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Abstract—A distribution system can flexibly adjust its
substation-level power output by aggregating its local distributed
energy resources (DERs). Due to DER and network constraints,
characterizing the exact feasible power output region is com-
putationally intensive. Hence, existing results usually rely on
unpractical assumptions or suffer from conservativeness issues.
Sampling-based data-driven methods can potentially address
these limitations. Still, existing works usually exhibit computa-
tional inefficiency issues as they use a random sampling approach,
which carries little information from network physics and pro-
vides few insights into the iterative search process. This letter
proposes a novel network-informed data-driven method to close
this gap. A computationally efficient data sampling approach
is developed to obtain high-quality training data, leveraging
network information and legacy learning experience. Then, a
classifier is trained to estimate the feasible power output region
with high accuracy. Numerical studies based on a real-world
Southern California Edison network validate the performance of
the proposed work.

I. INTRODUCTION

Proper coordination of distributed energy resources (DERs)
transforms a passive distribution system into an active grid
asset. From the grid operation standpoint, it is critical to
characterize the distribution system flexibility region, i.e.,
the set of feasible substation-level power outputs subject to
network and component operational constraints. This set is
essentially a projection from the high-dimensional DER and
network operation region, and, in general, finding its exact
characterization is computationally unrealistic [1].

A variety of approximation methods to characterize the flex-
ibility region have been developed. For example, a Minkowski
sum-based approximation method is proposed; this method is
scalable but cannot handle network constraints [2]. Ref. [1],
[2] use robust optimization methods to find a convex inner
approximation of the flexibility set, explicitly considering
network constraints and the temporal coupling of the DER
operation decisions. Nevertheless, these approximations are
conservative, and the shapes of the approximated set are fixed
and presumed, which do not necessarily correspond to the
actual geometry. Data-driven methods have been investigated
as well [3], [4]. They usually use a random sampling approach
and numerical approaches based on iterative algorithms to
find labeled data for training purposes. The sampling and
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Fig. 1. Proposed training method to obtain the classifier

labeling operations could limit the scalability and bring in high
computational overhead.

To close this gap, we propose a network-informed data-
driven approximation approach that exhibits superior scal-
ability. Our main contributions are two-fold. First, unlike
existing methods that use iterative algorithms or prescribed
approximation shapes, we propose a new approach that uses a
highly scalable matrix operation-based classifier to efficiently
sketch an approximated region with limited conservativeness.
Second, the classifier is obtained by a novel training strategy
with high efficiency. As shown in Fig. 1, we develop a closed-
loop data filtering algorithm to actively select samples that
are most helpful to classifier training in a rolling horizon.
Moreover, we explicitly use the network knowledge to develop
a rigorous condition for sample labeling. This essentially trims
the sample space to improve approximation accuracy and
scalability further.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a distribution system with one substation feeder
bus and n load buses, on which there are m controllable DERs.
The time horizon is given by T = {1, · · · , T}. The power
outputs of the DERs are managed and aggregated to achieve
controllability for the substation-level power output so that the
distribution system becomes a controllable grid asset.

A. Distribution System Operation Model

The DER aggregation considers 1) DER capacity limits
represented by interval constraints; 2) network constraints,
including linearized power flow equations and interval voltage
limits. Based on the above discussion, the system operation
constraints are modeled in the following compact form [1]:

Wp ≤ z, p0 = Dp+ b, (1)
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where p ∈ RmT and p0 ∈ RT represent the dispatchable DER
power outputs and substation-level power output, respectively;
W and D are both given constant matrices such that W
captures the DER operational constraints and the network
voltage constraints, and D models the mapping of DER power
outputs to the substation; z and b are constant coefficients,
representing given parameters such as load forecasts.

The inequality in (1) represents the DER and network
operational constraints, and the equality constraint models the
mapping of DER and load power to substation-level power
output based on the linear power flow model. The use of the
linear power flow model is justified owing to the tight voltage
limits in the distribution system. The constraint captures the
steady-state behavior of various kinds of DERs, including
HVACs, energy storage units, and photovoltaics [1], [2].

B. Flexibility Characterization Problem

Distribution system flexibility set (DSFS) refers to the set
of all the substation-level power output realizations that are
feasible to (1) with appropriate p. Obtaining its exact charac-
terization is generally computationally expensive. A network-
informed data-driven approach is proposed in this letter. First,
we use a novel offline training method to obtain a classifier that
determines whether a substation-level power output sample
belongs to the DSFS. Then, the samples from the substation-
level power output space are classified; the union of the iden-
tified DSFS members forms a DSFS estimation. Note that the
second step is scalable as it only involves a) computationally
trivial sampling operations and b) simple matrix operations
associated with the classification. Compared to an iterative
algorithm-based numerical method, our method is five orders
of magnitude faster, as shown in Section IV.

Nonetheless, the offline training step to obtain the classi-
fier is more computationally demanding. Developing a new
efficient training strategy is the focus of this letter.

III. PROPOSED TRAINING STRATEGY

Traditional data-driven classifier training strategy can be
summarized as sampling → labeling → training. It is an open-
loop process where one needs to prepare a training dataset
before training commences. Given no information about the
sample space geometry, a larger set of randomly drawn sam-
ples is usually needed to ensure the representativeness of the
sample space at the cost of increased computational burdens.

To circumvent this issue, an active training strategy is
proposed, as illustrated below:

sampling → filtering → labeling → training

We create a closed-loop training process where the classifier
is trained through multiple steps, as shown in Fig. 1: 1)
sampling: randomly select samples from the unlabeled pool
(colorless circles); 2) filtering: determine posterior probabil-
ities and select the most uncertain samples (yellow circles
with question marks) for labeling; 3) labeling: label selected
samples as feasible (red circle) or unfeasible (blue circle),
leveraging network knowledge; 4) training: train the model us-
ing the enlarged training set, including newly selected samples,

in which transfer learning can be used to accelerate training,
utilizing parameters from a historical model (represented by
the dotted box in the figure). Ideally, the dataset size is
relatively small at first and then grows sequentially by in-
corporating selected high-value training data points identified
in each epoch. Here we use the growing knowledge about
the sample space to develop a filtering algorithm for such
data selection. The filtering and labeling algorithms keep
improving to ensure accuracy and scalability throughout the
training process, as will be discussed later in detail. It is
worth noting that although the feedback-learning framework
is first proposed in the machine learning community [5], here,
it is used as a vehicle to implement the nontrivial and novel
network-informed algorithms.

A. Network-Informed Labeling

Each training data point consists of a substation-level power
output sample and a label about whether this sample is
feasible, i.e., belonging to DSFS. Let xi = [p̂0,i

⊤, yi]
⊤, where

p̂0,i is the sample, and yi is the label with 1 representing
“feasible” and 0 otherwise. In practice, this label is obtained
through numerical methods to test whether a p̂0,i is feasible
to (1), which are computationally intensive when dealing with
a large number of samples.

To simplify the process, we leverage the network knowledge
to trim the sample space such that points from a certain region
bear no need for numerical labeling. To this end, we first find
a convex inner approximation of DSFS, whence any members
must have a “1” label, by solving:

max
p−

0 ≤p+
0

1⊤ (
p+
0 − p−

0

)
+ min

p−
0 ≤p0≤p+

0

max
p0=Dp+b
Wp≤z

0⊤p

 (2)

where p+
0 ,p

−
0 ∈ RT represent the upper and lower bounds of

the substation-level power output, respectively. The inner min-
max (feasibility) problem admits the optimal value of 0 if and
only if for any substation-level power output between p−

0 and
p+
0 , there exists a DER output schedule that makes all the

operational constraints described by (1) satisfied. Therefore,
the hyperbox {p0 : p−

0 ≤ p0 ≤ p+
0 } must be a subset of DSFS

when the optimal value of the outer problem is finite. Note
that (2) is an adaptive robust optimization (ARO) problem.
One usually makes p a function of p0 in solving an ARO
problem of this type. This paper assumes an affine decision
rule. The problem then reformulates into a max-min problem
in the form of maxmin1⊤ (

p+
0 − p−

0

)
. Inserting a slack vari-

able s = min1⊤ (
p+
0 − p−

0

)
yields a standard robust linear

programming problem with the objective function becoming
max s. The problem is tractable with well-established solution
methods.

We enlarge the DSFS approximation and further trim the
sample space in each epoch. Note that (1) are convex con-
straints, and DSFS is a projection of the feasibility region
of (1) onto the p0-space; hence, DSFS is a convex set, and
the convex hull of any DSFS members must be a subset of
DSFS. Recall that we train the classifier in epochs; in each
epoch, the training set is expanded by new samples. Given a
DSFS subset in an epoch, we only need to label those lying
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outside of the subset numerically. Then, the convex hull of
those new samples with “1” labels and the original DSFS
subset becomes a new DSFS subset. Hence, in the next epoch,
those new samples lying in this enlarged set can be directly
labeled again, thanks to the use of network information.

B. Closed Loop Filtering

In each epoch, we seek to find the samples that are most
uncertain to the classifier, i.e., containing the most fresh
knowledge about the sample space.

An uncertainty quantification method is applied. Let
P(1|p̂0,i) be the posterior probability of a sample being
feasible, according to an estimator. The closer P(1|p̂0,i) is
to 1 (resp., 0), the more likely the sample is feasible (resp.,
infeasible); whereas the closer it is to 0.5, the more uncertain
it is. Then, by a simple mapping, we can find a monotone
uncertainty metric: If P(1|p̂0,i) > 0.5, let M(p̂0,i) = 2(1 −
P(1|p̂0,i)); otherwise, M(p̂0,i) = 2P(1|p̂0,i), where M(p̂0,i)
is the quantified uncertainty. After using this metric to evaluate
all unlabeled samples, the most uncertain samples can be
selected by ranking the quantified uncertainties. As for the
initial number of samples and the selected number of samples
in each epoch, they are open to customization, which acts as
the hyperparameters for our model.

The execution of the aforementioned process depends on
finding P(1|p̂0,i). The classifier is structured to accomplish
this task. We build the classifier using a multi-layer perceptron
(MLP) model, defined as f(p̂0,i) : RT → [0, 1]. Its output
is P(1|p̂0,i). Meanwhile, if a classification result (0 or 1) is
needed, a simple probabilistic smoothing approximation can
be used, for example, sign f , which is 1 if f > 0.5 and 0
otherwise. It is worth mentioning that the proposed strategy is
general, and we can use models other than the MLP model.

With the above discussion, the closed-loop filtering is
conducted as follows: In each epoch, given an unlabeled
sample pool, we first find the posterior probability of each
unlabeled sample using the classifier obtained in the last epoch
(or the initial classifier); then, the most uncertain samples
with a suitable size are selected to label and then train the
classifier; the updated classifier is then similarly used in the
next epoch. The initial classifier’s parameters can either be
randomly generated or transferred from a historical model. Nu-
merical testing suggests that the transfer learning approach is
effective in characterizing the DSFS, for the transferred model
entails substation-level power output sample space geometry
knowledge that can warm-start the training. In addition, the
training speed per epoch is accelerated since there are fewer
trainable parameters during transfer learning.

IV. CASE STUDIES

In this section, we conduct numerical testing based on a
three-phase distribution feeder of Southern California Edison
(SCE) with 126 load buses and 366 DER having temporal
couplings [1], [2]. We estimate the aggregated flexibility
region of the substation-level real power output profile.

For visualization purposes, we first conduct a numerical
study regarding a two-dimensional aggregated power profile.

Fig. 2. Benchmarking the proposed method using uncertainty heatmap.

With a time step (TS) of one hour, the flexibility for the
time window [8,10] is estimated. For the specific setting, we
randomly picked 100 samples as the initial training samples
and sequentially added 10 more samples with the most model
uncertainty in each epoch. As mentioned in SectionIII-B, we
implement our classifier using MLP model, consisting of 1
input layer, 4 hidden layers, and 1 output layer. ReLU and
Adam serve as the activation function and optimizer, respec-
tively. We also apply the transfer learning technique using a
model obtained for the time window [14,16] with historical
data. In transfer learning mode, the first hidden layer is frozen
while the remaining layers are kept trainable. We compare
the performance of the proposed work with the benchmark
using a random sampling approach with the same initial
model and hyperparameters. The performance of the proposed
method without the transfer learning is shown in Fig. 2(b).
Compared to the benchmark shown in Fig. 2(a), the proposed
method shows much superior performance, as it pinpoints the
boundary of the DSFS much faster and more accurately due to
the well-positioned samples. As shown in Fig. 2(c), with the
transferred model, the classifier achieves even better results,
despite the fact the DSFS of time [14,16] (similar to the
boundary characterized in epoch 5) is quite visually different.
In comparison, it can be observed that existing methods [1],
[2], [4] that use hyperbox or ellipsoid for inner approximation
may be more conservative than our results, as these sets do not
fully capture the geometry of the DSFS. Note that classifying
a batch of 1000 samples in GPU with the proposed work
on a laptop with Intel(R) UHD Graphics 620 and Core i5-
8350U takes only 0.001s. Meanwhile, checking one sample
using the traditional simulation-based method with Mosek
9.1.9 takes about 0.2s. The performance of our approach is
credited to the simple operations utilized in the MLP model.
During prediction, the computations primarily consist of basic
matrix operations and element-wise manipulations. These can
be effectively parallelized across multiple processing units,
such as GPUs.

We then show the scalability of the proposed work. We
consider such a scenario that the distribution system estimates
the flexibility four-time steps ahead in a rolling horizon, from
hour 8 to hour 14. From TS 2, we initialize the classifier model
with the one obtained from the previous TS. From Fig. 3,
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TABLE I
F1 SCORE OF CLASSIFIER UNDER DIFFERENT DER INJECTION

UNCERTAINTY LEVELS, RANGING FROM 3% TO 40%

Uncertainty Level 3% 10% 20% 30% 40%
F1 score 0.990 0.981 0.957 0.930 0.882

Fig. 3. Rolling-horizon DSFS estimation results.

the benchmark with the random sampling approach can only
achieve the same level of accuracy as ours with almost 10
times more training iterations in TS 1, and cannot keep up for
all the following TSs anymore.

To study the adaptability of our model against noise, we
consider the DER injection uncertainty. We introduce varying
levels of uncertainty into the PV system and loads on each
node, generating 1000 samples for each uncertainty level as a
new test dataset. Table I shows the F1 score performance of our
classifier across a range of DER injection uncertainty levels,
spanning from 3% to 40%. It can be observed that even at an
uncertainty level of 20%, our model consistently achieves an
F1 score exceeding 0.95, indicating its robustness. Moreover,
at a heightened uncertainty level of 40%, the F1 score remains
high at 0.88. The results show the notable adaptability of our
model against uncertainty. The observation of the decreasing
estimation accuracy also implies that uncertainties indeed
affect the geometry of the DSFS.

V. CONCLUSION

We propose a data-driven approach to approximate the
DSFS. It involves using a new network-informed method
to train a classifier that only needs to use scalable matrix
operations for the approximation. We propose a numerically
efficient training strategy that uses the network information
and the accumulated knowledge about the sample space to
accelerate the training. Case studies based on the SCE system
verify the validity and value of the proposed work.
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