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Abstract—In this paper we propose a co-design of the sec-
ondary frequency regulation in systems of AC microgrids and
its cyber security solutions. We term the secondary frequency
regulator a Micro-Automatic Generation Control (µAGC) for
highlighting its same functionality as the AGC in bulk power
systems. We identify sensory challenges and cyber threats facing
the µAGC. To address the sensory challenges, we introduce
a new microgrid model by exploiting the rank-one deficiency
property of microgrid dynamics. This model is used to pose
an optimal µAGC control problem that is easily implemented,
because it does not require fast frequency measurements. An end-
to-end cyber security solution to the False Data Injection (FDI)
attack detection and mitigation is developed for the proposed
µAGC. The front-end barrier of applying off-the-shelf algorithms
for cyber attack detection is removed by introducing a data-
driven modeling approach. Finally, we propose an observer-based
corrective control for an islanded microgrid and a collaborative
mitigation scheme in systems of AC microgrids. We demonstrate
a collaborative role of systems of microgrids during cyber attacks.
The performance of the proposed cyber-resilient µAGC is tested
in a system of two networked microgrids.

Index Terms—Cyber security, Automatic Generation Control
for Microgrids (µAGC), networked microgrids, inverter-based
resource (IBR), False Data Injection (FDI)

I. INTRODUCTION

The recent decade has witnessed several large-scale elec-
tricity outages due to low-probability but high-impact events,
such as extreme weather. Examples include the 2012 Hurricane
Sandy power outage, the 2020 California rotating electricity
outage caused by extreme heat wave [1], and the 2021 Texas
power crisis resulting from unusually severe winter storms
[2]. During these extreme weather-related events, the bulk
transmission systems failed to supply sufficient electric energy
to distribution systems, causing millions of businesses and
homes to lose their electricity supply [1], [2]. One promising
solution to enhance resilience of distribution systems to these
extreme events is to integrate Distributed Energy Resources
(DERs), e.g., solar panels, micro-turbines, and energy storage,
to the distribution systems. However, a large-scale deployment
of DERs in the distribution systems introduces unprecedented
complexity and the need for extensive Distribution Manage-
ment Systems (DMSs) [3], [4]. To reduce the management
complexity, a distribution system with massive DERs can
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be configured to be a system of microgrids. Neighboring
loads, DERs and their grid infrastructure are clustered into
an AC or DC, small-scale power system, i.e., a microgrid.
One microgrid can either operate autonomously in an islanded
mode [5], or connect to its host distribution system in a grid-
connected mode [5], or as an interactive network with its
neighboring microgrids and form a system of microgrids that
does not physically connect to their host distribution system in
a hybrid mode. Each microgrid is managed by the Microgrid
Management System (µMS). In such a configuration, the
management burden of the DMS is significantly reduced, as
the DMS only needs to coordinate several µMS [3]–[6].

For an AC microgrid, frequency regulation is an important
functional block in the µMS design, expecially when the
microgrid enters the islanded or hybrid mode. Similar to
bulk transmission systems, frequencies at the microgrid can
be regulated in a hierarchical manner. The bottom layer of
the frequency regulation entails local controllers in DERs,
e.g., power controllers of inverter-based resources (IBRs),
and governors of small synchronous generators. These local
controllers are termed the primary control of microgrids [5],
[6]. As the primary control can yield steady-state errors of
frequencies from their nominal values after a disturbance, a
secondary control layer is needed in microgrids to regain the
nominal frequency [7], [8]. Since the secondary frequency
regulation in AC microgrids shares a very similar objective
with the Automatic Generation Control (AGC) of bulk trans-
mission systems, we term the secondary frequency regulator
in microgrids Micro-AGC (µAGC) to highlight its connection
with the AGC that has served the bulk power systems for half
of a century. This paper focuses on the µAGC design.

There is a large body of literature that addresses the µAGC
design. These design schemes can be generally categorized
into centralized, distributed, and decentralized control [9].
Centralized µAGC relies on a monopolistic decision-making
platform that gathers measurements from the DERs under
control, computes regulation signals, and dispatches these
signals to the DERs [10], [11]. Distributed µAGC employs co-
operative control policies among neighboring DERs to achieve
certain objectives. It can be further classified into three sub-
groups: averaging-based methods [7], distributed-consensus-
based methods [12], and event-triggering-based methods [13].
In decentralized µAGC design, each DER participating in the
µAGC recovers its own nominal frequency to a nominal value
independently. The washout filter is investigated in [14] and
shown to be equivalent to a decentralized secondary control. In
[15], a decentralized linear–quadratic regulator (LQR) control
design is proposed to achieve frequency restoration in an
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optimal way. Another idea to achieve decentralized frequency
regulation is based on state estimation. The estimation-based
µAGC [16] employs the system states estimated locally instead
of the true measurements to generate control signals.

However, a system of microgrids equipped with the µAGC
design mentioned above may be still vulnerable to physical
disturbances and/or cyber anomalies. Compared with high-
voltage transmission systems, a microgrid is more sensitive to
physical disturbances, e.g., load/renewable power fluctuations,
and IBR connection and re-connection, due to its small scale
and the zero/low inertia of its generation units [5], [17]. These
disturbances cause large, and fast fluctuations of microgrid fre-
quencies. The frequency changes induced by the disturbances
may not be captured in an accurate and timely manner by the
frequency sensors (shall be shown in Section II-B). However,
almost all the above-mentioned µAGC design schemes utilize
frequency measurements to make decisions. It is assumed that
the frequency information can be reported by DERs or it can
be accurately measured in a fast manner. In practice, while
the frequency information can be produced by the IBR power
controller as a digital, internal control command [18], such a
digital signal may not be available for a third-party µAGC1,
and it can only be indirectly obtained by external frequency
sensors. As a result, the desirable control performance of the
µAGC relying on accurate frequency measurements might not
be attained, especially with fast fluctuations from renewable
generation and load. Therefore, it is advantageous to develop
a µAGC that does not depend on the frequency information
when a microgrid enters the islanded or hybrid operating
mode.

Another important consideration for the µAGC design is the
cyber security. While the distributed and decentralized µAGC
schemes reduce the cyber risks of the µAGC by sparsifying or
eliminating long-distance communication links among DERs,
these µAGC schemes may be still susceptible to the false data
injection (FDI) attack where the sensors can be manipulated
to report wrong information to the µAGC. Many references
concern attenuating the influence of the FDI attacks [19]. One
category of methods explores state estimation techniques [20],
for example, the Kalman filter method [21] and optimization-
based state estimation methods [22]. These methods either
rely on the accuracy of measurements or heavy computations
[23]. To address these challenges, observer-based detection
and control methods have been proposed [19], [24]. Recently,
the unknown input observer (UIO) has found a broad range
of applications in FDI attack detection and cyber-resilient
control designs [25], [26] since it can separate the external
disturbances from the attack signals, yielding a more sensitive
anomaly diagnosis. However, these cyber security solutions
are built upon existing µAGC designs that require accurate
frequency information. It is an open-ended question whether
these solutions can extend to other control designs that require
different information other than frequencies. While some cyber
attack solutions [27], [28] are designed for a general model
that serves as an abstraction of many engineering systems,

1By the third-party µAGC, we mean that the µAGC service is not designed
and implemented by the inverter manufacture.

e.g., a state-space model, the model that should be used for
the purpose of developing cyber solutions heavily depends on
the information feeding its controller. For a specific controller,
it might not be straightforward to derive a proper model that
lends itself to the cyber solution design even for domain
experts. Therefore, the development of µAGC and its cyber
solution are interdependent.

To overcome these challenges in this paper we introduce a
co-design of µAGC and its cyber solutions. We identify the
sensory challenges and cyber vulnerability facing the µAGC
design. To address the sensory challenges, we introduce a new
microgrid modeling approach by exploiting the structure of
microgrid dynamics, i.e., the property of rank-one deficiency.
Such a modeling approach leads to an optimal µAGC that
is easily implemented, as it does not require fast frequency
measurements that can be hard to obtain [29]. An end-to-end
cyber security solution to FDI attack detection and mitigation
is developed for the proposed µAGC. The front-end barrier
of applying off-the-shelf algorithms for cyber attack detection
is removed by introducing a data-driven modeling approach.
Besides, we propose an observer-based corrective control for
an islanded microgrid and a collaborative mitigation scheme in
systems of AC microgrids. Compared with the existing µAGC
design, the contribution of this paper is summarized as follows:
1) The proposed µAGC can regulate microgrid frequencies in
the presence of both load/renewable power fluctuations and
FDI cyber attacks; 2) Compared with the µAGC design that
requires internal digital signals of DERs or fast frequency
measurements, the proposed µAGC is more practically im-
plementable, as it only requires real-time real power which
can be measured fast and accurately; 3) Compared with the
method that is specifically designed for one type of DERs [15],
the proposed µAGC design can address systems of microgrids
with heterogeneous DERs; and 4) We demonstrate the role of
systems of microgrids in terms of attenuating the influence of
cyber attacks.

The rest of this paper is organized as follows: Section II
presents the challenges facing the µAGC design; Section III
introduces the new microgrid modeling approach that is used
for designing the µAGC in the presence of fast load/renewable
power fluctuations; Section IV demonstrates the cyber security
solutions to the proposed µAGC; and Section V tests the
proposed µAGC and its cyber security solutions.

II. NEW MODELING FOR µAGC DESIGN

This section starts with describing the dynamics of systems
of microgrids in the conventional state space where voltage
phase angles and frequencies are used as the state variables.
Then we point out the limitations of conventional µAGC
design. We derive a new model which lends itself to more
robust µAGC with respect to measurement inaccuracies and
cyber attacks.

A. Conventional Microgrid Modeling for µAGC design

We consider a microgrid with N IBRs and M loads.
Without loss of generality, the IBRs are connected to the first
N nodes, and the loads and the point that networks with the
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Fig. 1. A microgrid with N IBRs and M loads and the control scheme
of IBRs. The control variables of loops 1 and 2 are voltage and current
measurements from the LC filter, and the modulation index, respectively.

neighboring microgrids locate at nodes N +1, . . . , N +M , as
shown in Figure 1. The effect of the neighboring microgrids on
the microgrid under study is modeled as load power injection.

1) Nodal dynamics: Without µAGC and load/renewable
power fluctuations, the primary control is designed such that
the frequencies at all IBRs can be stabilized at ωnom which
is the desired/nominal frequency (i.e., 314 or 377 rad/s). The
dynamics of the power calculator at the i-th IBR is

δ̇i = ωi − ωnom (1a)

Ṗi = −ωciPi + ωciPGi (1b)
ωi = ωsi −mPiPi (1c)

where δi is the internal voltage phase angle; ωi is frequency;
PGi is the instantaneous real power component [18]; Pi is
the real power filtered by the digital filter; ωci is the cut-
off frequency of the digital filter; ωsi is the setpoint; and
mPi is the droop coefficient. Equation (1a) is introduced by
definition; and Equations (1b) and (1c) result from the digital
filter dynamics and the droop characteristic [18]. Variables
PGi, Pi, δi, and ωsi are annotated in Figure 1. Since ωi is
the variable that is regulated by the µAGC, we eliminate Pi
by noting

ω̇i = −mPiṖi; Pi = (ωsi − ωi)/mPi. (2)

The underlying assumption of (2) is that the change rate of
setpoint ω̇si is much slower than ω̇i, i.e., ω̇si ≈ 0. With (2),
we obtain the following dynamics for the i-th IBR where ωi
becomes a state variable:

δ̇i = ωi − ωnom (3a)
ω̇i = −ωciωi + ωciωsi −mPiωciPGi. (3b)

Denote by δ∗i , ω∗i , and P ∗Gi the steady-state values of δi, ωi,
and PGi, respectively. Suppose that there are no load/renewable
power fluctuations. If we need ωi to converge to ωnom, ωsi
should be set to ω∗si where ω∗si = ωnom +mPiP

∗
Gi.

Define ∆δi = δi− δ∗i , ∆ωi = ωi−ω∗i , ∆PGi = PGi−P ∗Gi,
and ∆ωsi = ωsi − ω∗si. Use ∆xi = [∆δi, ∆ωi]

> as a state
vector. Then, Equation (3) becomes

∆ẋi = Ai∆xi +B1i∆ωsi +B2i∆PGi (4)

where

Ai =

[
0 1
0 −ωci

]
, B1i =

[
0
ωci

]
, B2i =

[
0

−mPiωci

]
.

The dynamics for N IBRs can be described by

∆ẋ = AG∆x +B1∆ωs +B2∆PG (5)

where

∆x = [∆x>1 , . . . ,∆x>N ]>; ∆ωs = [∆ωs1, . . .∆ωsN ]>;

∆PG = [PG1, . . . , PGN ]>;AG = diag(A1, . . . , AN );

B1 = diag(B11, . . . , B1N );B2 = diag(B21, . . . , B2N ).

2) Network Constraints: For the microgrid under study, its
neighboring microgrids that can be networked with can be con-
sidered power injection. For simplicity, real power and voltage
magnitudes are assumed to be decoupled, i.e., the voltage
magnitudes Vi for i ∈ {1, . . . , N +M} is constant. The IBRs
and loads are interconnected via microgrid network which
introduces algebraic constraints for i ∈ {1, 2, . . . , N +M}:

PIi − V ∗2i gii −
N+M∑
k=1,k 6=i

V ∗i V
∗
k Yik cos(δik − θik) = 0 (7)

where PIi is the net real injection to node i; gii denotes
the self-conductance of node i; the admittance of the branch
from the i-th to the k-th node is Yik∠θik; V ∗i is the nominal
voltage magnitude at node i; and δik is the voltage phase angle
difference between nodes i and k, i.e., δik = δi−δk. Denote by
{P ∗Ii, Q∗Ii, V ∗i , δ∗i |i = 1, 2, . . . , N+M} the operating condition
that satisfies constraints (7). Define the following vectors

∆PI := [∆PI1, . . . ,∆PIN+M ]> = [∆P>G ,∆P>L ]>

∆δ := [∆δ1, . . . ,∆δN+M ]> = [∆δ>G ,∆δ
>
L ]>

where ∆PIi and ∆δi are the deviations of PIi and δi from P ∗Ii
and δ∗i , respectively; ∆PG = [∆PG1, . . . ,∆PGN ]>; ∆PL =
[∆PIN+1, . . . ,∆PIN+M ]>; ∆δG = [∆δ1, . . . ,∆δN ]>;
∆δL = [∆δN+1, . . . ,∆δN+M ]>; and the subscript of “I” of
∆PIi stands for “Injection”. If ∆PIi and ∆δi for all i are small,
the relationship between ∆PI and ∆δI can be described by

∆PI = H∆δ (9)

where the entry h(i,k) at the i-th row and the k-th column of
H ∈ R(N+M)×(N+M) can be obtained via

h(i,k) = V ∗i V
∗
k Yik sin(δ∗ik − θik) ∀k 6= i

h(i,i) = −
N+M∑
p=1,p6=i

V ∗i V
∗
p Yip sin

(
δ∗ip − θip

)
.

Equation (9) is equivalent to[
∆PG
∆PL

]
=

[
HGG HGL
HLG HLL

] [
∆δG
∆δL

]
(11)

where HGG ∈ RN×N , HGL ∈ RN×M , HLG ∈ RM×N , and
HLL ∈ RM×M . Based on the above equation, ∆PG can be
expressed as a function of ∆δG and ∆PL, i.e.,

∆PG = (HGG −HGLH
−1
LL HLG)∆δG +HGLH

−1
LL ∆PL. (12)
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3) System Dynamics: Plugging (12) into (5), we have

∆ẋ = A∆x +B1∆ωs + F∆PL (13)

where A = AG + B2(HGG − HGLH
−1
LL HLG)E; and F =

B2HGLH
−1
LL . In the expression of matrix A, matrix E =

diag(E1, . . . , EN ) where Ei = [1, 0] for i = 1, . . . , N . It is
worth noting that dynamics (13) directly establish the connec-
tion between the frequency change ∆ωi and the load/tie-line
flow fluctuations ∆PL.

4) Two Common Assumptions for Conventional µAGC De-
sign: The objective of µAGC is to drive the frequency devi-
ations {∆ωi|i = 1, . . . , N} to zero by tuning the setpoints of
IBRs ωsi in the presence of load/renewable power fluctuations
∆PL. With such an objective, a centralized µAGC typically
tunes the setpoints ωs of the IBRs under control by measuring
the frequency at a critical node. A decentralized/distributed
µAGC observes its local frequency and other variables, e.g.,
local real power PGi, to tune its local setpoint ωsi. Note that
these µAGC design schemes are generally built upon at least
one of the following two assumptions: 1) An IBR can report
its true frequency ωi to its µAGC, or ωi can be measured
accurately by external sensors; and 2) The measurements
feeding the secondary controllers are authentic. However, it
is possible that neither assumption holds in practice. This will
be elaborated in the following two subsections.

B. Sensory Challenges of µAGC Design

The frequency ωi is used as an input for many conventional
µAGC to tune the setpoint ωsi. For a commercial inverter, this
variable is an internal, digital control command that might
not be accessible for a third-party µAGC. One alternative
solution in order to obtain ωi is to measure the frequency
of the fundamental component of terminal voltage at the
i-th IBR. However, it is challenging to measure frequency
both fast and accurately in practice. Figure 2 shows the
sensory challenges when actual frequency changes fast and
the frequency is required to be measured fast. In Figure 2,
the orange lines represent the true frequency of three-phase
sinusoidal waves, while the blue curves shows the frequencies
measured by a Simulink Phasor Measurement Unit (PMU)
block [30]. In Figure 2(a), the true frequency changes at the
1-st second, the measured frequency converges to the true
frequency. The measurement error is acceptable if the PMU
reports the frequency at a slow rate, say 10 samples per second
(10 Hz). However, large measurement errors may exist from
time t = 1 s to t = 1.1 s, if frequency is required to be
reported every 0.01 seconds (100 Hz). Furthermore, as shown
in Figure 2(b), if the frequency keeps fluctuating, the large
measurement errors can persist when a high sampling rate,
say, 100 Hz, is required.

One obvious question is why a high sampling rate of
measurements is necessary for µAGC, compared with the
conventional AGC in bulk transmission systems which issues
control commands every 2-4 seconds [31], [32]. The reason is
that the fast, large frequency fluctuations are more pronounced
in small systems like microgrids than in the bulk transmission
systems. Similar to the bulk transmission systems, there are
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Fig. 2. (a) The true frequency can be measured if it changes slowly; (b) The
true frequency cannot be accurately measured if it changes fast.

volatile loads/renewables that keep perturbing the microgrid,
which cause the microgrid frequencies to keep fluctuating.
Compared with the transmission systems, the microgrid is
more sensitive to these disturbances due to its smaller scale
and the low inertia of its DERs [5]. As a result, the microgrid
frequencies may have large, fast fluctuations. To regulate the
microgrid frequencies to their nominal values, the rate of
issuing control commands should be much faster than the rate
at which disturbances change. Otherwise, the frequencies may
not be regulated. To issue the fast control commands, the fast
and accurate measurements are needed. Since the frequency
cannot be measured accurately in a fast manner, a conven-
tional µAGC that takes measured frequency as inputs cannot
achieve its desirable control performance. This motivates us to
design a fast µAGC without using the fast measurements of
frequencies. The solution that addresses the sensory challenge
is presented in Section III.

C. Cyber Vulnerability of µAGC

A third-party µAGC coordinates IBRs based on sensor
measurements. Figure 3 shows the communication architec-
ture of the proposed µAGC where the sensors that measure
electrical variables send their measurements to µAGC via
a Wide Area Network (WAN) [33]. Various protocols can
be applied to the WAN to establish wireless communication
between the sensors and µAGC (See [33] for more details of
the protocols). FDI attacks can be launched by intruding into
the WAN and/or manipulating the sensors. For most wireless
communication, license-free ISM (industrial, scientific, and
medical) radio band is used [33]. As a result, the bandwidth
can be legally accessed by attackers who aim to tamper
with the information transmitted through the communication
channel [33]. The risks of such a type of attacks can be reduced
by latest cryptographic mechanisms [33]. This paper focuses
on the FDI attacks launched via the sensors shown in Figure 3.
Such a type of attacks is feasible in real world. For example,
Reference [34] has designed and demonstrated a device that
can introduce FDI attack on Hall sensors in a non-intrusive
manner by changing an external magnetic field. If such cyber
attacks occur in the sensors shown in Figure 3, all control
commands from the µAGC can compromise the safety and
efficiency of the microgrids. For example, a cyber attacker can
blind the µAGC by launching a replay attack, i.e., the actual
measurements y is replaced by a sequence of pre-recorded y
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[31]. As another example, an adversary may compromise the
efficiency of the µAGC by superposing random noise upon
the actual measurements y. Such a FDI attack is termed the
noise injection attack [31]. A large body of literature presents
cyber attack models and objectives in the context of power
grids (see [35], [36] and the references therein) and power
electronics devices (See [37] and the references therein). A
key question is how to design the µAGC that is resilient to
the FDI attacks on the information feeding the µAGC. Section
IV proposes a potential answer to this question.

Fig. 3. Communication architecture of a centralized µAGC

III. FAST MICRO-AUTOMATIC GENERATION CONTROL

This section introduces a new model that exploits the rank-
deficiency property of the microgrid dynamics and describes
the microgrid behaviors in a new state space. Such a model
lends itself to address the sensory challenge in the presence
of fast load/renewable power fluctuations. Based on the model
in the new space, we introduce a fast µAGC for a system of
microgrids.

A. New State Space Modeling of Microgrid Dynamics

We describe the microgrid dynamics in a new state-space by
exploiting the rank-deficiency property of the system matrix
Ai in (4). Such a property is used for analyzing bulk trans-
mission systems in our previous work [38], [39]. It is obvious
that Ai is rank deficient, i.e., one of eigenvalues of Ai is
zero. Denote by Ti ∈ R1×2 the left eigenvector associated
with the zero eigenvalue of matrix Ai. By definition, we have
TiAi = 0. One choice of Ti is

Ti = [ωci, 1]. (14)

Define a scalar zi as follows:

zi := Ti∆xi. (15)

Multiplying both sides of (4) by Ti, we obtain

żi = ωci∆ωsi −mPiωci∆PGi. (16)

Here, we show that the scalar zi lends itself to design a fast
µAGC. The reason lies in the following two observations:
• Observation 1: zi reflects the frequency regulation ob-

jective: a zero żi implies that ∆ωi tends to zero.
• Observation 2: Computing zi only requires PGi, sug-

gesting that zi can be obtained in a fast manner.

Observation 1 results from Equations (4) and (16) that lead to

∆ω̇i = −ωc∆ωi + żi. (17)

With a zero żi, ∆ωi(t) tends to zero, as time t tends to infinity,
given any intial condition ∆ωi(0). This is because the scalar
system ∆ω̇i = −ωc∆ωi is asymptotically stable, where ωc >
0. Observation 1 essentially connects the frequency regulation
with the scalar zi, and it suggests that the frequency at the
i-th IBR can be regulated, if the corresponding żi equals 0.
Observation 2 is obtained by integrating both sides of (16):

zi(t) = ωci

∫ t

0

(∆ωsi(τ)−mPi∆PGi(τ)) dτ + zi(0) (18)

where ∆ωsi is the control command produced by the sec-
ondary controller; ∆PGi can be measured; and the initial con-
dition zi(0) can be set to zero for engineering implementation.

Essentially, (18) suggests that if the µAGC makes deci-
sions by observing zi in the presence of fast load/renewable
power fluctuations, measuring fast ∆PGi suffices, and it is
unnecessary to have fast frequency measurements. A natural
question is: Compared with frequency, why can the instan-
taneous power ∆PGi be measured both fast and accurately?
In practice, frequency and instantaneous power are computed
based on instantaneous voltage and current measurements.
The instantaneous voltage (current) can be measured by a
voltage (current) transducer. After being filtered by a low-
pass filter, the analog signal of the voltage (current) can be
digitized by an analog-to-digital circuit [40]. With the digital
voltage/current signal, the frequency of the voltage/current can
be estimated by various algorithms [41], e.g., phase-locked
loops [42], discrete Fourier transform [41], and least-squares
techniques [43]. Before these signal processing techniques
accurately track the true frequency, there exists a transient
process where the frequency estimated does not match the
true frequency. The waveform from 1 sec. to 1.15 sec. in
Figure 2(a) of the manuscript shows such a transient process.
As shown in Figure 2(b), the concern is that when the true
frequency changes during the sensor transient process, these
signal processing techniques cannot accurately estimate the
frequency anymore. However, with the digital voltage and cur-
rent signals with a high sampling rate (e.g., 30.7 kHz [44]), the
instantaneous power can be computed almost instantaneously
using an algebraic equation2. The operation of computing
the instantaneous power will not incur the transient process
that appears when the frequencies are computed. Therefore,
the instantaneous power can be measured accurately, even
when the true power fluctuates fast. The sensory bottleneck
described in Section II-B is overcome by introducing a new
variable zi.

It is worth noting that the modeling approach is applicable
to other types of DERs that possesses the rank-one deficiency
property. This is because this rank deficiency is a direct conse-
quence of conservation of energy [38], [39]. Our earlier work
[45] addresses synchronous machines using the same modeling

2The algebraic equation is the definition of the instantaneous three-
phase power p3φ: p3φ(t) = va(t)ia(t) + vb(t)ib(t) + vc(t)ic(t) where
{va, vb, vc} and {ia, ib, ic} are the instantaneous, three-phase voltages and
currents, respectively.
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approach. Such a modeling approach lends itself to a µAGC
design for microgrids with heterogeneous energy resources.
The µAGC design for such a kind of microgrids cannot
be formulated by some control methods that are specifically
designed for IBRs, such as [15].

B. Optimal Frequency Regulation
This subsection introduces an optimal µAGC that tunes the

IBR setpoints ∆ωi by observing the scalars zi. To drive the
frequency deviations to zero, based on Observation 1, one
possible control law is

∆ωsi = mPi∆PGi ∀i = 1, . . . , N. (19)

According to (16), the control law (19) leads to a zero żi.
It follows that ∆ωsi tends to zero, based on Observation 1.
It is worth noting that the control law (19) can be imple-
mented in a decentralized manner, as the setpoint for the i-
th IBR is computed only by its local measurement PGi for
i = 1, 2, . . . , N . However, the decentralized control law (19)
might not achieve high economical efficiency, since different
IBRs incurs different generation costs. For example, we may
expect the cheaper IBRs to generate more real power in order
to regulate the microgrid frequencies. Therefore, coordination
among IBRs is needed in order to regulate frequencies at the
minimal costs. Such coordination is achieved by formulating
the frequency regulation problem into the following optimal
control problem in the zi space:

min
∆ωs

1

2

∫ ∞
0

[
z(t)>Qz(t) + ∆ωs(t)

>R∆ωs(t)
]
dt

s.t. ∆ẋ(t) = A∆x(t) +B1∆ωs(t)

(20)

where z = [z1, . . . , zN ]>; matrices Q ∈ RN×N and R ∈
RN×N are positive definite. In the frequency regulation prob-
lem in this paper, both matrices Q and R are diagonal. Denote
by qi and ri the i-th diagonal entry of Q and R, respectively. A
relatively large qi suggests relatively higher quality of service
is required by the end users at node i. A relatively large ri
suggests a relatively higher generation cost at the i-th IBR.
Based on transformation (14), z can be expressed in terms of
states ∆x in the conventional space

z = T∆x (21)

where T = diag(T1, . . . , TN ). Plugging (21) into the objective
function of the optimization (20) gives the standard formula-
tion of the LQR problem:

min
∆ωs

1

2

∫ ∞
0

[
∆x(t)>Q′∆x(t) + ∆ωs(t)

>R∆ωs(t)
]
dt

s.t. ∆ẋ(t) = A∆x(t) +B1∆ωs(t)
(22)

where Q′ = T>QT . The solution to (22) has the following
form: ∆ωs = −K ′∆x, where K ′ can be obtained a process
that has been standardized in some software toolboxes, e.g.,
the function lqr in MATLAB. As discussed earlier, it is more
desirable to feed µAGC the transformed states z, rather than
∆x which includes the frequency deviation ∆ωi that is hard
to measure at a fast rate. Therefore, the control law is

∆ωs = −Kz. (23)

where matrix K is chosen such that Kz ≈ K ′∆x, and
one possible choice of K is K = K ′T>(TT>)−1 [39].
Note that the control law (23) tunes ∆ωs by observing z
or by measuring PGi for i = 1, 2, . . . , N . Such a control
law is immune to the FDI attacks on frequency or phase
angle measurements. However, it is vulnerable to cyber attacks
on PGi. The cyber vulnerability of the control law (23) is
addressed in the following section.

IV. CYBER ANOMALY DETECTION AND CORRECTION

To compute z, the real power PGi for all IBRs is needed
to be measured and reported to a µAGC. It is possible
that a malicious adversary can compromise the microgrid by
launching the FDI attacks (described in Section II-C) on the
PGi. If this happens, the control command ∆ωs issued by
the µAGC may fail to stabilize or to regulate the frequency,
compromising the microgrid’s safety and the quality of elec-
tricity service. This section introduces an end-to-end scheme
that can enhance the microgrid resilience to cyber attack on
the critical measurements. The key idea of the scheme is to
leverage a computational model that represents the dynamics
of the microgrid, for the purpose of predicting PGi. The
main challenge is how to obtain the computational model that
bridges the healthy information ∆ωs to PGi that might be
under cyber attacks. We first present the computational model
that serves as the prerequisite of applying existing cyber attack
detection algorithms. Next, we propose a strategy that can
mitigate the impact of cyber attacks.

A. Computational Model for Cyber Attack Mitigation

Without load/renewable power fluctuations, the real power
∆PG used for computing z in (23) can be predicted by ∆ωs
according to the following discrete state space model with the
sample time ∆t:

x̂[k] = A′x̂[k − 1] +B′∆ωs[k − 1] (24a)

∆P̂G[k] = C ′x̂[k] (24b)

where ∆P̂G is the predicted version of ∆PG[k]; x̂[k] is an
intermediate variable which can be obtained by using (24a)
recursively if x̂[0] is given; and A′, B′, and C ′ are the system,
input, and output matrices.

One challenge of using (24) to predict ∆PG is how to
obtain the matrices A′, B′, and C ′. We leverage a system
identification technique (i.e., N4SID [46]) to learn these
matrices using the experimental measurements of ∆ωs and
∆PG. Implementing the N4SID technique requires: 1) input-
output data; and 2) the order of the system (24).

1) Input-output data: Define a rectangular function
rect(t) as follows

rect(t) = 1t≥0 − 1t−∆t′≥0 (25)

where ∆t′ > ∆t denotes the width of the rectangular pulse;
and 1t≥0 is an indicator function, i.e.,

1t≥0 =

{
1 t ≥ 0

0 t < 0.
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The input signal ∆ω′s[k] for system identification can be
sampled from the following continuous function with sampling
time ∆t

l(t) =

dt/∆t′e∑
k=0

αkrect(t− k∆t′) (26)

where d·e is the ceiling function; the random scalar αk is
uniformly distributed in [−β, β] whence β is a small positive
scalar. By feeding the microgrid the designed setpoint se-
quence S = {∆ω′s[k]|k = 0, 1, . . . ,K0}, the response of ∆PG
can be measured at sample time ∆t. The input sequence S
associated with the ∆PG’s response is used for implementing
the N4SID technique.

2) Order Selection: The optimal system order d∗ is ob-
tained by trial and error. Suppose that there a setD that collects
some candidate system orders, say, D := {1, 2, . . . , 10}. For
d ∈ D, the N4SID technique can return the identified A′, B′,
and C ′. With these matrices and the input data O, ∆PG’s
prediction ∆P̂Gd can be computed. The performance of the
identified system with the order d can be quantified by

ηd =
1

K0 + 1

K0∑
k=0

∥∥∥∆P̂Gd −∆PG

∥∥∥
2
. (27)

The optimal order d∗ is chosen such that the smallest ηd is
attained, viz., η∗ = arg mind∈D ηd.

B. Cyber Attack Detection

The state-space model (24) can be used in some cyber attack
detection algorithms, e.g., the dynamic watermarking approach
[27], and the UIO method [25]. As an example, we show how
to use the dynamic watermarking approach to detect cyber
attacks on PGi.

Figure 4 shows the basic idea of the dynamic watermarking
approach. A small, secret watermark signal e[k] ∈ RN is
superposed upon the IBRs’ setpoints ∆ωs at each time step
k. The watermark signal possesses some known statistics, e.g.
e[k] ∼ N (0,Σ) where matrix Σ is the covariance matrix of
e[k]. The watermark e[k] impacts the measurement of ∆PG.
As a result, an authentic measurement of ∆PG should reflect
the statistical properties concerning the watermark e[k]. By
subjecting the measurements of ∆PG to certain statistical
tests, a wide range of cyber attacks on the measurement of
∆PG can be detected [27], [31].

The detailed mechanism of the dynamic watermarking ap-
proach is elaborated as follows. Denote by ∆P′G the measure-
ments of the real power ∆PG that are received by the µAGC.
If there are no cyber attacks on ∆PG, ∆P′G = ∆PG, with the
true sequence of {∆ωs[i]} and {e[i]} for i = 0, 1, . . . , k − 1,
one can approximately predict ∆PG[k] based on

x̂[k] = A′x̂[k − 1] +B′(∆ωs[k − 1] + e[k − 1]) (28a)

∆P̂G[k] = C ′x̂[k]. (28b)

Define
ν[k] := ∆P′G[k]−∆P̂G[k]. (29)

For a microgrid without cyber attack, i.e., ∆P′G[k] = ∆PG[k],
we can obtain a long sequence {∆P′G[k]|k = 1, . . . ,W}

where W is a large integer. The expectation µ∗ν and covariance
matrix Σ∗ν of ν in the microgrid without cyber attack can be
approximated by µ̂∗ν and Σ̂∗ν where

µ̂∗ν =
1

W

W∑
k=1

ν[k] (30a)

Σ̂∗ν =
1

W

W∑
k=1

(ν[k]− µ̂∗ν)(ν[k]− µ̂∗ν)>. (30b)

For the microgrid that might be under cyber attacks where
∆P′G[k] may not be equal to ∆PG[k], denote by µ̂ν and
Σ̂ν the estimated expectation and covariance matrix of ν,
respectively. Let Mρ and M̂ρ collect ∆P′G and its prediction
∆P̂G from time t = (ρ−W + 1)∆t to t = ρ∆t, viz.,

Mρ := {∆P′G[k]|k = ρ−W + 1, . . . , ρ} (31a)

M̂ρ := {∆P̂G[k]|k = ρ−W + 1, . . . , ρ}. (31b)

µ̂ν and Σ̂ν can be estimated from Mρ and M̂ρ via

µ̂ν =
1

W

ρ∑
k=ρ−W+1

ν[k] (32a)

Σ̂ν =
1

W

ρ∑
k=ρ−W+1

(ν[k]− µ̂ν)(ν[k]− µ̂ν)>. (32b)

If ∆P′G[k] = ∆PG[k], µ̂ν and Σ̂ν should be close to µ̂∗ν and
Σ̂∗ν , respectively, that is,

ξ1 = ‖µ̂ν − µ̂
∗
ν‖2 < ε1 (33a)

ξ2 = |tr(Σ̂ν − Σ̂∗ν)| < ε2 (33b)

where ‖·‖2 and tr(·) are the L2 norm and the trace operator,
respectively; and ε1 and ε2 are positive numbers. Violation
of either (33a) or (33b) or both suggests cyber attacks, i.e.,
∆PG[k] 6= ∆P′G[k]. The two conditions in (33) can be
checked in a moving-window fashion, which is summarized
in Algorithm 1. Function DW in Algorithm 1 returns a binary
result: “flag = 0” suggests that a cyber attack is not detected,
while “flag = 1” suggests that cyber attack is detected.

Algorithm 1 Watermarking-based Cyber Attack Detection

1: function DW(Mρ−1,M̂ρ−1, ∆P′G[ρ], ∆ωs[ρ], e[ρ], x̂′[ρ−
1], A′, B′, C ′, µ̂∗ν , Σ̂∗ν , ε1, ε2)

2: Compute ∆P̂G[ρ], x̂ by (28)
3: M̂ρ ←

{
∆P̂G[ρ]

}
∪ M̂ρ−1 −

{
∆P̂G[ρ−W ]

}
4: Mρ ← {∆P′G[ρ]} ∪Mρ−1 − {∆P′G[ρ−W ]}
5: Compute µ̂ν , Σ̂ν using Mρ, M̂ρ based on (29), (32)
6: Obtain ξ1 and ξ2 according to (33)
7: if (ξ1 < ε1) ∧ (ξ2 < ε2) then
8: flag← 0 . No attack is detected
9: else

10: flag← 1 . Attack is detected
11: end if
12: return flag, Mρ, M̂ρ, x̂′[ρ]
13: end function
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Fig. 4. Basic idea of the dynamic watermarking approach

C. Corrective Control

This subsection addresses how to regulate frequency under
cyber attacks on the real power measurements ∆PG feeding
the proposed control law (23). Depending on whether there
are microgrids that can be networked with the microgrid under
cyber attacks, the µAGC under cyber attack can select one of
the following two schemes to regulate frequencies.

1) Observer-based Correction Scheme: Once the cyber at-
tack is detected and there is no neighboring microgrid that can
be networked with the microgrid under attack, the microgrid
attacked can use the observer-based correction scheme to
regulate its frequencies. The basic idea of such a scheme is to
leverage an observer to predict the real power measurement
∆PG and to use the prediction ∆P̂G to tune the setpoints ∆ωs
of IBRs. Specifically, the observer is defined in (24) [47]. The
control law in the observer-based correction scheme is

∆ωs = −K
[
ẑ1, ẑ2, . . . , ẑN

]>
. (34)

where ẑi(t) = ωci
∫ t

0

(
∆ωsi(τ)−mPi∆P̂Gi(τ)

)
dτ .

2) Collaborative Correction Scheme: The control law (19)
is blind to load/renewable power fluctuations. As a result,
the frequencies cannot be regulated at the nominal frequency
if ∆PL 6= 0. This issue can be addressed by the collabo-
rative correction scheme presented here. Suppose that there
are two islanded microgrids. Each microgrid has its own
µAGC designed based on the control law (23). Assume that
µAGC1 (µAGC2) is for Microgrid 1 (Microgrid 2). Suppose
that microgrid 1 is under cyber attack on its ∆PGi that is
used for computing zi. Once the cyber attack is detected at
Microgrid 1 by some cyber attack detection algorithms, e.g.,
the dynamic watermarking approach, µAGC1 will be disabled,
and Microgrid 1 can be networked with Microgrid 2 by closing
the tie line between Microgrids 1 and 2. As will be shown in
Section V, µAGC2 can regulate the frequencies at all nodes
of both Microgrids 1 and 2, while µAGC2 makes decisions
only based on the local measurements at Microgrid 2.

The overall procedure described throughout Sections III and
IV is summarized in Algorithm 2 where set Iρ−1 collects the
input for the function DW in Algorithm 1, i.e.,

Iρ−1 :={Mρ−1,M̂ρ−1,∆P′G[ρ],∆ωs[ρ], e[ρ],

x̂′[ρ− 1], A′, B′, C ′, µ̂∗ν , Σ̂
∗
ν , ε1, ε2}.

(35)

V. CASE STUDY

In this section, the proposed fast µAGC and the associated
cyber anomaly detection and correction scheme are tested in a
microgrid with three IBRs via Simulink simulations. We first

Algorithm 2 Cyber Resilient µAGC
1: MW ← ∪Wk=1{∆P′G[k]}
2: while ρ = W + 1,W + 2, . . . do
3: flag,Mρ,M̂ρ,x

′[ρ]← DW(Iρ−1)
4: if flag = 0 then
5: Compute ∆ωs[ρ] via (18) and (23)
6: else
7: if Neighboring microgrids are unavailable then
8: Compute ∆ωs[ρ] via (24) and (34).
9: e[ρ]← 0 . Stop injecting watermark

10: else
11: ∆ωs[ρ]← 0; e[ρ]← 0
12: Network with the neighboring microgrids
13: end if
14: end if
15: return ∆ωs[ρ]
16: end while

Fig. 5. Physical and cyber architecture of two networked microgrids

provide a brief description for the software-based microgrid
testbed. Then we show the performance of the fast controller
that exploits the rank deficiency property of IBRs, under
fast renewable/load power fluctuations. Finally, we present
the performance of the cyber attack detection and correction
scheme that is built upon the model developed in Section IV.

A. Description of Software-based Microgrid Testbed

Figure 5 illustrates the physical and cyber architecture
of two networked microgrids that are used to test the pro-
posed algorithms. For each IBR, its power calculator, voltage
controller, current controller, and output filter are modeled
according to [18]. All IBRs have the same parameters. Loads
1, 2, and 3 are modeled by resistors with the values of 25 Ω,
20 Ω, and 33 Ω for each phase. There is a tie line that can
network Microgrid 1 with Microgrid 2. The line parameters
are annotated in Figure 5. Each microgrid has its own µAGC
which tunes the setpoint of each IBR in the local microgrid.
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B. Control Performance without Cyber Attack

Here the performance of the controller (23) is tested. The
secondary controller µAGC1 takes real power measurements
PGi every 5 ms and issues control commands ωsi at the same
rate, for i = 1, 2, 3. The tie line in Figure 5 is open.

1) Control Performance with Fast Renewable Fluctuations:
Suppose Load 1 varies periodically and Figure 6 shows the real
power flowing to Load 1. The spikes in Figure 6(a) show the
load changing transients, and the zoomed-in version of one of
the spikes is shown in Figure 6(b). As a result, the frequencies
at the three nodes of Microgrid 1 fluctuate periodically. This
can be observed via the orange dashed curves in Figure 7.
The blue curves in Figure 7 show the frequencies at the three
nodes with fast load/renewable power fluctuations, when the
proposed µAGC1 is enabled. It can be seen that the magnitudes
of the frequencies’ fluctuations are significantly reduced by the
proposed µAGC under load/renewable power fluctuations.

2) Comparison: The proposed µAGC is compared with a
slow LQR µAGC and a fast proportional–integral (PI) µAGC.
The slow µAGC issues control commands every 0.1 s, while
the two fast µAGC issues control commands every 5 ms.
Figure 8 summarizes the comparison results in response to
the load power fluctuations shown in Figure 6. In Figure 8,
the orange dotted curves are the frequencies under the slow
µAGC. It can be observed that the frequencies cannot be regu-
lated. This is not surprising because the time interval between
two successive control commends is the same as that between
two successive disturbances. The yellow dashed curves are
the frequency response with the fast PI µAGC. Since the fast
frequency changes cannot be measured accurately, the fre-
quencies under the fast PI controller still cannot be regulated.
As the proposed µAGC does not rely on the availability of
fast frequency measurements, the frequencies can be regulated
tightly around 50 Hz under the fast load/renewable power
fluctuations, as it is shown by the blue curves in Figure 8.

C. Cyber Attack Detection and Corrective Control

The proposed scheme for cyber resilient frequency regulator
is tested under both renewable/load power fluctuations and
cyber attacks.

1) Cyber Attack Detection: One prerequisite for imple-
menting Algorithm 1 is that the matrices A′, B′, and C ′

are available. In this paper, these matrices are learned from
the measurements of ∆ωs and ∆PG based on the system
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Fig. 6. (a) Real power measurement PL1 at load 1; and (b) zoomed-in version
of PL1 from time t = 0.799 sec. to t = 0.803 sec.

identification procedure. It takes 1.43 seconds to decide the
optimal order d∗ and to learn the discrete model offline using
a MacBook Pro with a 2.6 GHz Dual-Core Intel i5 Processor.
The sampling rate of the discrete model is 0.005 seconds. The
computation time of learning the models with different orders
are shown in Figure 9(a). Next, we show the performance
of the model learned by changing the setpoint of one IBR.
Without the load/renewable power fluctuations, the set point
∆ωs1 has a step change at time t = 0.7 s. The blue curve
in Figure 9(b) represents the evolution of the measurements
on PG1 under the step change. With the model learned, the
evolution of PG1 can be predicted almost instantaneously. The
orange dashed curve in Figure 9(b) represents the prediction.
These two curves in Figure 9(b) almost overlap with each
other, suggesting that the state-space model learned can ac-
curately predict the response of the real power measurements
PG1.

The performance of Algorithm 1 is tested under the noise
injection attack and the replay attack. In the simulation, W
in Algorithm 1 is set to 100. Figures 10 and 11 show the
performance of Algorithm 1 under the noise injection attack.
In Figure 10(a), the noise injection attack on PG1 is launched
at time t = 2 s. Such an attack causes the attack indicator
ξ2 to shoot up and triggers the cyber attack alarm. In Figure
11(a), a temporary noise injection attack starts at t = 2 s
and ends at t = 2.2 s. As shown in Figure 11(b), it takes
around 0.025 seconds for the indicator to exceed its normal
peak value, after the attack occurs. After the attack disappears,
it takes around 0.485 seconds for the indicator to fall below
its normal peak value. Figure 12 illustrates the performance
of of Algorithm 1 under the replay attack. A replay attack on
the PG1 occurs at time t = 2 s. Figure 12(a) shows the PG1

measurements under such an attack. From Figure 12(a), it is
hard to determine when the cyber anomaly occurs by simply
eyeballing the PG1 measurement curve. However, Figure 12(b)
which shows the evolution of the attack indicator ξ2 explicitly
suggests that the attack occurs around t = 2 s.

2) Observer-based Cyber Attack Correction: Figure 13
demonstrates the performance of the observer-based corrective
controller. The noise injection attacks occur at the sensor
measuring PG1 at Microgrid 1 at t = 0.7 s. Consequently,
frequencies at the three nodes of Microgrid 1 become noisy.
At t = 1 s, the observer-based corrective controller is enabled,
and the frequencies are stabilized.

3) Collaborative Cyber Attack Correction: The observer-
based corrective control is blind to renewable/load power
fluctuations. If Microgrid 2 is available, once cyber attacks
at Microgrid 1 are detected, Microgrid 1 can disable µAGC1

and turn on the switches of the tie line that connects Microgrid
2. The µAGC2 can regulate the frequencies of both Microgrids
1 and 2. Figure 14 illustrates such a process. Suppose that at
t = 0.5 s, µAGC1 is disabled due to a cyber attack detected.
Load 1 also increases at t = 0.5 s, leading frequencies at
Microgrid 1 to decrease. To recover the frequencies to 50
Hz, Microgrid 1 networks with Microgrid 2 via the tie line
at t = 0.7 sec. It can be seen from Figure 14 that the three
frequencies at Microgrid 1 are brought back to 50 Hz, and the
event of networking Microgrids 1 and 2 only causes negligible
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Fig. 7. Frequencies at (a) node 1, (b) node 2, and (c) node 3 with and without the proposed µAGC.
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Fig. 8. Comparison of the proposed µAGC, the slow LQR-based controller, and the fast PI controller: frequencies at Nodes 1 (a), 2 (b), and 3 (c).
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Fig. 9. (a) Computation time of the data-driven approach with different model
orders; and (b) Actual measurements and predicted measurements

1.5 2 2.5 3
3700

3800

3900

4000

4100

4200

4300

(a)

1.5 2 2.5 3
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
10

4

(b)

Fig. 10. Detection of the noise injection attack: (a) the real power measure-
ment PGi in the time domain; and (b) the evolution of cyber attack indicator
ξ2.

frequency ripples at Microgrid 2.
µAGC2 only serves as a temporary frequency regulator

for Microgrid 1 when Microgrid 1 is under cyber attacks.
Suppose that µAGC1 for Microgrid 1 is disabled, and µAGC2

for Microgrid 2 is enabled. Load at node 1 fluctuates fast
according to Figure 6. Figure 15 compares frequencies with

1.5 2 2.5 3
3700

3800

3900

4000

4100

4200

(a)

1.5 2 2.5 3
1.05

1.1

1.15

1.2
10

4

(b)

Fig. 11. Detection of the temporary noise injection attack: (a) the real power
measurement PGi in the time domain; and (b) the evolution of cyber attack
indicator ξ2.
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Fig. 12. Detection of the replay attack: (a) the real power measurement PGi
in the time domain; and (b) the evolution of cyber attack indicator ξ2.

and without the collaborative control. It can be seen that while
µAGC2 does not play a big role of regulating the frequency
at node 1, it indeed improves the frequency profiles at nodes
2 and 3 by limiting the frequencies of nodes 2 and 3 within
a narrower range. Figure 16 shows that µAGC2 can regulate
the frequencies at IBRs 4 and 5 tightly around 50 Hz in the
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Fig. 13. Performance of the observer-based controller
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Fig. 14. Performance of collaborative corrective control scheme: (a) frequen-
cies at microgrid 1 under cyber attack; and (b) frequencies at microgrid 2.

presence of fast load fluctuations at node 1. Since the control
performance of enabling µAGC2 alone is not as good as that
of enabling both µAGCs, both µAGCs should be enabled if
no cyber attacks are detected.

It is worth noting that with µAGC1 disabled, µAGC2 can
still regulate frequencies in Microgrid 1 under slow load
fluctuations. Figure 17 shows the frequencies at IBRs 1, 2,
and 3 with the load at node 1 that changes every 2 s, when
µAGC1 is disabled. It can be observed that the frequencies at
IBRs 1, 2, and 3 are tightly regulated around their nominal
values by µAGC2 under the slow load fluctuations at node 1.

The performance of the collaborative control can be justified
by examining ∆PGi in (16). When the load at node 1 increases
at 1 s and the two microgrids are networked, Figure 18
visualizes ∆PGi for i = 1, 2, . . . , 5. In Figure 18-(a), it can be
observed that the steady-state values of ∆PGi for i = 1, 2, 3
return zero, which means that no extra real power is produced
by IBRs that do not participate in µAGC2, i.e., IBRs 1, 2
and 3, in order to balance the increased amount of load.
The increased amount of load is balanced by the IBRs that
participate in µAGC2, i.e., IBRs 4 and 5. Since IBRs 1, 2
and 3 do not participate in µAGC2, ∆ωsi = 0 for i = 1, 2, 3.
In addition, Figure 18-(a) shows ∆PGi = 0 for i = 1, 2, 3
in steady state. Based on (16), żi equals zero for i = 1, 2, 3.
Because of Observation 1, ∆ωi is zero in steady state for
i = 1, 2, 3. This explains why the frequencies in Microgrid
1 is regulated by µAGC2, while µAGC2 does not take any
measurements from Microgrid 1. Note that such performance
of the collaborative control is built upon the assumption that
no congestion occurs in the tie line between Microgrids 1 and
2. Suppose that the congestion occurs, the increase amount of
real power cannot be balanced by the IBRs in Microgrid 2. In
such a case, µAGC2 cannot regulate frequencies in Microgrid
1 to the nominal value.

VI. CONCLUSION

In this paper, a cyber-resilient µAGC is proposed. A new
microgrid modeling approach is introduced. The modeling
approach exploits the rank-deficient property of IBR dynamics.
Such modeling approach leads to a fast µAGC design that
requires no frequency measurements that may not be available
in practice under fast load/renewable power fluctuations. An
end-to-end cyber security solution to FDI attack detection and
mitigation is developed for the proposed µAGC. The proposed
cyber-resilient µAGC is tested in a system of two microgrids.
Simulation shows the proposed µAGC can regulate microgrid
frequencies under fast renewable/load power fluctuations, and
its cyber security solution can detect and mitigate FDI attacks.
Future work will investigate the impact of microgrid nonlin-
earity on the cyber-resilient µAGC design and test and validate
the proposed µAGC in a large-scale system of AC microgrids.
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