1308.5281v1 [cs.LG] 24 Aug 2013

arXiv

Ensemble of Distributed Learners for Online
Classification of Dynamic Data Streams

Luca Canzian, Member, IEEE, Yu Zhang, and Mihaela van der Schaar, Fellow, IEEE

Abstract —We present an efficient distributed online learning scheme to classify data captured from distributed, heterogeneous, and
dynamic data sources. Our scheme consists of multiple distributed local learners, that analyze different streams of data that are
correlated to a common event that needs to be classified. Each learner uses a local classifier to make a local prediction. The local
predictions are then collected by each learner and combined using a weighted majority rule to output the final prediction. We propose
a novel online ensemble learning algorithm to update the aggregation rule in order to adapt to the underlying data dynamics. We
rigorously determine a bound for the worst—case mis—classification probability of our algorithm which depends on the mis—classification
probabilities of the best static aggregation rule, and of the best local classifier. Importantly, the worst—case mis—classification probability
of our algorithm tends asymptotically to 0 if the mis—classification probability of the best static aggregation rule or the mis—classification
probability of the best local classifier tend to 0. Then we extend our algorithm to address challenges specific to the distributed
implementation and we prove new bounds that apply to these settings. Finally, we test our scheme by performing an evaluation study
on several data sets. When applied to data sets widely used by the literature dealing with dynamic data streams and concept drift, our
scheme exhibits performance gains ranging from 34% to 71% with respect to state—of—the—art solutions.

Index Terms —Online learning, distributed learning, ensemble of classifiers, dynamic streams, concept drift, classification.
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1 INTRODUCTION lems For each single instance that enters the system, each
\)earner makes the final classification decision by collgctin

applications that exploit the large amount of data capturg&e. local pr_ec;l:::t:;)ns (.)f i” th? Iearr_wi%rSSEf?co%?ml%g t_hem
from distributed, heterogeneous, and dynamic (i.e., whogg "¢ & weighted majonty rule as | [ ]. After having

characteristics are varying over time) data sources. E pmade the final prediction, the learner is told the real value,

of such applications include surveillan¢é [1], driver atmice |.e.,htheflabel,t.ass?ﬁlaﬁed o the devtentttho classify. tI_ExprI‘c;:;_ng
systems[[2], network monitoring|[3], social multimedla,[4]szlC tl'n ormation, te elarne_r up ?5[318 € aggregationni&lg
and patient monitorind_[5]. However, the effective utilipa adopting a perceptron fearning ru ]

of such high-volume data also involves significant chalieng The. ma}m features of our scheme are: o
that are the main concern of this work. First, the capturedP!S: Distributed data streams. The majority of the ex-

data need to be analyzedline (e.g., to make predictions andisting ensemble scheme_s proposed in _Iiterature assume that
timely decisions based on these predictions); thus, tiaiteg the learners make a prediction after having observed the sam
algorithms need to deal with the time—varying charactesst 9at@ [91-{17], [19], [20]. Our approach does not make such
of the underlying data, i.e., adequately deal withncept— 2" assumption, gllowmg for the possibility that the dbut_ed
drift [6]. Second, the privacy, communication, and Sharijgarnerg o.bseerferentcorrelated data streams. In partllcular,
costs make it difficult to collect and store all the observelj€ Statistical dependency among the label and the obgsrvat
data. Third, the devices that collect the data may be manadid® !€arner can be different from the statistical depenglenc
by different entities (e.g., multiple hospitals, multilamera 2MONg the label and th_e_observatu_)n of another learney, i.e.
systems, multiple routers, etc.) and may follow policieg)(e &2Ch source has a specific generating process [21].
type of information to exchange, rate at which data are DYN: Dynamic data streams. Many existing ensemble
collected, etc.) that are not centrally controllable. schemes([8]£[12] assume that the data are generated from
To address these challenges, we proposerdine ensemble & statlon_ary distribution, i.e., that treoncept is st_ableOur
learning technique, which we refer to as Perceptron Weighténeme is developed and evaluated, both analytically and ex
Majority (PWM). Specifically, we consider a set of distribdt Perimentally, considering the possibility that the dateais
learners that observe data from different sources, whieh &€ dynamic, i.e., they may experienmencept drift
correlated to a common event that must be classified by thé®NL: Online learning. To deal with dynamic data streams

learners (see Fid] 1). We focus on binary classification proUr scheme must learn the aggregation rule "on—the—fly". In
this way the learners maintain an up—to—date aggregatien ru
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Recent years have witnessed the proliferation of dataedri
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schemes, such a5 12]=[14]. [19], need to collect and starajority rule. Our paper is clearly different with respeot t
chunks of data, that are later processed to update the aggraditional offline approaches such as Adaboost, whichoaly
gation model of the system. This requires a large memoaifye presence of a training set for offline training the endemb
and high computational capabilities, thereby resultingigh and assume a stable concept.
implementation cost. Different from these approaches,uin o An online version of Adaboost is proposed In][12]. When
scheme each data is processed "on—arrival" and afterwidsds a new chunk of data enters the system, the current classifiers
thrown away. Only the up—to—date aggregation model is kete reweighed, a weighted training set is generated, a new
in the memory. The local prediction of each learner, whictlassifier (and its weight) is created on this data set, and
is the only information that must be exchanged, consists thfe oldest classifier is discarded. Similar proposals ardema
a binary value. Moreover, our schemesisalableto a large in [13], [14], [19], [25]. Our work differs from these online
number of sources and learners and the learners can be dhabwosting—like techniques because (i) it processes eatdnices
in any hierarchical structure. "on arrival" only once, without the need for storage and
IND: Independence from local classifiers Different from reprocessing chunks of data, and (ii) it does not requiré tha
[16], [17], [20], our scheme is general and can be applied the local classifiers are centrally retrained (e.g., in &ibisted
different types of local classifiers, such as support veatar scenario it may be expensive to retrain the local classibers
chine, decision tree, neural networks, offline/online siféers, unfeasible if the learners are operated by different esijti
etc. This feature is important, because the different @rn An alternative approach to storing chunks of labeled data
can be managed by different entities, willing to cooperate consists in updating the ensemble as soon as data flows in the
exchanging information but not to modify their own locabystem.[[16] and [17] adopt a dynamic weighted majority al-
classifiers. Also, our algorithm does not need any a priggorithm, refining, adding, and removing learners based en th
knowledge about the performance of the local classifieiglobal algorithm’s performanceé. [20] proposes a schemedas
it automatically adapts the configuration of the distrilouteon two online ensembles with different levels of diversithie
system to the current performance of the local classifiers. low diversity ensemble is used for system predictions, tgh h
DEL: Delayed labels, missing labels, and asynchronous diversity ensemble is used to learn the new concept aftefta dr
learners. In distributed environments there are many factoiis detected. Our work differs from [16]. [17]. [20] because i
that may impact the performance of the learning systemt, Firdoes not require that the local classifiers are centraltpired.
because obtaining the information about the label may ble bot The literature closest to our work is represented by the
costly and time consuming, one cannot expect that all thaultiplicative weight update schemés [9]11],]15] thadim
learners always observe the label in a timely manner. Soian a collection of given learners, predict using a weighte
learners can receive the label with delay, or not receive it majority rule, and update online the weights associated to
all. Second, the learners can be asynchronous, i.e., they tze learners in a multiplicative manner. Weighted majo[@ly
observe data at different time instants. In this paper we fidecreases the weights of the learners in the pool that dieagr
propose a basic algorithm, considering an idealized sienawith the label whenever the ensemble makes a mistakes.
in which the above issues are not present, and then we ext&idnow2 [10] uses a slightly different update rule, but the
our scheme to deal with the above issues. final effect is the same as weighted majority. [n][11] the
The rest of this paper is organized as follows. Seclibn\geights of the learners that agree with the label when the
reviews the existing literature in ensemble learning téphes. ensemble makes a mistakes are increased, and the weights
Section[B presents our formalism, framework, and algorithef the learners that disagree with the label are decreased
for distributed online learning. Sectidd 4 proves a bourglso when the ensemble predicts correctly. To prevent the
for the mis—classification probability of our scheme whiclveights of the learners which performed poorly in the past
depends on the mis—classification probabilities of the bdsom becoming too small with respect to the other learners,
(unknown) static aggregation rule, and of the best (unknowfl5] proposes a modified version of these schemes adding a
local classifier. Sectiof]5 discusses several extensiowsiito phase, after the multiplicative weight update, in whichheac
learning algorithm to deal with practical issues assodidte learner shares a portion of its weight with the other leaner
the distributed implementation of the ensemble of learnets our algorithm, differently from[[9]-+[11],[T15], the welds
and proves new bounds that apply to these settings. Sédtioaré updated in an additive manner and learners can also have
presents the empirical evaluation of our algorithm on savemnegative weights (e.g., a learner that is always wrong would
data sets. Sectidd 7 concludes the paper. receive a negative weight and could contribute to the system
as a learner that is always right).
2 R W Finally, we differentiate from all the cited works in anothe
ELATED VWORKS key point: we consider a distributed scenario, allowing for
In this section we review the existing literature on ensembihe possibility that the learners observe different datasns.
learning techniques and discuss the differences between Tiis is the reason why in Sectidh 5 we extend our learning
cited works and our paper. algorithm to address challenges specific to the distributed
Ensemble learning techniqués [22]-[24] combine a colleanplementation.
tion of base classifiers into a unique classifier. Adabddst [8 Table[2 summarizes the differences between our approach
for example, trains a sequence of classifiers on increasinghd the cited works in terms of the features described in
more difficult examples and combines them using a weight&gction[ 1.



TABLE 1

. . . Similarly to most ensemble techniques, suchH as[8]-[17], we
Comparison among different ensemble learning works. y d e [17],

consider aveighted majorit)a?greganon rule in which learner

DIS | DYN | ONL | COM | IND | DEL | 4 maintains aweight vectorw; Zg>,w;>, e ,wf,?)) €
) 1 5] X X X § RE+1 combines it linearly Wlth théocal prediction vector
OI-[L], [i5] X X X X s 2 (1,5 s, and predicts—1 if the result is
16T, [L7], 12 X X X negative,l otherwise, i.e.,
our work X X X X X X ™) )
NCO N ( (n).(n)): 1 ifw™sM>0 4
Yi WS { —1 otherwise @
# Final prediction j‘.{.i‘!:' .
o i where sgn(+) is the sign function (we definegn(0) = 1)
— Local predicion y i (n) . (n) (n) (n) (n) i
Siﬂ, 'EFJ andw, "’ -s + ZJ L w;;s; is the inner product
- Ot input among the vectorsw(") and s"> The equationw(”)
ZJK L w(J”) §" = 0 defines an hyperplane R (the space of
Learnerl| - |Leameri| - the local predictions) which separates the positive ptixis
(i.e.,yf”) = 1) from the negative ones (i.egf,”) = —1). Notice

that in most of the weighted majority schemes proposed in
literature, [B]—im],w§3) = 0 which constrains the hyperplane
to pass through the origin. However, in our paper the weight
. wl%l) can be thought of as the weight associated to a "virtual

learner" that always sends the local predictibnand we
Fig. 1. System model introduce it to exploit an additional degree of freedom.
We consider the following rule to update the weight vector

w'™ at the end of time instant:
3 DISTRIBUTED LEARNING FRAMEWORK AND (n) ) =y
(n+1) w, If =Y
THE PROPOSED ALGORITHM Wi W s @)
+ ymgln otherW|se

We consider a set ofi distributed learners denoted by That is, after having observed the true label, leairmmpares

K - {L,.... K}, Eaf:h Ie_arner observes a separate sequeng CWith its prediction. If the prediction is correct, the nelds
of instances. The time is slotted and the learners are syn-

: S ot modified. If the prediction is incorrect, the weights bét
chronized. Throughout the paper, we use the indicesd
. . L learners that reported a wrong prediction are decreased®y o
j to denote particular learners, the indicesndm to denote

unit, whereas the weights of the learners that reportedraecor
particular time instants, the indeX to denote the possible 9 P

rediction are increased by one .
infinite time horizon (i.e., for how many slots the syste . . .

Since [2) is analogous to the learning rule of a Perceptron
operates), and bold letters to denote vectors.

At the beainni f h i | hi fob algorithm [18], we call the resulting online learning scleem
_tt e beginning of each time S(% eac ?Srnero SErves Perceptron Weighted Majority (PWM). We initialize tbthe
an instance generated bysaurceS; . Letx; ’ € X; denote

o L i : WeightSwl@, 1,7 € K. Because at the end of each time instant
the multi-dimensionainstanceobserved by learner at time J (n) . )
instantn, andy™ € {—1,1} denote the correspondiiabel, " the value ofw,;” can remain constant, decrease by one unit,
a common event that the learners have to classify at tirf@gincrease by one Unl’w(n) is always an integer number.

instantn. We call the pair(x ”),y(")) a labeled instance
We formally define a sources™ 2 (n)( () y() Algorithm  Perceptron Weighted Majority (PWM)

for learneri at time instantn as the probability density 1 Initialization : w;; =0, Vi, j € K
function p{™ over the labeled instande™, (™). We write For each learnef and time instant

s = (g .75%)) for the vector of sourcesat time
instantn.

The task of a generic learnéat time instant: is to predict
the labely (™). The prediction utilizes the idea of ensemble data
mining: each learner adopts an individual classifier to gaee
a local prediction the local predictions are exchanged, and
learneri aggregates its local prediction and the received onesTo summarize, the sequence of events that take place at time
to generate the final pred|ct|oyf") € {~1,1}. This process instantn for each learnef adopting the PWM algorithm can
is represented in Fig] 1. Lef™ € {—1,1} denote the local P& described as follows.
prediction of learnei at time instantu. As in [9]-[11], (18], 1. Observation:learneri observes the instanoq(”),

in this paper we assume that the local classifiers are given
2. This is in the same philosophy of many weighted majorityesees[[9],

(n)
(ie., S is givenVi € K) and we fOCUS_ Orl the adaptivity Ofﬂiﬂ] [15] and boosting-like techniqués [12]=[14]. [19athimprove the model
the rule that aggregates the local predictions. focusing mainly on those instances in which the actual méadksi.

2:

3 Observex!™

4: Obtains™ = (1, sgn), ce s,(cn))

5. Predict)™ « sgn(w, - s(™)

6: Observey(™

70 y™ £ 5" do w, « w; + y™Ms™)




Feadback

Importantly, we remark that PWM is designed in absence of

o ———— Leamner | ol a priori knowledge about the sources and the performance of
=P o — W the local classifiers. We do not need to know a priori whether
g i'* fi{ a5 5 there are accurate Iocgl classifiers or accurate _aggregatio
instance is L — A rules. It is the scheme itself that adapts the configuration o
gatiarciad the distributed system to the current performance of thelloc
fiiiTye it} classifiers.
4.1 Definitions
% ! ; - Configurathan i ;
L ssrention | Localpradiction | Final.  ugits Given the sequence df labeled instances

axchange : Prediction :
' ' Dy 2 (xgn),...,x%),y("))
Fig. 2. lllustrative system of two learners adopting the el
PWM scheme we denote byP;(Dy) the mis—classification probability of
the local classifier used by learngrby P*(Dy) the mis—
o ) ) classification probability of the most accurate local dfeess
2. Locgl _pred(|c§|on e(xc):ha(n e:learneri sends its local 5,4 byv*(Dy) the number of local classifiers whose mis—
predictions,”’ = f;"(x;"’) to the other learners, and|assification probabilities arE*(DN)
receives the local prediction%") = f§”)(x§")), Y #i,
from the other learners; ! N )
3. Final prediction: learner; computes and outputs its final Fi(Dy) = N Z Hsi#y™}
n=1

redictiong™ = ( (n) (n));
P i mEsRAWL S P*(Dy) 2 min P,(Dy)
4. Feedback:learneri observes the true labgl™; ick

5. Configuration update: learneri updates the weight v*(Dy) 2 |{i: Pi(Dy) = P*(Dy)}|

vectorwgn) adopting [(2). o )
Fig.[2 illustrates this sequence of events for a system of t\»g]ereH denotes the ce:)rdmahty of thg conS|d_¢req set.
learners. Also, we denote byP“(Dy) the mis—classification prob-
ability of learner: if it combines the local predictions of all

the learners using theptimal static weight vectow? that
4 PERFORMANCE OF PWM minimizes its number of mistakes,

In this section we analytically quantify the performance of v

PWM in terms of itsempirical mis—classification probability o A .1 0 () (n)
(shortly, mis—prediction probability), which is defined te P (Dy) = mN > I{sgn (W 'S ) 7y}
number of prediction mistakes per instance. n=t

We prove two upper bounds for the mis—classificatioRemarki. PO (D) andw® are the same for all the learners.
probability of our scheme. The first bound depends on tgy this reason, we do not use the subsciipt

mis—classification probability of the best (unknown) ﬁat'lﬁemarkz. PO(Dy) < P*(Dy), in fact it is always possible

aggrggatlon rule, ar_ld IS pa_lrt|cularly useful when the Ioc?o select a static weight vector such that the final predictio

classifiers areweak (i.e., their performance are comparable . : . -
) . - . ~'In each time instant is equal to the prediction of the best

to random guessing) but their combination can result in AL csif

accurate ensemtfeThe second bound depends on the migasSIHer:

classification probability of the best (unknown) local eias Reémark 3. The computation and adoption ok would

fiers, and is particularly useful when there are accuratal lo¢equire to know in advance, at the beginning of time instant

classifiers in the system. We then combine these two bourldghe sequences of local predictiosis) and labelsy™, for

into a unique bound. We show that the resulting bound agyery time instant = 1,..., N.

the mis—classification probability of PWM tend asymptdtica ~ Moreover, we denote by PF"M(Dy) the mis—

to 0 if the mis—classification probability of the best stati¢lassification probability of learneri if it adopts the

aggregation rule or the mis—classification probability loé t PWW M scheme,

best local classifier tend t6. Then we formally define the

notions of conceptand concept driftand we show that the

mis—classification probability of PWM tends ¢oif, for each

concept, there exists a (unknown) static aggregation rhteser

mis—classification probability (for the considered corfepyhere«w ) = 1, vi,j, and w'™ evolves according td12)
1] ' vJ 7 .

tends to0. We denote byPP"WM (D) the average mis—classification

N
1
PiPWM(DN) 2 ~ Z I{sgn (W(n) . s(n)) £ y(n)}
n=1

3. It is known that the combination of weak classifiers camltéa a high
accurate ensemblE[26], in particular when the classifislverse and their 4. This paper does not distinguish among different clasgi€in errors, i.e.,
errors are independent. among false alarms and mis—detections.



probability of the distributed system if all the learneroptd Remark7. If the best local classifier always predicts cor-

the PW M scheme, rectly the labeled instanceBy, i.e., P*(Dy) = 0, then
| K PPWM(Dy) < #}%N) This bound isK - v*(Dy) times

PPWM(Dy) & — ZPiPWM(DN) (3) better than the bound in Remdrk 6.
K= Remark 8. Asymptotically, for N — +oco, B1(Dy) —

2K P°(Dy) and By(Dy) — 2P*(Dy). On one hand, if

i i PW M _ PW M
Remark4. In this sectionP (Dy) = P; (D), atel?e local classifiers are weak (i.2(Dy) ~ 0.5) but their

Vi, because the weight vectors of the learners are equ

A ; agregation is very accurate (i.e2°(Dy) < 1), the first
initialized and we assumed that the learners are synCharan%)ound is usually stricter than the second. On the other hand,
and always observe the labels, heml@) andw'™ evolve

_ P P L) ~'= if the performance of the best local classifier is comparable
in the same way and’; (Dy) = P (Dw), ¥i,j- with the performance of the optimal static aggregation rule
However, in Sectiofi]5 we describe s(e\)/eral ext(eglsmns to QUE., P*(Dy) ~ PO(Dy)), the second bound i& times
online learning algorithm, in ;’VVD]'\EhNi and Y evolve  stricter than the first one. Notice that also the bound coegput
differently, and consequently; (Dn) # P (Dn), in [9], for the multiplicative update rule, depends lingaohn

L7 ] the accuracy of the best classifier.
In the following theorem, we combindB;(Dy) and
4.2 Bounds for PWM mis—classification probability B2 (Dy) into a unique bound.

In this subsection we derive the following results. Lemiha theorem 1. For every sequence of labeled instani2s, the
proves a bound foP”"V*(Dy) as a function ofP”(Dy). mis—classification probability?”"™ (D) is bounded by
Lemmal2 proves a bound fd?”"M(Dy) as a function of .

P*(Dy). Theorenflll combines these two bounds into a unique B(Dy) = min {B;(Dy), B2(Dn), 1}
bound. Finally, as a special case of Theorem 1, Theorem

shows thatP”WM(Dy) converges to0 if P*(Dy) or

PO(Dy) converge toD. Proof:_We simpl_y combine_lfemmﬁ 1 ahH 2, and the fact
that the mis—prediction probability cannot be larger than
Lemma 1. For every sequence of labeled instand@gs, the Importantly, notice that the bourB(Dy) is valid for any

mis—classification probability>”"V* (D) is bounded by  time horizonV and for any sequence of labeled instanbBes.
As a particular case, if the time horizon tends to infinity and
K(K+1) . : . X .
—~N there exists either 1) a static aggregation weight vectarssh
mis—classification probability tends @o(i.e., P°(Dy) — 0),
or 2) a local classifier whose mis—classification probapbilit
Proof: See AppendiXA. r tends to0 (i.e., P*(Dy) — 0), we obtain that the mis—

Remark5. Lemmall shows that it is not always beneficial t%;fsgicg;or; p_r?bgl t:g'tg osfpz\c/\i/fli\:l: f:sdes ?P%S(]ngeg' l\_l;mg €
N N ’

have many learners in the system. On one ha_m(_j, an add't'qngcauseDO(DN) < P*(Dy). Hence, in the statement of the
learner can decrease the benchmark prediction probabi SthIowin theorem we consider only the ca#® (D) — 0
PP(Dy). On the other hand, it increases the number o g y N '
learnerskK, and as a consequence the maximum number Bneorem 2. If limy_, ;o P°(Dx) = 0, then
errors needed to approach the benchmark weight veetor . PWM

lim P (Dy) =0

B (Dy) 2 2KP°(Dy) +

increases. The final impact a”"V™ (D ) depends on which N—Foo

of the two effects is the strongest.

Remark6. If the optimal static weight vectow® allows Proof: PPWM(Dy) < 2KP°(Dy) + K(E+D and the
to predict always correctly the labeled instand@s;, i.e., right hand side tends to for N — +oo. N 0

PO(Dy) = 0, then PPWM(Dy) < KEHD Hence, the
bound increases quadratically in the number of lear€rs 4 3 Bound in the Presence of Concept Drifts

but decreases linearly in the number of instandes . . . L aln)
Given two time instants: andm, n > m, we write S,/ =

We define the function Si(m) if the labeled instance(ygn), yl(n)) and(x§m>,y§m3) are
) & 20+ K+l [(E+1 2 2K+ 1) glgl?pfns(%tl); s;m)plid;{%‘n ;he sa;cmid@tnbutmn. W? write
= 2Ny 2Ny Ny = if S;7 =8, Vi € K. As in [§], we refer

to a particular vector of sources axancept The expression

Lemma 2. For every sequence of labeled instand®s, the concept drift[3], [6], [L3]-[17], [19], [20], [27]-[29] refers
mis—classification probabilit’”"™ (D) is bounded by ~ to a change of concept that occurs in a certain time instant.
According to [6], we say that at time instant there is a
B;(Dy) = f(P*(Dn),v*(Dy)) concept drift ifS(n+1) £ S

Theorenf? states thd@@”"V ¥ (Dy) — 0 if PY(Dy) — 0.

Unfortunately, in presence of concept drifts it is highly-im

Proof: See AppendiXB. ] probable thatP®(Dy) — 0. In fact, the accuracies of the



local classifiers can change consistently from one conaeptarder to deal with this situation, with a price to pay in terms

another, and the best weight vector to aggregate the loeal pof increased memory.

dictions changes accordingly. In the following we genemli \We denote bydl(.") the number of time slots after which

the result of Theoreifd 2 considering an assumption that i®mesarner; observes the—th label. We assume thdf") is not

realistic if there are concept drifts. known a priori, but is bounded by a maximum delay v n,
We denote byDy, a sequence ofV. labeled instances which is known. Also, we allow for the possibility that the

generated by the conceﬁﬁ"). We say that the conceﬂlﬁ") labels are received out of order (e.g., it is possible thatler:

is learnableif, YDy, observes the labgl™*+1) before the labe}(™), but we assume
N that, when a label is received, the time instant it referssto i
1 < Kk
lim min— I{sgn (Wo ~s(")) "y = nown.
Ne—+oo wO, N Z {se e #y PWM is modified as follow. Learnermaintains in memory

=1
" all the local prediction vectors that refer to the not yeteshed

That is, the conceps” is learnable if there exists a staticlabels. As soon as learnereceives the labe)™), it computes
weight vectorw?. whose asymptotic mis—classification probthe predictionj\"™ = sgn(w'™ - s(™)) which it would have
ability, over the labelled instances generated by that @0hc made at time instant: with the current weight vectow '™

7 1

tends to0. and updates the weight vector according to
Theorem 3. If Dy, for N — 400, is generated by a finite (1) ~(m) _ y(m)

(n) -

L. ) if 0;
number of learnable concepts and a finite number of concept  w; = { Wl(n) (m)<(m) zz ,
drifts occurred, then w, +ys otherwise

K2

. PWM This update rule is similar td(2), but now the updates may

lim P (Dy) =0 . - . .
NS Foo happen with delays. In particular, since different leasner
experience different delays, the weight vectwrfg) andw(."),

J
, # 7, follow different dynamics.
Proof: See AppendiXT. o' 7 Y

Remark 9. Theorem[2 requires the existence ofuaique TrIIDeV%?m 4. For every sequence of labeled instandas,
weight vector w®, whose mis—classification probability overlD (Dy) is bounded by

the labeled instances generateddlly concepts converges to Zfi d;

0. Theoren{ B requires the existenceasfe weight vector for B(Dy) + ﬁ

concept w@,, whose mis—classification probability over the

i,c!

labeled instances generated by con@&ﬁf converges td).

Proof: See AppendixD. O
5 EXTENDED PWM Remark 10. The term Z;:—I;d can be interpreted as the

) ) ) o ~ maximum loss for the delayed labels.
So far we have considered an idealized setting in which all

the learners always observe an instance at the beginningTdgorem 5. If Dy, for N — +oo, is generated by a finite
the time instant (i.e., they are synchronous), and theyyﬂwaﬂumber of learnable concepts and a finite number of concept
observe the corresponding label at the end of the time insta#ifts occurred, then

In a disFributed environmer_lt one cann(_)t expect that these lim PPWM(Dy) -0

assumptions are always satisfied: sometimes the learners ca N—+o00

be asynchronous, receive the label with delay, or not receiv
it at all. In this section we address these challenges piogos
for each of them, a modification to the basic PWM scheme
introduced in Sectioi]3, and we extend Theordrhs 1 and
for each modified version of PWRIAt the end of this 5.2 Missing Labels

section we explicitly write theextended PWMalgorithm that In a distributed environment one cannot expect that all the
includes all the proposed modification to jointly deal with alearners always receive the label, in particular in thosmac

the considered challenges. ios in which obtaining the information about the label may be
both costly and time consuming. In this subsection we show
that our scheme can be easily extended to deal with situsation

5.1 Delayed and Out—-Of-Order Labels . . .
) ~_in which the true labels are only occasionally observed.
In some cases the true label corresponding to a time instanf g gin) 2 1 if learneri observes the label™ at the end to

n is observed with delay. For example, in a distribute
environment one learner can observe the label immediater
and communicate it to the other learners at a later stage.
this subsection we show that our algorithm can be modified Iin

Proof: See AppendiXE. O]

me instantn, g§") £ 0 otherwise. The following update rule
resents the natural extension of (2) to deal with missing
els:

h h il | f Thedrerand W(nH) = { W%n; ' gl(n) o @fn) - y(n)
5. Notice that Theorer]3 is a more general version of Thedrkran i - n (n)(n) i
hence we do not need to extend also Thedrém 2. i TyTs otherwise



(n

That is, learnei updates the weight vectev, ) only when it however, it can still output a final prediction exploitingeth
observes the true label and it recognizes it made a predictiocal predictions received from the other learners. A gener
error. Notice that different learners observe differerttela; learneri maintains two weight vectorsvgz) andwgz). At the
therefore, the weight vectorwﬁ”) and w;”), i # j, follow time instants in which all the learners observe the instance
different dynamics. (i.e., when the learners are synchronized), leatrsgygregates

Now we consider a simple model of missing labels and wgl the local predictions usingavgf? and then, after having

derive( t)h? equivalent for the Theoreids 1 afd 3. We assuRjeserved the label, updated™ using [2). At the time instants
thatg; is an independent and identically distributed (i.i.d-} which some learners do not observe the instances (i.enwh

process,v i, and denote by: the probability _tha_tgf")_ = 1, the learners are not synchronized), learhset to0 the non
0 < u < 18 Thatis, at the end of a generic time instant received local predictions (i.e., it treats the learnewt to
learneri observes the label with probabilify. not observe the instances as "abstainer"), aggregate ¢aé lo

Denote byN "V the number of prediction errors observegyedictions usingw'”), and then, after having observed the

by learneri, i.e., the number of timeg observes the label abel, updates;v(z) using [2) (notice that the weights of the

and recognizes it made a prediction mistake. We define t] Estainers are ;fot modified)
function '

1 1 Given the sequence of labelled instand@s, we denote
Ay, 2) 2 ,/2— In — (4) by M the number of times in which the instances are jointly
=Y observed by all the learners. We define the synchronization

Theorem 6. Given the sequence of instancBsy, for any index a £ % Notice that0 < « < 1, the lowera the

level of confidence > 0 such that\ (e, LFWM) < p, with more synchronized the learners.
probability at leastl —c we have thaP”™"'" (D) is bounded Theorem 8. Given the sequence of instanceBy,

by PPWM (D) is bounded b
B(Dy) - (Dn) y
w—X(e, NEWM) B(Dy) +
Proof. See AppendikF. - Proof: See AppendixH. O

H _ PW M i i
Remark11 The denominato — Ale, N, ), which is Remark12. The synchronization index can be interpreted

lower thanl, can be interpreted as the maximum loss for thgs the maximum loss for non synchronized learners. If the

missing labels. Notice that, for any given level of confid:«enqeamerS are always synchronous (i.— 0), TheorentB is
i PWMY j ing i = Y
e, the function (e, N/ ) is decreasing in the number Ofequal to Theorerfil1.

observed errorsV"WM and tends td) if NFWM — 4.
As a consequence, the bouidl (5) tendB{® y) divided by Theorem 9. If Dy, for N — +o0, is generated by a finite
the probability to observe a labgl number of learnable concepts and a finite number of concept

Theorem 7. If Dy, for N — 400, is generated by a finite drifts occurred, then

number of learnable concepts and a finite number of concept lim PPYM(Dy) <« (7)

drifts occurred, then N—+oo
lim PPYM(Dy) =0 6
N3 oo (Dx) © Proof: See AppendiXlI. 0
Remarkl13. Different from TheoremBl3.15, afd 7, in Theorem
Proof: See AppendiG. 0 the mis—classification probability does not tendtdn fact,

the consequence of non synchronized learners is that aelearn
does not have, in all the time instances, the local predistad
5.3 Asynchronous Learners all the other learners, and this lack of information may lesu
Another important factor that may impact the performance af a mis—classification.
an online learning distributed system is the synchrororatiRemark 14. Theorem[® can be used as a tool to design
among the learners. So far we have assumed that each leagRgracquisition protocol adopted by the learners. If we know
observes an instance in every time instant. However, in majiat the concepts are learnable and we have to satisfy a
practical scenarios different learners may capture iGERIIN  mjs_classification probability constrain®,,;;, Eq. [7) can
different time instants, and they can have different adiois pe ysed to choose the acquisition protocol such that the

rates. In this subsection we extend our scheme to deal Wi\ chronization index: is equal to or lower thadP,,;.
this situation.

PWM is modified as follow. A learner does not send
a local prediction when it does not observe the instanc®e; EXPERIMENTS

_ o S In this section we evaluate empirically the basic PWM al-
6. We can extend the analysis considering an observatiobapildy 1.,

that depends on the learnerThe results would be similar to those obtainecgorithm and the extended _PWM algorithm we proposed in
with a uniquey, but the notations would be much messier. Sections[B and5, respectively. In order to compare PWM



Algorithm  Extended PWM stream mining literature dealing with concept drift[1720],

Initialization : w;; s = wijq =0, Vi,j € K [B2]-[37].
For each learnei and time instant R3: Forest Cover Type. The forest cover type data set
If slg.”) is receivedv j € K from UCI archive [30] contains cartographic variables daiiffo
gl@ — sgn(wi -s(M) wilderness areas_of the Roosevelt National Forest in northe
Else Colorado. Each instance refers to3a x 30 meter cell of

For eachj such thatgg,”) is not receivedo S;,") < 0 one of these areas and is classified vyith one qf seven possible
?Ql(n) — sgn(wig - s™) classes of fores.t cover type. Our task is to predict if araims
For each instanin < n such thaty™ is observed beIo_ng to the_ﬂr_st class_or to the other classes. For a more
PN £0Y ] detailed description of this dataset we refe_r the read€B&p [
J The forest cover type data set contains drifts because data a
collected in four different areas. This data set is widelgdis
in the stream mining literature dealing with concept dfif],
[36], [39], [40].
R4: Credit Card Risk Assessment.In the credit card risk
assessment data set, used for the PAKBID9 Data Mining
Competition [41], each instance contains information dbou

with other state—of-the—art ensemble learning technitjuegs a cl!ent that accesses T[O credit for purcha_smg on a specific
. -y . . , r?tan chain. The client is labeled as good if he was able to
do not deal with a distributed environment, in the first set g

experiments (Subsectién 6.1) all the learners observestine s ;e;::;: tzincgef?gi;n(;g&es’eﬁvk;i]% t:';:giia’;‘%ba[znﬁreﬁﬁa"
data stream, but they are pre—trained on different dateasets P '

. . . . set does not contain drifts because the data were collected
hence their local predictions are in general different.Ha t

second set of experiments (Subseciiad 6.2), differennéar during one year with a stable inflation condl_tlon. _In fact, to
. . best of our knowledge, the only work dealing with concept

observe different data streams. In this case we compare P Uk that uses this data set & J20]

against a learner that predicts using only its local préatict '

and analyze the impact on their performance of delayedsabgy 1 » Results

missing labels, and asynchronous learners.

If 'y<m> # sgn(wy s -s™) do w; o < wy ¢ +y™s(m)

Else
If y(™) £ sgn(w; o -s(™) do w; . + Wy, +y™s(™

In this experiment we compare our scheme with other state—

i of-the—art ensemble learning algorithms. Table 2 lists the

6.1 Unique Data Stream considered algorithms, the corresponding referencespahe

In this subsection we test PWM and other state—of-the—agineters we adopted (that are equal to the ones used in the
solutions using real data sets that are generated from ai@inigorresponding papers, except for the window size that is ob-

data stream. First, we shortly describe the data sets, tleentained following a tuning procedure), and their perforneimc

discuss the results. the considered data sets. We shortly described thesethigari
in Sectiori 2, for a more detailed description we refer theleea
6.1.1 Real Data Sets to the cited literature.

We consider four data sets, well known in the data mining For each data set we consider a seg téarners and we use
community, that refer to real-world problems. In particulalogistic regression classifiers for the learners’ locabjptons.
the first three data sets are widely used by the literaturéndea Each local classifier is pre—trained using an individuahtrey
with concept drift (which is the closest to our work), beaausdata set and kept fixed for the whole simulation (except fer th
they exhibit evident drifts. OnAda, Wang, and DDD schemes, in which the base classifiers
R1: Network Intrusion. The network intrusion data set,are retrained online). The training and testing procedares
used for the KDD Cup 999 and available in the UCI archive as follow. From the whole data set we sel8ctraining data
[30Q], consists of a series of TCP connection records, labelsets, each of them consisting &f sequential records? is
either as normal connections or as attacks. For a more egtaidqual to5, 000 for the data setR1 andR3, and2, 000 for R2
description of the data set we refer the readerlto [3], thawvsh andR4. Then we take other sequential recor2is, 000 for R1
that the network intrusion data set contains non-statiodata. andR3, and8, 000 for R2 andR4) to generate a set in which
This data set is widely used in the stream mining literatuthe local classifiers are tested, and the results are usedlito t
dealing with concept drift [3],[114],120],131]. offline Adaboost. Finally, we select other sequential rdsor
R2: Electricity Pricing. The electricity pricing data set (20,000 for R1 andR3, 21,000 for R2, and26, 000 for R4)
holds information for the Australian New South Wales eledo generate the testing set that is used to run the simutation
tricity market. The binary label (up or down) identifies thend test all the considered schemes.
change of the price relative to a moving average of the lastTable[2 reports the final mis—classification probability in
24 hours. For a more detailed description of this dataset \wercentages (i.e., multiplied by00) obtained for each data
refer the reader td_[32]. An appealing property of this datet for the considered schemes. For the first three data sets,
set is that it contains drifts of different types, due to dps which exhibit concepts drifts, the schemes that update thei
in consumption habits, the seasonability, and the expansimodels after each instance (DDD, WM, Blum, TrackExp, and
of the electricity market. This data set is widely used in theWM) outperform the static schemes (AM and Ada) and the



TABLE 2
The considered schemes, their parameters, and their percentages of mis—classifications in the data sets R1-R4

. Performance
Abbreviation Name of the Scheme Reference Parameters =41 RD =3 =7}
AM Average Majority - 3.07 | 418 | 295 | 34.1
Ada Adaboost - 525 | 411 | 575 | 19.7
OnAda Fan’s Online Adaboost Window size:W = 100 225 | 419] 39.3 | 19.8
Wang Wang's Online Adaboost Window size:W = 100 1.73 | 40.5| 32.7 | 19.8
DDD Diversity for Dealing with Drifts Diversity parametersd; = 1, A\j, = 0.1 0.72 | 39.7 | 246 | 20.0
WM Weighted Majority algorithm [9] Multiplicative parameter3 = 0.5 029 | 229 | 141 | 67.4
Blum Blum’s variant of WM Multiplicative parameters3 = 0.5, v = 1.5 1.64 | 37.3 | 22.6 | 68.1
TrackExp Herbster’s variant of WM 1 Multiplicative and sharing parameter8:= 0.5, « = 0.25 | 0.52 | 23.1 | 14.8 | 22.0
PWM Perceptron Weighted Majority our work - 0.19| 143 | 4.1 | 315

schemes that update their model after a chunk of instantdke stream mining literature dealing with concept diift,[3]

enters the system (OnAda and Wang). This result shows tfed], [20], [29]. In the third data set, similarly td [42], ea

the static schemes are not able to adapt to changes in condeptrner observes a local event that is embedded in a zero-mea

and the schemes that need to wait for a chunk of data ad@zussian noise. Concept drifts occur because the accsiracie

slowly because 1) they have to wait for the last instance of the observations evolve following Markov processes. The

the chuck before updating the model, and 2) a chuck of ddtard data is a simple Gaussian distributed data set in which

can contain instances belonging to different conceptscédnerihe concept is stable. We use this data set because we can

the model built on it can be inaccurate to predict the curreabalytically compute the optimal mis—classification pruibity

concept. PP(Dy) and investigate how strict the boul{D ) is.
Importantly, in the first three data sets PWM outperforms

all the other schemes, whereas the second best scheme &1: Rotating Hyperplane. Each learneri observes &—

WM. The gain of PWM (in terms of reduction of the mis-dimensional instance:{" = (:v§f?,:v§??,x§f;>) that is uni-

classification probability) with respect to WM is abast% formly distributed in[—1 1]3, and is independent from§m),

for R1, 38% for R2, and71% for R3. We remark that the main ,, £ 1, and fromxg,m)' i # j. The label is a deterministic

differences among our scheme and WM are 1) the weightfction of the instances observed by the filst < K
update rule (additive vs. multiplicative), and 2) the weiglf”’  learners (the othe’k — K learners observe irrelevant in-
associated to the virtual learner that always sends thd loggnces). Specifically(™ = 1 if S5 53 91(?355”) >0,
predictionl. To investigate the real reason of the gain of PWM ) '

we tested also a version of PWM in whiahgg) =0, Vn, '

obtaining the following percentage of mis—classificationthe

)

= 0 otherwise. The parameteﬂﬂ) are unknown and
time—vgrying. As in[[29], eaclﬁé}g) is _independentl_y gqurqted
first three data set9:2_3, 14.4 and4.1. Hence, the weighbfg_ ) ac(c(;) rf)lng ntg szln)ze:roe-mggnJru;(Irtl—)v\?vrfllaer:Z;(Sags;/l?g Od |1s;m it
can slightly help to increase the accuracy of the dlstrm)uté\[ e i,0 i,0 i,0 i,0 e

system, but the main reason why PWM outperforms WM in

th%S.?f datalsefts 'S tEe l]f.pdatﬁ rulec.j R4 the d the occurrence of a particular local event. Ieé’f) £ 1ifthe
fierently from the first three data sets, R4, the data .51 event monitored by learnéroccurs at time instant,

set that does not contain drifts, Ada, OnAda_, and Wang») a _1 otherwise ™ is an i.id. process, the probability
outperform the other schemes. In fact, they exploit mamesto tr;ate(") _ 1is 0.05 \';Z . The observation of learnaris
labeled instances to build their models, and this resulisone (n) i (n_) n) D (7}) ] o ]
accurate models when the data are generated from a st¥tic — ¢ _+/ whereg; " is an i.i.d. zero-mean Gaussian
distribution. process. To simulate concept drifts, we assume that a source
can be in two different states: good or bad. In the good state
B ~ N(0,0.5), in the bad state?™ ~ A/(0,1). The state

of the source evolves as a Markov process with a probability
In this subsection we evaluate PWM using synthetic dagay1 to transit from one state to the other.

sets in which different learners observe different dateastrs,

and analyze the impact of delayed labels, missing labets, an S3: Gaussian Distribution. The labels are generated ac-

asynchronous learners. First, we shortly describe thes#aga cording to a Bernoulli process with parameteb, and the

S2: Distributed Event Detection.Each learnei monitors

6.2 Different Data Streams

then we discuss the results. instancex(™ = (x§”>, .. .,:vg?)) is generated according to a
K-dimensional Gaussian distributiofi™) ~ A (y(™ - u, 2,
6.2.1 Synthetic Data Sets whereX is the identity matrix. That is, if the label is (—1)

We consider three synthetic data sets to carry on differezach componenrgn) is independently generated according
experiments. The first data set represents a separating toy-a Gaussian distribution with meam (—x) and unitary
perplane that rotates slowly, we use it to simulate graduadriance. A generic learner observes only the component
drifts [6], [20], [34]. Similar data sets are widely adoptied xE”) of the whole instance (™).
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6.2.2 Results

In the first set of experiments we adopt the synthetic dat:
setS1to evaluate the mis—prediction probability of a generic
learner, which we refer to as learngér when it predicts by

its own (ALONE), and when it adopts PWM. We considera % 3 o
set of K = 16 learners, in which the last learners observe
irrelevant instances. For each simulation we generate @ da

set of1, 000 instances. We use non pre-trained online logistic 4, G\s’*&e—e—e—e—e_e_o

o o
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o
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Missing labels 05 Asynchronous learners

. o - 6 go4
regression classifiers for the learners’ local predictiovs run o3 403 mooog
1,000 simulations and average the results. The final results ar $ozt “ o o 4 R 502 S % fag g °
= R m ] Ko}
S 0.

reported in the four sub—figures of FIg. 3, and are discusse =°

in the following. L
The top-left sub—figure shows how the mis—classification

probability of learnerl varies, in the idealized setting (i.e.,Fig. 3. Mis—classification probability of learner 1 if it

without the issues described in Sectioh 5), with respect {edicts alone and if it uses PWM, for the data set S1
the the number of learners that PWM aggregates. If there

is only one learner, ALONE and PWM are equivalent, but Idealized setting Delayed and out-of-order labels

o
o

02 04 06 O 1 02 04 06 08 1
Probability label observed Probability instance observed

the gap between the performance obtainable by ALONE an gzj" ° © g.gff ©
the performance achievable by PWM increases as the numb 2, L. € 0a
of learners that PWM aggregates increases. In particula £o2 Py £o02
if the local predictions of all the learners are aggregated =°! o so1
the mis—classification probability of PWM is less than half ~ °r 2 3 a7'e 6775 S5 & = 6 S8
the mis—classification probability of ALONE. Notice thatth
performance of PWM remains constant fr@énto 16 learners, 05 Missing labels _ Asynchronous leamers
and this is a positive result because the &aktarners observe 04 BE g 6.4
0.3 ; g

irrelevant instances. PWM automatically gives them a low
weight such that their (noisy) local predictions do not iafiae
the final prediction. In fact, the simulation féf = 16 learners . .
shows that the average absolute weight of the ilsarners is ® %lovabily lavel observed
about twice the average absolute weight of the alstarners.
In all the following experiments we consid&f = 16 learners. Fig. 4.  Mis—classification probability of learner 1 if it

Now we assume that learndr observes the labels afterpredicts alone and if it uses PWM, for the data set S2
some time instants, and each delay is uniformly distributed
in [0 D]. The top-right sub—figure shows how the mis—
classification probability varies with respect to the agera probability of observing an instance sl, the gain of PWM,
delayZ. We can see that the delay does not affect consideradiifh respect to ALONE, is about0%.
the performance, in fact both mis—classification probtédi  In the second set of experiments we use a similar set-up
slightly increases if the delay increases and the gap betwes in the first set of experiments, but we adopt the synthetic
them remain constant. data setS2 We consider a set o = 8 learners and for

In the next experiment we analyze the impact of missirgach simulation we generai®, 000 instances. Each learner
labels on the performance of learnierThe bottom—left sub— uses a non pre—trained online logistic regression classifie
figure shows how the mis—classification probability variggw to learn the best threshold to adopt to classify the local
respect to the probability that learnér observes a label. event. We runl00 simulations and average the results. The
Even when the probability of observing a label(sl, the final results are reported in the four sub—figures of Eig. 4,
mis—classification probability of PWM is about half the mis-and are briefly discussed in the following. The top—left sub—
classification probability of ALONE. This gain is possibldiigure shows that the mis—classification probability of PWM
because learner, adopting PWM, automatically exploits thedecreases linearly in the number of learners until the local
fact that the other learners are learning. prediction of all learners are aggregated, in this case the

Similar considerations are valid when learnieobserves mis—classification probability of PWM is abo0i01, whereas
an instance with a certain probability (see the bottom-trigthe mis—classification probability of ALONE is aboQt47.
sub-figure), which can be interpreted as the reciprocal ®f tAs in the first set of experiments, the delay does not affect
arrival rate. The impact on the mis—classification prohigdésl the performance of the two schemes, and the performance
of missing instances is stronger (i.e., the mis—classifinat of PWM is much better than the performance of ALONE
probabilities are higher) than the impact of missing labkls even when the probability of observing the label is very low.
fact, when instances are not observed, not only learriayes Differently from the first set of experiments, with the data
not update the weight vector, it also waits more time betwesnt S2 the performance of PWM is strongly affected by the
two consecutive predictions, hence the concept between taymchronicity of the learners, and when the learners observ
consecutive predictions can change consistently. When fleev instances the mis—classification of PWM becomes close

N
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04 : Idealized seting proposed approach. When applied to real data sets widely

O ALONE

Q au used by the literature dealing with dynamic data streams and

o PwWM

x Bound concept drift, our scheme exhibits performance gains rangi
from 34% to 71% with respect to state—of-the—art solutions.

Mis-class. Prob.

3 APPENDIX A

PROOF OF LEMMA [1]
Fig. 5. The bound B(Dy) and the mis—classification Proof Si PPWM () — pPWM(D Vi
probability of learner 1 if 1) it predicts by its own, 2) it OOt =Ince (D) ! (Dy), Vi, we

. can derive the bound with respect to the mis—classification
uses AM, 3) it uses PWM, for the data set S3 P

probability PPV (D) of a generic learnet.
The proof departs fromi [43, Theorem 2], which states that,

to the mis—classification of ALONE. for a general Perceptron algorithm (i.e§,"> can belong to
In the last experiment we adopt the dataS@to investigate Whatever subset (zt)ﬂ'f Is™] < R, ¥n, then for everyy > 0
how strict the boundB(Dy) is. For each simulation we a@nd vectoru € R%+, [luf| = 1, the number of prediction

considerK — 8 learners and generate a data setldioo €TOrs NfWM(D]y) of the online Perceptron algorithm on
instances. We assume that the local prediction of leainefn® sequenc® y is bounded by

is —1 if its observationazz(.”) is negative,1 otherwise. It is R+ AD\>
possible to show that, given the structure of the probleis, th NPWM(Dy) < <77)
represents the most accurate policy for the local predictio v
and the best possible aggregation rule is the average tyajopihere D — S dpy dn = max (0,7 —y"(u-s™)).

(8)

n=1 T

(AM). We run 10, 000 simulations and average the results. starting from this bound, we exploit the structure of our
Fig.[  shows the bounB (D) and the mis—classification problem (i.e.,sgn) € {~1,1}) to derive the bound; (D).
probability of learnerl if 1) it predicts by its own (ALONE), ~ since in our casg|s™| = VK +1, we can consider
2) it uses AM, and 3) it uses PWM, varying the parametgs _ /K 1. Notice that the lastk elements ofs(™,
p It pis low the instances corresponding t0 negative and  the local predictions, represent a particular vedean
positive labels are similar, hence it is more difficult to gt hypercube infR%X, and the optimal a posteriori weight vector
correctly the labels. Fid.]5 shows that, in this case, the-mig o represents an hyperplane RX which separates the
classification probability of PWM is much lower than thex \eriexes of the hypercube in two subséts, and Vi,
bound, and itis very close to the mis—classification prolifgbi representing the vertexes resulting in a negative andipesit
of AM, that is the best aggregation rule in this scenario. Withegiction respectively. Now we consider two scenariod: (1

the increase ofi, the mis—classification probabilities of all thegjiher V_, or V; are empty; (2) both_; andV; are not
schemes decrease, and the bound become stricter to the éﬁ%ty. ’

performance of PWM. _ We consider the first scenario. In this situation the optimal
Notice that the curve representing the bound has a cusfgficy w predicts always-1 or 1, independently of the local

abouty = 1.75. In fact, before this valu®, (D) is stricter predictions (this case is not very interesting in practie,we

than B, (D), whereas for > 1.75 By(Dy) is lower than 50476 it for completeness). The geometric interpretaitio

B, (Dy). This agrees with RemafR 8: whenis low the local ¢ the separating hyperplane does not intersect the hyper

classifiers are inaccurate (see ALONE), but their ensemblgne | et be the distance between the separating hyperplane
can be very accurate (see AM), aB (D) is stricter than and the closest vertex of the hypercube, and- wg I
B,(Dy); whereas, when: is high the local classifiers are Ilw el

- w© predicts correctly the-th instance, thep”(u-s(™) > ~,
very accurate and, (D) becomes stricter thaB, (D). henged =0.If woymakes a mistakes in@tkseth ins)t;nZe

then y"(u - s™) < —vy and y"(u - s™) > — — 2VK
7 CONCLUSION (because the closest vertex #s/K distant from the far-
We proposed a distributed online ensemble learning algarit thest one), thereford,, < 2v + 2vK. Hence, we obtain

to classify data captured from distributed, heterogeneans ) 2NO(Dy) (7 + \/F) where NO(Dy) is the number
dynamic data sources. Our approach requires limited commtf—_ ‘

nication, computational, energy, and memory requirements

We rigorously determined a bound for the worst—case mis—

classification probability of our algorithm which depends o (R n \/7_D>2 VK +1+ \/QNeO(DN)W (7 + \/f)
— <

mistakes made adopting®, and

2

the mis—classification probabilities of the best staticragg
gation rule, and of the best local classifier. Importanttys t
bound tends asymptotically t0 if the mis—classification
probability of the best static aggregation rule tend$).t&Ve The right side of the above inequality is decreasing.igince
extended our algorithm and the corresponding bounds suel can consider other optimal a posteriori weight vectofs
that they can address challenges specific to the distributatl since there is no constraint on how far the separating
implementation. Simulation results show the efficacy of thHeyperplane could be with respect to the hypercube, takiag th

Y Y
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limit for v — +o0 and dividing everything byV we finally probability P (D) of a generic learnei.

obtain PWM updates its weight vector only on those instances in
2 which it makes a mistake. We denote with the supersaript
1. R+ D ) .
PPVM(Dy) < N WEIEOO <+) <2P°Dy) , the parameters of the system during théh mistake. We have
which is compatible withP”W ™ (D) < B;(Dy). Wit = [lwi + y"s"™ (12 = [|wi )12 + [P + 2" w) - s™
Now we consider the second scenario. In this case the < WP+ [Is™)1? = |[wP)? + K +1

separating hyperplane intersects the hypercube. Amortgeall o o _

optimal a posteriori weight vectons®, we want to consider where the first inequality is valid becz_;\use the _system makes
the one which separates the vertexe¥in from the vertexes an €rror, hencg”w; -s™ < 0. By applying a straightforward

in v, with the largest margin possible in order to find thdhductive argument we obtain

strictest bound defined b/(8). However, since the bound must w2 < n(K + 1)

be valid for every linearly separable sets of verteXes and ! -

V1, we have to consider the worst case possible (in term ofTo simplify the notations, we denote bythe number of
separating margin) with respect to the skts; andV;. Itis errors made by the most accurate classifier andvbythe
easy to see that the worst case corresponds to the situationimber of most accurate classifiers, ie= NP*(Dy) and
which one vertex must be separated by all the vertexes itus = v*(Dy) After the system makes errors, the weight
connected with through an edge, and the best separating &gsociated to the most accurate classifiers is at teastz (it
perplane must be equidistant from all these vertexes. $ivece increases by one unit at least— 2 times, and decreases by
distances between the vertexes and the separating hyperptzne unit at most times). Hence,

are invariant with respect to translation and rotation ofhbo
the hypercube and the hyperplane, we consider the hypercube
with vertexesv = (v1, ..., vk), vi € 0,2, and we wantto find - combining the two above inequalities we obtain

the hyperplane defined by the parameteis . . . , ax) which

separates with the largest margin the veréX = (0,...,0) v'n? — (402 + K 4+ 1)n 4 40*2* <0

from the vertexesv = (0,...,0,2,0,...,0) having 2 in R
positioni, i = 1,..., K. Imposing that the signed distancévhich implies n. < 2z + B+ (5H) + %
betweenv(® and the separating hyperplane is the opposilividing by N we obtainP”"*(Dy) < By(Dy). 0
of the signed distance betweeff) and the separating hyper-

plane, we obtain APPENDIX C
a0+v§0)a1+...+vﬁg)a;< _ao—l—vii)al—i—...—i—vg)a;{ PROOF OF THEOREM [3]
K @2 K a2 Proof: We denote byw} . the weight vector of learner

i+1 @ i+1 @i o ]
1 at the beginning of a generic conceSi"), and use the
superscriptn to denote the parameters of the system during

Repeating the same procedure for every veméX, i = the n-th mistake inside the concesé"). We have

1,..., K, we obtain that the best separating hyperplane must 112 N o oo o

satisfy ag = —a;, Vi, hence the distance between it an@ Iwiie 17 = Iwie +y"m"[|7 = [[w [|” + lm™[|"+

is \/“% = . This means that we are always able to find ~ 2y"w;', - m" < [wi'||? + [|m™||* = [[wl.|* + K + 1

an optimal a posterior weight vecter® which separates the where the first inequality is valid because the system makes a

local prediction vectors which a margin of at least= \/L? error, hence/"w', - m" < 0. By applying a straightforward
Notice also that the maximum distance between the hypegplafductive argument we obtain

defined byw® and a vertex in the hypercubels/K — \/L?
Definey = \/% andu = ﬁ If w© predicts correctly the

n-th instance, then”(u - s(™)) > ~, henced,, = 0. If w© Since the conce8!™ is learnable, there exists a unit vector
makes a mistakes in theth instance, thep™(u-s(™) < —y  u e RE+1, ||lu|| = 1, and~y > 0 such thaty"u - m™ > ~, for

and y"(u-s™) > —2VK + # therefored,, < 2VK. every labeled instances of the current concept. We have

Iwi 2 = v* (n - 22)°

— ag = —a;

Wittt < (1w cl® +n(K + 1) 9)

. . 0
Finally, we obtainD < 2v/K N (]QDN) and wifh u=wi cuty'm’ u>wluty

1 (R+ D K(K+1
PPVMDy) < — (i) < 2KPO(DN)+Q Hence

N 0 N

OJ WZCH -u > WRC ‘u+ ny (10)

APPENDIX B Combining [®) with [ID) we obtain
PROOF OF LEMMA

IO n(E 1) = Wit = wi ou
Proof: Since PPWM(Dy) = PPWM(Dy), Vi, we ’ o ’ 0
can derive the bound with respect to the mis—classification > Wi utny 2z —|wi | +ny
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0
Forn > va_H (if this is not valid thenn is bounded by represents the number of errors leariemakes over the

lw? .|l . . . . label instances whose labels are not observed. Such a term
—= which stricter than the following bound) we obtain is bounded by% that tends td) -
W21+ n(K +1) > [[wi |I* = 2[lw) [y +7°n?
2wy v+ K +1 APPENDIX F
ns 2 PROOF OF THEOREM
; ; Proof: Inside this proof, to simplify the notations, we
As shown in AppendiX_A, we can take = —-.. Hence,
we obtain ppendiCh ® = Ur denote byn = PPWM(Dy)N the number of errors made by
PWM and byt = NPWM the number of observed errors. The
n < 2\/E|\w?7c|\ + K(K+1) (11) number of observed errorsis a binomial with parameterns
In the first conceptvy, is initialized to0, thus the number agg /xriixplomng a Chemnoft-Hoeffding inequality [44] we
of errors at the end of the first concept is upper-bounded By

a bounded function of<, and in turns also the norm of the Plt<n(p—7) <e 2™ <e 2
weight vectorw; o at the beginning of the second conceptis . .
bounded by a function of. Exploiting (I1) and using an Which implies that
inductive argument we can conclude that the number of errors p [
at the end of each concept is upper bounded by a bounded

function K. Since there are a finite number of concepts, the
total number of errors is upper-bounded by a bounded furmctigt
of K. Finally, dividing it by N, we obtainP”"™ (D) — 0,
that impliesP?"M (Dy) — 0.

n> ;] < 6—27215
H="

Since PWM updates its weight vector only on those in-

ances on which an error is observed, the baBiiB ) for

non perfectly observable labels must be interpreted asdmun

for the number of observed errors, i.e.,

t
APPENDIX D N < B(Dy)

PROOF OF THEOREM 4] The two inequalities above, with the change of variable
Proof: Denote byy(™ then-th label observed by learner.—2v* _  ‘imply (8) with probability at least — . 0

i, and by X the corresponding instance. Ld,;, =

((Y(l)vy(l))v ce (7?),?(1)), ce (XgM)vﬂ(M))) the sequence APPENDIX G

of the M labeled instances observed by learnamtil time PROOF OF THEOREM [7]

instant N. Notice thatN — d; < M < N. We can applied —PWM .

Theorem[1L toD,; (the bound of Theorerfl 1 is valid also Proof: If the ”UmEifW?j errorsv, .~ PWM makes in

for the mis—classification probability of a generic leargr concept is finite, thenNC# — 0. If NiZVM is unbounded,

obtaining - - then by a Chernoff-Hoeffding bound [44] we have V" =
P M(Da) < B(Dw) p- WL M with probability 1. Using the same arguments as in

D), is a permutation of a subset Bfy, hence the number of the proof of Theoreri]3, we can say thjgj\va—M — 0, hence
errors made by the optimal aggregation rule and by the besf'* NEwM

classifier inD; cannot by higher than those maddiny, i.e., x— — 0. Therefore,P" ¥ (Dy) = ZT = 0. 0
Po(ﬁ]\,{)M < PO(DN)N and P*(ﬁ]\,{)M < P*(DN)N

The number of errors learnérmakes oveD y adopting the APPENDIX H

PWM scheme are equal to the number of errors learmakes PROOF OF THEOREM 8l

over Dy, plus the number of errors it makes over the label  proof: Denote byD,, the subset of labeled instances of
instances whose labels are not observed. Since the last t¢5m in which all the learners are synchronized. The number of
is bounded byi;, we obtain errors learner makes oveD, adopting the PWM scheme
is equal to the number of errors learnemakes ovedD,,,

pPPVM(Dy) < %PiPWA'{(ﬁM)M + % <B(Dn) + % plus the number of errors it makes over the— M label

: instances in which some learners do not observe the ingance

By applying [3) we we conclude the proof. Y The weight vectonwz(z) is used only to predict the instances
in Dy, and is updated only in these instances. Therefore, we
APPENDIX E can applied Theoreml 1 tH,; (the bound of Theoreml 1 is
PROOF OF THEOREM [G] valid also for the mis—classification probability of a gdoer
Proof: The proof applies the same is methodology as ttearner:), obtaining

proof of Theorenil4. The number of errors a generic leainer PPVM(B,,) < B(D)

makes in each concepts can be divided into two contributions

The first contribution represents the number of eriamsakes D), is a subset oD, hence the number of errors made by
over the sequence of labeled instances it observes. Theotamoptimal aggregation rule and by the best classifidDja
proves that such a term tends(toThe second contribution cannot by higher than those madely, i.e., P° (D /)M <



PO(Dx)N and P*(Dy )M < P*(Dy)N. Therefore the [20]
number of errors made by in Dy, is PPYM (D, )M <
B(Dy )M < B(Dy)N, which implies that the contribution 21]
of i to PPWM(Dy) is at most

B(DN) +

[22]

[23]
The proof is concluded by summing the contributions of a4l
learners and dividing the result by. T 5]

26
APPENDIX | 126]

PROOF OF THEOREM [27]

Proof: Using the notations and considerations of the
proof of Theoreni8 we can state that, for a generic Iearn%]
the mis—classification probability in the sequerddg,; tends
to 0 (because we can apply Theoréin 3), whereas the mis—
classification probability over the instances in which somé’)

learners do not observe the instances is bounded.by [ [30]
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