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Abstract—This paper presents a carbon-energy coupling man-
agement framework for an industrial park, where the carbon
flow model accompanying multi-energy flows is adopted to track
and suppress carbon emissions on the user side. To deal with the
quadratic constraint of gas flows, a bound tightening algorithm
for constraints relaxation is adopted. The synergies among the
carbon capture, energy storage, power-to-gas further consume
renewable energy and reduce carbon emissions. Aiming at
carbon emissions disparities and supply-demand imbalances, this
paper proposes a carbon trading ladder reward and punishment
mechanism and an energy trading and scheduling method based
on Lyapunov optimization and matching game to maximize the
long-term benefits of each industrial cluster without knowing the
prior information of random variables. Case studies show that
our proposed trading method can reduce overall costs and carbon
emissions while relieving energy pressure, which is important for
Environmental, Social and Governance (ESG).

Index Terms—Carbon emission reduction, multi-energy man-
agement, carbon capture, industrial park, carbon and multi-
energy trading, constraints relaxation, ESG.

I. INTRODUCTION

Nowadays, a large number of industrial clusters (ICs) have

settled in the industrial park, which brings huge economic

benefits, but forms a concentrated area with high energy

consumption and emissions [1]. To reduce emissions and save

energy, the industrial park needs to be equipped with green

distributed energy systems to improve the energy structure and

supply efficiency. Distributed multi-energy systems are built

within ICs, which cooperates with gas companies and power

grids to satisfy the diverse energy needs of users and achieve

energy cascade utilization. The significant role of multi-energy

coordination in improving the reliability, economy and clean-

liness of energy systems has received extensive attention.

Coal-fired power generation is gradually being replaced

by natural gas and renewable power generation [2]. As the

increase of gas power generation, the correlation between

electricity price and gas price increases. Gas prices affect

power generation quotations, unit combinations and optimal

scheduling [3], and electricity prices also affect natural gas

production and transmission costs. Changes in electricity and
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natural gas prices lead to arbitrage behavior, which stimulates

electricity and natural gas trading. The power-to-gas (P2G)

technology and the increasing share of gas in electricity

generation have strengthened the near real-time operational

link between gas and electricity systems, which facilitates

short-term trades in gas [4].

To increase overall efficiency, unlock synergy potential,

and equitably distribute multi-energy generation resources,

some countries are moving towards liberalization of energy

markets [5]. In Sweden, large-scale boilers and heat pumps

are introduced into systems to use excess energy [6]. A project

is launched in Germany to tap the potential of heat pumps to

increase the utilization of wind energy [7]. The deployment

of boilers and heat pumps in Denmark over past decade and

the decision to cut taxes in 2013 have created a favorable

environment for the electrification of heating [8]. Although the

coupled multi-energy market is immature in current practice,

the marketing and operational challenges of integrated energy

systems have received considerable attention.

Some studies have been conducted on multi-energy trading

based on game or auction in industrial and residential parks

to improve energy benefit and structure [9]. In [10], an

equilibrium model is used to deal with the noncooperative

game problem of multi-energy producers, which helps to maxi-

mize the energy profit. In [11], a multi-energy game-theoretic

bargaining framework is proposed to coordinate multilateral

resource and enhance the operational economy and resource

utilization. In [12], a multi-energy management framework

based on Stackelberg game for heat and electricity trading in

an industrial park is constructed to shift the peak load. In [13],

auction mechanisms for multi-energy trading are proposed to

integrate different energy and supply diverse energy for users.

These studies on multi-energy trading effectively achieve

complementary sharing among energy sources, but lack con-

sideration of carbon emission reduction among multi-energy

ICs with different characteristics, which is indispensable for

sustainable development.

With the increasingly serious greenhouse effect caused by

the burning of fossil fuels, the issue of emission reduction has

attracted widespread attention. In fact, the establishment of a

refined and reasonable carbon emission market is of great sig-

nificance to promote energy marketization and emission reduc-

tion [14]. The International Financial Reporting Interpretations

Committee describes emission rights as: the government grants

participating entities the rights to emit a specific emission level

[15]. Since carbon emission right can be purchased and sold to

generate income, an active carbon emission market is formed.
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Chen et al. [16] provide a model of the interrelationships of the

gas, electricity and carbon markets and use a relaxed method

to deal with the secondary gas flow model. Huang et al. [17]

introduce a carbon emission flow model to help multi-energy

system planning to achieve low-carbon operation, and propose

a generalized circuit theory to deal with the nonlinear model

of gas flows. Wei et al. [18] install the wind and photovoltaic

(PV) power devices according to system planning to reduce

the emissions, and use a linearized model to simplify the

secondary function of gas flow between nodes to improve the

computability of the planning. Wang et al. [19] establish a low-

carbon operation model in a multi-energy system and utilize

the carbon capture power plant (CCPP) and P2G technology

to greatly reduce the emissions, but ignore the nonlinearity

of gas flows. These related studies have realized the economic

operation of low-carbon integrated energy systems, but seldom

consider the comprehensive impact of multi-energy chain on

the environment, the complexity of multi-energy coordination

and the nonlinearity of gas flows.
Considering that end users are potential influencers of

carbon emissions, so emissions from energy generation should

be considered from the demand-side perspective. Kang et

al. [20] introduce an emission flow model to clarify the

users’ emission responsibility. Cheng et al. [21] adopt the

carbon emission flow model to allocate emissions from a

consumption perspective. Shen et al. [22] apply the emission

model to calculate demand-side emissions to evaluate the

effect of the low-carbon transformation. Wang et al. [23]

adopt a management model to achieve emission reduction

by encouraging users to participate in electricity and carbon

trading. Although the carbon emission flow models achieve

a more accurate calculation of carbon emissions, the above

research lacks consideration of the spatiotemporal coupling

characteristics of carbon and multi-energy, and the interaction

of multi-energy and carbon trading. Carbon and energy cou-

pling means that different sources of energy produce different

carbon emissions. For example, renewable energy generation

produces no carbon emissions, while coal-fired generation

produces high emissions. When ICs trade energy, the carbon

emissions in energy is also transferred. This paper takes this

into account in carbon and energy trading.
In addition, long-term stochastic optimization problems

need to be solved in energy trading. Different from traditional

methods like dynamic programming, which requires prior in-

formation about the random processes in the system, Lyapunov

optimization can give simple online solution to minimize cost

and queue fluctuation. Some Lyapunov optimization-based

algorithms achieve efficient energy management by trans-

forming the long-term stochastic problem into deterministic

subproblems for each time slot [24]. However, it remains

difficult to make optimal online scheduling decisions in carbon

and energy trading. To achieve effective carbon and energy

management among ICs, a multi-energy trading method and

a ladder carbon trading mechanism are jointly considered to

make optimal scheduling decisions. Compared to existing

research, our contributions are summarized.

1) A coupled carbon and multi-energy management frame-

work including a CCPP, P2G devices and energy storage

Power 
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Fig. 1: Multi-energy supply of ICs

for ICs is proposed. The synergies among the CCPP,

P2G devices and energy storage further consume re-

newable energy, reduce carbon emissions, and improve

overall benefits. A carbon flow model accompanying

multi-energy flows is adopted to track and suppress

carbon emissions on the user side.

2) To make full use of the differences in carbon emissions

and the alternative complementarity of energy, a carbon

and energy coordinated trading model is constructed to

improve the benefits of the ICs, where the carbon trading

ladder reward and punishment mechanism is adopted to

improve the willingness to trade. A boundary tightening

algorithm is adopted to increase the tightness of the

quadratic constraint relaxation of gas flows.

3) To alleviate the supply and demand imbalance of in-

dividual ICs, a joint trading and scheduling method

based on Lyapunov optimization and matching game is

proposed, which minimizes the cost of each IC without

knowing the prior information of random variables. The

matching game provides low-complexity distributed so-

lutions to the energy matching problem between buyers

and sellers.

The rest of the work is as follows. The multi-energy devices,

carbon emission flow model, energy and carbon trading model

among ICs are introduced in Section II. The constraints

relaxation of gas flows, joint trading and scheduling method

and performance analysis are proposed in Section III. Section

IV gives the simulation results. Finally, Section V concludes

the paper and presents further research.

II. SYSTEM MODEL

In this paper, a system including an industrial park, a CCPP

and a natural gas plant is considered, as shown in Fig. 1.

The CCPP consists of a carbon capture device and a power

plant, and the amount of carbon capture can be adjusted

by changing the power of the carbon capture device. The

industrial park consists of ICs and multi-energy devices, which

includes CHP units, PV panels, batteries, water tanks, boilers

and P2G devices. The industrial park can obtain heat and

electricity from CHP units, and store excess energy in water

tanks and batteries for the future energy demands.
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NOMENCLATURE

πd
nm(t), πs

nm(t) Difference and sum of pressures between

nodes n and m.

πn, πm Gas pressures at node n and node m.

θi(t), ǫi(t) Perturbation terms to ensure battery and water tank

constraints.

Bi(t) Electricity of battery i.
Copt

i (t), Copt
ir (t) Optimal costs for the original problem and

the relaxed problem.

Ci(t) Total cost of IC i.
Cc

i (t) Carbon trading cost of IC i.
Ce

i (t), D
e
i (t) Charge and discharge of battery i.

Ch
i (t), D

h
i (t) Thermal energy charged and discharged by wa-

ter tank i.
CX

i (t), R
S
i (t) Cost and revenue of IC i for multi-energy

trading among ICs.

Cnm Weymouth constant for pipeline nm.

Ei(t), p
e(t) Electricity and price purchased from the CCPP.

ECHP
i (t), HCHP

i (t), GCHP
i (t) Electricity generation, heat

generation and gas consumption of CHP unit i.
Ed

i (t), G
d
i (t), H

d
i (t) Total electricity, gas and thermal loads

of IC i.
Eo

i (t), p
o(t) Electricity and price sold back to the CCPP.

Ep2g
i (t), Gp2g

i (t) Electricity consumption and gas generation

of P2G i.
Er

i (t) Electricity generated by PV panel i.
Fi(t), Zi(t) Battery and water tank virtual queues for IC i.
fnm Gas flow from node n to node m.

Gi(t), p
g(t) Gas and price purchased from the natural gas

plant.

Hb
i (t), G

b
i (t) Heat generation and gas consumption of boiler

i.
i IC, i ∈ {1, 2, · · · , N}.

peij(t), p
g
ij(t) Electricity and gas prices that buyer i purchases

from seller j.

Qa
i (t), Q

d
i (t) Actual and free carbon emissions of IC i.

seij(t), s
g
ij(t) Electricity and gas prices that seller i sells to

buyer j.

t Time slot, t ∈ N, where N is the set of natural

numbers.

Vi Tradeoff term between energy cost and queue stability.

Wi(t) Thermal energy of water tank i.
Xeb

i (t), Xes
i (t) Electricity purchased and sold by IC i through

multi-energy trading among ICs.

Xgb
i (t), Xgs

i (t) Gas purchased and sold by IC i through multi-

energy trading among ICs.

A. Multi-energy Devices

The ICs are equipped with batteries, water tanks, CHP units,

boilers, PV panels and P2G devices to supply energy for users

according to their energy consumption characteristic. For IC

i, ∀i ∈ {1, 2, · · · , N}, where N denotes the quantity of ICs in

the industrial park, the battery of IC i is denoted as battery i,
and the same applies to other devices below. The electricity of

the battery i is Bi(t) and the equivalent thermal energy of the

hot water tank i is Wi(t), where the time slot ∀t ∈ N with N
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Fig. 2: feasible region for CHP

being the set of natural numbers, and one time slot is a hour.

The dynamic models of battery i and water tank i are

Bi(t+ 1) = Bi(t) + Ce
i (t)−De

i (t), ∀i, t (1)

Wi(t+ 1) = Wi(t) + Ch
i (t)−Dh

i (t), ∀i, t (2)

Bmin
i ≤ Bi(t) ≤ Bmax

i ,Wmin
i ≤ Wi(t) ≤ Wmax

i , ∀i, t (3)

0 ≤ Ce
i (t) ≤ Ce,max

i , 0 ≤ De
i (t) ≤ De,max

i , ∀i, t (4)

0 ≤ Ch
i (t) ≤ Ch,max

i , 0 ≤ Dh
i (t) ≤ Dh,max

i , ∀i, t (5)

where Ce
i (t) and De

i (t) denote the charging and discharging

amount of battery i. Ch
i (t) and Dh

i (t) are the thermal energy

charging and discharging amount of hot water tank i.
The CHP unit, as a co-generation unit, can generate both

heat and electricity by consuming natural gas GCHP
i (t). How-

ever, the generation of heat HCHP
i (t) and electricity ECHP

i (t)
cannot be separately considered. The co-generation is coupled

and interdependent. The generation constraints of the CHP

unit are operated in a feasible region which is depicted in

Fig. 2 [25]. The feasible operating region is bounded by curve

ABCD. A, B, C and D represent four marginal points of the

feasible region for the CHP unit. In order to describe the

feasible region of CHP unit i, we have the following inequality

constraints

ECHP
i (t)− ECHP,A

i −
ECHP,A

i − ECHP,B
i

HCHP,A
i −HCHP,B

i

(HCHP
i (t)

−HCHP,A
i ) ≤ 0, ∀i, t

(6)

ECHP
i (t)− ECHP,B

i −
ECHP,B

i − ECHP,C
i

HCHP,B
i −HCHP,C

i

(HCHP
i (t)

−HCHP,B
i ) ≥ 0, ∀i, t

(7)

ECHP
i (t)− ECHP,C

i −
ECHP,C

i − ECHP,D
i

HCHP,C
i −HCHP,D

i

(HCHP
i (t)

−HCHP,C
i ) ≥ 0, ∀i, t

(8)

0 ≤ HCHP
i (t) ≤ HCHP,B

i , ∀i, t (9)

0 ≤ ECHP
i (t) ≤ ECHP,A

i , ∀i, t (10)

Eq. (6) denotes the area under the curve AB. Eq. (7) and Eq.

(8) denote the area above the curve BC and CD respectively.

The boiler i generates heat Hb
i (t) by consuming natural gas

Gb
i (t), which is

Hb
i (t) = ηbgi Gb

i (t), 0 ≤ Hb
i (t) ≤ Hb,max

i , ∀i, t (11)



4

G3

Carbon emission flow
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Fig. 3: Carbon emission accompanying the electricity flow

where ηibg denotes the efficiency of boiler i to generate heat.

The amount of electricity generated by PV panel i is Er
i (t).

The amount of electricity consumed and gas generated by P2G

device i are Ep2g
i (t) and Gp2g

i (t). The models of PV panel i
and P2G i are denoted as

0 ≤ Er
i (t) ≤ Er,max

i , ∀i, t (12)

Gp2g
i (t) = ηp2gi Ep2g

i (t), 0 ≤ Gp2g
i (t) ≤ Gp2g,max

i , ∀i, t (13)

where ηp2gi is the efficiency of P2G i.

B. Carbon Emission Flow Model

In order to obtain the emissions corresponding to energy

consumption on the consumer side, and track the carbon

footprints of different energy forms in the multi-energy system

of the industrial park, a carbon flow model accompanying

multi-energy flows is introduced to calculate the emissions

of ICs [26].

1) Carbon Emission Accompanying Electricity Flow: Ac-

cording to the basic principles of [26], the carbon emission

intensity of a node is determined by the emissions flowing

into the node, which is equal to the carbon emission intensity

of the outflow line of the node. Taking node 3 in electricity

network as an example in Fig. 3, the carbon emission intensity

IeN3 of node 3 equals the carbon intensity of lines 4 and 5,

which is denoted by

IeN3 =
E1I

e
1 + E2I

e
2 + EG

3 IG3
E1 + E2 + EG

3

=
Re

1 +Re
2 +RG

3

E1 + E2 + EG
3

= Ie4 = Ie5

(14)

where E1, E2 and EG
3 denote the electricity flows of lines 1,

2 and generator 3. Ie1 , Ie2 and IG3 denote the carbon emission

intensities of lines 1, 2 and generator 3. Re
1, Re

2 and RG
3 denote

the carbon emissions of lines 1, 2 and generator 3.

According to the carbon intensity at node 3, the carbon

intensity at node n is deduced by

IeNn =

∑

m∈M EmIem + EG
n IGn

∑

m∈M Em + EG
n

=

∑

m∈M Re
m +RG

n
∑

m∈M Em + EG
n

, ∀n

(15)

where M is the line set of emissions flowing into node n.

2) Carbon Emission Accompanying Gas Flow: In the nat-

ural gas pipeline, compressors are equipped to compensate the

pressure losses caused by resistance to ensure the reliable gas

delivery. The carbon emission Rc of compressor c is denoted

as

Rc = IeNc Eo
c , ∀c (16)

where IeNc and Eo
c denote the nodal carbon intensity and

electricity consumption of compressor c. The emissions Rg
p

of gas pipeline p are the sum of the emissions from the

compressor and the emissions accompanying the gas flow,

which is denoted as

Rg
p = Igpf

g
pB +Rc, ∀p (17)

where Igp denotes the carbon intensity of gas pipeline p; fg
p

denote the gas flow of pipeline p; B is the calorific value of

gas, which is 10 kWh/m3. The nodal carbon intensity IgNn of

gas, which is similar as the one of electricity, is denoted as

IgNn =

∑

p R
g
p + fwI

gcB

(
∑

p f
g
p + fw)B

, ∀n,w (18)

where Igc denotes the carbon emission per unit of gas com-

bustion, which is 0.2 kgCO2/kWh. fw denotes the gas flow of

gas source w in node n. The gas fnm flowing from node n to

node m in the pipeline ∀nm ∈ Ωp with Ωp being the set of

gas pipelines is denoted as

f2
nm = C2

nm(π2
n − π2

m), ∀nm (19)

πmin ≤ π ≤ πmax (20)

ρmin ≤
πn

πm

≤ ρmax, ∀nm (21)

where Cnm denote the Weymouth constant for pipeline nm.

πn and πm are the gas pressures at nodes n and m.

The carbon intensity IhNn of heat load at node n is similar

to the carbon intensity of electricity load at node n.

C. Carbon Trading

Each IC i is allocated free carbon emissions Qd
i (t) based

on industry benchmarks.

The actual emissions are related to the energy load and its

carbon intensity, where the CCPP can capture CO2 to reduce

the actual emission of ICs. The actual emissions of IC i are

Qa
i (t) =

∑

n∈Le
i

IeNn (t)Ed
n(t) +

∑

n∈L
g
i

IgNn (t)Gd
n(t)B

+
∑

n∈Lh
i

IhNn (t)Hd
n(t)− ηccbccEcc

i (t), ∀n, t
(22)

where Le
i , L

g
i and Lh

i are the electricity, gas and thermal load

node sets of IC i. Ed
n(t), Gd

n(t) and Hd
n(t) are electricity,

gas and heat loads of node n. ηcc, bcc and Ecc
i (t) denote the

carbon capture efficiency, unit carbon emissions and electricity

generation of the CCPP for IC i.
To encourage ICs to reduce emissions and use green energy,

the ladder reward and punishment carbon trading mechanism

is introduced. The more the actual carbon emissions exceed the

allocated carbon emissions, the faster trading costs increase.
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The carbon trading cost of IC i, ∀i, can be denoted in (23),

where the time slot t is removed for simplicity.

Cc
i =































































−pc(1 + kβ)(Qd
i −Qa

i − kl)− (k + (k−1)kβ
2 )pcl,

if Qd
i − (k + 1)l < Qa

i ≤ Qd
i − kl

−pc(1 + β)(Qd
i −Qa

i − l)− pcl,
if Qd

i − 2l < Qa
i ≤ Qd

i − l
−pc(Qd

i −Qa
i ), if Qd

i − l < Qa
i ≤ Qd

i

pc(Qa
i −Qd

i ), if Qd
i < Qa

i ≤ Qd
i + l

pc(1 + α)(Qa
i −Qd

i − l) + pcl,
if Qd

i + l < Qa
i ≤ Qd

i + 2l

pc(1 + kα)(Qa
i −Qd

i − kl) + (k + (k−1)kα
2 )pcl,

if Qd
i + kl < Qa

i ≤ Qd
i + (k + 1)l

(23)

where pc denotes the unit price of carbon emission allowances.

α and β are the punishment and reward factors, respectively.

l denotes the length of emission interval, where there are 2K
intervals, k = 1, 2, 3, · · · ,K . When the difference between the

carbon emission quota and the actual carbon emissions does

not exceed l, the price of carbon trading is pc. Thereafter,

whenever the difference between carbon emission quota and

actual carbon emissions exceeds an interval length l, the

carbon trading price for the excess part will increase by αpc.
For example, when the actual carbon emission of IC i exceeds

its carbon emission quota by 1.4l, the price of trading l carbon

emission right is pc, and the price of carbon right for the excess

0.4l is (1 + α)pc.

D. Multi-Energy Trading

To satisfy multi-energy demand, ICs in the industrial park

can trade gas and electricity with each other. The deal energy

price and quantity are calculated by the multi-energy trading

and scheduling method, which is elaborated in Section III.

According to the deal energy price and quantity, the cost

CX
i (t) and revenue RS

i (t) of IC i are

CX
i (t) =

∑

j

peij(t)X
eb
ij (t) +

∑

j

pgij(t)X
gb
ij (t), ∀i, t (24)

RS
i (t) =

∑

j

seij(t)X
es
ij (t) +

∑

j

sgij(t)X
gs
ij (t), ∀i, t (25)

where peij(t) and pgij(t) are the electricity and gas prices that

buyer i purchases from seller j. Xeb
ij (t) and Xgb

ij (t) denote the

quantities of energy purchased by buyer i from seller j. seij(t)
and sgij(t) denote the energy prices sold by seller i to buyer j.

Xes
ij (t) and Xgs

ij (t) are the quantities of energy sold by seller i
to buyer j. This paper mainly considers the influence of node

pressure on gas flow in natural gas trading. ∀ij ∈ Ωc with Ωc

being the set of ICs that trade energy with each other. The gas

purchased by IC i from the node n of IC j is delivered to the

node m of IC i through the pipeline nm

Xgb
ij (t) = fnm(t), ∀ij, nm, t (26)

When the energy in the trading market among ICs is

insufficient, IC i will purchase electricity Ei(t) and gas Gi(t)
from the CCPP and natural gas plant. When the renewable

energy generation is surplus, IC i will sell electricity Eo
i (t) to

the CCPP. The constraints on energy trading with plants are

0 ≤ Ei(t) ≤ Emax
i , 0 ≤ Gi(t) ≤ Gmax

i ,

0 ≤ Eo
i (t) ≤ Eo,max

i , ∀i, t
(27)

E. Energy Demand

The total electricity Ed
i (t), gas Gd

i (t) and heat Hd
i (t)

demands of the users in IC i are satisfied by multi-energy

devices and utility companies.

Ed
i (t) = Ei(t)− Eo

i (t) +Xeb
i (t)−Xes

i (t) +De
i (t)

− Ce
i (t) + ECHP

i (t)− Ep2g
i (t) + Er

i (t), ∀i, t
(28)

Gd
i (t) = Gi(t)−GCHP

i (t)−Gb
i (t) +Xgb

i (t)−Xgs
i (t)

+Gp2g
i (t), ∀i, t

(29)

Hd
i (t) = HCHP

i (t) +Hb
i (t) +Dh

i (t)− Ch
i (t), ∀i, t (30)

Xeb
i (t) =

∑

j

Xeb
ij (t), X

es
i (t) =

∑

j

Xes
ij (t), ∀i, t (31)

Xgb
i (t) =

∑

j

Xgb
ij (t), X

gs
i (t) =

∑

j

Xgs
ij (t), ∀i, t (32)

Gas is not used directly, but converted into heat and elec-

tricity to satisfy users’ demands, so Gd
i (t) is 0.

F. Cost Function

The total cost of IC i consists of the trading cost and revenue

Ci(t) = Cc
i (t) + Ei(t)p

e(t)− Eo
i (t)p

o(t)

+ [GCHP
i (t) +Gb

i (t)]p
g(t) + CX

i (t)−RS
i (t), ∀i, t

(33)

where pe(t) denotes the electricity price of the CCPP and pg(t)
denotes the natural gas price. po(t) denotes the electricity price

sold back to the CCPP.

The aim of IC i is to minimize the total cost with the time-

varying characteristics of energy supply and demand

min
Mi(t)

lim
T→∞

1

T

T−1
∑

t=0

E{Ci(t)}, ∀i (34)

s.t. (1)− (30)

where M i(t)={De
i (t), Ce

i (t), Dh
i (t), Ch

i (t), Eo
i (t), Ei(t),

Ep2g
i (t), GCHP

i (t), Gb
i (t), Xeb

i (t), Xgb
i (t), Xes

i (t), Xgs
i (t),

∀i, t} denotes the set of optimization variables.

III. SOLUTION METHOD

Different from traditional methods like dynamic program-

ming, which requires priori information of the random pro-

cesses in the system and has high computational complexity,

Lyapunov optimization can give simple online solutions ac-

cording to the current information about the system state. The

performance of the Lyapunov optimization-based algorithm

can be arbitrarily close to the optimal performance [27]. Fun-

damental assumptions about future information unavailability

make offline methods impractical for systems with a high
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degree of uncertainty, and dynamic programming is unsuitable

for multiple networked energy storage systems [28].

Firstly, Lyapunov optimization is introduced to convert the

original problem into a weighted cost minimization problem

for each slot, which can make control decisions to weigh

the overall energy cost and energy storage stability. Then, a

bound tightening algorithm is adopted to handle the relaxation

problem of the quadratic constraint on gas transmission among

ICs. Finally, the energy trading among ICs is determined by

matching game.

A. Lyapunov optimization

In order to handle the coupling constraints of electricity and

heat charging/discharging, the time-average constraints of the

relaxed problem are used to replace the coupling constraints

(1) and (2) of the original problem

lim
T→∞

1

T

T−1
∑

t=0

E{Ce
i (t)} = lim

T→∞

1

T

T−1
∑

t=0

E{De
i (t)}, ∀i

lim
T→∞

1

T

T−1
∑

t=0

E{Ch
i (t)} = lim

T→∞

1

T

T−1
∑

t=0

E{Dh
i (t)}, ∀i

(35)

Copt
i denotes the optimal cost of the original problem and

Copt
ir denotes the optimal cost of the relaxed problem. Since

the relaxed problem has fewer constraints than the original

problem, Copt
ir ≤ Copt

i holds.

The stationary and randomized policy Π is introduced to

obtain the optimal solution of the relaxed problem

E{CΠ
i (t)} = Copt

ir , ∀i, t (36)

subject to:

Ce,Π
i (t) = De,Π

i (t), ∀i, t

Ch,Π
i (t) = Dh,Π

i (t), ∀i, t
(37)

and (4) - (30).

The policy Π can be ensured by the Caratheodory theory,

similar to [29]. Clearly, solutions to the relaxed problem are

feasible to the original problem only if they satisfy the con-

straint (3). To achieve the goal, virtual energy storage queues

Fi(t) and Zi(t) are constructed as Fi(t) = Bi(t)−θi, Zi(t) =
Wi(t) − εi, ∀i, t. θi and εi are utilized to ensure Bi(t) and

Wi(t) satisfy the upper limits [30].

The Lyapunov function and Lyapunov drift are

Yi(t) =
1

2
Fi(t)

2 +
1

2
Zi(t)

2, ∀i, t (38)

∆i(t) = E{Yi(t+ 1)− Yi(t)|Bi(t),Wi(t)}, ∀i, t (39)

where the expectation is with respect to the stochastic process

of the system, given Bi(t) and Wi(t). According to the virtual

queue Fi(t) and Zi(t), the Lyapunov drift has the upper bound

∆i(t) ≤ Ai + E{Fi(t)(C
e
i (t)−De

i (t))

+ Zi(t)(C
h
i (t)−Dh

i (t))}, ∀i, t

Ai =
1

2
[max((Ce,max

i )2, (De,max
i )2)

+ max((Ch,max
i )2, (Dh,max

i )2)]

(40)

The proof of this step can refer to [30].

To minimize overall cost of the IC while ensuring energy

storage stability, Vi is used to control the tradeoff between

energy cost and queue stability. The corresponding drift-plus-

penalty term is

∆i(t) + ViE{Ci(t)}

≤ Ai + E{Fi(t)(C
e
i (t)−De

i (t)) + Zi(t)(C
h
i (t)−Dh

i (t))

+ Vi(C
c
i (t) + Ei(t)p

e(t)− Eo
i (t)p

o(t) + CX
i (t)−RS

i (t)

+ (GCHP
i (t) +Gb

i (t))p
g(t))}, ∀i, t

(41)

The original optimization problem (34) is converted to

minimize Γi(t)

min
Mi(t)

Γi(t)

= min
Mi(t)

Fi(t)(C
e
i (t)−De

i (t)) + Zi(t)(C
h
i (t)−Dh

i (t))

+ Vi(C
c
i (t) + Ei(t)p

e(t)− Eo
i (t)p

o(t) + CX
i (t)−RS

i (t)

+ (GCHP
i (t) +Gb

i (t))p
g(t)), ∀i, t

(42)

s.t. (4)− (30)

B. Constraints Relaxation of Gas flows

Owing to the quadratic constraint (19) on gas transmission

among ICs, the system model is nonlinear. To deal with the

nonlinear problem, the quadratic constraint (19) is replaced by

f2
nm(t)

C2
nm

≥ π2
n(t)− π2

m(t), ∀nm, t (43)

f2
nm(t)

C2
nm

≤ π2
n(t)− π2

m(t), ∀nm, t (44)

After relaxing (43) and replacing (19) with (44), the

trading and scheduling optimization problem can be solved

with second-order cone programming. However, the relaxed

constraints may lead to serious violations of (19). Thus, a

relaxation method based on quadratic convex relaxation [31]

is introduced to guarantee the approximation of the constraint

(19). To avoid the extra computation and less tight relaxation

caused by individually approximating π2
n(t) and π2

m(t), the

pressure difference πd
nm(t) and the pressure sum πs

nm(t)
between nodes n and m are introduced

πd
nm(t) = πn(t)− πm(t), ∀nm, t (45)

πs
nm(t) = πn(t) + πm(t), ∀nm, t (46)

The relaxation of (43) is denoted as

Fnm(t)

C2
nm

≥ Πnm(t), ∀nm, t (47)

Fnm(t) ≥ f2
nm(t), ∀nm, t (48)

Fnm(t) ≤ (fmax
nm (t) + fmin

nm (t))fnm(t)− fmax
nm (t)fmin

nm (t),

∀nm, t
(49)

Πnm(t) ≥ πd,min
nm (t)(πs

nm(t)− πs,min
nm (t)) + πs,min

nm (t)πd
nm(t),

∀nm, t
(50)
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Fig. 4: Approximation of f2
nm(t) according to (48) and (49).

Πnm(t) ≥ πd,max
nm (t)(πs

nm(t)− πs,max
nm (t)) + πs,max

nm (t)πd
nm(t),

∀nm, t
(51)

Πnm(t) ≤ πd,min
nm (t)(πs

nm(t)− πs,max
nm (t)) + πs,max

nm (t)πd
nm(t),

∀nm, t
(52)

Πnm(t) ≤ πd,max
nm (t)(πs

nm(t)− πs,min
nm (t)) + πs,min

nm (t)πd
nm(t),

∀nm, t
(53)

where Fnm(t) and Πnm(t) denote approximations of f2
nm(t)

and π2
n(t) − π2

m(t) to achieve the replacement of (43) with

(47). Fig. 4 shows that convex boundary constraints (48)-

(49) of f2
nm(t) impose the bounds on Fnm(t). Likewise,

convex boundary constraints (50)-(53) of π2
n(t)− π2

m(t) (i.e.,

πd
nm(t)πs

nm(t)) impose similar bounds on Πnm(t). The opti-

mization problem (42) is converted to the relaxed problem

min
Mi(t)

Γi(t), ∀i, t (54)

s.t. (4)− (18), (20)− (30), (44)− (53)

Fig. 4 shows that the approximate effect of the con-

straints (48)-(49) depends on the values fmin
nm (t), fmax

nm (t).
For instance, the maximum deviation between f2

nm(t) and

(fmax
nm (t) + fmin

nm (t))fnm(t) − fmax
nm (t)fmin

nm (t) is [(fmax
nm (t) −

fmin
nm (t))/2]2. Similarly, the approximate effect of the con-

straints (50)-(53) depends on the values πd,min
nm (t), πd,max

nm (t),
πs,min
nm (t) and πs,max

nm (t).

Algorithm 1 : Bound Tightening Algorithm

1: Initialize: fmin
nm (t), fmax

nm (t), πd,min
nm (t), πd,max

nm (t), πs,min
nm (t),

πs,max
nm (t).

2: for o = 1, 2, · · · , O do

3: Solve the relaxed problem to obtain fnm,o(t), πd
nm,o(t) and

πs
nm,o(t).

4: fmin
nm (t)← (1 − σo)fnm,o(t), fmax

nm (t)← (1 + σo)fnm,o(t).

5: πd,min
nm (t)← (1− σo)πd

nm,o(t), π
d,max
nm (t)← (1 + σo)πd

nm,o(t).

6: πs,min
nm (t)← (1− σo)πs

nm,o(t), π
s,max
nm (t)← (1 + σo)πs

nm,o(t).
7: Until |π2

n(t) − π2
m(t) − f2

nm(t)/C2
nm | ≤ δπ2

n(t).
8: end for

Therefore, a bound tightening algorithm is presented to

enhance the tightness of the proposed relaxation. Algorithm

1 shows the process of the bound tightening algorithm, where

the variable σo is gradually reduced to ensure that the upper

and lower bounds converge within the tight range where the

optimal solution lies, and δ is the convergence threshold.

C. Matching Game

Due to energy supply and demand imbalance in individual

ICs, energy needs to be shared among ICs. First, the submitted

selling price or purchase price of IC i is determined in energy

trading according to [30]. Then, the amount of energy sold

by sellers and purchased by buyers are obtained by solving

the problem (54). The two sides of the transaction can be

determined by the matching game.

The matching theory based on the preference and infor-

mation of ICs provides low-complexity distributed solutions

to the energy matching problem between sellers and buyers.

Thus, a many-to-many matching game model is introduced,

where a seller can sell energy to several buyers and a buyer

can purchase energy from several sellers. I and J respectively

denote the set of buyers and sellers in the trading market. A

matching game µ is defined as a mapping from set I ∪J into

all subsets of set I∪J , where 1) ∀i ∈ I , µ(i) ∈ J ; 2) ∀j ∈ J ,

µ(j) ∈ I; 3) if and only if µ(i) = j, µ(j) = i.

For any buyer i ∈ I , it will choose seller j that can

maximize its energy trading revenue. The revenue of buyer

i is denoted as Ui(j) = −CX
i (t) = −

∑

j p
e
ij(t)X

eb
ij (t) −

∑

j p
g
ij(t)X

gb
ij (t), ∀i, t. Similarly, the revenue of seller j is

denoted as Uj(i) =
∑

i s
e
ij(t)X

es
ij (t) +

∑

i s
g
ij(t)X

gs
ij (t), ∀j, t.

The deal energy price is the average of matching bid and ask

quotes.

A preference relation ≻ is introduced to rank the preference

list of buyers and sellers. ≻i of buyer i is used to rank sellers

over the set of J , where j ≻i j
′ ⇔ Ui(j) > Ui(j

′). Similarly,

i ≻j i
′ ⇔ Uj(i) > Uj(i

′).
With the preference relations and the utility functions of

buyers and sellers, the energy trading problem between buyers

and sellers is solved by the matching game based energy

trading algorithm, as shown in Algorithm 2. The algorithm

2 can converge to a stable matching [32], i.e., there does not

exist a buyer i′ ∈ I such that i′ ≻j µ(j), ∀j. After determining

the energy trading among ICs, the optimal solution set M∗

i (t)
of each IC can be obtained by solving the problem (54).

The whole procedure of the proposed method is shown in

Algorithm 3.

Algorithm 2 : Matching Game Based Trading Algorithm

1: while unstable matching do
2: Update each buyer’s preference list about sellers according to Ui(j),

and send its intention to its most preferred seller.
3: Update each seller’s preference list about the intentional and matched

buyers according to Uj(i).
4: repeat:

5: Randomly choose a seller j to sell its energy to its most preferred
buyers. If the energy of j was matched by other buyer i′, remove the
energy of j from the matching energy of i′.

6: until The seller sells all energy or all preferred buyers are matched.
7: When a buyer buys the energy it needs, remove it from I .
8: When a seller sells all energy, remove it from J .
9: end while

D. Performance Analysis

In the above methods, we consider the battery and water

tank of IC i as follows
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Algorithm 3 : The Procedure of the Proposed Method

1: Initialize: Bi(t), Wi(t).
2: for IC i do

3: Calculate the submitted selling and purchase prices of IC i, and cal-

culate Xeb
i (t), Xgb

i (t), Xes
i (t) and Xgs

i (t) by (54) based on Lyapunov
optimization and the bound tightening algorithm.

4: Calculate peij(t), s
e
ij(t), p

g
ij(t), s

g
ij(t), X

eb
ij (t), Xgb

ij (t), Xes
ij (t) and

Xgs
ij (t) by the matching game.

5: Calculate M i(t) using (54).
6: end for

7: Calculate Bi(t+ 1) and Wi(t+ 1) by (1) - (2).

Lemma 1. When θi, ǫi and Vi are set as

θi = Vip
e,max +De,max

i

ǫi =
Vip

g,max

ηbgi
+Dh,max

i

V max
i = min{

Bmax
i − Ce,max

i −De,max
i

pe,max
,

ηbgi (Wmax
i − Ch,max

i −Dh,max
i )

pg,max
}

0 ≤ Vi ≤ V max
i , ∀i

(55)

the energy storage capacity constraints of IC i are always

satisfied.

Proof. The mathematical induction is adopted to prove that the

capacity constraints of Bi(t) are always satisfied, ∀i. Clearly,

the proposition holds at time slot 0. Then, the proposition is

assumed to hold at time slot t, we prove that the proposition

holds at time slot t+ 1 through the following four situations.

1) Situation 1: Bi(t) > θi. In this situation, Fi(t) =
Bi(t)− θi > 0. According to the optimization problem

(54), Ce
i (t) = 0. Thus, Bi(t+ 1) ≤ Bi(t) ≤ Bmax

i .

2) Situation 2: Bi(t) ≤ θi. In this situation, since Ce
i (t) ≤

Ce,max
i and θi = Vip

e,max +De,max
i ≤ Bmax

i −Ce,max
i ,

Bi(t+ 1) ≤ Bi(t) + Ce,max
i < θi + Ce,max

i ≤ Bmax
i .

3) Situation 3: Bi(t) < De,max
i . In this situation, Fi(t) =

Bi(t) − θi < De,max
i − θi = −Vip

e,max. From (28),

we can get Ce
i (t)−De

i (t) = Ei(t)−Eo
i (t) +Xeb

i (t)−
Xes

i (t)+ECHP
i (t)−Ep2g

i (t)+Er
i (t)−Ed

i (t). According

to (54), we can get

min
Mi(t)

Γi(t)

= min
Mi(t)

(Fi(t) + Vip
e(t))Ei(t) + Fi(t)(−Eo

i (t)

+Xeb
i (t)−Xes

i (t) + ECHP
i (t)− Ep2g

i (t)

+ Er
i (t)− Ed

i (t)) + Zi(t)(C
h
i (t)−Dh

i (t))

+ Vi(C
c
i (t)− Eo

i (t)p
o(t) + CX

i (t)−RS
i (t)

+ (GCHP
i (t) +Gb

i (t))p
g(t))

(56)

Since Fi(t)+Vip
e(t) < Fi(t)+Vip

e,max < 0, IC i tends

to increase Ei(t), and De
i (t) = 0. Thus, Bi(t + 1) ≥

Bi(t) ≥ 0.

4) Situation 4: Bi(t) ≥ De,max
i . In this situation, Bi(t +

1) = Bi(t) + Ce
i (t)−De

i (t) ≥ Bi(t)−De
i (t) ≥ 0.

Combining the above four situations, Lemma 1 is still valid

at time t+1, and it is proved. Similarly, the capacity constraint

of Wi(t) can be guaranteed.

Accordingly, the performance of our proposed method is

given

Theorem 1. The time average total cost implemented by

our proposed method satisfies:

lim
T→∞

1

T

T−1
∑

t=0

E{Ci(t)} ≤ Copt
i +

Ai

Vi

, ∀i (57)

where Copt
i denotes the minimum cost of the problem (34).

Proof. ∀i, comparing this optimal solution (*) of problem (54)

got by minimizing ∆i(t) + ViE{Ci(t)} with the result of the

stationary random policy (Π), ∆i(t) + ViE{Ci(t)} satisfies

∆i(t) + ViE{Ci(t)}

≤ Ai + E{Fi(t)(C
e,∗
i (t)−De,∗

i (t)) + Zi(t)(C
h,∗
i (t)

−Dh,∗
i (t)) + Vi(C

c,∗
i (t) + E∗

i (t)p
e(t)− Eo,∗

i (t)po(t)

+ CX,∗
i (t)−RS,∗

i (t) + (GCHP,∗
i (t) +Gb,∗

i (t))pg(t))}

≤ Ai + E{Fi(t)(C
e,Π
i (t)−De,Π

i (t)) + Zi(t)(C
h,Π
i (t)

−Dh,Π
i (t)) + Vi(C

c,Π
i (t) + EΠ

i (t)p
e(t)− Eo,Π

i (t)po(t)

+ CX,Π
i (t)−RS,Π

i (t) + (GCHP,Π
i (t) +Gb,Π

i (t))pg(t))}
(58)

Based on (37) and the policy (Π), ∆i(t) + ViE{Ci(t)}
satisfies

∆i(t) + ViE{Ci(t)} ≤ Ai + ViC
opt
ir ≤ Ai + ViC

opt
i (59)

Summing over t ∈ {0, 1, · · · , T − 1}, the sum satisfies

E{Yi(T − 1)− Yi(0)}+

T−1
∑

t=0

ViE{Ci(t)} ≤ TAi + TViC
opt
i

(60)

Dividing both sides by TVi and taking T → ∞, the time

average cost satisfies

lim
T→∞

1

T

T−1
∑

t=0

E{Ci(t)} ≤ Copt
i +

Ai

Vi

(61)

According to Lemma 1 and Theorem 1, the cost imple-

mented by our proposed method will arbitrarily approach the

optimal cost as the capacities of the energy storage of IC i
increase.

IV. SIMULATION RESULT

A. Scene and Setup

This paper considers the carbon and energy trading among

four typical ICs in the Hongdou industrial park in Wuxi,

Jiangsu Province, China. These four ICs are in turn: a

biomedical industry, a plastics industry, an emerging research

and development industry and a textile industry. The carbon

emission intensities for gas-fired and coal-fired generation are

0.3 tCO2/MWh and 0.85 tCO2/MWh, respectively [26]. Other

relevant parameters are shown in Table I, which are similar to

[33].

To verify the proposed algorithm, the following two meth-

ods are introduced. Method 1 is a stochastic gradient-based
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TABLE I: Parameters

Parameter Value Parameter Value
Bmax

i ,Wmax
i 4 MWh pg 0.4 ¥/KWh

C
h,max
i ,D

h,max
i

0.4 MWh η
p2g
i

60%

C
e,max
i ,D

e,max
i 0.4 MWh l 5 tCO2

α,β 1 η
bg
i

85%
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Fig. 5: Data of the industrial park.

algorithm (denoted as SGA) without renewable energy, which

is similar to [34]. To evaluate the performance of Lyapunov op-

timization, Method 2 is adopted, where Lyapunov optimization

is replaced by a game-based decision algorithm (denoted as

GDA) without queue, similar to [35]. In addition, for fairness,

the carbon and energy trading in the baseline methods are

similar to our proposed method. The timescales for carbon

and energy trading are one day and one hour, respectively.

Fig. 5 (a) shows the energy price of JiangSu Electric Power

Company [36]. Fig. 5 (b) shows the load of the Hongdou

industrial park [37].

B. Results

Coordinating carbon trading and carbon capture (CCTCC)

helps high-emitting ICs comply with emission limits. The total

costs of the ICs are lower with CCTCC, as shown in Fig. 6.

The total costs of ICs consist of energy cost from the CCPP,

the gas plant and other ICs, carbon trading cost and green

certificate income, where the timescale of carbon trading is set

as one day. The calculation results with and without CCTCC

for ICs are denoted as Tables II and III. The ICs without

CCTCC need to buy electricity from the CCPP with maximum

carbon capture power (CCPPMP). Otherwise, they will pay

huge fines. The cost of carbon capture is transferred to the

ICs, which incurs the prices of CCPPMP to be higher than grid

electricity prices. By using the electricity from the CCPPMP,

the ICs with additional carbon rights can earn green certificate

revenue. For IC i with CCTCC, when the transaction cost

exceeds the carbon capture cost, the IC will capture this part

of carbon emissions through carbon capture. The remaining

carbon emissions are transferred to ICs with lower carbon

emissions in the form of carbon trading to achieve a balance

between carbon emissions and carbon quotas. The efficiency

1 2 3 4

IC index

0

10

20

30

C
o

s
t 

(1
0

3
 ¥

) Without CCTCC
With CCTCC

Fig. 6: Total costs of four ICs with and without CCTCC.

TABLE II: Calculation result without CCTCC for ICs in one day

IC IC1 IC2 IC3 IC4
From the CCPPMP (MWh) 11.42 14.64 16.55 16.58
From the gas plant (MWh) 19.62 26.39 33.75 20.48
Energy cost (∗103 ¥) 8.56 25.25 27.83 14.22
Carbon emission (tCO2) 7.34 9.78 12.24 8.26
Carbon capture (tCO2) 8.25 10.58 11.96 11.98
Carbon quota (tCO2) 15.67 16.64 17.10 16.77
Green certificate revenue (∗103 ¥) 1.17 0.87 0.49 1.20
Total cost (∗103 ¥) 7.39 24.38 27.34 13.02

TABLE III: Calculation result with CCTCC for ICs in one day

IC IC1 IC2 IC3 IC4
From the CCPP (MWh) 13.41 17.48 18.66 19.47
From the gas plant (MWh) 17.52 24.83 31.89 17.02
Energy cost (∗103 ¥) 6.91 22.86 25.32 11.26
Carbon emission (tCO2) 16.65 22.31 25.43 21.66
Carbon capture (tCO2) 0 0.67 3.33 0
Carbon quota (tCO2) 15.67 16.64 17.10 16.77
Carbon trading cost (∗103 ¥) 0.10 0.50 0.50 0.49
Total cost (∗103 ¥) 7.01 23.36 25.82 11.75

of CCPPMP is 85%, and the carbon trading price pc = 100
¥/tCO2.

The cost, electricity trading and battery dynamics for four

ICs with and without CCTCC are shown in Fig. 7-9. In trading,

a negative value means selling energy, a positive value means

purchasing energy. ICs have lower costs under CCTCC in most

time slots, as shown in Fig. 7, where ICs with CCTCC can

flexibly coordinate the amount of carbon capture and carbon

trading based on their cost, whereas ICs without CCTCC may

purchase high-priced electricity from CCPPMP or pay huge

fines for carbon emissions violations. To reduce the amount

of high price electricity purchased from CCPPMP, ICs 2 and

3 without CCTCC purchase more electricity from ICs 1 and

4 to reduce the energy cost, as shown in Fig. 8. For the

same reason, ICs without CCTCC charge less electricity into

batteries, which also reduces the purchase of the high-priced

electricity from CCPPMP, as shown in Fig. 9.

Energy trading helps ICs alleviate energy supply and de-

mand imbalance. Fig. 10 shows that with electricity trading,

the cost of the four ICs are reduced. According to Fig. 11,

when there is no electricity trading among the ICs, the four

ICs trade more gas to make up the energy deficiency. Thus,

the cost reduction is not significant.

Fig. 12 shows that the ICs reduce costs through electricity

and gas trading, where there is a significant cost reduction for

ICs 1 and 4, and a slight cost reduction for ICs 2 and 3. With

electricity and gas trading, ICs 1 and 4 can sell electricity and

gas to ICs 2 and 3, instead of selling electricity at low prices

to the power grid or storing large amounts of energy. Fig. 13

shows that ICs 1 and 4 without energy trading charge more

electricity. Thus, the costs of ICs 1 and 4 are greatly reduced.

Although ICs 2 and 3 with energy trading can purchase low-
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Fig. 11: Gas trading for four ICs with and without electricity trading.
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priced energy from ICs 1 and 4, ICs 2 and 3 without energy

trading can generate electricity and heat by CHP instead of

purchasing high-priced electricity from the power grid. Thus,

the cost reduction for ICs 2 and 3 is less. Additionally,

Fig. 13 shows that ICs 2 and 3 with energy trading charge

more electricity during 12:00-17:00 and discharge electricity

to supply the electricity demand during the high-priced periods

17:00-21:00, which reflects the advantages of energy storage.
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Fig. 12: Total costs of four ICs with and without energy trading.

Since carbon and energy trading are not popularized at

present, the total cost comparison of our proposed method

with the method lacking CCTCC and energy trading is given in

Fig. 14, which demonstrates the effectiveness of the proposed

method.

To confirm the performance of Lyapunov optimization, the

total costs of four ICs under different energy storage (i.e.,

battery and water tank) capacities are shown in Fig. 15. The

simulation shows that the larger the energy storage capacity,

the lower the cost. It agrees with Theorem 1, where the cost

gap decreases with V .

Fig. 16 shows the total costs of four ICs under SGA, GDA

and the proposed algorithm. Fig. 17 shows the cost comparison

for four ICs at 24 hours under SGA, GDA and the proposed

algorithm. The overall cost under SGA approaches the overall

cost under the proposed algorithm during 0:00-6:00, but more

energy needs to be purchased during the day owing to lack
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Fig. 13: Battery level for four ICs with and without energy trading.
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Fig. 14: Total cost comparison of our proposed method with the
method lacking CCTCC and energy trading.

of renewable energy, which causes higher cost. Since energy

charging and discharging will not directly reduce the energy

cost under GDA (i.e., without considering queue backlogs),

the ICs cannot make full use of the battery and water tank,

resulting in higher cost under GDA. In summary, the proposed

algorithm can take full advantage of energy storage, minimize

the time-average cost and ensure online energy scheduling.
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V. CONCLUSION

The carbon emission and energy management problem of

industrial clusters is investigated in this paper. A carbon

and energy management framework is presented to achieve

low-carbon energy scheduling, where a carbon flow model

accompanying multi-energy flows is adopted to track and sup-

press carbon emissions on the user side. A bound tightening

algorithm for constraints relaxation is adopted to deal with the

quadratic constraint of gas flows. A carbon and energy trading

model is constructed. The willingness to trade is improved by

the ladder reward and punishment mechanism of carbon trad-

ing. A multi-energy trading and scheduling method combining

Lyapunov optimization and matching game is presented, which

further alleviates the imbalance of supply and demand and

maximizes revenue. Finally, simulation results show that each

industrial cluster reduces energy costs and carbon emissions,

while relieving energy pressure.

In this paper, four industrial clusters are considered in the

industrial park. In some scenarios, a park may consist of more

clusters. In addition, the energy efficiency and carbon emis-

sions of industrial production can be improved by optimizing

the production process. Therefore, joint trading and scheduling

among more prosumers needs to be considered, such as [38],

to significantly improve the social welfare. In addition, the

industrial production process needs to be optimized, like [39],

to adapt to the energy and emission requirements.
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