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Abstract—Applying large language models (LLMs) to mod-
ern power systems presents a promising avenue for enhancing
decision-making and operational efficiency. However, this action
may also incur potential security threats, which have not been
fully recognized so far. To this end, this article analyzes po-
tential threats incurred by applying LLMs to power systems,
emphasizing the need for urgent research and development of
countermeasures.
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I. INTRODUCTION

IN the dynamically evolving landscape of the power sector,
characterized by a growing reliance on renewable energy

sources and the integration of diverse grid-connected enti-
ties, the complexity and openness of power systems have
intensified [1]. This evolution presents substantial challenges
for power system operators who are tasked with intricate
scheduling decisions within an ever-expanding operational
scope. As such, the deployment of large language models
(LLMs) [2]—sophisticated deep learning frameworks trained
on extensive text corpora—has emerged as a transformative
solution. These models excel in understanding and generating
human-like linguistic expressions, equipping operators with
tailored tools for managing complex scenarios more effec-
tively.

The integration of LLMs signifies a significant advancement
in addressing the complexities and decision-making challenges
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of modern power systems. With capabilities in natural lan-
guage processing, image recognition, and time series analysis
[3], LLMs can act as a powerful, multifaceted tool for navigat-
ing power systems in a complex data milieu. They enhance the
extraction of critical information from vast datasets, strength-
ening the foundations of scheduling and decision-making
optimization. Leveraging their robust analytical and logical
reasoning capabilities, LLMs facilitate intelligent data retrieval
and question-answering, enabling the analysis of various in-
puts such as historical load data, weather forecasts, and real-
time news. This significantly contributes to the formulation of
sophisticated optimization strategies. Moreover, LLMs enrich
human-computer interactions [4] within power systems, allow-
ing for intuitive presentations of complex data and operational
states, thereby supporting operators in making well-informed,
high-quality decisions. The application of LLMs in power
systems not only enhances dispatch accuracy and efficiency
but also highlights their role in improving system adaptability
and stability, opening new avenues for research and promising
commercial prospects.

However, alongside the growing interest from major power
groups in developing tailored LLMs for power systems, this
application also introduces significant security concerns [5].
While LLMs offer numerous benefits, their deployment within
increasingly open power systems can also lead to potential
security threats, particularly in data security and decision-
making stability. Currently, there is a notable gap in research
and investigation into these issues. This article aims to address
this gap by providing an in-depth analysis of potential threats
posed by LLM applications in power systems, thereby en-
riching the understanding within both academic and industrial
communities and steering the development of more secure
LLMs for power system applications.

II. POTENTIAL THREATS OF LARGE LANGUAGE MODELS
IN POWER SYSTEMS

A. Large Language Models in Power Systems

As traditional power systems evolve into cyber-physical
power systems (CPPS), the integration of advanced infor-
mation and communication technology with physical power
systems enables real-time perception, rapid response, and
intelligent scheduling [6]. In this context, the introduction of
LLMs emerges as a crucial advancement towards enhancing
the intelligence features of CPPS and optimizing power system
operations. As illustrated in Fig. 1, LLM can play a critical role
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Fig. 1. Illustration of applying the large language model to the cyber-physical
power system.

in analyzing data derived from the physical system, meanwhile
aiding in decision-making processes in the cyber system.

Prior to the application of LLMs in power systems, it is
required to develop tailored LLMs that synergize advanced
artificial intelligence training methodologies with extensive
domain-specific knowledge pertaining to power systems. This
process initiates with the collection and preparation of a
comprehensive dataset, tailored to the industry’s requirements,
followed by the fine-tuning of a robust base model to under-
stand and generate language contactable to power systems.
This necessitates not only technical expertise in machine
learning and natural language processing but also a deep
understanding of the power system’s unique challenges and
nuances. Subsequent to the training phase, the focus shifts
to rigorous testing and validation to ensure the model’s ac-
curacy and practicality in real-world scenarios. With their
deep understanding and generation of human language, LLMs
provide unique advantages in multimodal data analysis, natural
language processing, and intelligent decision support in power
systems.

Within the CPPS architecture, LLMs primarily function in
the cyber system’s information and application layers. In the
information layer, they process and analyze substantial data
from sensors, smart meters, and other devices. For instance,
LLMs can analyze historical and real-time load data, weather
information, and user behaviors to forecast electricity demand.
In the application layer, LLMs assist in decision-making and
optimizing power system operations, generating scheduling
strategies and providing valuable insights to power system
operators. Furthermore, through natural language processing
technology, LLMs can enhance human-machine interaction,
contributing significantly to the overall intelligence of CPPS.

Despite these benefits, the integration of LLMs into CPPS
may also face potential security threats due to modern power
systems’ ever-evolving openness and complexity. This is a
departure from traditional optimization-based decision-making
models in power systems, which are typically characterized by

their interpretability, transparency, and specificity. The security
threats associated with LLMs include their potential misuse in
cyberattacks, susceptibility to data tampering, and implications
for system stability. At the same time, the decision-making
process of LLMs often lacks transparency, which could impact
the stability and security of the power system during critical
moments. Therefore, a deeper investigation into these potential
threats is essential for the safe operation of CPPS.

B. Potential Threats Incurred by Applying Large Language
Models

The integration of LLMs in power systems may incur
various types of security threats, such as data privacy, opera-
tional integrity, and system vulnerabilities. These threats could
materialize through several mechanisms as follows.

1) Privacy invasion through large language models: The
application of LLM in power systems may pose security risks
regarding data privacy. Although the advanced data processing
and analysis capabilities of LLM significantly improve the
operational efficiency of the power system, they may also
pose risks for privacy breaches. This is mainly due to LLMs
being designed to improve collaboration efficiency across
various departments within the power system and often being
deployed as resources widely accessible within the system.
Such extensive accessibility makes LLMs potential targets for
attackers. Once attackers gain access, they can use LLMs’
intelligent question-answering system to obtain sensitive in-
formation about the power system, such as operational data,
control strategies, and even security protocols. This kind of
privacy theft not only violates data security but also may
enable attackers to launch more complex attacks, such as false
data injection attacks (FDIAs).

Since FDIA was first proposed in 2009, it has been a hot
research topic in academia [7]. However, the implementation
of FDIA comes with a strong assumption, wherein attackers
have knowledge of the power system’s real-time operational
conditions, at least partially, to devise effective strategies [8].
Traditionally, obtaining such information has been a significant
barrier for attackers, making it difficult to fulfill in reality.
However, with LLMs in future power systems, this barrier may
be significantly lowered. Attackers could use LLMs to obtain
detailed operational information and then use this to design
FDIA strategies that undermine the power system’s stability.
Therefore, while LLMs enhance power system intelligence and
efficiency, they also introduce privacy breach risks that could
be exploited in sophisticated cyberattacks like FDIA. Potential
mitigation strategies may include limiting the access of LLMs
to sensitive operational data and employing data sanitization
techniques. This involves filtering and modifying the opera-
tional data in a way that remains useful for legitimate purposes
but becomes ineffective for designing FDIA strategies, thereby
reducing the security risk of data privacy breaches.

2) Deteriorated performance in large language models:
As ultra-large-scale neural networks, LLMs require substantial
computational resources and training investment to ensure per-
formance [9]. Once deployed in power systems, maintaining
their performance becomes crucial. However, a shift in the
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LLM’s internal parameters could lead to long-term inappro-
priate or incorrect decision-making for the power system,
which breaches the operational integrity. The threat of such
operational integrity-relevant performance degradation may
arise from two main aspects.

Firstly, if the data set (including training, validation, and
test sets) is maliciously altered during the training or fine-
tuning process, LLMs might learn inaccurate or misleading
information. Such errors could lead to deviations in the final
model parameters, impacting decision-making accuracy and
reliability [10]. Secondly, there is a risk of direct tampering
with LLM’s internal parameters. If attackers can access and
modify these parameters post-deployment [11], the LLM’s
output could significantly deviate from expectations, reduc-
ing decision-making effectiveness and potentially leading to
serious operational issues.

In both scenarios, deteriorating LLM performance may lead
to erroneous decisions in power system operations, threaten-
ing system stability and efficiency. Therefore, securing LLM
data and model parameters is crucial to prevent performance
degradation. This necessitates strict security measures at all
training, deployment, and operational stages to uphold LLM’s
integrity and reliability.

3) Threats from semantic divergence: LLM deployment
can coordinate operations across various departments and
operators, boosting the overall efficiency of the power sys-
tem. However, this also means that numerous terminals can
communicate with the LLM, generating human-machine in-
teractions and creating many interfaces with a high degree
of openness. In such an open environment, some interfaces
might be exposed to attackers. As LLMs can interact with
a large number of operators through intelligent question-
answering, attackers may exploit these exposed interfaces to
launch semantic divergence attacks (SDAs), incurring security
threats toward systemic vulnerabilities.

SDAs can be carried out in two ways. The first involves
altering the LLM’s input data (i.e., query semantics) to elicit
irrelevant or misleading answers. For example, a query about
”real-time load” might be manipulated to produce results for
”historical load” instead. The second method involves directly
altering LLM’s outputs to create divergent answer semantics.

Regardless of the method, SDAs can lead to operators
receiving incorrect or misleading information, which could
then be used in decision-making for power system operations.
This misinformation could significantly affect the reliability
and efficiency of the power system. Therefore, monitoring and
protecting LLM inputs and outputs is essential in preventing
SDAs. It is necessary to implement strict data validation
and security protocols within the power system to ensure
information accuracy and consistency, preventing attackers
from exploiting LLMs as a tool to attack the power system.

4) Denial of service for large language models: Denial of
service (DoS) attacks [12] pose a serious threat to LLMs,
increasing power systems’ security threats in systemic vul-
nerabilities. These attacks occur when LLMs receive requests
exceeding their processing capabilities, rendering the LLM
unusable, overloaded, or slow to respond. The DoS attacks can
vary, with the most common form being the inundation of the

LLM with numerous query requests, depleting computational
resources. Beyond ordinary request flooding, attackers might
also design particularly complex or lengthy queries, causing
the LLM to consume excessive computational resources in
processing a single request. The consequences of DoS attacks
are severe as they impact the LLM’s immediate response
capabilities and can paralyze the entire system.

In power systems, this implies that critical decision-support
and data analysis functions might be unavailable when needed.
For instance, in emergencies, if operators depend on LLMs for
rapid response or decision analysis, a DoS attack could cause
delayed or erroneous decisions, affecting the power system’s
stable operation and safety. Moreover, DoS attacks might be
used as part of other attack strategies, such as a diversion or to
mask more severe attack activities. Therefore, enhancing LLM
security, especially against DoS attacks, is crucial for the safe
operation of power systems. This may include effective traffic
management, monitoring mechanisms, and designing LLMs
with the capacity to resist such attacks.

III. CONCLUSION AND SUGGESTIONS

While LLMs are expected to significantly enhance the op-
erational efficiency and decision-making capabilities in future
power systems, they also introduce new security threats, rang-
ing from data privacy breaches to susceptibility to cyber threats
like SDAs and DoS attacks. Addressing these security chal-
lenges necessitates a comprehensive, multi-dimensional frame-
work. Fundamental to this is the development of inherently
secure LLM architectures, the implementation of sophisticated
anomaly detection methodologies, and the establishment of
robust LLM frameworks. Compliance with evolving cyberse-
curity standards and data protection legislation throughout the
lifecycle of LLMs is also imperative.

In mitigating these emerging security risks, the adoption
of flexible security policies and regulations is crucial, sup-
plemented by human-in-the-loop strategies to fortify LLMs
against evolving security threats. Interdisciplinary collabora-
tion and empirical validation through real-world testing are
essential in underpinning these strategies. Such endeavors are
critical for the progressive adaptation of power systems, facili-
tating their seamless integration with the advanced capabilities
of LLMs while ensuring stringent security and reliability
standards.

For stakeholders in the power sector, prioritizing enhanced
cybersecurity measures, data protection protocols, and ethical
usage guidelines for LLMs is of utmost importance. It is
required to foster a culture of security awareness and prepared-
ness, through comprehensive employee training and collabo-
rative efforts with other industries and governmental entities.
Regular risk assessments, meticulous monitoring, and periodic
system updates are imperative to counter potential security
threats associated with LLMs. This holistic framework is es-
sential for applying LLMs to future power systems, aiming to
balance the exploitation of LLMs’ potential with the mitigation
of associated security threats. Continual research, proactive
implementation, and the development of secure, transparent
LLM systems in alignment with regulatory standards are key
to maintaining this equilibrium.



4

REFERENCES

[1] D. Wang, F. Chen, B. Meng, X. Hu, and J. Wang, “Event-based secure
H∞ load frequency control for delayed power systems subject to
deception attacks,” Applied Mathematics and Computation, vol. 394,
p. 125788, Apr. 2021.

[2] S. Porsdam Mann, B. D. Earp, N. Møller, S. Vynn, and J. Savulescu,
“AUTOGEN: A Personalized Large Language Model for Academic
Enhancement—Ethics and Proof of Principle,” The American Journal
of Bioethics, vol. 23, no. 10, pp. 28–41, Oct. 2023.
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