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Time series aggregation for optimization:
One-size-fits-all?
Sonja Wogrin, Senior Member, IEEE

Abstract—One of the fundamental problems of using opti-
mization models that use different time series as data input,
is the trade-off between model accuracy and computational
tractability. To overcome computational intractability of these
full optimization models, the dimension of input data and model
size is commonly reduced through time series aggregation (TSA)
methods. However, traditional TSA methods often apply a one-
size-fits-all approach based on the common belief that the clusters
that best approximate the input data also lead to the aggregated
model that best approximates the full model, while the metric that
really matters –the resulting output error in optimization results –
is not well addressed. In this paper, we plan to challenge this belief
and show that output-error based TSA methods with theoretical
underpinnings have unprecedented potential of computational
efficiency and accuracy.

Index Terms—time series aggregation, optimization.

I. INTRODUCTION

THE traditional and vast majority of time series aggre-
gation (TSA) frameworks focus on best approximating

the original data (i.e. to reduce difference between cluster
centroids and actual data, which we will refer to as the
input error) with aggregated or clustered data, completely
separating the realm of data from the realm of optimization.
Such traditional a-priori methods are based on the common
belief that the clusters that best approximate the data also lead
to the aggregated model that best approximates the full model
(i.e. minimize the output error, the difference between full
and aggregated model results), which is not necessarily true,
as we will show through an illustrative case. Examples of
such a-priori methods and applications, including k-medoids
[1] or k-means, can be found in a recent literature review [2].
Some a-priori TSA methods keep additional information about
the original time series that are important for optimization
model results, such as adding periods with extreme events,
e.g. [3], [4], [5]. While this might improve model outcomes,
the choice of extreme days is still taken with respect to
input data only. As pointed out by [6], the correct extreme
periods cannot be known in advance because they depend
on endogenous optimization outcomes, which leads us to a-
posteriori1 methods. Some examples of a-posteriori methods
include [7], [8], [9]; however, they either contain some kind
of heuristic components or are tailored to toy problems.

In this paper we show that first, a-priori TSA methods are
not a one-size-fits-all solution when used for optimization
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1A-posteriori methods employ preliminary optimizations to improve the
aggregation process.

models, and that they should ultimately be replaced by a-
posteriori methods. To that purpose, we first define full and
aggregated optimization models and apply a traditional k-
means clustering technique to an illustrative example in section
II. And second, that when a-posteriori methods are based
on theoretical underpinnings - as the basis-oriented method
proposed in section III - they outperform a-priori methods by
orders of magnitude. Section IV concludes the paper.

II. FULL AND AGGREGATED OPTIMIZATION MODELS

We consider the following generic formulation of a full (left)
and its corresponding aggregated (right) optimization problem:

minf(x, TS)

s.t. g(x, TS) ≤ 0

minf(x, TS)

s.t. g(x, TS) ≤ 0,

where x are the decision variables, TS represent the original
time series used as data, and f and g are the objective function
and constraints. The number of variables is proportional to the
cardinality of the time series, |x| ∼ |TS|, and hence there is a
large amount of variables x and a large number of constraints
g in the full problem, which often leads to computational com-
plexity and intractability. Through a TSA process often obtain
through clustering algorithms, the original TS are transformed
into the aggregated TS, where |TS| � |TS|. Correspondingly
|TS| � |x|, and so is the number of constraints, which
leads to a significant reduction in computational burden of
the aggregated optimization model with respect to the full
optimization model. In general, there is no guarantee with
respect to the quality of aggregated versus full model results.

A. Economic dispatch problem

The full economic dispatch (ED) optimization problem min-
imizes overall power system cost over a time horizon of hours
h by determining the optimal production of generating units g,
each of which has their corresponding variable operating costs
Cg , and upper and lower bounds while meeting system demand
Dg,h at each hour2. Lower bound P g depends on technical
characteristics of the generator itself, but upper bound P g,h

also depends on the temporal index. Indeed P g,h can be
obtained as the product of the installed generator capacity

2If it is not possible to meet demand with existing generators, then there
is non-supplied energy at a high cost. We have not modeled this explicitly
for simplicity. But a fictitious generator with high operating cost and infinite
upper bound can represent non-supplied energy in the presented formulation.
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P g multiplied by its capacity factor CF g,h
3. The TS of

this problem are system demand and capacity factors. In an
aggregated ED problem, we consider only r representative
hours, each of which has a weight W and |r| � |h|. Both
the cardinality of |r|, the corresponding weights Wr and
aggregated data Dr and P g,r most likely stem from a data
aggregation/clustering procedure. A stylized formulation of the
full (left) and aggregated (right) ED is given below:

min
∑
g,h

Cgpg,h

s.t.
∑
g

pg,h = Dh ∀h

P g ≤ pg,h ≤ P g,h ∀g, h

min
∑
g,r

Cgpg,rWr

s.t.
∑
g

pg,r = Dr ∀r

P g ≤ pg,r ≤ P g,r ∀g, r

B. Economic dispatch and k-means clustering

We consider a numerical example of the ED with one wind
unit and one thermal unit over the time horizon of one year
(h = 1, · · · , 8760). The model data are hourly time series of
demand and wind production factors (the latter affect P g,h). To
obtain aggregated data for the aggregated ED model, we use
the probably most frequently used input-error-based a-priori
TSA method, i.e., k-means clustering. In order to run k-means,
the user has to specify the total desired number of clusters,
which can range from 1 to 8760. However, the choice of the
number of clusters is often done on a trial and error basis. In
this example, we choose 3 clusters - this seemingly small and
arbitrary number will become relevant later on.

When applying k-means on this data and demanding 3
clusters (|r| = 3, |h| = 8760), we obtain TSA results as
shown in Figure 1a, where each wind-demand TS pair is
plotted as an x and color-coded depending on the cluster it
has been assigned to. The mean squared error (MSE) between
the original hourly TS and the cluster centroids is 0.0167,
which is the minimum error in the input space that can be
obtained for 3 clusters. The 3 cluster centroids for demand
and wind capacity factors, i.e. Dr and P g,r), as well as the
corresponding cluster weights Wr - also a result of the TSA
procedure - are then used as data input in the aggregated
economic dispatch model. Running the aggregated economic
dispatch model with 3 weighted representative periods using
k-means clustered data, yields an overall error of 91%4 in total
system costs between the full and the aggregated model results.
This also shows how inefficient an a-priori TSA method can
be when used in aggregated optimization models. Note that in
order to achieve a 0% output error using k-means, all 8760
clusters would have to be used.

III. BASIS-ORIENTED TIME SERIES AGGREGATION FOR
AGGREGATED OPTIMIZATION MODELS

When solving aggregated optimization models, what really
matters is how well aggregated model results approximate full

3For thermal generators, the capacity factor is 1, but for generators that
belong to variable renewable energy sources, e.g. wind and solar, such a
capacity factor depends on solar irradiation or wind speeds, which vary over
time.

4Calculated as the difference between the objective function value of the
full model, and the objective function value of the aggregated model.

0 0.2 0.4 0.6 0.8 1

Demand

0

0.2

0.4

0.6

0.8

1

W
in

d

kmeans clustering

(a)

(b)

Fig. 1: K-means (a) and basis-oriented (b) clusters on full time
series data.

model outputs, i.e., the output error, and not the input error.
Therefore, in this section we propose an innovative a-posteriori
framework of basis-oriented TSA for aggregated optimization
models to overcome such inefficiencies. Finally, we apply this
new methodology to the same ED problem from before.

A. Basis-oriented time series aggregation framework

We consider a linear program (LP) that depends on TS, such
as the ED from section II-A. For the sake of simplicity, we
analyze each time step individually and assume there are no
time-period-linking constraints5. In particular, we focus on the
optimal solution for this single time step and its corresponding
basis B (in the simplex framework). In the remainder of this
section, we use the concrete example of the ED to introduce
the idea of basis-oriented clustering. We say hour, but it could
be a generic time step as well.

5If there are no time-period-linking constraints in the optimization problem,
then analyzing time steps separately does not incur an error. In any case, the
issue of complicating constraints will be a topic of future research.
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Consider two hours with different TS data whose optimal
solution of the ED belong to the same basis B. The TS data
affects the right-hand-side (RHS) vector of the constraints. An
expected value (or centroid) of these data, yields an optimal
solution that also has the same optimal basis B.

Theorem. For each i = 1, . . . , I consider the following LPs
(Ei): min cTx s.t. Ax = bi, where x ∈ Rn, A ∈ Rmxn, c ∈
Rn, bi ∈ Rm and the LPs only differ in the RHS values bi.
Then, B is also an optimal basis for the problem (E): min cTx
s.t. Ax = E(bi), where E(bi) =

∑
i
bi
I .

Proof. We proof this by contradiction. Assume that B is not
the optimal basis for problem (E): min cTx s.t. Ax = E(bi).
Instead, let B (6= B) and N be the optimal basis and the
non-basis matrices of (E). Under this assumption, it follows
that cT

B
xB < cTBxB for this problem. In (E) we obtain that

Ax = BxB + NxN = E(bi). By definition xN = 0, so
we further simplify Ax = BxB = E(bi) and it follows that
xB = B

−1
(E(bi)). We now substitute this optimal solution in

the objective function of (E), which yields cTx = cT
B
xB =

cT
B
B

−1
(E(bi)) = cT

B
B

−1
(
∑

i
bi
I ) = 1

I c
T
B
B

−1
b1 + . . . +

1
I c

T
B
B

−1
bI . Since we know that B is an optimal basis for

each problem (Ei), we can say that: 1
I c

T
B
B

−1
b1 + . . . +

1
I c

T
B
B

−1
bI ≥ 1

I c
T
BB

−1b1 + . . . + 1
I c

T
BB

−1bI = cTBxB . This
would imply that B is an optimal basis for (E), which is a
contradiction.

This result has significant ramifications with respect to clus-
tering TS data: imagine two hours with different data, i.e. b1
and b2, but an identical optimal basis B for the underlying LP,
then the full optimization model (with individually represented
hours), and the aggregated optimization model where we only
have one expected hour (i.e. the cluster centroid or expected
value b1+b2

2 ), yield the same objective function value, and the
same expected results for the variables. Hence, those two
hours can be merged without losing any accuracy in the
final aggregated model. In other words, if hours are aggre-
gated within their basis and represented by the cluster centroid,
then the aggregated model results will be exactly the same
as the full hourly model results and have zero output error
in expectation. This shows: first, that TSA for optimization
purposes must be based on the impact of the aggregation on
the optimization output error and not on similarity of input
data as in traditional methods; second, it introduces basis-
oriented TSA as a promising way of clustering for aggregated
optimization problems.

B. Economic dispatch and basis-oriented clustering

Applying basis-oriented clustering to the above-mentioned
ED example shows that there are only 3 different bases.
Therefore, we only require 3 clusters. In Figure 1b, we
have color-coded each hour depending on the basis (and
corresponding cluster) this hour belongs to: blue (the wind
generator is the marginal generator), black (thermal is on the
margin), and red (hours with non-supplied energy). The MSE
in the input space is 0.0385, which is 2.3 times larger than

the MSE obtained by k-means, so the input error is higher
with the obtained clusters. However, if we cluster all hours
within their basis, then the aggregated optimization results are
exact! Solving the aggregated optimization model with only
3 representative periods that have been clustered, accounting
for the corresponding bases, yields an error of 0%. Apart
from being theoretically exact, basis-oriented clustering also
establishes the maximum number of clusters necessary to
obtain exact optimization results, which is nothing current
TSA methods can offer.

IV. CONCLUSION

The takeaways from this paper are as follows. First, a-
priori TSA methods are fundamentally flawed when used
in/for optimization models and therefore should be abandoned
and replaced by a-posteriori methods. As we have shown by
counter-example, the lowest input error (as indicated by MSE)
does not translate into the lowest (or even a low) output error
when approximating full optimization model results. Second,
basis-oriented TSA can achieve a tremendous reduction (3 out
of 8760 hours) in input data of several orders of magnitude
while replicating full model results exactly. This confirms that
picking clusters intelligently can outperform traditional one-
size-fits-all a-priori TSA methods (such as k-means) even if
those use most of the original data. Finally, more research is
required to develop a theoretical framework on most efficient
a-posteriori TSA methods. The basis-oriented TSA proposed
here could be a starting point. In future research, we plan to
explore basis-oriented TSA further to see if it can be extended
to large-scale, realistic problems with, e.g., time-linking and
discrete constraints.
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