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Abstract— This paper presents a deep-learning framework, 

Multi-load Generative Adversarial Network (MultiLoad-GAN), 
for generating a group of synthetic load profiles (SLPs) 
simultaneously. The main contribution of MultiLoad-GAN is the 
capture of spatial-temporal correlations among a group of loads 
that are served by the same distribution transformer. This enables 
the generation of a large amount of correlated SLPs required for 
microgrid and distribution system studies. The novelty and 
uniqueness of the MultiLoad-GAN framework are three-fold. 
First, to the best of our knowledge, this is the first method for 
generating a group of load profiles bearing realistic spatial-
temporal correlations simultaneously. Second, two 
complementary realisticness metrics for evaluating generated load 
profiles are developed: computing statistics based on domain 
knowledge and comparing high-level features via a deep-learning 
classifier. Third, to tackle data scarcity, a novel iterative data 
augmentation mechanism is developed to generate training 
samples for enhancing the training of both the classifier and the 
MultiLoad-GAN model. Simulation results show that MultiLoad-
GAN can generate more realistic load profiles than existing 
approaches, especially in group level characteristics.  With little 
finetuning, MultiLoad-GAN can be readily extended to generate a 
group of load or PV profiles for a feeder or a service area. 
 

Index Terms—Data Augmentation, Generative Adversarial 
Networks, Load profile group generation, Machine learning, 
Negative sample generation, Synthetic data. 

I.  INTRODUCTION 
MART meter data are essential in power distribution system 
analysis, for instance, modeling load behaviors, conducting 

renewable integration studies, and developing demand response 
programs. However, due to security and privacy considerations, 
utilities cannot share a large amount of smart meter data with 
the research community for carrying out such analysis. 
Therefore, using synthetic load profiles (SLPs) derived from 
smart meter data becomes an increasingly attractive solution. 

 SLPs are generated load profiles bearing similar 
characteristics as the real ones. In general, there are two 
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approaches for generating SLPs: simulation-based and data-
driven. Table I summarizes the advantages and disadvantages 
of the state-of-the-art SLP generation methods and compares 
our algorithm with the existing ones. As can be seen in the table, 
up till now, all existing generative methods generate SLPs one 
at a time. There is no generative method proposed for 
generating a group of SLPs served by the same distribution 
transformer or the same feeder, where the SLPs have strong 
spatial-temporal correlations. 

Note that such spatial-temporal correlations exist because 
consumers at the same geographical location experience similar 
weather conditions and share similar demographical 
characteristics (e.g., house type, income level, and living 
pattern), making the weather-dependent loads and consumption 
patterns have similar variations. Therefore, the time-series load 
profiles served by the same transformer or feeder exhibit 
distinct group-level characteristics. By simply selecting load 
profiles randomly from a database or generating load profiles 
for each user one at a time to form a load group, one cannot 
capture such group-level spatial-temporal correlations. Some 
forecasting methods based on copula select load profiles by 
influence factor to form a group, as shown in previous studies 
[13][14]. These methods typically rely on historical data and 
involve a two-step forecasting and selecting process. However, 
copula alone cannot fully capture the spatial and temporal 
correlations between loads served by the same distribution 
transformer or feeder. This is because high-level hidden 
features are usually difficult to explicitly formulate and can 
only be learned using Deep Learning techniques. 

To bridge this gap, we propose a deep-learning framework, 
called the Multi-load Generative Adversarial Network 
(MultiLoad-GAN), to generate a group of SLPs simultaneously. 
The contributions are three-fold. First, MultiLoad-GAN 
captures the spatial-temporal correlations among loads in a load 
group to enable the generation of correlated realistic SLPs in 
large quantity for meeting the emerging need in microgrid and 

Yiyan Li (corresponding) is with the College of Smart Energy, Shanghai 
Non-Carbon Energy Conversion and Utilization Institute, Shanghai Jiao Tong 
University, Shanghai, 200240, China, and also with the Electrical and 
Computer Engineering Department, Future Renewable Energy Delivery and 
Management Systems Center, North Carolina State University, Raleigh, NC 
27606 USA (email: yiyan.li@sjtu.edu.cn). 

PJ Rehm is with ElectriCities. Matthew Makdad and Edmond Miller are 
with New River Light and Power. 

MultiLoad-GAN: A GAN-Based Synthetic 
Load Group Generation Method Considering 

Spatial-Temporal Correlations   
Yi Hu, Student Member, IEEE, Yiyan Li*, Member, IEEE, Lidong Song, Student Member, IEEE, Han 
Pyo Lee, Student Member, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, Fellow, IEEE 

S 



 2 

distribution system planning. This is achieved by the novel 
profile-to-image encoding-decoding method and the 
MultiLoad-GAN architecture design. Second, two 
complementary metrics for evaluating realisticness of 
generated load profiles are developed: computing statistics 
based on domain knowledge and comparing high-level features 

via a deep-learning classifier.  Third, to tackle data scarcity, a 
novel iterative data augmentation mechanism is developed to 
generate training samples for enhancing the training of both the 
deep-learning classifier and the MultiLoad-GAN model, which 
can improve the performance of MultiLoad-GAN by 
approximately 4.07%. 

TABLE I  
COMPARISON OF OUR MULTILOAD-GAN MODEL WITH STATE-OF-THE-ART GENERATIVE METHODS 

 Description Advantages Disadvantages Model output 

Model-based methods [1][2] 

Use physical models, such as building 
thermodynamics and customer 
behavioral models, to simulate 
electricity consumption profiles. 

Explainable as the models 
reflect the laws of physics when 
describing the behavior behind 
field measurements 

Require detailed physics-based 
models with many inputs and 
require parameter tuning. 

Single load 
profile 
 
(When 
generating a 
load profile, the 
methods do not 
consider the 
spatial-temporal 
correlations 
among a group 
of generated 
load profiles) 

Data-
driven 
methods 

Clustering based 
[3][4] 

Cluster existing load profiles into 
different categories so that by 
combining the load profiles across 
different categories, SLPs are 
generated. 

Easy to implement and can 
represent some realistic load 
profile characteristics. 

Lack of diversity when using 
combinations of a limited 
number of existing profiles. 

Forecasting based 
[5]-[8] 
(the benchmark 
method) 

Generate SLPs based on publicly 
available load or weather data. 

Easy to implement and flexible 
to generate load profiles with 
different lengths and 
granularities. 

Depend heavily on historical 
data. The generated load 
profiles have similar patterns 
with historical data, therefore, 
lack of diversity. 

SingleLoad- 
GAN-based [10]-
[12] 
(the benchmark 
method) 

GAN-based generative methods to 
generate the SLP for one customer at 
a time. 

Learn from the real data 
distribution to generate 
diversified load profiles with 
high-frequency details. 

Hard to train. 

MultiLoad-GAN 
(the proposed 
method) 

GAN-based generative methods to 
generate a group of spatial-temporal 
correlated load profiles 
simultaneously. Such load profiles 
can be loads served by the same 
transformer or feeder. 

Learn from the distribution of 
real data to generate diversified 
load profiles with high-
frequency details.  Preserve the 
spatial-temporal correlations 
between loads. 

Hard to train. 

Multiple 
spatial-
temporal 
correlated load 
profiles 

 
The rest of the paper is organized as follows. Section II 

introduces the methodology, Section III introduces the 
simulation results, and Section IV concludes the paper. 

II.  METHODOLOGY 
In this section, we first present the terminologies used in the 

paper and the overall modeling framework. Next, we present 
MultiLoad-GAN, statistical based evaluation metrics, the 
training of a classifier to assess the realisticness of generated 
load profile groups, and the implementation of Automatic Data 
Augmentation to enhance the algorithm performance. 

A.  Terminologies and the Modeling Framework 
In this paper, we define a load group as loads served by the 

same transformer. A “positive sample” is defined as a group of 
load profiles from customers supplied by the same transformer. 
The “original positive samples” is the labelled data set given 
by a utility in North Carolina area including 8 transformers with 
each serving 8 loads from 2017 to 2020. The “negative samples” 
is the data set that consists of groups of load profiles from 
customers unlikely to be supplied by the same transformer. This 
is a unique definition because in power distribution systems, 
even if a load profile is from a user supplied by another 
transformer, the load profile is likely to be similar to loads 

supplied under the same transformer. For example, in a 
neighborhood, serving which 8 out of 10 neighboring houses is 
sometimes a random choice by design engineers. In most cases, 
all 𝐶(10,8)  combinations can be considered as positive 
samples. Thus, in the training, the “original positive samples” 
is the ground-truth data set labelled by utility engineers while 
all negative samples are “generated negative samples” 
generated by us.  

Fig. 1 shows the overview of the framework. As shown in 
Fig. 1(a), the MultiLoad-GAN framework includes three 
modules: MultiLoad-GAN, Deep-learning classifier (DLC), 
and Negative Sample Generator (NSG). Initially, because there 
are no labelled negative samples for training DLC, we develop 
the NSG module for generating negative samples to enhance 
the training of the DLC.  

As shown in Fig. 1(b), due to security and privacy 
considerations, the amount of labelled data provided by the 
utility to train MultiLoad-GAN is usually insufficient. 
Therefore, to further improve the performance of MultiLoad-
GAN, we develop an interactive process, Automatic Data 
Augmentation (ADA), for generating augmented labelled data, 
which allows the training of DLC and MultiLoad-GAN to 
iteratively evolve with the augmented data generation process. 

As shown in Fig. 1(c), the realisticness of the generated load 
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groups is evaluated by comparing the generated load groups 
with the “original positive samples” using two kinds of 
realisticness metrics: statistics metrics based on domain 
knowledge and a deep-learning classifier for comparing high-
level features.  

To the best of our knowledge, there is no other existing 
approach for generating a group of highly correlated load 
profiles in the literature. Thus, the goal of our comparison is to 
demonstrate that when an algorithm generates load profiles one 
at a time, it cannot generate a group of load profiles that bear 
correct group-level characteristics. We select SingleLoad-GAN 
as the benchmark model for performance comparison, because 
SingleLoad-GAN and MultiLoad-GAN formulate an ablation 
study in nature. In addition, GAN based models produce more 
realistic and diversified shape-wise load profile details than the 
other existing methods by learning the distribution of real data, 
as shown in [10]. Therefore, the SingleLoad-GAN reproduces 
the method presented in [10]. Due to differences in input data, 
SingleLoad-GAN uses different parameters.  

 
Fig. 1.   An overview of the overall modeling framework. 

B.  GAN-based Approach 
A GAN model consists of two components: a generator 

network (G) and a discriminator network (D). A latent vector z, 
usually a Gaussian noise, is used as the input to generate the 
target output G(z). Then, the generated data G(z) and the real 
data x are sent to D. The goal of D is to distinguish which data 
samples are real and which are fake. 

The training of a GAN model is an alternative and adversarial 
process: G tries to generate samples G(z) that can fool D; D 
learns to distinguish between G(z) and x by assigning larger 

probabilities to x and smaller ones to G(z). As introduced in [9], 
this process is formulated as a minimax game 

min
+
max
.

/𝐸𝒙~345log9𝐷(𝒙);< +	𝐸𝒙?~3@5log91 − 𝐷(𝒙?);<B   (1) 

where 𝑃D and 𝑃E are the probability distributions of the training 
data and the generated data, 𝐸 is the expectation operator, and 
𝒙? = 𝐺(𝒛). According to Wasserstein Generative Adversarial 
Networks (WGAN) [15][16], the training process will be more 
stable than the original GAN with the following loss function 

min
+
max
.∈J

/𝐸𝒙~34[𝐷(𝒙)] −	𝐸𝒙?~3@[𝐷(𝒙?)]B   (2) 

where 𝜔 is the set of 1-Lipschitz function. A gradient penalty 
method [16] is proposed to further improve the performance of 
WGAN. Thus, we adopt the following loss function in our 
framework 

𝐿 = 𝐸𝒙?~3@[𝐷(𝒙?)] − 𝐸𝒙~34[𝐷(𝒙)] 
        																										+𝜆𝐸𝒙?~3𝒙?[(‖∇𝒙?𝐷(𝒙?)‖R − 1)

R]  (3) 

where 𝑃𝒙? is the distribution sampled uniformly along straight 
lines between pairs of points sampled from the data distribution 
𝑃D and the generator distribution 𝑃E. 

In this paper, we will use SingleLoad-GAN as the baseline 
model for benchmarking the performance of MultiLoad-GAN, 
for the reasons explained in section II A. The SingleLoad-GAN 
based approach is introduced in [10]-[12] and in this paper we 
reproduced the model in [10]. 

Let 𝐏TU = 5𝑝WU , 𝑝RU ,… , 𝑝TU <
Y
 represent the load profile of the ith 

individual user with M data samples. SingleLoad-GAN 
generates synthetic profiles, 𝐏ZTU = 5𝑝̂WU , 𝑝̂RU , … , 𝑝̂TU <

Y
with similar 

distribution as 𝐏TU . After all profiles are generated for N loads, 
we obtain a load group, 𝐏ZT×],  

𝐏ZT×] = 5𝐏ZTW , 𝐏ZTR … , 𝐏ZT]< = 	

⎣
⎢
⎢
⎡ 𝑝̂W

W 𝑝̂WR

𝑝̂RW 𝑝̂RR
⋯ 𝑝̂W]

𝑝̂R]
⋮ ⋱ ⋮

𝑝̂TW 𝑝̂TR ⋯ 𝑝̂T]⎦
⎥
⎥
⎤
       (4) 

C.  MultiLoad-GAN Model  
The configuration of MultiLoad-GAN is shown in Fig. 2. The 

MultiLoad-GAN generator network is a deep Convolutional 
Neural Network (CNN). First, a fully connected layer is used to 
extract features from the input data to a 2D data matrix. Then, 
transpose convolutional layers with decreasing number of 
kernels are used to generate load profile groups. ReLU is used 
as the activation function. Inspired by [17], we use batch 
normalization following each transpose convolutional layer to 
enhance the training process. A 𝑇𝑎𝑛ℎ layer is added to the end 
of the generator to normalize the output values into [-1, 1]. 

The MultiLoad-GAN discriminator is built with a set of 
convolutional layers with increasing number of kernels. The 
activation function is Leaky ReLU. Also, a batch normalization 
layer is added following each convolution layer.  

Compared with SingleLoad-GAN, a distinct advancement of 
MultiLoad-GAN is that it generates N load profiles 
simultaneously, so we have 
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Fig. 2.   MultiLoad-GAN architecture with corresponding input dimension (ID), output dimension (OD), kernel size (K), stride (S), padding (P), output padding 
(OP) for each convolutional layer. The parameter is an example for generating weekly 15-min load group with 8 households.

𝐏̈T×] = 5𝐏̈TW , 𝐏̈TR … , 𝐏̈T]< = 	

⎣
⎢
⎢
⎡ 𝑝̈W

W 𝑝̈WR

𝑝̈RW 𝑝̈RR
⋯ 𝑝̈W]

𝑝̈R]
⋮ ⋱ ⋮

𝑝̈TW 𝑝̈TR ⋯ 𝑝̈T]⎦
⎥
⎥
⎤
    (5) 

  
As shown in Fig. 3, inspired by the image processing 

encoding process, a unique profile-to-image encoding method 
is developed to encode a group of load profiles (an M×N matrix) 
into 3 color channels (red-R, green-G and blue-B). Dependency 
of load on temperature is investigated in many load forecasting 
researchers such as  [18][19]. Then, we add a fourth channel to 
represent temperature (𝑇) to reflect the weather dependence. 

To encode 𝐏T×] , map 𝑝lm ∈  𝐏T×]  to the RBG channels, 
[𝑟lm,𝑔lm ,𝑏lm ], by 

𝑟lm =

⎩
⎪⎪
⎨

⎪⎪
⎧
0,																				0 ≤ 𝑝lm < 𝑙W
𝑝lm − 𝑙W
𝑙R − 𝑙W

, 𝑙W ≤ 𝑝lm < 𝑙R

1 −
𝑝lm − 𝑙R
𝑙x − 𝑙R

, 𝑙R ≤ 𝑝lm < 𝑙x

0,												𝑙x ≤ 𝑝lm

	 

 𝑔lm = y1 −
z{|

}~
,										0 ≤ 𝑝lm < 𝑙W

0, 																					𝑙W ≤ 𝑝lm
           (6) 

𝑏lm =

⎩
⎪
⎨

⎪
⎧
𝑝lm

𝑙W
,																			0 ≤ 𝑝lm < 𝑙W

1 −
𝑝lm − 𝑙W
𝑙R − 𝑙W

, 			𝑙W ≤ 𝑝lm < 𝑙R

0,																								𝑙R ≤ 𝑝lm

 

𝑙W =
W
x
𝑙x, 𝑙R =

R
x
𝑙x , 

𝑙x = max(𝑝lm ,			𝑓𝑜𝑟			𝑚 ∈ [0,𝑀],𝑛 ∈ [0,𝑁]). 

The fourth channel is the temperature channel. Temperature 
measurement 𝑇l at time m is first normalized by 120°F in order 

to encode it to the brown channel, [𝑡l], so we have  

𝑡l = Y{
WR�

                                             (7) 

Thus, the load 𝑝lm  and temperature 𝑇l measurement at time 
point m is encoded into a normalized vector [𝑟, 𝑔, 𝑏, 𝑡] within 
[0, 1]. Then we further convert them into [-1, 1] to benefit the 
model training process by 

[𝑟, 𝑔, 𝑏, 𝑡] = [D,E,�,�]��.�
�.�

                           (8) 

 

 
Fig. 3.   An illustration of the profile–to-image encoding process. 

By encoding load profiles into an RBG image, machine 
learning tools developed in 2D image processing domain can 
be readily used to extract the spatial-temporal correlations 
among multiple loads. Also, RGB images make it easier for 
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human to visually recognize load variations patterns. Thus, we 
consider the profile-to-image encoding method and the 
corresponding adjustments on the conventional GAN 
architecture as one of the contributions of the paper. 

D.  Realisticness Evaluation 
Denote the load group generated by SingleLoad-GAN as 

𝐏ZT×] ∈ 𝛀�+
��+�] ; denote the load group generated by 

MultiLoad-GAN as 𝐏̈T×] ∈ 𝛀�+
T�+�]; denote the ground-truth 

load group as 𝐏T×] ∈ 𝛀�+ . As shown in Fig. 1(c), first, we 
compare statistical evaluation indices to quantify the 
realisticness at the household level (i.e., for each individual 
user) and the aggregation level (i.e., at the transformer level). 
Ideally, 𝐏̈T×]  is expected to have similar transformer-level 
statistics with 𝐏T×]  than those of 𝐏ZT×] because spatial-
temporal correlations among a group of users are implicitly 
learned by MultiLoad-GAN. Next, to compare features unable 
to be captured by human-defined indices, a specialized DLC is 
trained to assess the realisticness of 𝐏̈T×]  and 𝐏ZT×]  by 
comparing high-level features captured in 𝐏T×]. 

    1)  Method 1: Statistical Evaluation 
The statistical evaluation metrics are summarized in Table II.  

TABLE II 
STATISTICAL EVALUATION INDEXES FOR THE 𝑛�� LOAD GROUP 

No. Indexes 
1 Peak load distribution 
2 Mean power consumption distribution  
3 Load ramps distribution 
4 Hourly energy consumption distribution 
5 Daily energy consumption distribution 

First, distributions of each load character index for the 
generated and ground-truth load groups, 𝐏̈T×] , 	𝐏ZT×] , and 
𝐏T×] , are first calculated at both the household- and 
transformer- levels. Then, similarities between the distributions 
of each index for 𝛀�+

T�+�] , 𝛀�+
��+�]  and 𝛀�+  are compared to 

quantify the realisticness of the generated load groups. 

    2)  Method 2: Deep-Learning Classification 
DLC is trained in parallel with MultiLoad-GAN. DLC can 

identify real and fake load groups with higher accuracy than the 
MultiLoad-GAN discriminator because both positive and 
negative samples are used to train DLC, making it a highly 
“specialized” classifier for identify real and fake load groups.  

As shown in Fig. 4, the configuration of DLC includes a deep 
convolutional network consisting of 5 2-D convolutional layers 
with increasing number of kernels and 5 fully connected layers 
with decreasing number of features. The DLC input is a 𝑀×𝑁 
load group and the output is the probability of realisticness, 
which reflects how well realistic group-wise spatial-temporal 
correlations can be captured.  

Assume there are Q samples (each sample 𝐏T×] ∈ 𝛀�+ is a 
group of load profile with size 𝑀 ×𝑁 ) used to train the 
classifier. For the ith sample, the classifier output is 

𝐶(𝐏T×]) = 𝑃�D��(𝑖)			                    (9) 

where 𝑃�D��(𝑖) ∈ [0,1] is the probability for the ith load group 
to be “real”. Thus, we consider the sample to be “positive” if 
𝑃�D��(𝑖) > 0.5 and “negative” otherwise. 

Let 𝑄D��} be the number of samples classified as “positive”. 

The Percentage of Real (𝑃𝑂𝑅) of the dataset is calculated as 

𝑃𝑂𝑅 = �4���
�

× 100%                           (10) 

Although 𝑃𝑂𝑅 can be used to evaluate the accuracy of the 
classifier, it cannot reflect the confidence level of the 
classification results. For example, considering a sample 
“positive” when 𝑃�D��(𝑖) = 0.51  is a less certain judgement 
than when 𝑃�D��(𝑖) = 1 . So, we further calculate the Mean 
Confidence Level of the dataset (𝑀𝐶𝐿) as 

𝑀𝐶𝐿 = W
�
∑ 𝑃�D��(𝑖)
�
U W                (11) 

The similarity of real dataset 𝛀�+  and MultiLoad-GAN 
generated dataset 𝛀�+

T�+�]  can be calculated by the Fréchet 
inception distance [20][21] between the two distributions 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝐹𝐼𝐷9𝐶(𝛀�+), 𝐶(𝛀�+
T�+�]);                (12) 

 
Fig. 4.   Classifier architecture with corresponding input dimension (ID), 

output dimension (OD), kernel size (K), stride (S), and padding (P) for each 
convolution layer, max pool layer, and fully connected layer. The parameter is 
an example for generating weekly 15-min load group with 8 households. 

E.  Negative Sample Selection 
To train DLC, both positive samples (i.e., realistic load 

groups labeled by 1) and negative samples (i.e., unrealistic load 
groups labeled by 0) are required. The “original positive 
samples”, 𝐏T×], is the labelled ground-truth data set. However, 
because negative samples (i.e., load groups served by different 
transformers) do not “naturally” exist, they are generated by 
pulling load profiles from various transformer load groups.  

These negative samples play a vital role in preventing bias in 
load group classification. Without them, the classifier may 
mistakenly classify all load groups as positive samples, 
resulting in subpar performance. Therefore, generating high-
quality negative samples is crucial for achieving a balanced 
training dataset, reducing biases, and enabling the classifier to 
learn how to classify unseen data effectively. This process also 
enhances the classifier's robustness in the presence of noise or 
ambiguous cases. 

However, negative sample generation is a nontrivial task. 
Randomly selecting a group of users from a smart meter 
database that contains load profiles collected in the same area 
in the same season is a straightforward way to generate a 
negative sample. However, it is an uncontrolled approach with 
several drawbacks. First, a significant amount of the generated 
negative samples are too easy to be classified as “negative”. 
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Thus, DLC cannot learn complex hidden features. Second, an 
unknown number of the generated negative samples are 
actually positive samples. This is because, often times, a load 
served by one service transformer is equally likely to be served 
by an adjacent transformer with the same size. This 
phenomenon is quite common when supplying small residential 
loads. Thus, randomly drawing loads from a regional smart 
meter database to obtain negative samples is not a reliable 
negative sample generation strategy. 

Therefore, a statistic-based negative sample generation 
method is developed. First, we obtain operational statistics from 
the “original positive samples”. As shown in Fig. 5(a), we 
evenly divide the mean power value distribution of the real load 
profiles into 6 parts. A negative sample can thus be obtained if 
we randomly select 𝐾 load profiles from the red box region and 
𝑁 −𝐾 load profiles from the black box regions, where 𝐾 is a 
random integer in [0,𝑁/2] and randomized in each selection 
process. By doing so, the obtained load group has a much higher 
chance to be a negative sample. Similarly, based on Fig. 5(b), 
we can select negative samples to let the load group having 
different weekly peak distributions from that of the “original 
positive samples”.  By controlling the distance between the 
“real” and “fake” distributions, one can generate “very 
negative”, “negative”, “slightly negative”, and “almost 
positive” samples.   This gives the modeler the flexibility to tune 
the DLC to capture different level of realisticness. 

                    
Fig. 5.   (a) Mean power distribution and (b) Peak load distribution. 

F.  Automatic Data Augmentation 
As shown in Fig. 6, we propose an iterative ADA mechanism 

that leverages the generation ability of MultiLoad-GAN and the 
classification capability of DLC to iteratively create augmented 
training samples in the training (e.g. at step 𝑡 − 1) in order to 
boost subsequent training (e.g., at step 𝑡) of both MultiLoad-
GAN and DLC.  ADA includes three processes: unlabeled data 
set creation, labelling data for classifier training, and 
augmented data for MultiLoad-GAN training. 

First, we use two methods to create unlabeled load groups, 
𝛀�+
�m}���}�¨: 1) using MultiLoad-GAN to generate load groups 

directly to obtain 𝛀�+
T�+�], and 2) randomly sampling 𝑁 load 

profiles from a smart meter database, 𝛀�©�¨, to obtain 𝛀�+
ª�m¨.  

Note that at this stage, 𝛀�+
�m}���}�¨  contains both positive and 

negative samples.  
Next, 𝛀�+

�m}���}�¨  will be labeled by the DLC with parameter, 
𝜃¬  obtained from the previous training step, 𝑡 − 1. Note that 
such labels can include errors, depending on what the accuracy 
of the DLC is at the training stage. Then, the labeled data, 
together with the “original positive samples” (𝛀�+ ) and 

negative samples (𝛀�+
]�E, selected by NSG in Section II.C) will 

be used to train the DLC. 
Third, once the Classifier is trained, it will immediately be 

used for identifying positive samples from 𝛀�+
ª�m¨, which will 

then be used as the augmented dataset 𝛀�+
��E  for training 

MultiLoad-GAN. Note that only samples with a high 
confidence level (e.g., samples with scores > 0.9) will be 
selected to enhance the quality of the augmented data. 

 

 
Fig. 6.   Flowchart for the iterative ADA process.  

    When the interactive training process progresses, the DLC 
training will improve significantly because it receives an 
increasing number of high-quality training data generated by 
MultiLoad-GAN and random sample selection. In return, the 
classifier can help identify positive samples with higher 
confidence level to enhance the training of MultiLoad-GAN. 
The training of MultiLoad-GAN and DLC will be both 
enhanced until the accuracy of the classifier saturates to a 
certain level. 

III.  SIMULATION RESULTS 
In this paper, we use transformer-level load group generation 

as an example to illustrate the group-load generation process 
and evaluate algorithm performance.  

A utility in the North Carolina area provides us with a 
labelled data set, which includes 3-year (from 2017 to 2020), 
15-minute load profiles collected from 64 residential 
customers, which are served by eight 50kVA transformers (8 
customers per transformer). The corresponding temperature 
data are from National Oceanic and Atmospheric 
Administration (NOAA) [22] website. After excluding the 
missing data, we obtain 1424 load group (each sample is a 
matrix of 𝐏672×8), which are considered as “original positive 
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samples”.  Thus, the output of the MultiLoad-GAN model 
should be weekly load profiles (i.e., 𝑀 = 4 × 24 × 7 = 672) 
for a group of 8 loads (i.e., N=8) serving by the same 
transformer.  

The power and temperature encoding parameters are given in 
Table III and the profile-to-image process is illustrated in Fig. 
3(b)(c). Hyper-parameter settings of MultiLoad-GAN are given 
in Table IV. We use the root mean square propagation 
(RMSProp) optimizer. The model is built in the PyTorch 
environment and trained on a single NVIDIA GeForce RTX 
1080 GPU. Each training takes approximately 2 hours. The 
architecture of the benchmark model, SingleLoad-GAN is 
implemented with a set of hyper-parameter settings shown in 
Table IV. Each training takes approximately 1 hour.  

It is important to point out that we do not split the data into 
training and testing sets for a GAN model, as it is done in other 
supervised learning. Because the GAN model learns the 
mapping from the latent vector distribution to the actual data 
distribution. As a result, the evaluation of the GAN model is not 
a point-to-point comparison between the generated results and 
the actual results (because the generated results should be 
different from any existing ones and therefore is not 
comparable). Instead, the evaluation focuses on the realisticness 
of the generated results, such as statistical evaluation, visual 
inspection, deep learning classification, etc. 

TABLE III 
PARAMETERS USED IN THE PROFILE-TO-IMAGE ENCODING PROCESS 

Load 
(kW) 

Vector 
[r, g, b] 

Temperature 
(Fahrenheit) 

Vector 
[t] 

0  [0, 1, 0] 0 [0] 
(0, 2) g¯, b­ 

(0, 120) t­ 
2 (𝑙x) [0, 0, 1] 
(2, 4) b¯, r­ 
4 (𝑙x) [1, 0, 0] 
(4, 6) r¯ 

[6 (𝑙x), +¥) [0, 0, 0] 120 [1] 

The loss curves when training MultiLoad-GAN is shown in 
Fig. 7(a) stage 1. Initially, there is a sharp decrease of the 
discriminator loss. This means that the discriminator quickly 
captures the differences between the real (𝐏672×8 ) and fake 
(𝐏̈672×8) load groups generated by the naive generator. When the 
generator network is stronger than the discriminator network, 
and able to generate more realistic samples that can fool the 
discriminator, the loss of the discriminator will increase, and 
the loss of the generator will decrease. Otherwise, when the 
discriminator is stronger, the loss of the discriminator will 
decrease, and the loss of the generator will increase. Such 
adversarial training process allows both the generator and the 
discriminator to continuously improve themselves. After about 
300 epochs, the generator and discriminator of MultiLoad-
GAN reach a balanced state, showing that the generator can 
generate realistic load groups. The training process of 
SingleLoad-GAN shown in Fig. 7(b) is similar. 

The generated load groups are shown in Fig. 8. It is hard to 
evaluate the realisticness of a load profile by visually 
comparing the load profiles, even harder for a human to judge 
whether a group of load profiles bear similar spatial-temporal 
correlations. The results show that it is necessary to use 
statistical metrics and DLC for quantifying realisticness in 

synthetic load profile generation instead of relying on visual 
inspection, which is commonly used in image processing 
domain. 

TABLE IV 
HYPERPARAMETER SETUP FOR THE GAN MODEL 

Parameter MultiLoad-GAN SingleLoad-GAN 

Learning rate 1e-4(D) 
1.4e-4(G) 

1e-4(D) 
1.2e-4(G) 

Gradient penalty weight - λ  10 10 
Slop of LeakyReLU 0.2 0.2 

Batch size 16 64 
Training epochs 300  100  

Training time Stage 1: ~2hrs 
Stage 2: ~4hrs ~1hr 

A.  Statistical Evaluation 
To compare the performance improvement, we compared 

1424 load groups (𝐏̈672×8) generated by MultiLoad-GAN with 
1424 load groups (𝐏Z672×8) generated by SingleLoad-GAN. By 
doing so, we have a real load group database (𝛀�+ ), a 
MultiLoad-GAN generated load group database (𝛀�+

T�+�]), and 
a SingleLoad-GAN generated database (𝛀�+

��+�]), each having 
1424 samples. The load statistics can be calculated at both the 
household and transformer levels. By comparing the distance 
between the metric distribution of the generated load groups 
and the real load groups, we can assess the realisticness of the 
generated load profiles. 

 
Fig. 7.  (a) Loss curves of MultiLoad-GAN, stage 1: Loss curve of discriminator 
and generator in the MultiLoad-GAN training stage; stage 2: Loss curve of 
discriminator and generator in the Automatic Data Augmentation (ADA) 
training stage. (b) Loss curves of SingleLoad-GAN 

 
     (a)                      (b)         (c) 

Fig. 8. (a) a MultiLoad-GAN generated load group (𝐏̈672×8), (b) a real load group 
(𝐏672×8), (c) a SingleLoad-GAN generated load group (𝐏Z672×8). 
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To ensure a comprehensive evaluation, a LSTM-based load 
forecasting method has been used as an additional benchmark. 
This method forecasts a set of load profiles using real load 
groups. The data processing procedure follows a similar 
approach to SingleLoad-GAN. 

    1)  Evaluation at the Household-level 
For the household level evaluation, statistics are calculated 

based on individual load profile. Note that each database 
contains 1424×8=11392 weekly load profiles. 

 
        (a) Mean                 (b) Peak 

Fig. 9.  (a) Household-level mean power distribution curves and boxplots, and 
(b) Household-level peak load value distributions and boxplots. 

• Mean and peak. As shown in Fig. 9, MultiLoad-GAN and 
SingleLoad-GAN can all generate load profiles with the 
mean value distribution close to that of real load groups. 
However, SingleLoad-GAN tends to generate load 
profiles with higher peak values (e.g., from 3 to 5kW), 
making its peak value distribution deviate from the ground 
truth. This is because when generating load profiles one at 
a time, the correlation between users are not considered, 
making SingleLoad-GAN results less realistic. Due to its 
nature as a forecasting method relying on historical data, 
LSTM tends to generate load profiles with narrow ranges 
for mean and peak values. This limitation makes it 
challenging to produce diversified load profiles. 

• Load ramps. The distributions of load ramps on the four 
data sets are shown in Fig. 10. We can see that MultiLoad-
GAN and SingleLoad-GAN show comparable 
performance on this metric, but LSTM performs worse 
than them. 

 
(a) Boxplot                        (b) Probability density function 

Fig. 10.  Household-level load ramp distributions curves and boxplots. 

• Daily and hourly power consumption. As shown in Figs. 
11 and 12, MultiLoad-GAN and SingleLoad-GAN has 
similar performance on daily power consumption but is 
slightly worse than SingleLoad-GAN on hourly power 
consumption. LSTM still perform worse than them. 

 
(a) Weekday            (b) Weekend 

Fig. 11.  Household-level daily power consumption distributions and boxplots 
in weekday and weekend. 

 
Fig. 12.  Household-level hourly power consumption distributions and boxplots 
in four time periods of a day. 

    2)  Evaluation at the Transformer-level 
Next, we compare the load group characteristic for the 1424 

aggregated profiles in each of the four databases. 
• Mean and peak.  As shown in Fig. 13, all the models have 

similar performance on the mean value distribution. But 
SingleLoad-GAN and LSTM tend to generate load groups 
with higher peak values. 

 
(a) Mean                     (b) Peak 

Fig. 13.  (a) Transformer-level mean power distributions and boxplots, and (b) 
Transformer-level peak load value distributions and boxplots. 
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(a) Boxplot                         (b) Probability density function 

Fig. 14.  Transformer-level load ramp distributions and boxplots. 

• Load ramps.  As shown in Fig. 14, MultiLoad-GAN 
results are smoother than the actual data (i.e., the 
distribution is more centered towards 0), while 
SingleLoad-GAN results have more fluctuation. However, 
LSTM generates more large ramping. Overall, 
MultiLoad-GAN distribution is closer to the ground truth. 

• Daily and hourly power consumption. As shown in Figs. 
15 and 16, MultiLoad-GAN has comparable performance 
with the other two methods on daily power consumption 
and is better than them on hourly power consumption. 

 
(a) Weekday            (b) Weekend 

Fig. 15.  Transformer-level daily power consumption distributions and boxplots 
in weekday and weekend. 

 
Fig. 16.  Transformer-level hourly power consumption distributions and 
boxplots in four time periods of a day. 

To make quantitively comparison, we calculate the FID 
between the distributions of the generated dataset and real 
dataset and summarize the results in Table V. We can see that 
MultiLoad-GAN has comparable performance with 
SingleLoad-GAN and LSTM on the household-level statistics 
(3 indices out of 5 perform the best), but show significant 
advantages on the aggregation-level ones (outperform 
SingleLoad-GAN and LSTM in all the indices). This means the 
MultiLoad-GAN can successfully capture correlations between 
users served by the same transformer. Thus, it can generate load 
groups with more realistic aggregation-level features while 
preserving the characteristics of each individual load. 

TABLE V 
STATISTICAL EVALUATION RESULTS 

Evaluation Criteria MultiLoad
-GAN 

SingleLoad
-GAN LSTM 

Household 
Level 

Mean 5.319e-4 6.473e-4 3.854e-3 
Peak 2.431e-2 4.884e-2 9.6.6e-2 
Ramp 6.700e-4 3.445e-4 1.650e-1 

Hourly 
Consumption 

(4.125e-4 
1.115e-3 
4.556e-4 
6.726e-4) 
6.639e-4 

(1.464e-4 
5.098e-4 
5.225e-4 
1.482e-3) 
6.652e-4 

(1.890e-3 
2.644e-3 
2.200e-3 
3.362e-3) 
2.524e-3 

Daily 
Consumption 

(3.245e-1 
3.610e-1) 
3.428e-1  

(2.516e-1 
3.411e-1) 
2.964e-1 

(2.457 
2.561) 
4.509 

Aggregation 
Level 

Mean 3.454e-2 3.491e-2 4.168e-2 
Peak 5.822e-2 2.252 1.748e-1 
Ramp 6.893e-4 1.074e-1 1.331e-1 

Hourly 
Consumption 

(1.611e-2 
3.608e-2 
1.728e-2 
2.738e-2) 
2.421e-2 

(5.634e-3 
2.821e-2 
3.507e-2 
7.370e-2) 
3.565e-2 

(9.740e-2 
4.661e-2 
3.045e-2 
6.072e-2) 
5.879e-2 

Daily 
Consumption 

(2.030e1 
1.943e1) 
1.987e1 

(1.649e1 
3.230e1) 
2.440e1 

(2.490e1 
2.195e1) 
2.342e1 

B.  Realisticness Evaluation based on DLC Classification 
To train DLC, 4272 generated negative samples and the 1424 

“original positive samples” are used as the training set. The 
positive-negative sample ratio is 1:3. The data set are split into 
training (80%) and testing (20%) sets.  

Three negative sample generation methods are compared: 1) 
randomly select 8 weekly load profiles from the regional smart 
meter database; 2) select negative samples based on mean value 
distribution (see Fig. 5(a)); 3) select negative samples using 
mean and peak distributions (see Fig. 5, the proposed method).  

As shown in Table VI, randomly selecting load profiles as 
negative samples results in poor identification accuracy, while 
using the proposed method for NSG, the accuracy can improve 
to approximately 94%, which is a 20% improvement. 

TABLE VI 
CLASSIFIER ACCURACY WITH DIFFERENT NSG CRITERIA   

Method 
No. 

Negative sample 
generation criteria 

Test 
Accuracy 

(%) 

Mean 
Confidence 

Level Mean Peak 

DLC 
  70.37  
√  92.42  
√ √ 94.38 0.9371 

RF √ √ 93.77 0.8663 
K-NN √ √ 90.61 0.9254 

DT √ √ 89.56 1.0 
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To demonstrate the importance of using DLC, several non-
DL classifiers, such as Random Forest, K-Nearest Neighbors, 
Decision Tree, are used for comparison. Negative sample 
generated based on mean and peak values are used as they have 
been shown to enhance classifier performance in previous 
analyses. The result shows that DLC exhibits the highest 
accuracy and a relative high confidence level. Therefore, we 
choose DLC as the evaluation model. 

The trained DLC will be used to evaluate the realisticness of 
the load groups generated by MultiLoad-GAN and SingleLoad-
GAN. For all four data sets (i.e., real-world load group samples 
𝐏672×8, MultiLoad-GAN generated samples 𝐏̈672×8, SingleLoad-
GAN generated samples 𝐏Z672×8 , and LSTM forecasted 
samples).  The DLC will give a score (i.e., the confidence level) 
for each sample to show realisticness. The probability density 
distribution of the scores are shown in Fig. 17(a). Key statistics 
are summarized in the first column of Table VII.  

 
        (a) Without ADA                 (b) With ADA 

Fig. 17.  Distribution of DLC scores (a) without ADA and (b) with ADA. 

TABLE VII 
RESULTS OF DLC-BASED EVALUATION 

Indices Real 
data 

Single
Load-
GAN 

LSTM MultiLoad
-GAN 

MultiLoa
d-GAN  
(with 
ADA) 

Percent 
of Real 94.38% 19.69% 84.83% 99.06% 94.99% 

Mean 
Confiden
ce Level 

0.9371 0.1913 0.8919 0.9899 0.9491 

Fréchet 
inception 
distance  
with the 
𝑹𝒆𝒂𝒍 
load 

group 

N/A 0.5173 0.00706 0.01106 0.000055 

From the results, we have the following observations: 
• As shown in Fig. 17, DLC is confidence about the 

classification results, because most scores are close to 1 
(real) or 0 (fake). 

• As shown in Table VII, 99.06% of the MultiLoad-GAN 
generated samples are classified as real by DLC, 84.83% 
of the LSTM forecasted samples are classified as real, 
while only 19.69% of the SingleLoad-GAN generated 
samples are classified as real. This means that MultiLoad-
GAN generates load groups with similar high-level 
features with those of the actual load groups. 

• The FID index defined in (12) is calculated to measure the 
similarities between two distributions in Fig. 17(a). The 
FID between “MultiLoad-GAN” and “Real” is 0.01106, 
FID between “LSTM” and “Real” is 0.007.58, while 
between SingleLoad-GAN and “Real” is 0.5173.  

This result shows that the MultiLoad-GAN generated load 
groups are much closer to the ground truth ones from the 
classifier’s viewpoint. 

E. Automatic Data Augmentation 
ADA training starts from the MultiLoad-GAN and DLC 

trained in the previous sections. The loss curves of MultiLoad-
GAN in ADA process are shown in Fig. 7(a) stage 2. The 
performance indices for the with/without ADA-boosted 
MultiLoad-GAN cases are summarized Table VII (indices are 
defined in section II. E. 2.) and Fig. 17(b). The results show that 
the ADA process significantly shorten the distance between 
MultiLoad-GAN generated data set and the real data set. This 
shows that the ADA process avoids MultiLoad-GAN to be 
over-trained so that it only generates load groups strongly 
resemble the “original positive samples”.  

Without incorporating the ADA process, the MultiLoad-
GAN model generates high-confidence load groups according 
to the DLC's perspective, resulting in a near 99% real 
percentage. However, this does not align well with the actual 
data, where low-confidence load groups exist, leading to a POR 
of 94.38%. By implementing the ADA process, the MultiLoad-
GAN model generates additional low-confidence samples, 
improving its performance to achieve a POR of 94.99%, which 
is closer to the real dataset. Figure 17(b) visually demonstrates 
the resulting dataset's distribution, which is closer to that of the 
original dataset. By considering the POR before and after the 
ADA process, it can be concluded that ADA has enhanced the 
performance of MultiLoad-GAN by approximately 4.07% 
(moving closer to the real dataset). 

IV.  CONCLUSION 
In this paper, we present MultiLoad-GAN framework for 

generating a group of load profiles simultaneously while 
preserving the spatial-temporal correlations between load 
profiles in the group. Inspired by the successful application of 
the GAN-based model in both image processing and power 
system domain, we develop a novel profile-to-image coding 
method to convert time-series plots to image patches, so that 
GAN-based models can be readily used for processing groups 
of load profiles. To solve the data scarcity problem, we 
developed an iterative data augmentation process to train 
MultiLoad-GAN and a classifier alternatively. Thus, the 
classifier can be used to automatically label positive and 
negative samples for augmenting the training of both the 
classifier and the MultiLoad-GAN in subsequent steps. Our 
simulation results, based on statistical and DLC evaluation, 
show that compared with the state-of-the-art synthetic load 
generation process, MultiLoad-GAN better preserves both 
household-level and group-level load characteristics. 
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