the deployment
would have to balance wind or solar power generation. This
work opens a plethora of directions for future works, such as
investigating the feasibility in very specific areas, specific short
term periods, and different types of UAVs. Additionally, a fu-
ture direction can cover post-deployment energy management
system for service rate matching.
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