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Abstract—The variability caused by the proliferation of 

distributed energy resources (DERs) and the significant growth in 

unbalanced three-phase loads pose unprecedented challenges to 

distribution network operations. This paper focuses on how a 

distribution system operator (DSO), taking over the distribution 

grid and market operations, would develop a risk-aware flexibility 

market to mitigate uncertainties in an unbalanced three-phase 

power distribution network. First, a distributionally robust chance 

constraint (DRCC) method is devised to solve the unbalanced 

three-phase optimal power flow using a semidefinite programming 

(SDP) model. The DSO can apply the proposed solution to jointly 

clear energy and flexibility markets. Then, the DRCC model 

accuracy is improved by an information-sharing mechanism 

characterized by spatially-correlated uncertainties in the 

distribution grid. Further, a novel system-wide response function 

is derived to make the DRCC model tractable. Using the duality 

theory, the paper further investigates the physical composition of 

the DSO’s cleared flexibility prices to guide the unbalanced 

distribution network operation. Finally, the effectiveness of the 

risk-aware flexibility market is verified in a modified three-phase 

IEEE 34-node system. Results demonstrate that the flexibility 

market can quantify the impact of spatially correlated 

uncertainties and facilitate the utilization of flexible resources to 

mitigate uncertainties across the network. 

Index Terms—Unbalanced three-phase distribution system, 

DRCC optimal power flow, risk-aware flexible resources. 

NOMENCLATURE 

A. Indices and Sets 

𝑡, T Index and set of time periods. 

𝑖, 𝜑/𝜙 Indices of nodes and phases. 

𝑘 Indices for uncertainty sources. 

𝑙/(𝑖, 𝑗) Indices for branch lines. 

Ω𝑏 , Ω𝑙 Set of nodes and lines. 

Ω𝑏
+ Set of nodes except the substation node. 

Ω𝑔, Ω𝑠  Set of nodes with generators/ storages. 

B. Main Variables 

𝑔𝑖,𝜑,𝑡 , 𝑞𝑖,𝜑,𝑡
𝑔

 Active/reactive output of generator at phase 𝜑 of 

bus i at time t. 

ch𝑖,𝑡
𝜑

/dis𝑖,𝑡
𝜑

  Charging and discharging power of storage at 

phase 𝜑 of bus i at period 𝑡. 

𝑞𝑖,𝜑,𝑡
𝑠   Reactive output of storage located at phase 𝜑 of 

bus i at period 𝑡. 

𝑅𝑖
up

/𝑅𝑖
dn Up/Down reserve by bus i. 

𝑃𝑖,𝜑,𝑡 , 𝑄𝑖,𝜑,𝑡  Active/Reactive power injection at phase 𝜑  of 

bus i at period 𝑡. 

𝑉𝐷𝐼𝑖,𝑡  Voltage deviation index for bus i at time t. 

𝑃𝑖,𝑗,𝑡
𝜑

, 𝑄𝑖,𝑗,𝑡
𝜑

 Real/Reactive power flow at phase 𝜑 of line (i,j) 

at time t. 

𝑆𝑂𝐶𝑖,𝑡  State of charge for the storage at bus i at time t. 

𝑽𝑡  Complex nodal voltage vector at time t. 

𝑿𝑡  Auxiliary variables 𝑿𝑡 = [ℜ(𝑽𝑡
𝑇), 𝔍(𝑽𝑡

𝑇)]𝑇 , 

where 𝑽𝑡 = [𝑉1,𝑡
𝑎 , 𝑉1,𝑡

𝑏 , 𝑉1,𝑡
𝑐 , … , 𝑉𝑁,𝑡

𝑎 , 𝑉𝑁,𝑡
𝑏 , 𝑉𝑁,𝑡

𝑐 ]
𝑇
  

𝐖𝒕  Symmetric matrix 𝐖𝒕 = 𝑿𝑡𝑿𝑡
𝑇  

𝑺𝑡  Power matrix 𝑺𝑡 = [𝑷𝒕; 𝑸𝒕] 

= [
𝑃1,𝑡

𝑎 , 𝑃1,𝑡
𝑏 , 𝑃1,𝑡

𝑐 , … , 𝑃𝑁,𝑡
𝑎 , 𝑃𝑁,𝑡

𝑏 , 𝑃𝑁,𝑡
𝑐 ,

𝑄1,𝑡
𝑎 , 𝑄1,𝑡

𝑏 , 𝑄1,𝑡
𝑐 , … , 𝑄𝑁,𝑡

𝑎 , 𝑄𝑁,𝑡
𝑏 , 𝑄𝑁,𝑡

𝑐 ]

𝑇

  

�̂�𝑖,𝑗,𝑡 Apparent power of line (i, j) flow at time t. 

𝛽𝑖,𝑘,𝑡
𝜑

  Proportion of uncertainty source 𝜉𝑘  which will 

be balanced by phase 𝜑 of bus i at time t. 

𝝃𝑡 Vector of uncertainties at time 𝑡 

𝐶𝑖,𝑡
𝑅  Cost for flexibility at bus i at time t. 

𝐸𝑘,𝑡
𝜉

 Uncertainty payment for source k at time t. 

Other Greek letters are used to represent the dual multipliers. 

C. Main Parameters 

RU, RD Ramp up/down rate. 

𝑃𝐹𝑖
𝑚𝑖𝑛/𝑚𝑎𝑥

 
Minimum/maximum power factor for bus i 

generator. 

𝜂𝑠 Efficiency factor of storage. 

Y  System admittance matrix. 

𝑆𝑖,𝑗
𝑚𝑎𝑥 Maximum apparent power limit for line (i,j) 

𝑑𝑖,𝜑,𝑡  Load forecast at phase 𝜑 of bus i at time t. 

𝑒𝑖,𝜑,𝑡 Renewable energy forecast at phase 𝜑 of bus 

i at time t. 

𝜙𝑖,𝜑
𝑑  Load power factor. 

𝑉𝑖
𝑚𝑖𝑛 , 𝑉𝑖

𝑚𝑎𝑥 Minimum/maximum voltage magnitude. 

𝜞  Covariance matrix of uncertainty. 

𝜞1 2⁄   Decomposed covariance matrix satisfying: 

(𝜞1 2⁄ )
𝑇

𝜞1 2⁄ = 𝜞 

𝜖𝑅, 𝜖𝑣 , 𝜖𝑓   Confidence level (probability) of reserve, 

voltage, line flow constraint violations. 

𝝆 Matrixes of correlation coefficients. 

𝛽  Minimum participation factor for flexibility 

reserve requirement. 

D. Main Abbreviations and operator 

ℜ(),𝔍() Real and imaginary parts. 

𝑇𝑟{} , ()𝑇  Trace/transpose. 

𝐸()  Expected value. 

𝑆𝑡𝑑𝑒𝑣[]  Standard deviation 

𝑐𝑜𝑣( ∙)  Covariance of the vector 
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⊙  Element-wise product. 

𝚽𝑵  Joint probability density function of N standard 

normal distribution functions. 

𝚽−𝟏  Inverse of univariate standard normal CDF 

distribution. 

CDF Cumulative distribution function 

SDP Semidefinite programming. 

DRCC Distributionally robust chance constraints. 

DERs Distributed energy resources. 

I. INTRODUCTION 

OWER distribution network is envisioned to incorporate a 

higher penetration level of renewables, plug-in three-phase 

electrical loads, and plug-and-play distributed energy storage 

system (ESS). With a higher penetration of distributed energy 

resources (DERs) and intermittent loads, spatial and temporal 

distribution of power generation to supply the load demand in 

three-phase unbalanced distribution networks is expected to be 

extremely uncertain [1]-[3]. Generally, more flexibility is 

required to maintain the energy balance, avoid voltage 

violations, and mitigate distribution flow congestions. 

Extensive studies have explored the value of flexible 

resources in distribution networks [1]-[3]. The North American 

Electric Reliability Corporation (NERC) recognizes the 

flexibility as an ability to mitigate fluctuations in renewable 

energies or loads by using controllable resources in a system 

[4]. One of the essential roles of flexibility is the provision of 

reserve, which is generally regarded as an ancillary service [5]. 

However, the provision of system-wide flexibility may face a 

deliverability issue restricted by network constraints [6]. On the 

other hand, ancillary services may face significant shortages 

due to rising uncertainties in power systems [7]. Two categories 

of probability-related methods are explored to analyze the 

influence of uncertainties on the network operation. 

(i) Probabilistic optimal power flow (POPF) method: POPF 

determines the optimal network operation strategy considering 

inherent uncertainties by analyzing probabilistic distribution 

characteristics of system-state variables [8]-[10]. Probability 

distributions of system-state variables can be obtained directly 

by probability density functions (PDF) or cumulative 

distribution functions (CDF) to assess the system performance 

[8], [10]. Nonlinear complementarity problem functions have 

been introduced in [9] to derive nonlinear analytical 

expressions for optimal solutions. PDF or CDF of the solution 

can be reformulated using various approximation expansions 

such as Edgeworth, Gram-Charlier, and Cornish-Fisher 

expansions [11], [12]. However, while POPF accurately 

captures the impact of uncertainties on the system state, it often 

requires computationally intensive calculations [8], [10]. 

(ii) Distributionally robust chance constraints-based optimal 

power flow (DRCC-OPF) method: To overcome the challenges 

posed by the heavy computational burden of the POPF method, 

the DRCC-OPF method, as another probabilistic model, has 

attracted widespread attention. It makes a tradeoff between 

cost-efficiency and system reliability by considering maximum 

probability violations for operational constraints. DRCC-OPF 

models uncertainty using an ambiguity set, a collection of 

potential distributions with uncertain characteristics [13]. The 

distance-based DRCC methods proposed in [14]-[16] capture 

the proximity of adjacent distributions using appropriate 

probability distance functions like Prokhorov metric [14], 

Kullback-Leibler divergence [15], and Wasserstein distance 

[16]. While these methods provide detailed probability 

distribution characterization, they come with an increased 

computational burden and challenges in embedding uncertainty 

dependencies into the OPF problem. To mitigate these 

limitations, moment-based ambiguity sets are employed in the 

DRCC-OPF problem in [17]. These sets use moment 

information, such as mean and covariance, to describe the 

probability distributions of uncertainties. The ambiguity set 

comprises distributions that share the same mean and 

covariance matrix estimated from empirical data. 

The Distribution System Operator (DSO), responsible for 

grid and market operations, places significant importance on 

making robust market decisions given the wide range of 

probability distribution information associated with 

uncertainties. While the DRCC-OPF method demonstrates 

efficiency in evaluating network operation under diverse 

uncertainties, it still faces three primary challenges: 

1) How can we assess the influence of spatially correlated 

uncertainties on distribution network operation? Numerous 

studies have pointed out that there are spatial correlations 

between uncertain variables in the distribution network, 

including correlations between loads under different spatial 

distributions [18], correlations between DERs located at 

different nodes [19], and correlations between DERs and loads 

[6].  Ref. [20] develops a combined Gaussian copula model 

with Spearman coefficients to analyze the rank correlations 

among diverse uncertainties that would follow any probability 

distribution. Although uncertainty correlation analyses in 

distribution networks have attracted widespread attention, the 

issue that needs to be resolved in how to precisely assess the 

impact of spatially correlated uncertainty on the operation 

safety of three-phase distribution networks.  

Incorporating the correlations among uncertainties in the 

distribution systems into the DSO’s decision model can 

enhance robustness and reduce the requirement for flexibility 

reserves [6], [17]. For the unbalanced three-phase distribution 

network, the rank-relaxed semidefinite program (SDP) is 

considered as a valid solution to solve the OPF model in 

unbalanced three-phase distribution networks [21]. [22] verifies 

the tightness of the SDP relaxation in the presence of practical 

angle constraints and real power lower bounds in radial 

systems. Hence, it is promising to incorporate the probability 

information of spatially correlated uncertainties into the SDP-

based ACOPF in the three-phase distribution network. 

2) How will DSO estimate the flexibility requirement to 

improve the operation of three-phase unbalanced distribution 

network operation? Although certain studies focused on 

correlated uncertainties in the OPF model, it remains a 

challenge to tie the spatially correlated uncertainties with 

flexibility reserve requirements. In nonlinear ACOPF, the 

system-state variables (such as node voltage, active and reactive 

power flows in the line) are often implicitly relative to the 

P 
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changes in node power injection uncertainty. To quantify the 

flexibility requirement of distribution network operation, it is 

essential to derive an explicit mapping relationship between the 

uncertainties and the change of system-state variables from the 

original ACOPF [23], [24]. The affine policy is regarded as an 

efficient tool expansion to derive the expressions for the 

system-state variables affected by uncertainties [25]. The 

traditional affine policy can recast the nonlinear node power 

balance equations in ACOPF through a Jacobian matrix [23], 

[24]. In the existing research on ACOPF in distribution 

networks, there are two common methods to obtain the 

Jacobian matrix. One is to approximate the nonlinear ACOPF 

with linear LinDistFlow [26]. Further, the power transfer 

distribution factor (PTDF) is used to map the change of nodal 

load to the change of edge power flow [27]. The other method 

is the algorithmic differentiation method [28], which can 

effectively calculate the Jacobian matrix corresponding to 

various operating states. However, for the first kind, we cannot 

neglect the influence of unbalanced power injections and 

corresponding reactive power flows in three-phrase distribution 

networks. Hence, the accuracy of the traditional PTDF method 

is unaccepted. For the second kind, as shown in [27], [28], this 

method requires recalculation at all given operating points to 

obtain the Jacobian matrix, which will cause a considerable 

computational burden. Hence, how to efficiently assess the 

requirement of flexibility reserves in the unbalanced 

distribution network is still an open question. 

3) How do we design a risk-aware distribution network 

flexibility market for mitigating the operation risk arising from 

diverse uncertainties? Considering market operation 

perspectives, the cost of ancillary services is usually passed on 

to customers using fixed tariffs. In the PJM market [29], a 

reserve bill is allocated to each load serving entity (LSE) 

according to its load share. Under such a tariff, LSE customers, 

instead of the owner of variable sources, pay for the flexibility 

required to mitigate the variability from DER generation and 

load demands. Such practiced do not provide an effective 

incentive for local (i.e., located in the distribution system) 

flexibility resources, since variable DERs would have no 

incentives to manage their risk posed on distribution system 

operations [30]. 

The concept of distribution-level flexibility markets has 

emerged recently [31]. A large body of work has recently 

focused on local flexibility markets, including bidding 

strategies for flexibility offers [32], and efforts to account for 

network constraints [33], uncertainty [34]. Mechanism design 

is used to design a fair market for energy and flexibility at the 

distribution level in [35]. In [30], the authors move even a step 

further and present an approach toward understanding 

distribution locational marginal prices by decomposing the 

distribution locational marginal price (DLMP) for energy into 

terms relating to power at the root node, to real power losses, to 

reactive power losses, to voltage constraints, and to line limits. 

However, DLMP is hindered by its inability to clearly capture 

the DER stochasticity [23]. [36] proposes a SDP-based DRCC-

OPF model to manage the risk of operational limits violations 

which are caused by uncertain renewable generation. It is a 

promising solution for assessing the effect of uncertainties on 

the single-phase distribution network operation. However, the 

unbalanced distribution network features are neglected and all 

risk costs are shifted to end-users. Hence, we derive risk-aware 

prices on both sides of the flexibility market to quantify the cost 

of mitigating the uncertainties and reward flexible resources in 

an unbalanced three-phase distribution network. 

Motivated by the above challenges, this paper proposes a 

risk-aware distribution-level flexibility market clearing scheme 

for valuing local flexible resources that can cope with spatially 

correlated uncertainties. Through the clearing of flexibility 

market, DSO would quantify the cost of mitigating the risk 

posed by uncertainties and reward flexible resources in an 

unbalanced three-phase distribution network. First, DSO jointly 

clears energy and flexibility markets using a SDP-based three-

phase ACOPF solution. To further model the impact of spatially 

correlated uncertainties on flexibility market clearing, a DRCC 

framework is included in the probabilistic three-phase ACOPF 

model with an information-sharing mechanism that assesses the 

correlation amongst stochastic variables. Finally, the cleared 

risk-aware flexibility prices are extended with a transparent 

decomposition for DSO to value both the benefit of flexible 

resources and the risk posed by uncertainties on system 

operation in an unbalanced three-phase distribution network. 

The contributions of this paper are threefold: 

i) We internalize spatially correlated uncertainties and the 

system-wide risk tolerance level through information sharing in 

a DRCC based unbalanced three-phase distribution ACOPF 

model. The derivation can be applied to diverse uncertainty 

factors with arbitrary distributions which are coupled spatially. 

The DRCC model can mitigate the total system-level reserve 

requirement by accurately characterizing network uncertainties 

with shared information. 

ii) System-wide response functions are derived from 

sensitivity matrices of an unbalanced three-phase OPF model. 

The functions can analytically characterize the spatial-temporal 

transfer relationship of uncertainties and operation flexibilities 

in a power distribution system. Using the system-wide response 

functions, the proposed DRCC model will be reformulated as a 

tractable SDP problem. 

iii) A DSO’s risk-aware flexibility market clearing scheme 

is derived from the probabilistic three-phase ACOPF solution. 

The cleared flexibility prices are further decomposed into four 

physical parts including energy, volt/var, and active/reactive 

power flows. This decomposition is used for guiding flexible 

resources to mitigate the impact of uncertainties on energy 

balance, voltage security, line losses, and network congestion. 

The rest of this article is organized as follows. Section II 

performs an SDP relaxation method for the deterministic 

unbalanced three-phase ACOPF. Then the SDP-based DRCC-

OPF solution is used to clear the risk-aware flexibility market 

in Section III. Section IV analyzes the cleared flexibility prices. 

Section V validates the effectiveness of the proposed pricing 

framework. The conclusion is performed in Section VI. 

II. SDP RELAXATION FOR ACOPF IN AN UNBALANCED THREE-

PHASE POWER DISTRIBUTION NETWORK 

This section shows the SDP relaxation of the three-phase 
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unbalanced distribution OPF model. Further, it constructs 

sensitivity matrices to represent nodal uncertain deviations as a 

function of system-state variables. 

A. Preliminaries and Matrix Transformation  

In this section, we present the three-phrase unbalanced 

power flow constraints as a function of auxiliary variables and 

matrices [37]. Auxiliary variables 𝒀𝑖
𝜑

, 𝒀𝑖

𝜑
, 𝑴𝑖

𝜑 , 𝜱𝑖,𝑗
𝜙

, and 𝜱𝑖,𝑗

𝜙
 

are defined in Appendix A. 

A symmetric matrix 𝐖𝒕  is defined to exhibit the coupling 

between system variables [37]: 

 𝐖𝒕 = 𝑿𝑡𝑿𝑡
𝑇 (1a) 

where 𝑿𝑡 is based on the complex voltage variables,  

 𝑿𝑡 = [ℜ(𝑽𝑡
𝑇), 𝔍(𝑽𝑡

𝑇)]𝑇 (1b) 

 𝑽𝑡 = [𝑉1,𝑡
𝑎 , 𝑉1,𝑡

𝑏 , 𝑉1,𝑡
𝑐 , … , 𝑉𝑁,𝑡

𝑎 , 𝑉𝑁,𝑡
𝑏 , 𝑉𝑁,𝑡

𝑐 ]
𝑇
 (1c) 

Accordingly,  

 𝑃𝑖,𝜑,𝑡 = 𝑇𝑟{𝒀𝑖
𝜑

𝑾𝑡} ,  𝑖 ∈ Ω𝑏: 𝛽𝑖,𝜑,𝑡
𝑃  (2a) 

 𝑄𝑖,𝜑,𝑡 = 𝑇𝑟 {𝒀𝑖

𝜑
𝑾𝑡} ,  𝑖 ∈ Ω𝑏: 𝛽𝑖,𝜑,𝑡

𝑄
 (2b) 

 |𝑉𝑖,𝜑,𝑡|
2

= 𝑇𝑟{𝑴𝑖
𝜑

𝑾𝑡} ,  𝑖 ∈ Ω𝑏: 𝛽𝑖,𝜑,𝑡
𝑉  (2c) 

 𝑃𝑖,𝑗,𝑡
𝜑

= ∑ 𝑇𝑟{𝜱𝑖,𝑗
𝜑𝜙

⋅ 𝑾𝑡}𝜙 ,  (𝑖, 𝑗) ∈ Ω𝑙: 𝛽𝑖,𝑗,𝜑,𝑡
𝑃  (2d) 

 𝑄𝑖,𝑗,𝑡
𝜑

= ∑ 𝑇𝑟{�̄�𝑖,𝑗
𝜑𝜙

⋅ 𝑾𝑡}𝜙 ,  (𝑖, 𝑗) ∈ Ω𝑙: 𝛽𝑖,𝑗,𝜑,𝑡
𝑄

 (2e) 

where the dual multiplier of each constraint is defined.  

B. Unbalanced Three-Phase ACOPF for Distribution Network  

The objective function in the three-phase ACOPF problem is 

formulated as a polynomial expression aimed at minimizing the 

overall cost associated with supplying energy and flexibility 

reserves in an unbalanced distribution network. 

 𝐶𝑡
𝑠𝑢𝑏 + ∑ 𝐶𝑖,𝑡

𝐷𝐸𝑅 + ∑ (𝐶𝑖,𝑅
up

(𝑅𝑖
up

) + 𝐶𝑖,𝑅
dn(𝑅𝑖

dn))𝑖𝑖,𝑡  (3) 

where the first term is the energy cost from upstream grid which 

includes active/reactive power purchase cost. The second term 

denotes the total cost for dispatching DERs, and the last two 

terms refer to the cost of purchasing up/down reserves from 

local flexible resources. The cost terms are stated as quadratic 

or piecewise-linear functions. 

The following are respective constraints with their Lagrange 

multipliers.  

➢ Generator and ESS operational limits: 

 𝑨𝒈 ∙ 𝒑𝒈 + 𝑩𝒈 ∙ 𝒒𝒈 + 𝑪𝒈 ∙ 𝑹𝒖𝒑,𝒈 + 𝑫𝒈 ∙ 𝑹𝒅𝒏,𝒈 ≤ 𝒇𝒈: 𝒗𝒈 (4a) 

 𝑨𝒔 ∙ 𝒑𝒔 + 𝑩𝒔 ∙ 𝒒𝒔 + 𝑪𝒔 ∙ 𝑹𝒖𝒑,𝒔 + 𝑫𝒔 ∙ 𝑹𝒅𝒏,𝒔 ≤ 𝒇𝒔: 𝝁𝒈 (4b) 

where the decision variables for active/reactive power output, 

up/down generator reserves, and ESSs are denoted as 𝒑𝒈/𝒔, 
 𝒒𝒈/𝒔,  𝑹𝒖𝒑,𝒈/𝒔 and 𝑹𝒅𝒏,𝒈/𝒔, respectively. 𝑨𝒈/𝒔, 𝑩𝒈/𝒔,  𝑪𝒈/𝒔,  and 

𝑫𝒈/𝒔  are corresponding coefficient matrices. The detailed 

modeling is provided in Appendix B. 

➢ Power flow limits: 

𝑃𝑖,𝑗,𝑡 = ∑ 𝑃𝑖,𝑗,𝑡
𝜑

𝜑 , 𝑄𝑖,𝑗,𝑡 = ∑ 𝑄𝑖,𝑗,𝑡
𝜑

𝜑 , (𝑖, 𝑗) ∈ Ω𝑙: 𝜂𝑖,𝑗,𝑡
𝑝

, 𝜂𝑖,𝑗,𝑡
𝑞

 (5a) 

 (𝑃𝑖,𝑗,𝑡)
2

+ (𝑄𝑖,𝑗,𝑡)
2

= �̂�𝑖,𝑗,𝑡 , (𝑖, 𝑗) ∈ Ω𝑙: 𝜂𝑖,𝑗,𝑡
𝑙  (5b) 

 0 ≤ �̂�𝑖,𝑗,𝑡 ≤ (𝑆𝑖,𝑗
𝑚𝑎𝑥)2, (𝑖, 𝑗) ∈ Ω𝑙: 𝜂𝑖,𝑗,𝑡

𝑙 , 𝜂
𝑖,𝑗,𝑡

𝑙
 (5c) 

 (𝑉𝑖
𝑚𝑖𝑛)2 ≤ 𝑇𝑟{𝑴𝑖

𝜑
𝑾𝑡} ≤ (𝑉𝑖

𝑚𝑎𝑥)2: 𝜂𝑖,𝑗,𝑡
𝑉 , 𝜂

𝑖,𝑗,𝑡

𝑉
 (5d) 

 𝑃𝑖,𝜑,𝑡 = 𝑝𝑖,𝜑,𝑡
𝑔

+ 𝑑𝑖𝑠𝑖,𝜑,𝑡 − 𝑐ℎ𝑖,𝜑,𝑡 

  −𝑑𝑖,𝜑,𝑡 + 𝑒𝑖,𝜑,𝑡 , 𝑖 ∈ Ω𝑏
+: 𝜆𝑖,𝜑,𝑡

𝑃   (5e) 

 𝑄𝑖,𝜑,𝑡 = 𝑞𝑖,𝜑,𝑡
𝑔

+ 𝑞𝑖,𝜑,𝑡
𝑠 − 𝑑𝑖,𝜑,𝑡 ⋅ 𝜙𝑖,𝜑

𝑑 , 𝑖 ∈ Ω𝑏
+: 𝜆𝑖,𝜑,𝑡

𝑄
 (5f) 

 ∑ 𝑃1,𝜑,𝑡𝜑 = 𝑃0,𝑡: 𝜆0,𝑡
𝑃  (5g) 

 ∑ 𝑄1,𝜑,𝑡𝜑 = 𝑄0,𝑡: 𝜆0,𝑡
𝑄

 (5h) 

 𝑉𝐷𝐼𝑖,𝑡 = 𝑚𝑎𝑥
𝜑

|𝑉𝑖,𝜑,𝑡|
2

− 𝑚𝑖𝑛
𝜙

|𝑉𝑖,𝜙,𝑡|
2

≤ 𝜀𝑣 ,    

 ∀𝑖 ∈ Ω𝑏 , 𝑡 ∈ 𝑇: 𝜆𝑖,𝑡
𝑉  (5i) 

 (1a), (2a)-(2e)  (5j) 

where (5a)-(5c) denote power flow constraints. (5d) is the nodal 

three-phase voltage magnitude limit, and (5e)-(5h) illustrate 

power injection constraints for active/reactive power balance. 

The right-hand side variables of (5g)-(5h) represent the 

injections from electricity and ancillary service markets. Eq. 

(5i) ensures that the maximum unbalanced square of voltage 

deviation does not exceed the limit [38], where 𝑉𝐷𝐼𝑖,𝑡 denotes 

the voltage deviation index and 𝜑/𝜙 denote phases. 

C. SDP-Relaxation of the Three-Phase ACOPF Model 

The use of nonlinear constraints (1a), (5b), (5i), makes it 

difficult to solve the original three-phase ACOPF. Herein, an 

SDP relaxation is developed to make the problem tractable. 

 𝑾𝑡 ≽ 0: 𝜂𝑡
𝑊 (6a) 

 [

�̂�𝑖,𝑗,𝑡 ∑ 𝑇𝑟{𝜱𝑖,𝑗
𝜑

⋅ 𝑾𝑡}𝜑 ∑ 𝑇𝑟{�̅�𝑖,𝑗
𝜑

⋅ 𝑾𝑡}𝜑

∑ 𝑇𝑟{𝜱𝑖,𝑗
𝜑

⋅ 𝑾𝑡}𝜑 1 0

∑ 𝑇𝑟{�̅�𝑖,𝑗
𝜑

⋅ 𝑾𝑡}𝜑 0 1

]  

 ≽ 0, (𝑖, 𝑗) ∈ Ω𝑙: 𝜂𝑖,𝑗,𝑡
𝑙  (6b) 

 [
𝜀𝑣 𝑇𝑟{𝑴𝑖

𝜑
𝑾𝑡} − 𝑇𝑟{𝑴𝑖

𝜙
𝑾𝑡}

𝑇𝑟{𝑴𝑖
𝜑

𝑾𝑡} − 𝑇𝑟{𝑴𝑖
𝜙

𝑾𝑡} 𝜀𝑣

] 

 ≽ 0, 𝑖 ∈ Ω𝑏 , 𝜑, 𝜙 ∈ {𝑎, 𝑏, 𝑐}: 𝛽𝑖,𝜑,𝜙𝑡
𝑉  (6c) 

where (1a) is converted to a semidefinite relaxation of (6a), and 

≽ 0  denotes the corresponding positive semidefinite matrix. 

Similarly, (6b) and (6d) are the SDP relaxations of (5b) and (5i). 

Eq. (6c) enumerates voltage differences among the three phases 

corresponding to (5i). 

D. Compact Form of Sensitivity Matrices 

Here, we implement the sensitivity matrix analysis of system 

variables with respect to nodal voltages. Accordingly, we 

express the SDP-based three-phase unbalanced OPF explicitly 

with respect to the deviation of the nodal power injection. 

 
𝜕𝑃𝑖

𝜑

𝜕𝑿
=

𝜕 𝑇𝑟{𝒀𝑖
𝜑

𝑾}

𝜕𝑿
= 𝑿𝑇 (𝒀𝑖

𝜑
+ (𝒀𝑖

𝜑
)

𝑇
) = 𝑱𝑷𝑖

𝜑 (7a) 

 
𝜕𝑄𝑖

𝜑

𝜕𝑿
=

𝜕 𝑇𝑟{𝒀𝑖
𝜑

𝑾}

𝜕𝑿
= 𝑿𝑇 (𝒀𝑖

𝜑
+ (𝒀𝑖

𝜑
)

𝑇

) = 𝑱𝑸𝑖
𝜑 (7b) 

 𝜕|𝑉𝑖
𝜑

|
2

𝜕𝑿
=

𝜕 𝑇𝑟{𝑴𝑖
𝜑

𝑾}

𝜕𝑿
= 𝑿𝑇 (𝑴𝑖

𝜑
+ (𝑴𝑖

𝜑
)

𝑇
) = 𝑱𝑽𝑖

𝜑 (7c) 

 
𝜕𝑃𝑖,𝑗

𝜑

𝜕𝑿
=

𝜕𝑇𝑟{𝜱𝑖,𝑗
𝜑

⋅𝑾}

𝜕𝑿
= 𝑿𝑇 (𝜱𝑖,𝑗

𝜑
+ (𝜱𝑖,𝑗

𝜑
)

𝑇
) = 𝑱𝑷𝑖𝑗

𝜑  (7d) 

 
𝜕𝑄𝑖,𝑗

𝜑

𝜕𝑿
=

𝜕𝑇𝑟{�̄�𝑖,𝑗
𝜑

⋅𝑾}

𝜕𝑿
= 𝑿𝑇 (�̄�𝑖,𝑗

𝜑
+ (�̄�𝑖,𝑗

𝜑
)

𝑇
) = 𝑱𝑸𝑖𝑗

𝜑  (7e) 

We express the sensitivity matrices in a compact form. By 

expanding the row vector 𝑱𝑷𝑖
𝜑

, 𝑱𝑸𝑖
𝜑

∈ ℝ(1×6𝑁) into matrix 𝑱𝑷,

𝑱𝑸 ∈ ℝ(3𝑁×6𝑁), we have: 

 𝑱𝑷 = [𝑱𝑷1
𝑎; 𝑱𝑷1

𝑏; 𝑱𝑷1
𝑐 ; … ; 𝑱𝑷𝑖

𝜑
; … ; 𝑱𝑷𝑁

𝑎 ; 𝑱𝑷𝑁
𝑏 ; 𝑱𝑷𝑁

𝑐 ] (7f) 

 𝑱𝑸 = [𝑱𝑸1
𝑎; 𝑱𝑸1

𝑏; 𝑱𝑸1
𝑐 ; … ; 𝑱𝑸𝑖

𝜑
; … ; 𝑱𝑸𝑁

𝑎 ; 𝑱𝑸𝑁
𝑏 ; 𝑱𝑸𝑁

𝑐 ]  (7g) 

Herein, a power matrix 𝑺 = [𝑷; 𝑸] is introduced, where, 

 
𝜕𝑺𝑡

𝜕𝑿
= 𝑱𝑺 = [𝑱𝑷; 𝑱𝑸] ∈ ℝ(6𝑁×6𝑁) (7h) 

Further, we use (7) in the following section to approximate 
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the mapping of nodal uncertainties into system variables as a 

linear function. 

III. SDP-BASED DRCC-OPF MODEL FOR THREE-PHASE 

UNBALANCED DISTRIBUTION NETWORK 

In the above SDP-based OPF model, nodes are characterized by 

their net active and reactive demands, defined as the difference 

between load demand and DER injections. As illustrated in the 

introduction, numerous literatures have pointed out that there 

are spatial correlations between uncertain variables in the 

distribution network [6], [18]. For the sake of generality, this 

paper analyzes the uncertainty of net load and defines the spatial 

correlation of uncertainties as the potential correlation among 

the three-phase net loads at different nodes. Since the renewable 

generation and load demand may deviate from their forecasts, 

the net demand deviation 𝝃 is stated as: 

 Ξ = {ℙ𝜉 |
𝐸(𝝃) = 𝝁

𝐸(𝝃𝑻𝝃) = 𝚪
}, where 𝝃 ≔ {△ 𝒅 −△ 𝒘} (8a) 

where 𝛥𝒘 and 𝛥𝒅 are nodal deviations of renewables and load 

demands. 𝝁 denotes the means and 𝚪 is the covariance matrix 

of uncertainties. 

A. Modeling of spatially correlated uncertainties with 

information sharing mechanism 

The Sklar's theorem states that the joint distribution any 

multivariate can be expressed as a set of univariate marginal 

distribution functions and a copula describing the dependence 

of variables [39]. Copula function C is formulated by the CDF 

F of multivariate, which is characterized by several marginal 

CDF Fi. 

 𝐶[𝐹1(𝑥1), 𝐹2(𝑥2), ⋯ , 𝐹𝑛(𝑥𝑛)] = 𝐹(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)  (8b) 

We develop an information sharing mechanism to describe 

the spatially correlated uncertainties via multivariate Gaussian 

copulas. Multivariate Gaussian copulas are referred to as 

elliptical copulas for representing the complicated relationships 

among variables [40]. The proposed mechanism makes use of 

shared information on the probability distribution of all 

uncertain variables using multivariate gaussian copulas. 

Accordingly, 

 𝐶(𝒖; 𝝆) = 𝛷𝑁(𝛷−1(𝑢1), 𝛷−1(𝑢2), ⋯ , 𝛷−1(𝑢𝑛)) (8c) 

where 𝒖 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑛)𝑇  are the uniform distributions 

between 0 and 1. 𝛷𝑁 denotes the joint probability distribution 

function of n standard normal distribution functions and 𝛷−1 

indicates the inverse of the univariate standard normal CDF 

distribution. Covariance matrices can be constructed with the 

sensitivity coefficient 𝝆. 

The Spearman correlation keeps invariant under CDFs and 

their inverse transformations. Accordingly, the rank correlation 

between variables remains the same when input variables are 

transformed from non-normal to normal distributions. Hence, 

with their CDFs, we develop a rank correlation function of any 

random multivariable: 

 𝜌𝑖,𝑗
𝑠 = 𝜌𝑠 (𝐹𝑖(𝑥𝑖), 𝐹𝑗(𝑥𝑗)) =

𝑐𝑜𝑣(𝐹𝑖(𝑥𝑖),𝐹𝑗(𝑥𝑗))

𝜎(𝐹𝑖(𝑥𝑖))⋅𝜎(𝐹𝑗(𝑥𝑗)
 (8d) 

where 𝑐𝑜𝑣( 𝑎, 𝑏) represents the covariance of vector 𝑎, 𝑏 and 

𝜎(𝑎) is the standard deviation of vector 𝑎. 

Given the uniform distribution limit of input data in 

multivariate Gaussian copula functions, we transform the 

uncertainty sources into their CDFs and then obtain the 

(𝑢1, 𝑢2, ⋯ , 𝑢𝑛) variables, which follow uniform distributions 

located in the interval [0,1]. Based on this principle, the 

expected value, i.e., means 𝝁  for the spatial-correlated 

uncertain variables can be expressed by (8e). The inverse 

transformation method allows uncertain variables 𝑅𝑚  which 

follow arbitrary distributions to be expressed using a set of 

inverse CDFs together with the inverse function of copula as: 

 𝝁 = 𝔼(𝑅𝑚) = 𝔼[𝐹𝑚
−1(𝐶−1(𝛷𝑁))] (8e) 

Further, due to the fact that the covariance matrix 𝚪 can 

implicitly involve the standard deviations 𝛔, we have: 

 𝜞 = (𝝈 ⋅ 𝝈𝑻) ⊙ 𝝆 (8f) 

In this case, 𝝆: = {𝜌𝑖,𝑗} is the matrices of Pearson correlation 

coefficients, and ⊙ is an element-wise multiplication operator. 

For a joint distribution, 𝜌𝑖,𝑗 is determined [40] as: 

 𝜌𝑖,𝑗 = 2 𝑠𝑖𝑛 (
𝜋

6
⋅ 𝜌𝑖,𝑗

𝑠 ) (8g) 

B. Nodal Deviation Matrix on Uncertainties 

To mitigate forecast errors, balancing regulation capacity 

must be procured to match the electricity supply and demand. 

Given that the balancing regulation for total power mismatch 

caused by forecast errors must be compensated among 

distributed flexibility reserves, e.g., gas-fired turbines (GTs) 

and ESSs, a new set of auxiliary variables is introduced as 

𝑟𝑖,𝜑 = (𝜷𝑖,𝑡
𝜑

)
𝑇

 𝝃 to quantify the relative system-wide forecast 

error that flexibility reserves at phase 𝜑  of bus i must 

compensate. 𝜷𝑖,𝑡
𝜑

 represents the column vector of balancing 

participation factors. The kth element 𝛽𝑖,𝜑
𝑘  of 𝜷𝑖,𝑡

𝜑
 denotes the 

proportion of uncertainty source 𝜉𝑘 which will be balanced. 

In accordance with the affine balance policy, the distribution 

of active power deviation across all nodes is modeled as a 

function of forecast errors and responded reserves as: 

 ∆𝑷 = −𝑨𝜉 ⋅ 𝝃 + 𝒓 = (−𝑨𝜉 + 𝜷𝜉) ⋅ 𝝃 (9a) 

where ∆𝑷 ∈ ℝ3𝑁×1 denotes the power deviation in each phase 

of nodes. 𝑨𝜉 ∈ ℝ3𝑁×𝑀 , and 𝜷𝜉 ∈ ℝ3𝑁×𝑀  are the incidence 

matrix for uncertainties and the matrix of balancing factors. M 

is the nodal value with uncertainties. For more clarity, we take 

the [3(i-1)+ 𝜑]-th row of ∆𝑷 here. 

 ∆𝑃𝑖,𝜑,𝑡 = −𝑨𝑖,𝜑 ⋅ 𝝃 + 𝒓𝑖,𝜑,𝑡 = −𝑨𝑖,𝜑 ⋅ 𝝃 + 𝜷𝑖,𝑡
𝜑

⋅ 𝝃 (9b) 

Coefficient matrices 𝑨𝑖,𝜑, 𝜷
𝑖,𝑡
𝜑 ∈ ℝ1×𝑀 are constructed as: 

 𝑨𝑖,𝜑 ≔ {𝑎𝑖
𝜑

|
 
𝑎𝑖

𝜑
= 1, 𝑖𝑓 𝑎 𝑙𝑜𝑎𝑑 𝑜𝑟 𝐷𝐸𝑅  𝑖𝑠 

𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑏𝑢𝑠 𝑖 𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 𝜑
 

𝑎𝑖
𝜑

= 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (9c) 

𝜷𝑖,𝑡
𝜑

= 

 {𝛽𝑖,𝑘,𝑡
𝜑

|
 

𝛽𝑖,𝑘,𝑡
𝜑

≥ 0, 𝑖𝑓 𝑎 𝐷𝐺 𝑜𝑟 𝐸𝑆𝑆  𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 

𝑎𝑡 𝑏𝑢𝑠 𝑖 𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 𝜙 𝑓𝑜𝑟 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑘
  

𝛽𝑖,𝑘,𝑡
𝜑

= 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (9d) 

C. System-wide Response Functions on Nodal Deviation 

The system state variables cannot be derived directly due to 

the implicit nonlinear SDP-based OPF. Inspired by the affine 

policy [23], [24], this paper derives the response functions 

based on the first-order Taylor expansion to derive the 

expressions for the system-wide state variables, such as 

voltages and active/reactive power flows, affected by the 

uncertain nodal power injection [5]. However, different from 
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the classical affine policy, the proposed response function 

analytically derives the mapping function of state variables 

relative to nodal injection power for any feasible operating 

point within the three-phase distribution network. We achieve 

this under the SDP-based formulation without approximating 

the nonlinear nature of the ACOPF. We offer following system-

wide response functions: 

Proposition 1: The response functions of voltages and 

active/reactive power flows to uncertainties are modeled as: 

 |�̃�𝑖,𝜑,𝑡|
2

= 𝑇𝑟{𝑴𝑖
𝜑

𝑾𝑡} + 𝑿𝑽𝑖,𝑡
𝜑

⋅ 𝝃𝑡 (10a) 

 �̃�𝑖,𝑗,𝑡
𝜑

= 𝑇𝑟{𝜱𝑖,𝑗
𝜑

⋅ 𝑾𝑡} + 𝑿𝑷𝑖𝑗,𝑡
𝜑

⋅ 𝝃𝑡 (10b) 

 �̃�𝑖,𝑗,𝑡
𝜑

= 𝑇𝑟{�̄�𝑖,𝑗
𝜑

⋅ 𝑾𝑡} + 𝑿𝑸𝑖𝑗,𝑡
𝜑

⋅ 𝝃𝑡 (10c) 

where the auxiliary matrix is listed as: 

 𝑿𝑽𝑖,𝑡
𝜑

= 𝑱𝑽𝑖,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
−𝑨𝜉 + 𝜷𝑡

𝜉

−𝝍 ⊙ 𝑨𝜉 + 𝝍 ⊙ 𝜷𝑡
𝜉

] (10d) 

 𝑿𝑷𝑖𝑗,𝑡
𝜑

= 𝑱𝑷𝑖𝑗,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
−𝑨𝜉 + 𝜷𝑡

𝜉

−𝝍 ⊙ 𝑨𝜉 + 𝝍 ⊙ 𝜷𝑡
𝜉

] (10e) 

 𝑿𝑸𝑖𝑗,𝑡
𝜑

= 𝑱𝑸𝑖𝑗,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
−𝑨𝜉 + 𝜷𝑡

𝜉

−𝝍 ⊙ 𝑨𝜉 + 𝝍 ⊙ 𝜷𝑡
𝜉

] (10f) 

The proof can be found in Appendix C. For all traces in 

(10a)-(10c) represent all feasible system state variables, which 

are formed in (2a)-(2c). The auxiliary matrices in (10d)-(10f) 

are actually the Jacobian matrix derived based on the SDP 

formulation. It does not depend on a given operating state, and 

the response function exists for any feasible operating state of 

the unbalanced distribution system. 

D. SDP-based DRCC-OPF Calculation in Unbalanced Three-

Phase Power Distribution Network 

The real-time variations of renewables and loads would 

cause unbalance in a three-phase distribution network. When 

balancing services are provided only by the upstream grid, the 

unbalanced operation could adversely affect the security of 

system operation without any local flexible resources in the 

three-phase distribution network. In practice, local flexible 

resources, such as distributed GTs and ESSs could provide 

operating reserves to absorb uncertainties within a certain range 

and, in turn, improve the operation security. 

The dispatchable capability of a local flexible resource is 

determined by its allowable operating range and its 

predetermined reserve capacity. As shown in (9b), balancing 

regulation 𝒓  compensated by flexible reserve resources is 

denoted as 𝒓 = 𝜷 ⋅ 𝝃 . Assume the participation factors 𝛽𝑖,𝑘,𝑡
𝜑

 

must add up to over 𝛽 (0≤ 𝛽 ≤100%) in order to ensure that the 

network flexibility reserve can cope with power changes within 

at least 𝛽 (0≤ 𝛽 ≤100%) of the total uncertainties in (11a). 

 ∑ ∑ 𝛽𝑖,𝑘,𝑡
𝜑

𝑖∈Ω𝑔∪Ω𝑠𝜑 ≥ 𝛽:  𝜆𝑘,𝑡
𝑅  (11a) 

To ensure the activated balancing regulation of flexibility 

reserves could satisfy the energy dispatch and flow limits even 

in the worst case, the following DR-based chance constraints 

are modeled into the original three-phase unbalanced OPF 

model with a probability of 1 − 𝜖 , where 𝜖  represents the 

confidence level (probability) set by DSO. 

 𝑖𝑛𝑓𝑃𝜉∈Ξℙ𝜉{𝑅𝑖,𝑡
𝑢𝑝

≥ 𝑟𝑖,𝑡} ≥ 1 − 𝜖𝑅 (11b) 

 𝑖𝑛𝑓𝑃𝜉∈Ξℙ𝜉{𝑅𝑖,𝑡
𝑑𝑛 ≥ −𝑟𝑖,𝑡} ≥ 1 − 𝜖𝑅 (11c) 

 𝑖𝑛𝑓𝑃𝜉∈Ξℙ𝜉 {|�̃�𝑖,𝑡
𝜑

|
2

≤ (𝑉𝑖
𝑚𝑎𝑥)2} ≥ 1 − 𝜖𝑣 (11d) 

 𝑖𝑛𝑓𝑃𝜉∈Ξℙ𝜉 {|�̃�𝑖,𝑡
𝜑

|
2

≥ (𝑉𝑖
𝑚𝑖𝑛)

2
} ≥ 1 − 𝜖𝑣 (11e) 

 𝑖𝑛𝑓𝑃𝜉∈Ξℙ𝜉{|∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 | ≤ 𝑡𝑖𝑗,𝑡
𝑝

} ≥ 1 − 𝜖𝑓 (11f) 

 𝑖𝑛𝑓𝑃𝜉∈Ξℙ𝜉{|∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 | ≤ 𝑡𝑖𝑗,𝑡
𝑞

} ≥ 1 − 𝜖𝑓 (11g) 

 (𝑡𝑖𝑗,𝑡
𝑝

)
2

+ (𝑡𝑖𝑗,𝑡
𝑞

)
2

≤ (𝑆𝑖𝑗
𝑚𝑎𝑥)

2
, ∀(𝑖, 𝑗) ∈ Ω𝑙: �̅�𝑙,𝑡

𝑙𝑖𝑛𝑒 (11h) 

where ℙ𝜉{∙} denotes a probability distribution function of the 

uncertainties 𝜉 from the set of possible distributions Ξ. 

Remark 1: Although chance constraints (11b)-(11g) are 

nonconvex and intractable, we can make a second-order cone 

approximation using the proposed system-wide response 

functions (10a)-(10b). Notice that the reformulations are 

sufficient conditions for the original model according to the 

Chebyshev inequality [5], [30]. 

Proposition 2: For any random variables, follow the normal 

distribution 𝑿~ 𝑁𝑜𝑟𝑚(𝝁, 𝜞), the inequality ℙ(𝑿 ≤ 𝒙𝑚𝑎𝑥) ≥ 𝜂 

holds if and only if 𝒙𝑚𝑎𝑥 ≥ 𝝁 + 𝑧𝜂𝜞1 2⁄ , where 𝑧𝜂: = 𝛷−1(1 −

𝜂) is the (1−η)-quantile of a standard normal distribution [41]. 

Remark 2: Proposition 2 relies on the assumption that all 

transformed variables follow a normal distribution; however,  

uncertainty variables might not be normally distributed in their 

original form. Instead, we use the information-sharing 

mechanism to convert the original distribution to derive the 

expectation and covariance matrix of spatially-coupled 

uncertainty variables, as shown in (8e) and (8f). 

Herein, we recast the intractable (11b)-(11g) as the 

following reformulation based on the above sensitivity analysis. 

• Reformulation for the DRCC of reserve dispatch 

𝑅𝑖,𝑡
𝑢𝑝

≥ ∑ (𝜷𝑖,𝑡
𝜑

)
𝑇

⋅ 𝝁𝑡 + 𝑧𝑅 ‖𝜞𝑡

1

2𝜷𝑖,𝑡
𝜑

‖
2

𝜑 , 𝑖 ∈ Ω𝑆 ∪ Ω𝑔: �̄�𝑖,𝑡
𝑅   (12a) 

𝑅𝑖,𝑡
𝑑𝑛 ≥ ∑ 𝑧𝑅 ‖𝜞𝑡

1

2𝜷𝑖,𝑡
𝜑

‖
2

− (𝜷𝑖,𝑡
𝜑

)
𝑇

⋅ 𝝁𝑡𝜑 , 𝑖 ∈ Ω𝑆 ∪ Ω𝑔: 𝛼𝑖,𝑡
𝑅  (12b) 

where 𝜞𝑡
1 2⁄

 is a matrix satisfying: (𝜞𝑡
1 2⁄

)
𝑇

𝜞𝑡
1 2⁄

= 𝜞 , which 

shows the positive semi-definiteness of 𝜞 . The uncertainty 

margin factor 𝑧𝑅 = √
1−𝜖𝑅

𝜖𝑅
 is constant, which is determined by 

the risk tolerance. 

• Reformulation for the DRCC of voltage security 

(𝑉𝑖
𝑚𝑎𝑥)2 ≥ 𝐸 (|�̃�𝑖,𝜑,𝑡|

2
) + 𝑧𝑣 ∙ 𝑆𝑡𝑑𝑒𝑣 (|�̃�𝑖,𝜑,𝑡|

2
): �̄�𝑖,𝜑,𝑡

𝑉  (12c) 

 (𝑉𝑖
𝑚𝑖𝑛)2 ≤ 𝐸 (|�̃�𝑖,𝜑,𝑡|

2
) − 𝑧𝑣 ∙ 𝑆𝑡𝑑𝑒𝑣 (|�̃�𝑖,𝜑,𝑡|

2
): 𝛼𝑖,𝜑,𝑡

𝑉  (12d) 

 𝐸 (|�̃�𝑖,𝜑,𝑡|
2

) = 𝑇𝑟{𝑴𝑖
𝜑

𝑾𝑡} + 𝑿𝑽𝑖,𝑡
𝜑

⋅ 𝝁𝑡 (12e) 

 𝑆𝑡𝑑𝑒𝑣 (|𝑉𝑖,𝜑,𝑡(𝜉)|
2

) = ‖𝑿𝑽𝑖,𝑡
𝜑

⋅ 𝜞𝑡
1 2⁄

‖
2
 (12f) 

where 𝑧𝑣 = 𝛷(−1)(1 − 𝜖𝑣) represents the uncertainty margin 

factor for voltage security, 𝐸 (|�̃�𝑖,𝜑,𝑡|
2

)  and 𝑆𝑡𝑑𝑒𝑣 (|�̃�𝑖,𝜑,𝑡|
2

) 

are the expectation and standard deviation of the nodal voltage 

magnitude squared under uncertainty. 

• Reformulation for the DRCC of power flow 



7 

 

 𝑡𝑖,𝑗,𝑡
𝑝

+ 𝐸(∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ) ≥ 𝑧𝑙 ∙ 𝑆𝑡𝑑𝑒𝑣[∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ]: �̄�𝑙,𝑡
𝑝

 (12g) 

 𝑡𝑖,𝑗,𝑡
𝑝

− 𝐸(∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ) ≥ 𝑧𝑙 ∙ 𝑆𝑡𝑑𝑒𝑣[∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ]: 𝛼𝑙,𝑡
𝑝

 (12h) 

 𝑡𝑖,𝑗,𝑡
𝑞

+ 𝐸(∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ) ≥ 𝑧𝑙 ∙ 𝑆𝑡𝑑𝑒𝑣[∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ]: �̄�𝑙,𝑡
𝑞

 (12i) 

 𝑡𝑖,𝑗,𝑡
𝑞

− 𝐸(∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ) ≥ 𝑧𝑙 ∙ 𝑆𝑡𝑑𝑒𝑣[∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ]: 𝛼𝑙,𝑡
𝑞

 (12j) 

 𝐸(∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ) = ∑ 𝑃𝑖,𝑗,𝑡
𝜑

𝜑 + ∑ 𝑿𝑷𝑖𝑗,𝑡
𝜑

⋅ 𝝁𝑡𝜑  (12k) 

 𝐸(∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ) = ∑ 𝑄𝑖,𝑗,𝑡
𝜑

𝜑 + ∑ 𝑿𝑸𝑖𝑗,𝑡
𝜑 ⋅ 𝝁𝑡𝜑  (12l) 

 𝑆𝑡𝑑𝑒𝑣[∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ] = ‖∑ 𝑿𝑷𝑖𝑗,𝑡
𝜑

⋅ 𝜞𝑡
1 2⁄

𝜑 ‖
2
 (12m) 

 𝑆𝑡𝑑𝑒𝑣[∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ] = ‖∑ 𝑿𝑸𝑖𝑗,𝑡
𝜑

⋅ 𝜞𝑡
1 2⁄

𝜑 ‖
2
 (12n) 

where 𝑧𝑙 = 𝛷(−1)(1 − 𝜖𝑙)  represents the uncertainty margin 

factor for power flow. 𝐸(∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ), 𝐸(∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 )  are the 

expectation for the sum of active/reactive power flows on all 

phases. Meanwhile, 𝑆𝑡𝑑𝑒𝑣[∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ]  and 𝑆𝑡𝑑𝑒𝑣[∑ �̃�𝑖,𝑗,𝑡
𝜑

𝜑 ]  are 

the standard deviations for real and reactive power flows, 

respectively. 

Substituting the above equivalent constraints (12) for chance 

constraints (11b)-(11g), the original DRCC three-phase OPF 

for the unbalanced power distribution model will be 

reformulated into an SDP-based OPF model as: 

min ∑ 𝐶𝑖,𝑃𝑖,𝑡 + ∑ (𝐶𝑖,𝑅
up

(𝑅𝑖
up

) + 𝐶𝑖,𝑅
dn(𝑅𝑖

dn))𝑖   

s.t. Generation and ramping limits (4a); 

 ESSs charging/discharging limits (4b); 

 Three-phase power flow limits: (2a)-(2e), (5a-5h); 

 SDP relaxation: (6); 

 Reserve activation constraints: (11a) 

 Reformulated DR chance constraints: (12), (11h) 

Fig.1 demonstrates the flowchart of the proposed risk-aware 

flexible resource utilization model. The uncertainty analysis is 

made at the first stage, which integrates information-sharing 

methods to model the spatially-correlated uncertainties. In the 

second stage, DSO will perform the flexibility market-clearing 

framework to derive the risk-aware flexibility prices. The 

market-clearing framework involves three steps: First, we 

establish an SDP-based ACOPF model for an unbalanced three-

phase distribution network. Then, a DRCC model is formulated 

to assess the impact of spatially-correlated uncertainty on the 

network operation. In this way, a flexibility market is developed 

to quantify the value of local flexibility reserves. Finally, based 

on the duality theory, we derive the risk-aware flexibility prices 

from the SDP-based DRCC-ACOPF model. 

 

IV. ANALYTIC FRAMEWORK FOR THE CLEARED RISK-AWARE 

FLEXIBILITY PRICES 

The DLMP for energy can be derived from the dual 

multipliers 𝜆𝑖,𝜑,𝑡
𝑃  and 𝜆𝑖,𝜑,𝑡

𝑄
 in (5e)-(5f) using the DRCC model 

for the solution of the unbalanced three-phase ACOPF,. Similar 

results can be obtained for the risk-aware flexibility prices 

provided by up/down reserves �̄�𝑖,𝑡
𝑅  and 𝛼𝑖,𝑡

𝑅 , which are derived 

from the dual multipliers in (12a)-(12b). As both upward and 

downward reserves are functions of the balancing factor 𝛽𝑖,𝑡 , 

their marginal prices are coupled. The DSO’s cleared risk-

aware flexibility pricing scheme is performed on both sides of 

the flexibility market by charging the uncertainties and 

rewarding flexible resources simultaneously. In this section, we 

first decompose flexibility prices for rewarding flexible 

resources to demonstrate their physical meaning. Then, we 

derive the analytical decomposition of cleared flexibility 

pricing prices for charging the uncertainties. 

A. Composition of DSO’s Cleared Risk-Aware Flexibility 

Prices for Rewarding the Local Flexible Resources 

Based on shadow prices presented in the duality theory [5], 

the cleared risk-aware flexibility price is a compensation for the 

marginal cost of uncertainty. Given the Lagrange function of 

the DRCC model of the unbalanced three-phase ACOPF, the 

rewarding prices for local flexible resources are obtained by 

taking the first order partial derivatives of 𝛽𝑖,𝑘,𝑡
𝜑

 to zero.  

Proposition 3: When the mean of uncertain deviation is zero, 

i.e., E(𝝁)=0, we can decompose the flexibility pricing into four 

parts: 1) energy flexibility cost; 2) voltage flexibility cost; 3) 

active power flow flexibility cost; 4) reactive power flow 

flexibility cost. The formulation is derived as: 

 
Fig. 1. Flowchart of the proposed risk-aware flexible resource utilization model. 
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 (�̄�𝑖,𝑡
𝑅 + �̱�𝑖,𝑡

𝑅 ) =
‖𝜞𝑡

1 2⁄
∙𝜷𝑖,𝑡

𝜑
‖

2

𝑧𝑅∙(𝒆𝑘)𝑇∙𝜞𝑡⋅𝜷
𝑖,𝑡
𝜑 ∗  

{

𝜆𝑡,𝑘
𝑅 − ∑ (�̄�𝑖,𝜑,𝑡

𝑉 +  �̱�𝑖,𝜑,𝑡
𝑉 ) ⋅ 𝜡𝑽𝑖,𝑡

𝜑
𝑖,𝜑

− ∑ ((�̄�𝑖𝑗,𝑡
𝑝

+ �̱�
𝑖𝑗,𝑡

𝑝 ) ∙ 𝜡𝑷𝑖𝑗,𝑡
− (�̄�𝑖𝑗,𝑡

𝑞
+ �̱�

𝑖𝑗,𝑡

𝑞 ) ∙ 𝜡𝑸𝑖𝑗,𝑡
)𝑖𝑗∈𝐿

} (13a) 

where 𝜆𝑡,𝑘
𝑅 , �̄�𝑖,𝜑,𝑡

𝑉 , �̱�𝑖,𝜑,𝑡
𝑉 , �̄�𝑖,𝑗,𝑡

𝑝
, �̱�𝑖,𝑗,𝑡

𝑝
, �̄�𝑖,𝑗,𝑡

𝑞
 and �̱�𝑖,𝑗,𝑡

𝑞
 are the 

Lagrangian multipliers in (11a), (12c)-(12d), (12g)-(12j). 𝜡𝑽𝑖,𝑡
𝜑

, 𝜡𝑷𝑖,𝑡
𝜑

 

and 𝜡𝑸𝑖,𝑡

𝜑
 are auxiliary variables, defined as: 

 𝜡𝑽𝑖,𝑡
𝜑 =

𝑧𝑣 ∙𝑿𝑽𝑖,𝑡
𝜑

⋅𝜞𝑡⋅𝒆𝑘⋅𝑱𝑽𝑖,𝑡
𝜑

⋅[
𝑱𝑷𝑡
𝑱𝑸𝑡

]
−1

⋅[
𝒆𝑖

𝜑

𝝍⊙𝒆𝑖
𝜑]

‖𝑿𝑽
𝑖,𝑡
𝜑

⋅𝜞𝑡
1 2⁄

‖
2

 (13b) 

 𝜡𝑷𝑖𝑗,𝑡
=

𝑧𝑙 ∙∑ 𝑿𝑷𝑖𝑗,𝑡
𝜑

⋅𝜞𝑡⋅𝒆𝑘⋅𝑱𝑷𝑖,𝑡
𝜑

⋅[
𝑱𝑷𝑡
𝑱𝑸𝑡

]
−1

⋅[
𝒆𝑖

𝜑

𝝍⊙𝒆𝑖
𝜑]𝜑

‖∑ 𝑿𝑷
𝑖𝑗,𝑡
𝜑

𝜑 ⋅𝜞𝑡
1 2⁄

‖
2

 (13c) 

 𝜡𝑸𝑖,𝑡
=

𝑧𝑙 ∙∑ 𝑿𝑸𝑖𝑗,𝑡
𝜑

⋅𝜞𝑡⋅𝒆𝑘⋅𝑱𝑸𝑖𝑗,𝑡
𝜑

⋅[
𝑱𝑷𝑡
𝑱𝑸𝑡

]
−1

⋅[
𝒆𝑖

𝜑

𝝍⊙𝒆𝑖
𝜑]𝜑

‖∑ 𝑿𝑸
𝑖𝑗,𝑡
𝜑

𝜑 ⋅𝜞𝑡
1 2⁄

‖
2

 (13d) 

The first term 𝜆𝑡,𝑘
𝑅  in (13a) denotes the system-wide flexibility 

reserve cost for the uncertainty source k, and (�̄�𝑖,𝜑,𝑡
𝑉 + �̱�𝑖,𝜑,𝑡

𝑉 ) ∙

𝜡𝑽𝑖,𝑡
𝜑

 is the voltage-dependent part of reserve cost. Further, 

(�̄�𝑖,𝑗,𝑡
𝑝

+ �̱�𝑖,𝑗,𝑡
𝑝

) ∙ 𝜡𝑷𝑖,𝑡 and (�̄�𝑖,𝑗,𝑡
𝑞

+ �̱�𝑖,𝑗,𝑡
𝑞

) ∙ 𝜡𝑸𝑖,𝑡 is the power flow 

part of reserve cost. The proof of Proposition 3 is provided in 

the Appendix D. 

B. Composition of DSO’s Cleared Risk-Aware Flexibility 

Prices for Charging Uncertainties 

In this section, we derive the composition of the DSO’s 

cleared risk-aware flexibility prices for charging uncertainties. 

The shadow price in duality theory is further employed to 

quantify the marginal cost on the network operation brought by 

uncertainties. The uncertain charging scheme incentivizes 

flexible resources to mitigate uncertain fluctuations locally.  

Proposition 4: The cleared flexibility prices for charging the 

uncertainties is derived as partial derivatives of the Lagrangian 

function. The charging scheme is represented by the means and 

the standard deviations of net demand forecast error. It should 

be noted that 𝜆𝜇,𝑘,𝑡 and 𝜆𝜎,𝑘,𝑡 can be decomposed into four parts: 

1) energy; 2) volt/var; 3) active power flow; 4) reactive power 

flow: 

 𝜆𝜇,𝑘,𝑡: =
𝜕ℒ

𝜕𝜇𝑘,𝑡
= ∑ (�̄�𝑖,𝑡

𝑅 − �̱�𝑖,𝑡
𝑅 )𝑖,𝜑 ⋅ 𝛽𝑖,𝑘,𝑡

𝜑
  

 + ∑ (�̄�𝑖,𝜑,𝑡
𝑉 − �̱�𝑖,𝜑,𝑡

𝑉 ) ⋅ 𝑋𝑉𝑖,𝑘,𝑡
𝜑

𝑖,𝜑   

 + ∑ (�̄�𝑙,𝑡
𝑝

− �̱�𝑙,𝑡
𝑝

) ⋅ 𝑋𝑃𝑙,𝑘,𝑡
𝜑

𝑙,𝜑 + ∑ (�̄�𝑙,𝑡
𝑞

− �̱�𝑙,𝑡
𝑞

) ⋅ 𝑋𝑄𝑙,𝑘,𝑡
𝜑

𝑙,𝜑  (14a) 

 𝜆𝜎,𝑘,𝑡: =
𝜕ℒ

𝜕𝜎𝑘
= ∑ (�̄�𝑖,𝑡

𝑅 + �̱�𝑖,𝑡
𝑅 )𝑖,𝜙 ⋅

𝑧𝑅⋅∑ 𝛽𝑖,𝑘,𝑡
𝜑

⋅𝛽𝑖,𝑘∗,𝑡
𝜑

⋅𝜎𝑘∗𝑘∗

‖𝜞𝑡
1 2⁄

∙𝜷
𝑖,𝑡
𝜑

‖
2

 

 + ∑ (�̄�𝑖,𝜑,𝑡
𝑉 + �̱�𝑖,𝜑,𝑡

𝑉 ) ⋅𝑖,𝜑

𝑧𝑣 ⋅∑ 𝑋𝑉𝑖,𝑘,𝑡
𝜑

⋅𝑋𝑉𝑖,𝑘∗,𝑡
𝜑

⋅𝜎𝑘∗𝑘∗

‖𝑿𝑽
𝑖,𝑡
𝜑

⋅𝜞𝑡
1 2⁄

‖
2

 

 + ∑ (�̄�𝑙,𝑡
𝑝

+ �̱�𝑙,𝑡
𝑝

)𝑙,𝑘∗ ⋅
𝑧𝑙 ⋅∑ 𝑋𝑃𝑙,𝑘,𝑡

𝜑
𝜑 ⋅∑ 𝑋𝑃𝑙,𝑘∗,𝑡

𝜑
𝜑 ⋅𝜎𝑘∗

‖∑ 𝑿𝑷𝑙,𝑡
𝜑

𝜑 ⋅𝜞𝑡
1 2⁄

‖
2

 

 + ∑ (�̄�𝑙,𝑡
𝑞

+ �̱�𝑙,𝑡
𝑞

)𝑙,𝑘∗ ⋅
𝑧𝑙 ⋅∑ 𝑋𝑄𝑙,𝑘,𝑡

𝜑
𝜑 ⋅∑ 𝑋𝑄𝑙,𝑘∗,𝑡

𝜑
𝜑 ⋅𝜎𝑘∗

‖∑ 𝑿𝑸𝑙,𝑡
𝜑

𝜑 ⋅𝜞𝑡
1 2⁄

‖
2

  (14b) 

where 𝜆𝜇,𝑘,𝑡  and 𝜆𝜎,𝑘,𝑡  are uncertain prices for 𝜇𝑘,𝑡  and 𝜎𝑘,𝑡 , 

respectively. The first term is related with the marginal energy 

cost for mitigating uncertainties, the second to the last term 

denote the voltage reserve cost, and active and reactive branch 

power flow reserve costs.  

Remark 3: The uncertainty charging prices for standard 

deviations show a strong correction with the system-wide 

uncertainty level, i.e., the sum of all standard deviations 𝜎𝑘∗. 

Given that the information-sharing mechanism can reduce the 

system-wide forecast error, the total cost saving is included in 

the price signal. The cleared flexibility prices for both sides of 

the DSO’s flexibility market based on information sharing can 

effectively promote information transparency, while allowing 

the flexible sources to mitigate uncertainty costs by improving 

the quality of forecast and investing in local flexible resources. 

C. Analysis of Money Flow and Profit Sufficiency Guarantee 

According to the proposed market-clearing framework, 

uncertainty sources should compensate flexible resources for 

the provision of reserve costs. Based on the definition of a 

flexibility pricing scheme, the flexibility provider’s revenue 𝐶𝑖,𝑡
𝑅  

is calculated as: 

 𝐶𝑖,𝑡
𝑅 : = �̄�𝑖,𝑡

𝑅 ⋅ 𝑅𝑖,𝑡
up

+ �̱�𝑖,𝑡
𝑅 ⋅ 𝑅𝑖,𝑡

dn (15a) 

Similarly, the uncertainty payment to the flexible resource 

provider is calculated as: 

 𝐸𝑘,𝑡
𝜉

≔ 𝜆𝜇,𝑘,𝑡 ∙ 𝜇𝑘 + 𝜆𝜎,𝑘,𝑡 ∙ 𝜎𝑘,𝑡 (15b) 

Based on (15a)-(15b), we offer the following proposition. 

Proposition 5 (Profit sufficiency): The uncertainty payment 

∑ 𝐸𝑘,𝑡
𝜉

𝑘  would cover the total flexibility cost ∑ 𝐶𝑖,𝑡
𝑅

𝑖 . 

Meanwhile, the profit sufficiency reflects the compensation for 

the network operation margin. This proof is provided in 

Appendix E. 

V. CASE STUDY 

The proposed DSO’s risk-aware flexibility market clearing 

scheme is verified by a modified IEEE 34-bus test system. The 

proposed model is implemented in the YALMIP toolbox with 

Mosek as the SDP solver [42]. The numerical computation is 

carried out on a personal computer with 12th Gen Intel (R) Core 

(TM) i7-12700 (4.70 GHz). 

A. Test Case Description 

The modified IEEE 34-bus three-phase distribution network 

system, shown in Fig. 2, is used to validate the proposed risk-

aware local flexibility and uncertainty pricing scheme. The 

system includes four WTs, three GTs, and three distributed 

ESSs. Some critical DER parameters are provided in Tables I 

and II. All WTs located in Nodes 8, 21, 26, and 32 have a 

capacity of 0.15 MW. 

TABLE I 
ESS parameters 

Node 𝑆𝑂𝐶𝑖
𝑚𝑎𝑥 𝑐ℎ𝑖

𝑚𝑎𝑥 𝑑𝑖𝑠𝑖
𝑚𝑎𝑥 𝜂𝑠 b1 b0 

8 0.20 0.15 0.15 

0.9 

0.11 

0 11 0.52 0.42 0.42 0.10 

26 0.20 0.15 0.15 0.19 

* 𝑆𝑂𝐶𝑖
𝑚𝑎𝑥 , 𝑐ℎ𝑖

𝑚𝑎𝑥
/ 𝑑𝑖𝑠𝑖

𝑚𝑎𝑥 , 𝜂𝑠 : max capacity (MWh), power 

charge/discharge (MW) and efficiency 

* Operation cost: b1*|𝑐ℎ − 𝑑𝑖𝑠|+b0 ($) 
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TABLE II 
GT parameters 

Node 
𝑔𝑖

𝑚𝑖𝑛 / 

𝑔𝑖
𝑚𝑎𝑥  

RU𝑖 RD𝑖 
𝑃𝐹𝑖

𝑚𝑖𝑛/ 

𝑃𝐹𝑖
𝑚𝑎𝑥 

a2 a1 

6 0/0.84 0.6 0.6 

0.1/0.9 

8*10-3 30 

9 0/0.72 0.4 0.4 1.1*10-2 35 

19 0/0.96 0.8 0.8 1.2*10-2 40 

*𝑔𝑖
𝑚𝑎𝑥 , RU𝑖/RD𝑖, 𝑃𝐹𝑖

𝑚𝑖𝑛/𝑃𝐹𝑖
𝑚𝑎𝑥: max power output (MW), up/down 

ramping rate (MW/h) and minimum/maximum power factor 

* Operation cost: a1* 𝑔+ a2* 𝑔2 ($) 

Substation 
bus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

21 22

23 24 25

26 27 28 29 30 31 32 33

19 20

Storage Gas-fired 
generator

Wind 
turbine

0

 
Fig. 2. Modified IEEE 34-bus distribution system. 

The wind and load forecast data are provided in [43], [44] and 

the time of use tariff for electricity 𝜆𝑇𝑂𝑈  is provided in [43]. The 

prices for the reactive power obtained from the ancillary 

services market and flexibility resources are set as 0.2*𝜆𝑇𝑂𝑈 . 

The reserve price provided by flexibility resources depends on 

their bids [45]. The security three-phase voltage ranges from 

0.9 p.u. to 1.1 p.u, while the maximum unbalanced voltage 

deviation index (VDI) 𝜀𝑣 is set as 10%, which can be adjusted 

by distribution network operator. 

B. Market Clearing Result 

Herein, we analyze the merits of the proposed risk-aware 

pricing scheme by quantifying the effect of incentive on 

operation costs and the improvement on the operation 

performance as stated in Tables III and IV, respectively. Three 

schemes are designed to illustrate the effectiveness of the 

proposed method, where Schemes I and II are used as 

benchmarks. 

Scheme I (Stochastic solution one without a DSO’s flexibility 

market): All uncertainties will be balanced by the upstream grid 

without utilizing local flexible resources. The day-ahead 

dispatch is executed by a multi-scenario stochastic method [46]. 

Scheme II (Chance-constrained linear robust solution without 

information sharing): A chance-constrained linear robust 

method is used to form a risk-aware price as a benchmark [30]. 

The information sharing for spatially correlated uncertainty is 

not considered in this case. The DSO develops the risk-aware 

pricing scheme based on estimated system-wide uncertainties, 

i.e., forecast of total net demand fluctuation. 

Scheme III (DRCC solution proposed in this paper): The 

proposed DRCC risk-aware pricing scheme coordinates the 

spatially correlated uncertainty information. The DSO 

purchases the local flexible reserve using the shared uncertainty 

information. 

Table III compares the operation cost of different schemes in 

the worst after-the-fact situation. The worst after-the-fact 

situation implies the most dramatic fluctuations in uncertainty, 

where the real-time uncertainty emerges with minimum 

renewable output and maximum load demand. In Table III, the 

first two cost terms include the day-ahead electricity and 

reserve purchase costs and the real-time balancing cost for the 

worst-case deviation. 

TABLE III 

Effect of incentive on operation costs ($) 

Scheme 
𝐶𝑠𝑢𝑏,𝑃 

($) 

𝐶𝑠𝑢𝑏,𝑄 

($) 
𝐶𝐷𝐸𝑅 

($) 
𝐶𝑈𝑃 +

𝐶𝐷𝑁 ($) 
total ($) 

I 396.4 82.1 298.8 - 777.3 

II 278.8 65.4 232.6 173.3 750.1 

III 257.6 64.6 244.1 78.2 644.5 

Note that 𝐶𝑠𝑢𝑏,𝑃 , 𝐶𝑠𝑢𝑏,𝑄  are purchasing costs for active and 

reactive energy from the external market. 𝐶𝐷𝐸𝑅  denotes the 

total dispatch cost for DERs while 𝐶𝑈𝑃 + 𝐶𝐷𝑁  refers to the 

purchasing cost for up/down local flexibility reserves. 

The proposed method results in the lowest total operation cost 

of $644.5, which is reduced by 17.1% as compared with 

Scheme I because active and reactive energy are purchased 

from the market. Here, GTs will have more capacity available 

for participation in the day-ahead energy market with a higher 

generation cost as there is no need for the local flexibility 

reserve in Scheme I. Similarly, GTs would participate less in 

the day-ahead energy market as additional flexible reserves are 

utilized, which in turn leads to a lower generation cost. 

Table IV shows the improvement offered by the proposed 

scheme on the network operation in the worst after-the-fact 

situation. Herein, �̂�𝑙
𝑚𝑎𝑥  refers to the maximum line loading 

(i.e., maximum line power flow on the day-ahead time scale in 

% of line capacity). The second term denotes the nodal voltage 

magnitude range in the worst case. 𝑉𝐷𝐼𝑖
𝑚𝑎𝑥  is the largest 

unbalanced deviation index of the three-phase nodal voltage. 

Also, certain operation constraints are not satisfied in Scheme 

I, as it fails to invoke flexible resources in the unbalanced three-

phase distribution network. In the worst after-the-fact situation, 

uncertain deviations cannot be balanced by the upstream grid 

alone without violating the distribution network constraints. 

Conversely, both Scheme II and the proposed Scheme III have 

a good performance in mitigating line congestion, voltage 

fluctuation, and three-phase unbalanced level. However, the 

proposed Scheme III improves the distribution network 

operation performance to be almost the same level as that of 

Scheme II at a cheaper cost. 

TABLE IV 

Comparison of operation performances 

Scheme �̂�𝑙
𝑚𝑎𝑥  |�̃�𝑖,𝜑

𝑚𝑖𝑛|~|�̃�𝑖,𝜑
𝑚𝑎𝑥| 𝑉𝐷𝐼𝑖

𝑚𝑎𝑥  

I 114.6% 0.839~1.026 13.42% 
II 94.8% 0.956~1.012 5.53% 
III 97.8% 0.944~1.024 7.02% 

In Fig. 3, a cost-revenue analysis is conducted with and 

without sharing spatially correlated uncertainties in order to 

evaluate the economic implications of a risk-aware three-phase 

pricing scheme for flexible resources. The comparison of these 

two schemes shows that distributed WT revenues and cost 

saving for loads are raised from $5.56 and $-329.68 to $57.64 

and $-289.28, respectively. The total net profit for all 

participants will increase despite an approximately 6.58%-

13.09% reduction in profit for distributed GTs and ESSs. The 
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reason is that sharing spatially correlated uncertainties can 

reduce the total flexibility reserve requirement. Concretely, GT 

and ESS revenues are somewhat lower than those without 

sharing information of spatially correlated uncertainties, while 

the proposed solution reduces the risk payment by distributed 

WTs and loads. On the other hand, ESS revenues are primarily 

derived from offering reserve credits rather than arbitraging on 

electricity sales. 
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Fig. 3. (a) Comparison of revenue and cost components with and 

without the information sharing on spatially correlated uncertainties 
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Fig. 3. (b) Comparison of revenue and cost components with and 

without the information sharing on spatially correlated uncertainties 

Basically, the reserve is mainly provided by ESSs for their 

cheap flexibility. Meanwhile, the provision of reserve is less 

profitable than electricity sales for GTs, which is validated by 

Fig. 4. The distributed GT dispatch is more suited for arbitrage, 

where the results vary with fluctuations in external electricity 

prices. GTs will be dispatched, as market price is increased, for 

lowering the power purchase cost as demonstrated in 13th-22th 

timeslots. ESSs will be charged (i.e., negative values) as 

renewable energy production is increased or the price of 

electricity is decreased; otherwise, ESSs are discharged (i.e., 

positive value). However, the ESS dispatch accounts for only a 

small portion of the total supplied electricity. Accordingly, ESS 

should possess a sufficient reserve capacity for providing 

flexible reserves. 
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Fig. 4. Electricity dispatch and external wholesale market price 

In our study, we have carefully analyzed the accuracy of the 

SDP relaxation method. For the SDP-based model, the solution 

is exact when the rank-one condition of the matrix 𝐖𝒕 defined 

in Eq. (1a) is satisfied [47]. However, the rank condition is 

usually not satisfied due to the relaxation. Since the matrix’s 

rank, which is the number of the nonzero singular values, 

provides the information about the accuracy of the solution. Fig. 

5 (a) shows the eigenvalues of the matrix 𝐖𝒕 on a logarithm 

scale with different thresholds of the voltage stability, while 

Fig. 5 (b) denotes the ratios between the largest and second-

largest Eigenvalues of the matrix 𝐖𝒕  under different voltage 

deviation index. The red line in the box plot of Fig. 5 (a) 

indicates the median of the samples, the dashed lines represent 

the 5%-95% interval, and the box represents the 25%-75% 

interval.  

The results show that the distribution of eigenvalues is not 

uniform, i.e., only a few top eigenvalues are large and the rest 

are of small magnitudes. The results show that the smaller the 

voltage deviation index, the larger the overall eigenvalues. Fig. 

5 (b) shows that there is one large singular value, and the other 

singular values are so small that they can be ignored compared 

to the largest singular value. This indicates that the rank of the 

matrix W can be approximately considered to be 1 [48]. The 

smaller the three-phase voltage deviation margin is, the solution 

will be more exact. Case studies show that the proposed SDP 

relaxation method can provide accurate solutions for the 

nonconvex three-phase ACOPF problem under practical 

operating conditions. 
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Fig. 5. (a) Eigenvalues of matrix under diverse voltage dexiation index 
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Fig. 5. (b) Ratio of the Top 2 eigenvalues under diverse voltage 

dexiation index 

Fig. 6 shows the day-ahead market clearing results for local 

up/down reserves, where three conclusions can be derived. 

First, the ESS reserve price tends to be lower than that of GT. 

This is why ESSs are the main reserve providers, even with a 

relatively smaller installed capacity. Another implication is that 

the ESS price for the upward reserve (averaged at 4.12 $/MWh) 

tends to be higher than that of the downward reserve, with a 

mean value of 2.82 $/MWh. This is because the provision of 

upward reserve often leads to higher energy costs. Third, the 

cleared reserve price for GT varies dramatically. The GT 

reserve price is typically determined by two factors: market 

price and total system-wide flexibility reserve requirement. 

Especially, when the system-wide requirement for down 

reserve exceeds ESS capacities, GTs would increase their 

power outputs to offer more downward reserves. In Fig. 4, 

down reserve prices for GTs are much higher than those of 

upward when the GTs are less dispatched at 1st to 12th and 23rd 

to 24th timeslots. In the gray area, the upward reserve price is 

higher than that of the downward reserve. This is also owing to 

a higher energy cost of the upward reserve when reserves are 

sufficiently supplied. 
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Fig. 6. Up/down reserve dispatch and local flexibility reserve price 

Meanwhile, the reserve price difference for diverse providers 

reflects the true value of flexibility, as shown in Proposition 3. 

For example, the higher reserve price for G2 is caused by the 

distribution network congestion and unbalanced voltage 

constraints. Hence, reserves at neighboring nodes are largely 

offered by G2, while other flexibility reserve providers cannot 

satisfy the requirements. In this way, the diverse flexibility 

offered by various providers signifies the essence of network 

conditions in determining the values of flexibility reserves. 

Fig. 7 compares maximum line loading in the deterministic 

case and risk-aware DRCC case, where the lack of coordination 

among local flexibility reserves in the deterministic case causes 

severe line congestion and hinders secure network operations. 
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Fig. 7. Comparison of maximum line loading in deterministic and risk-

aware DRCC cases 

C. Analysis of DSO’s flexibility Pricing Scheme 

The DSO’s cleared flexibility prices are further analyzed to 

quantify the cost of managing the risk for spatially correlated 

uncertainties. Figs. 8 (a)-(b) present the cleared flexibility 

prices for charging uncertainties with respect to values of μ and 

σ. Sampling is performed every two hours. 
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(a) Uncertainty pricing for expected error μ (b) Uncertainty pricing for standard deviation σ  
Fig. 8. DSO’s flexibility pricing for expected errors μ and standard 

deviation σ (sorted by the node number in ascending order) 

Here, three-phase power distribution nodes with 

uncertainties includes those with distributed WTs or loads. A 

node with a high risk-aware price signal will pose a significant 

influence on the system-wide operating condition even with a 

small uncertainty fluctuation level. Generally, flexibility 

pricing for μ is less pricy than that of σ, indicating that the 

expected forecast error is relatively small with a minute impact 

on network operation. Fig. 8 depicts that the nodal flexibility 

pricing could vary within the same hour. In turn, the uncertainty 

risk has a dominant spatial effect as flexible resources are 

scattered throughout the network. Likewise, the hourly nodal 

operation varies according to the temporal fluctuation of 

uncertainty. The risk-aware flexibility pricing quantifies the 

uncertainty impact of nodal net injections on four parts, 

including energy, volt/var, and active /reactive power flows. 

The decomposition of price components reflects the network 

operating conditions and can guide flexible resources more 

intuitively. 
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Figs. 9 and 10 demonstrate that the system-wide operation 

risk is more sensitive to energy injection uncertainties at those 

nodes which possess higher prices for flexibility reserves. 

Typically, the energy component of flexibility price is relatively 

low for these nodes, which are located in the vicinity of flexible 

resources, e.g., 4th uncertain source (Node 8) installed with ESS, 

and 12th uncertain source (Node 19) with GT. In turn, flexible 

resources, such as distributed ESSs will be invested to be 

located in high uncertainty areas for improving the robustness 

of the distribution network operation. 
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Fig. 9. Components of DSO’s cleared flexibility pricing prices for μ 
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Fig. 10. Components of DSO’s cleared flexibility prices for σ 

Fig. 10 depicts that there are some differences in the volt/var 

part of the flexibility pricing scheme, which can be either 

positive or negative for μ and σ. This implies that the price 

component will be positive when the nodal voltage is lower 

than the reference voltage with a negative expected error μ, or 

the nodal voltage is higher than the reference voltage with a 

positive expected error μ. Otherwise, there will be a negative 

price component. That is, we can improve the distribution 

network performance by reducing the load value or increasing 

the generating power when the voltage is low and vice versa. In 

general, the volt/var price component values the impact of the 

uncertainties on the network voltage distribution. Figs. 9(b) and 

10(b) depict that the absolute value of the price component for 

both flexibility prices provide a correlation with the degree of 

voltage deviation. The higher the nodal voltage deviation, the 

greater will be the impact of uncertainty on operating costs. 

Furthermore, Figs. 9(c)-(d) and 10(c)-(d) show the price 

components on the power flow part for μ and σ, respectively. 

Once again, a larger absolute value indicates the nodal 

uncertainty will pose a greater network operation risk. Also, the 

absolute value of the power flow price tends to increase with 

the neighboring line loading, as shown in Fig. 7, such as 4th, 5th, 

12th, and 17th uncertain sources (c.f. Nodes 8, 9, 19, and 26). It 

indicates when the line loading is high, the risk of line 

congestion will increase accordingly. 

VI. CONCLUSION 

This paper proposes a risk-aware flexibility market clearing 

scheme for a DSO through a SDP-based probabilistic three-

phase OPF solution. The solution quantifies the uncertainty risk 

and reward the use of local flexible resources in an unbalanced 

three-phase distribution network. In the proposed model, 

spatially correlated uncertainties are explicitly internalized into 

the DRCC probabilistic model through an information sharing 

mechanism. The paper derives the DSO’s risk-aware flexible 

resource prices to mitigate the impact of network uncertainties 

on energy balance, voltage, and line losses, and network 

congestions. Case studies validate that the proposed analytic 

framework for the physical composition of risk-aware price 

scheme can provide a more intuitive guidance for the 

unbalanced three-phase distribution network operation. 

Meanwhile, resources are motivated to curb their variability by 

investing on local flexible resources or improving the quality of 

forecast information. 

APPENDIX 

A. Auxiliary variables for deriving a compact form of the 

unbalanced power flow 

To perform a compact form of the unbalanced power flow, 

we introduce two auxiliary vectors 𝒆𝑖
𝜑

 and 𝒉𝑖
𝜑

 which are 

(3𝑖+𝜑)-th standard basis vector in ℝ3𝑁 and ℝ6𝑁, where 𝜑=1, 2, 

3 represent phases a, b and c, respectively. Given the three-

phase system admittance matrix as Y, we use 𝒚𝑖
𝜑

 to describe a 

matrix with all zeros except for the (3 𝑖 +𝜑 )-th row, which 

corresponds to the (3𝑖+𝜑)-th row of Y. Based on 𝒆𝑖
𝜑

 and 𝒉𝑖
𝜑

, 

five auxiliary symmetric matrices 𝒀𝑖
𝜑

, 𝒀𝑖

𝜑
, 𝑴𝑖

𝜑
 and 𝜱𝑖,𝑗

𝜙
, 𝜱𝑖,𝑗

𝜙
 

are further denoted. 

 𝒚𝑖
𝜑

= 𝒆𝑖
𝜑

(𝒆𝑖
𝜑

)
𝑇

𝐘 (A.1) 

 
𝒀𝑖

𝜑
=

1

2
[
ℜ (𝒚𝑖

𝜑
+ (𝒚𝑖

𝜑
)

𝑇
) 𝔍 ((𝒚𝑖

𝜑
)

𝑇
− 𝒚𝑖

𝜑
)

𝔍 (𝒚𝑖
𝜑

− (𝒚𝑖
𝜑

)
𝑇

) ℜ (𝒚𝑖
𝜑

+ (𝒚𝑖
𝜑

)
𝑇

)
]
 (A.2) 

 
𝒀𝑖

𝜑
= −

1

2
[

𝔍 (𝒚𝑖
𝜑

+ (𝒚𝑖
𝜑

)
𝑇

) ℜ (𝒚𝑖
𝜑

− (𝒚𝑖
𝜑

)
𝑇

)

ℜ ((𝒚𝑖
𝜑

)
𝑇

− 𝒚𝑖
𝜑

) 𝔍 (𝒚𝑖
𝜑

+ (𝒚𝑖
𝜑

)
𝑇

)
]
 (A.3) 

 
𝑴𝑖

𝜑
= [

𝒆𝑖
𝜑

(𝒆𝑖
𝜑

)
𝑇

𝟎

𝟎 𝒆𝑖
𝜑

(𝒆𝑖
𝜑

)
𝑇]

 (A.4) 

 
𝜱𝑖,𝑗

𝜑
=

1

2
⋅ (𝒆𝑖

𝜑
)

𝑇
⋅ ℜ(𝐘) ⋅ 𝒆𝑗

𝜑
⋅ 
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(

𝒉𝑗
𝜑

(𝒉𝑖
𝜙

)
𝑇

+ 𝒉𝑖
𝜑

(𝒉𝑗
𝜑

)
𝑇

+ 𝒉𝑗+𝑛
𝜑

(𝒉𝑖+𝑛
𝜑

)
𝑇

+𝒉𝑖+𝑛
𝜑

(𝒉𝑗+𝑛
𝜑

)
𝑇

− 2 ⋅ 𝒉𝑖
𝜑

(𝒉𝑖
𝜑

)
𝑇

− 2 ⋅ 𝒉𝑖+𝑛
𝜑

(𝒉𝑖+𝑛
𝜑

)
𝑇

)  

 
+

1

2
⋅ (𝒆𝑖

𝜑
)

𝑇
⋅ 𝔍(𝐘) ⋅ 𝒆𝑗

𝜑
⋅
 

 

(𝒉𝑗
𝜑

(𝒉𝑖+𝑛
𝜑

)
𝑇

+ 𝒉𝑖+𝑛
𝜑

(𝒉𝑗
𝜑

)
𝑇

− 𝒉𝑗+𝑛
𝜑

(𝒉𝑖
𝜑

)
𝑇

− 𝒉𝑖
𝜑

(𝒉𝑗+𝑛
𝜑

)
𝑇

)(A.5) 

 
𝜱𝑖,𝑗

𝜑
=

1

2
⋅ (𝒆𝑖

𝜑
)

𝑇
⋅ 𝔍(𝐘) ⋅ 𝒆𝑗

𝜑
⋅  

 
(

2 ⋅ 𝒉𝑖
𝜑

(𝒉𝑖
𝜑

)
𝑇

+ 2 ⋅ 𝒉𝑖+𝑛
𝜑

(𝒉𝑖+𝑛
𝜑

)
𝑇

− 𝒉𝑗
𝜑

(𝒉𝑖
𝜑

)
𝑇

−𝒉𝑖
𝜑

(𝒉𝑗
𝜑

)
𝑇

− 𝒉𝑗+𝑛
𝜑

(𝒉𝑖+𝑛
𝜑

)
𝑇

− 𝒉𝑖+𝑛
𝜑

(𝒉𝑗+𝑛
𝜑

)
𝑇 )  

 −
1

2
⋅ (𝒆𝑖

𝜑
)

𝑇
⋅ ℜ(𝐘) ⋅ 𝒆𝑗

𝜑
⋅  

(𝒉𝑗+𝑛
𝜑

(𝒉𝑖
𝜑

)
𝑇

+ 𝒉𝑖
𝜑

(𝒉𝑗+𝑛
𝜑

)
𝑇

− 𝒉𝑗
𝜑

(𝒉𝑖+𝑛
𝜑

)
𝑇

− 𝒉𝑖+𝑛
𝜑

(𝒉𝑗
𝜑

)
𝑇

)(A.6) 

where we use ℜ  (A) and 𝔍  (A) to denote the real and the 

imaginary parts of matrix A. Superscript T refers to the 

transpose of a matrix and 𝟎 denotes a matrix with all zeros. 

B. Detailed Modeling for Generator and ESSs Operational 

Limits: 

➢ Generation and ramping limits: 

 𝑔𝑖
𝑚𝑖𝑛 + 𝑅𝑖,𝑡

𝑑𝑛 ≤ 𝑝𝑖,𝑡
𝑔

≤ 𝑔𝑖
𝑚𝑎𝑥 − 𝑅𝑖,𝑡

𝑢𝑝
, 𝑖 ∈ Ω𝑔: 𝑣𝑖,𝑡

dn, 𝑣𝑖,𝑡
up

 (B.1) 

−RD𝑖 ⋅ 𝛥𝑡 ≤ (𝑝𝑖,𝑡
𝑔

− 𝑝𝑖,𝑡−1
𝑔

) ≤ RU𝑖 ⋅ 𝛥𝑡, 𝑖 ∈ Ω𝑔: 𝜈𝑖,𝑡
RU, 𝜈𝑖,𝑡

RD(B.2) 

 0 ≤ 𝑅𝑖,𝑡
up

≤ RU𝑖 ⋅ 𝛥𝑡, 𝑖 ∈ Ω𝑔: �̱�𝑖,𝑡
RU, �̄�𝑖,𝑡

RU (B.3) 

 0 ≤ 𝑅𝑖,𝑡
dn ≤ RD𝑖 ⋅ 𝛥𝑡, 𝑖 ∈ Ω𝑔: �̱�𝑖,𝑡

RD, �̄�𝑖,𝑡
RD (B.4) 

 𝑝𝑖,𝑡
𝑔

⋅ 𝑃𝐹𝑖
𝑚𝑖𝑛 ≤ 𝑞𝑖,𝑡

𝑔
≤ 𝑝𝑖,𝑡

𝑔
⋅ 𝑃𝐹𝑖

𝑚𝑎𝑥 , 𝑖 ∈ Ω𝑔: �̱�𝑖,𝑡
𝑄 , �̄�𝑖,𝑡

𝑄
 (B.5) 

 𝑞𝑖,𝑡
𝑔

= ∑ 𝑞𝑖,𝜑,𝑡
𝑔

𝜑 , 𝑖 ∈ Ω𝑔: 𝑣𝑖,𝑡
𝑞

 (B.6) 

 𝑝𝑖,𝑡
𝑔

= ∑ 𝑝𝑖,𝜑,𝑡
𝑔

𝜑 , 𝑖 ∈ Ω𝑔: 𝑣𝑖,𝑡
𝑝

 (B.7) 

where 𝑝𝑖,𝑡
𝑔

, 𝑞𝑖,𝑡
𝑔

 are active and reactive power generation at bus 

i, respectively. RU𝑖/RD𝑖  are up and down ramping rates. 

𝑃𝐹𝑖
𝑚𝑖𝑛/𝑃𝐹𝑖

𝑚𝑎𝑥 denote minimum/maximum power factors. The 

up/down reserves 𝑅𝑖,𝑡
up

, 𝑅𝑖,𝑡
dn are constrained by (B.1), (B.3), 

(B.4). 

➢ ESSs charging/discharging limits: 

 𝑐ℎ𝑖,𝑡 = ∑ ch𝑖,𝑡
𝜑

𝜑∈𝛷𝑠
,  𝑖 ∈ Ω𝑠: 𝜇𝑖,𝑡

𝑐ℎ (B.8) 

 𝑑𝑖𝑠𝑖,𝑡 = ∑ dis𝑖,𝑡
𝜑

𝜑∈𝛷𝑠
,  𝑖 ∈ Ω𝑠: 𝜇𝑖,𝑡

𝑑𝑖𝑠 (B.9) 

 𝑞𝑖,𝑡
𝑠 = ∑ 𝑞𝑖,𝜑,𝑡

𝑠
𝜑∈𝛷𝑠

,  𝑖 ∈ Ω𝑠: 𝜇𝑖,𝑡
𝑄

 (B.10) 

 𝑆𝑂𝐶𝑖,𝑡 − 𝑆𝑂𝐶𝑖,𝑡−1 = (𝑐ℎ𝑖,𝑡 ∙ 𝜂𝑆 −
𝑑𝑖𝑠𝑖,𝑡

𝜂𝑆
) ∙ ∆𝑡 : 𝜇𝑖,𝑡

𝑠𝑜𝑐 (B.11) 

 0 ≤ 𝑆𝑂𝐶𝑖,𝑡 ≤ 𝑆𝑂𝐶𝑖
𝑚𝑎𝑥 , 𝑖 ∈ Ω𝑠: 𝜇𝑖,𝑡

𝑠𝑜𝑐 , 𝜇𝑖,𝑡

𝑠𝑜𝑐
 (B.12) 

 𝑐ℎ𝑖
𝑚𝑖𝑛 ≤ 𝑐ℎ𝑖,𝑡 + 𝑅𝑖,𝑡

dn ≤ 𝑐ℎ𝑖
𝑚𝑎𝑥 , 𝑖 ∈ Ω𝑠: 𝜇𝑖,𝑡

𝑐ℎ , 𝜇
𝑖,𝑡

𝑐ℎ
 (B.13) 

 𝑑𝑖𝑠𝑖
𝑚𝑖𝑛 ≤ 𝑑𝑖𝑠𝑖,𝑡 + 𝑅𝑖,𝑡

up
≤ 𝑑𝑖𝑠𝑖

𝑚𝑎𝑥 , 𝑖 ∈ Ω𝑠: 𝜇𝑖,𝑡
𝑑𝑖𝑠, 𝜇

𝑖,𝑡

𝑑𝑖𝑠
 (B.14) 

 (𝑑𝑖𝑠𝑖,𝑡 − 𝑐ℎ𝑖,𝑡)
2

+ (𝑞𝑖,𝑡
𝑠 )

2
≤ (𝑑𝑖𝑠𝑖

𝑚𝑎𝑥)2, 𝑖 ∈ Ω𝑠: 𝜇𝑖,𝑡
𝑠  (B.15) 

where the left-hand side variables in (B.8)-(B.10) represent the 

sum of all variables over all phases. Given that SOC is the state 

of charge variable, 𝑆𝑂𝐶𝑖
𝑚𝑎𝑥 , 𝑐ℎ𝑖

𝑚𝑖𝑛 , 𝑐ℎ𝑖
𝑚𝑎𝑥 , 𝑑𝑖𝑠𝑖

𝑚𝑖𝑛 , 𝑑𝑖𝑠𝑖
𝑚𝑎𝑥  

represent the maximum SOC capacity, and lower/ upper limits 

of charging/discharging power, respectively. Besides providing 

active power support for the three-phase distribution network, 

ESSs provide reactive power support to a network, as shown in 

(B.10) and (B.15). The ESS reserves are constrained by (B.13)-

(B.14). 

C. Proof for Proposition 1 

Combining the sensitivity matrix (7h) with the nodal 

deviation matrix (9a), we obtain: 

 𝛥𝑿 = (𝑱𝑺)−1 ⋅ 𝛥𝑆 = (𝑱𝑺)−1 ⋅ [
−𝑨𝜉 ⋅ 𝝃 + 𝒓

−𝝍 ⊙ 𝑨𝜉 ⋅ 𝝃 + 𝝍 ⊙ 𝒓
] 

 = [
𝑱𝑷
𝑱𝑸

]
−1

⋅ [
−𝑨𝜉 + 𝜷𝜉

−𝝍 ⊙ 𝑨𝜉 + 𝝍 ⊙ 𝜷𝜉
] ⋅ 𝝃  (C.1) 

where 𝝍  denotes the vector of given power factors. 

Furthermore, based on (7c)-(7e) and (C.1), the following 

mapping relationships are derived: 

𝛥|𝑉𝑖,𝜑,𝑡|
2

= 𝑱𝑽𝑖,𝑡
𝜙

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
−𝑨𝜉 + 𝜷𝑡

𝜉

−𝝍 ⊙ 𝑨𝜉 + 𝝍 ⊙ 𝜷𝑡
𝜉

] ⋅ 𝝃𝑡 (C.2) 

 𝛥𝑃𝑖,𝑗,𝑡
𝜑

= 𝑱𝑷𝑖,𝑗,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
−𝑨𝜉 + 𝜷𝑡

𝜉

−𝝍 ⊙ 𝑨𝜉 + 𝝍 ⊙ 𝜷𝑡
𝜉

] ⋅ 𝝃𝑡 (C.3) 

 𝛥𝑄𝑖,𝑗,𝑡
𝜑

= 𝑱𝑸𝑖𝑗,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
−𝑨𝜉 + 𝜷𝑡

𝜉

−𝝍 ⊙ 𝑨𝜉 + 𝝍 ⊙ 𝜷𝑡
𝜉

] ⋅ 𝝃𝑡 (C.4) 

Based on the Taylor’s theorem, we can further obtain the 

system-wide response functions of voltages and active and 

reactive power flows to uncertainties as shown in (10a)-(10c) 

D. Proof for Proposition 3 

This section provides the proof for Proposition 3. The 

flexibility reserve prices can be obtained via taking the first 

order partial derivatives of 𝛽𝑖,𝑘,𝑡
𝜑

 to zero. 

 
𝜕ℒ

𝜕𝛽
𝑖,𝑘,𝑡
𝜑 = −𝜆𝑡,𝑘

𝑅 +
𝑧𝑅∙(𝒆𝑘)𝑇∙𝜞𝑡⋅𝜷𝑖,𝑡

𝜑

‖𝜞𝑡
1 2⁄

∙𝜷
𝑖,𝑡
𝜑

‖
2

⋅ (�̄�𝑖,𝑡
𝑅 + �̱�𝑖,𝑡

𝑅 )  

 +(�̄�𝑖,𝑡
𝑅 − �̱�𝑖,𝑡

𝑅 ) ⋅ 𝜇𝑘,𝑡  

 +𝜇𝑘,𝑡 ⋅ ∑ (�̄�𝑖,𝜑,𝑡
𝑉 −  �̱�𝑖,𝜑,𝑡

𝑉 ) ⋅ 𝑱𝑽𝑖,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
𝒆𝑖

𝜑

𝝍 ⊙ 𝒆𝑖
𝜑]𝑖,𝜑   

 + ∑ (�̄�𝑖,𝜑,𝑡
𝑉 +  �̱�𝑖,𝜑,𝑡

𝑉 ) ⋅ 𝜡𝑽𝑖,𝑡
𝜑

𝑖,𝜑   

 +𝜇𝑘,𝑡 ⋅ ∑ (�̄�𝑖𝑗,𝑡
𝑝

− �̱�𝑖𝑗,𝑡
𝑝

) ⋅𝑖𝑗∈𝐿,𝜑 𝑱𝑷𝑖𝑗,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
𝒆𝑖

𝜑

𝝍 ⊙ 𝒆𝑖
𝜑]  

 + ∑ (�̄�𝑖𝑗,𝑡
𝑝

+ �̱�
𝑖𝑗,𝑡

𝑝
) ⋅ 𝜡𝑷𝑖𝑗,𝑡𝑖𝑗∈𝐿   

 +𝜇𝑘,𝑡 ⋅ ∑ (�̄�𝑖𝑗,𝑡
𝑞

−  �̱�
𝑖𝑗,𝑡

𝑞
) ⋅𝑖𝑗∈𝐿,𝜑 𝑱𝑸𝑖𝑗,𝑡

𝜑
⋅ [

𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
𝒆𝑖

𝜑

𝝍 ⊙ 𝒆𝑖
𝜑]  

 + ∑ (�̄�𝑖𝑗,𝑡
𝑝

+ �̱�
𝑖𝑗,𝑡

𝑝
) ⋅ 𝜡𝑸𝑖𝑗,𝑡𝑖𝑗∈𝐿 = 0.  (D.1) 

The above derivation can be reformulated as below: 

(
𝑧𝑅∙(𝒆𝑘)𝑇∙𝜞𝑡⋅𝜷𝑖,𝑡

𝜑

‖𝜞𝑡
1 2⁄

∙𝜷
𝑖,𝑡
𝜑

‖
2

+ 𝜇𝑘,𝑡) ⋅ �̄�𝑖,𝑡
𝑅 + (

𝑧𝑅∙(𝒆𝑘)𝑇∙𝜞𝑡⋅𝜷𝑖,𝑡
𝜑

‖𝜞𝑡
1 2⁄

∙𝜷
𝑖,𝑡
𝜑

‖
2

+ 𝜇𝑘,𝑡) ⋅ �̱�𝑖,𝑡
𝑅   

= 𝜆𝑡,𝑘
𝑅 − ∑ (�̄�𝑖,𝜑,𝑡

𝑉 + �̱�𝑖,𝜑,𝑡
𝑉 ) ⋅ 𝜡𝑽𝑖,𝑡

𝜑
𝑖,𝜑   

− ∑ (�̄�𝑖𝑗,𝑡
𝑝

+ �̱�
𝑖𝑗,𝑡

𝑝
) ⋅ 𝜡𝑷𝑖𝑗,𝑡𝑖𝑗∈𝐿 − ∑ (�̄�𝑖𝑗,𝑡

𝑝
+ �̱�

𝑖𝑗,𝑡

𝑝
) ⋅ 𝜡𝑸𝑖𝑗,𝑡𝑖𝑗∈𝐿   

−𝜇𝑘,𝑡 ⋅ ∑ (�̄�𝑖,𝜑,𝑡
𝑉 −  �̱�𝑖,𝜑,𝑡

𝑉 ) ⋅ 𝑱𝑽𝑖,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
𝒆𝑖

𝜑

𝝍 ⊙ 𝒆𝑖
𝜑]𝑖,𝜑   

−𝜇𝑘,𝑡 ⋅ ∑ (�̄�𝑖𝑗,𝑡
𝑝

− �̱�𝑖𝑗,𝑡
𝑝

) ⋅𝑖𝑗∈𝐿,𝜑 𝑱𝑷𝑖𝑗,𝑡
𝜑

⋅ [
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

⋅ [
𝒆𝑖

𝜑

𝝍 ⊙ 𝒆𝑖
𝜑]  

  −𝜇𝑘,𝑡 ⋅ ∑ (�̄�𝑖𝑗,𝑡
𝑞

− �̱�
𝑖𝑗,𝑡

𝑞
)𝑖𝑗∈𝐿,𝜑 𝑱𝑸𝑖𝑗,𝑡

𝜑
[
𝑱𝑷𝑡

𝑱𝑸𝑡
]

−1

[
𝒆𝑖

𝜑

𝝍 ⊙ 𝒆𝑖
𝜑] (D.2) 

When 𝜇𝑘,𝑡 = 0, (D.2) will be simplified as Eq. (13a). Herein, 

Proposition 3 is proven. 
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E. Proof for Proposition 5 (Profit sufficiency) 

This section provides the proof for Proposition 5. Based on 

(12a)-(12b) and the corresponding complementary slackness, 

we can have the following relationship: 

 𝐶𝑖,𝑡
𝑅 : = �̄�𝑖,𝑡

𝑅 ⋅ 𝑅𝑖,𝑡
up

+ �̱�𝑖,𝑡
𝑅 ⋅ 𝑅𝑖,𝑡

dn  

 = �̄�𝑖,𝑡
𝑅 ⋅ (∑ (𝜷𝑖,𝑡

𝜑
)

𝑇
⋅ 𝝁𝑡 + 𝑧𝑅‖𝜞𝑡

1 2⁄
∙ 𝜷𝑖,𝑡

𝜑
‖

2𝜑 )  

 +�̱�𝑖,𝑡
𝑅 ⋅ (−𝑧𝑅‖𝜞𝑡

1 2⁄
∙ 𝜷𝑖,𝑡

𝜑
‖

2
+ ∑ (𝜷𝑖,𝑡

𝜑
)

𝑇
⋅ 𝝁𝑡𝜑 )  

 = ∑ �̄�𝑖,𝑡
𝑅 ⋅ (𝜇𝑘 +

𝑧𝑅⋅(𝒆𝑘)𝑇⋅𝜞𝑡⋅𝜷𝑖,𝑡
𝜑

‖𝜞𝑡
1 2⁄

∙𝜷
𝑖,𝑡
𝜑

‖
2

)𝜑,𝑘 ⋅ 𝛽𝑖,𝑘,𝑡
𝜑

  

 + ∑ �̱�𝑖,𝑡
𝑅 ⋅ (−𝜇𝑘 +

𝑧𝑅⋅(𝒆𝑘)𝑇⋅𝜞𝑡⋅𝜷𝑖,𝑡
𝜑

‖𝜞𝑡
1 2⁄

∙𝜷
𝑖,𝑡
𝜑

‖
2

)𝜑,𝑘 ⋅ 𝛽𝑖,𝑘,𝑡
𝜑

  

 = ∑ 𝛽𝑖,𝑘,𝑡
𝜑

⋅ (
(�̄�𝑖,𝑡

𝑅 + �̱�𝑖,𝑡
𝑅 ) ⋅

𝑧𝑅⋅(𝒆𝑘)𝑇⋅𝜞𝑡⋅𝛽𝑖,𝑘,𝑡
𝜑

‖𝜞𝑡
1 2⁄

⋅𝜷
𝑖,𝑡
𝜑

‖
2

+(�̄�𝑖,𝑡
𝑅 − �̱�𝑖,𝑡

𝑅 ) ⋅ 𝜇𝑘,𝑡

)𝜑,𝑘  (E.1) 

Similarly, the uncertainty payment is calculated as: 

 𝐸𝑘,𝑡
𝜉

≔ 𝜆𝜇,𝑘,𝑡 ∙ 𝜇𝑘 + 𝜆𝜎,𝑘,𝑡 ∙ 𝜎𝑘,𝑡  

 = ∑ 𝛽𝑖,𝑘,𝑡
𝜑

𝑖,𝜑 ∙ [

(�̄�𝑖,𝑡
𝑅 − �̱�𝑖,𝑡

𝑅 ) ⋅ 𝜇𝑘,𝑡 +

(�̄�𝑖,𝑡
𝑅 + �̱�𝑖,𝑡

𝑅 ) ⋅
𝑧𝑅⋅(𝒆𝑘)𝑇∙𝜞𝑡⋅𝜷𝑖,𝑡

𝜑

‖𝜞𝑡
1 2⁄

∙𝜷
𝑖,𝑡
𝜑

‖
2

] 

 + ∑ 𝑋𝑉𝑖,𝑘,𝑡
𝜑

⋅ [

(�̄�𝑖,𝜑,𝑡
𝑉 − �̱�𝑖,𝜑,𝑡

𝑉 ) ⋅ 𝜇𝑘,𝑡 +

(�̄�𝑖,𝜑,𝑡
𝑉 + �̱�𝑖,𝜑,𝑡

𝑉 ) ⋅
𝑧𝑣 ⋅𝑿𝑽𝑖,𝑡

𝜑
⋅𝜞𝑡⋅𝒆𝑘

‖𝑋𝑉
𝑖,𝑡
𝜑

⋅𝜞𝑡
1 2⁄

‖
2

]𝑖,𝜑  

 + ∑ 𝑋𝑃𝑙,𝑘,𝑡
𝜑

⋅ [

(�̄�𝑙,𝑡
𝑝

− �̱�𝑙,𝑡
𝑝

) ⋅ 𝜇𝑘,𝑡 +

(�̄�𝑙,𝑡
𝑝

+ �̱�𝑙,𝑡
𝑝

) ⋅
𝑧𝑙 ⋅∑ 𝑿𝑷𝑙,𝑡

𝜑
𝜑 ⋅𝜞𝑡⋅𝒆𝑘

‖∑ 𝑿𝑷𝑙,𝑡
𝜑

𝜑 ⋅𝜞𝑡
1 2⁄

‖
2

]𝑙,𝜑  

 + ∑ 𝑋𝑄𝑙,𝑘,𝑡
𝜑

⋅ [

(�̄�𝑙,𝑡
𝑞

− �̱�𝑙,𝑡
𝑞

) ⋅ 𝜇𝑘,𝑡 +

(�̄�𝑙,𝑡
𝑞

+ �̱�𝑙,𝑡
𝑞

) ⋅
𝑧𝑙 ⋅∑ 𝑿𝑸𝑙,𝑡

𝜑
𝜑 ⋅𝜞𝑡⋅𝒆𝑘

‖∑ 𝑿𝑸𝑙,𝑡
𝜑

𝜑 ⋅𝜞𝑡
1 2⁄

‖
2

]𝑙,𝜑  (E.2) 

by comparing ∑ 𝐶𝑖,𝑡
𝑅

𝑖  and ∑ 𝐸𝑘,𝑡
𝜉

𝑘 , the payment ∑ 𝐸𝑘,𝑡
𝜉

𝑘  can be 

formulated as the reserve cost plus flexibility cost for the 

distribution network operation margin, including the flexibility 

margins for voltage and active and reactive power flows. 

 ∑ 𝐸𝑘,𝑡
𝜉

𝑘 = ∑ 𝐶𝑖,𝑡
𝑅

𝑖 + ∑ 𝐶𝑘,𝑡
𝑉

𝑘 + ∑ 𝐶𝑘,𝑡
𝑃

𝑘 + ∑ 𝐶𝑘,𝑡
𝑄

𝑘  (E.3) 
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