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Abstract—This study relates the local property of node dom-
inance to local and global properties of a network. Iterative
removal of dominated nodes yields a distributed algorithm for
computing a core-periphery decomposition of a social network,
where nodes in the network core are seen to be essential in
terms of network flow and global structure. Additionally, the
connected components in the periphery give information about
the community structure of the network, aiding in community de-
tection. A number of explicit results are derived, relating the core
and periphery to network flow, community structure and global
network structure, which are corroborated by observational
results. The method is illustrated using a real world network
(DBLP co-authorship network), with ground-truth communities.

Index Terms—Core-periphery, community detection, simplicial
collapse, topological data analysis, social network.

I. INTRODUCTION

ONE of the interesting challenges in social networks is to
relate local connectivity properties to global structure.

The motivation for doing do stems from the belief that local
properties reflect interactions amongst individuals (or entities).
Therefore such relationships help us make inferences about the
nature of interactions which led to the network, by studying its
global properties. In this paper, we present the local property
of node dominance as a method for network analysis. We
will show why node dominance is such a useful criterion,
by developing a low complexity, distributed algorithm for the
core-periphery decomposition of a network based on node
dominance criteria. We will also demonstrate its relation to
the network community structure.

Owing to a localized definition, the node dominance criteria
for a node v can be determined only from a two hop neigh-
borhood. A node v is dominated by node w if all nodes that
share and edge with v, also share an edge with w. The formal
definition of node dominance is based on a simplicial complex
(as opposed to graph) structure, and will be discussed in detail
later. If we iteratively collapse dominated nodes, the resulting
set (the network core) is shown to consist of nodes that are
important with respect to the network flow, community struc-
ture, and global network structure. One especially important
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property of the core is the preservation of shortest distances,
so a shortest path between any two nodes in the core is also
a shortest path between them in the original network. The
network periphery (the complement to the core, consisting
of dominated nodes) is seen to consist of many connected
components, including all the nodes in the network through
which no shortest paths pass. These peripheral components
also play a key role in the community structure of the network.

The intuitive notion that a network naturally decomposes
into a core and periphery has appeared many times in the
social network literature over the decades. Researchers have
proposed different interpretations about what such a decom-
position should look like, but it is commonly suggested that
a ‘core’ should be central to the network (with respect to
information flow, or shortest paths) [1], have high average
degree [2], and be relatively well-connected both internally,
and to the periphery [3] [4]. In contrast, the periphery should
be connected to the core, but extremely sparsely connected
amongst itself.

Borgatti and Everett [3] were the first to attempt to an-
alytically describe these intuitive properties. They proposed
an ‘idealized core-periphery’, wherein every core node is
connected to every other core node, each peripheral node is
connected to the core, and no peripheral nodes are connected
to each other. They would then learn the core-periphery
structure for a given network by assigning each node as
‘core’ or ‘periphery’ in the way that best correlated with this
idealized structure. This method assumes explicitly that the
probability of two nodes being joined by an edge is only
a function of their ‘core-ness’, as opposed to some other
characteristics, such as community membership. In this sense,
the core-periphery model considered in [3] is in contrast
to common network models based on community structure.
Both core-periphery and community network structures can be
expressed using a stochastic blockmodel approach [4], but with
different parameters, so under these models a given network
will not display both structures simultaneously.

Another approach, by Rombach et al. [5] presents a gen-
eralization of Borgatti and Everett’s philosophy, where a core
score is computed for each node, using a range of possible
core sizes and continuous/discrete transitions between core
and periphery. Here, they admit that both core-periphery
and community structure are often present in real-world net-
works, but still propose the core-periphery decomposition as
an alternative/complementary analysis to the more common
community detection methods. In Della Rossa et al. [6], an
approach to periphery detection based on random walks is

ar
X

iv
:1

50
9.

07
43

5v
1 

 [
cs

.S
I]

  2
4 

Se
p 

20
15



2

taken, where is it assumed that due to the extremely sparse
connectivity of the periphery, a random walk will exit the set
of peripheral nodes very quickly. Thus, a core-periphery profile
for the network, along with a coreness value for each node,
is computed using a greedy algorithm that incrementally adds
nodes to the periphery in a way that minimizes the expected
exit time of a random walk. Again, this method focuses very
heavily on the sparsity of the periphery, and is somewhat
unrelated to any community structure that may be present in
the network. For a good review of existing methods of core-
periphery network decomposition, see the survey by Csermely
et al. [2], or the introductory sections in [5].

Traditionally, approaches to community detection in net-
works have assumed that communities form a partition of the
network, with each node belonging to exactly one community.
A foundational method has been the Girvan-Newman algo-
rithm [7], where communities are detected though iterative
removal of edges with high betweenness centrality. They
defined the notion of ‘modularity’ as a stopping criterion for
their algorithm, and many subsequent algorithms attempt to
partition a network in such a way that optimizes (usually
approximately) modularity [8], or cut ratio (approximated
using spectral clustering) [9]. Fortunato provides an excellent
overview of the breadth and depth of approaches to the
community detection problem in his 100 page survey paper
[10]. In more recent years, researchers are determining that
partition-based methods are often somewhat unrealistic, since
real-world networks with ground-truth communities typically
display overlapping community structure [11], where one node
may have multiple community memberships. See Xie et al.
[12] for a survey of methods for overlapping community
detection, including clique percolation, link clustering, and
fuzzy detection methods using mixed-membership stochastic
block models, or nonnegative matrix factorization.

A particularly realistic model for overlapping community
detection is Yang and Leskovec’s community-affiliation graph
model (AGM) [13] [14]. This model considers communities
as ‘overlapping tiles’, and its distinguishing feature is that
regions of community overlaps are more densely connected
than regions involving single communities. Precisely, the prob-
ability of an edge existing between two vertices is based on
the communities they share, with higher probability when
they have more community memberships in common. This
assumption is validated on data sets with ground-truth com-
munity memberships available, where higher edge densities
are observed in community intersections [13]. AGM, and the
other methods for overlapping community detection are more
realistic than the partition-based methods, but they do not scale
up well with size of the network. A recent relaxation of AGM,
referred to as Cluster Affiliation Model for Big Networks
(BIGCLAM) [15], allows nodes to have continuous-valued
community memberships, indicating their degree of involve-
ment in a given community. This reduces the combinatorial
optimization in AGM to a continuous optimization that can
be solved using nonnegative matrix factorization, making it
viable for large networks. We will return to these models in
Section IV-C.

In the current paper, we will see how a core-periphery struc-

ture and a community structure are both present in real-world
networks, and how node dominance informs us about both.
The relationship between the core-periphery and community
structure of a network has been touched upon previously by
Leskovec et al. [16], where they also noted the presence of
a network periphery, defined in terms of whiskers (clusters of
nodes that are separable from the main network by removing
a single edge), which were interpreted as small communities,
weakly connected to the remaining network “core”. In the
AGM model mentioned above [14], Yang and Leskovec refer
to the overlapping portions of communities as the “core” of the
network. We will see that this interpretation does in fact concur
with our notion of core and periphery, where in networks
with ground-truth communities available, the nodes in the
core obtained using node dominance typically have multiple
community memberships, while the nodes in the periphery
have fewer community memberships (often just one).

Iterative node dominance collapses were originally proposed
independently by Wilkerson et al. [17] and Barmak and
Minian [18], as a homology/homotopy-preserving simplifi-
cation of a simplicial complex, with the distributed version
described in [19]. Here, we explore much more deeply the
use of this simplification as a network core, and describe the
relationship between the core-periphery decomposition, and
the community structure, global structure, and network flow
properties.

In Section II, we will first describe the relevant information
for the simplicial complex representation of a network, and the
background and definition of the node dominance criterion.
We follow this in Section III by statements and derivations of
the resulting properties of core-periphery decomposition, and
present an algorithm for the use of peripheral components in
community detection. In Section IV, we illustrate our method
with two real-world network data sets which contain ground-
truth community information. We not only empirically verify
the importance of core nodes with respect to network flow
and global structure, but see that our propose d use of the
peripheral components for community detection outperforms
BIGCLAM, which is considered the current state-of-the-art
method for overlapping community detection in large net-
works. Finally, in Section V we draw some conclusions,
and discuss the limitations of our method, as well as some
directions for future research.

II. BACKGROUND

A. Simplicial homology

A graph G = G(V,E) is defined by a list, V , of its vertices,
as well as a list, E, of the pairs of vertices that are joined
by an edge. An implicit assumption in this is that an edge
e = (vi, vj) ∈ E can only be present in G if both of its
vertices vi and vj are in V . The notion of a simplicial complex
is a higher-order generalization of a graph, while similarly
preserving this ‘closed under subsets’ property.

Definition (Simplicial complex). A k-simplex σ =
(v0, v1, . . . , vk) is a set of (k + 1) singleton elements (called
vertices). A simplicial complex K is a set of simplices (i.e. a
set of sets of vertices) such that
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(i) if σ, τ ∈ K, then σ ∩ τ ∈ K
(ii) if τ ≤ σ, then τ ∈ K

where ≤ indicates the subset relation. If τ ≤ σ, we call τ a
face of σ.

A simplex σ is maximal if there are no τ ∈ K such that σ <
τ . A k-simplex has dimension k. The dimension of simplicial
complex K is the maximum dimension of any simplex in K

dim(K) = max
σ∈K

dim(σ).

A subset K ′ of a simplicial complex K is called a subcomplex,
if K ′ is itself a simplicial complex (satisfying properties (i)
and (ii) above). The k-skeleton of K is the subcomplex formed
by all simplices in K with dimension at most k

k-skeleton of K = {σ ∈ K | dim(σ) ≤ k}

Definition. Let K1 and K2 be two simplicial complexes
with vertex sets V1 and V2. A map φ0 : V1 → V2 on the
vertex sets induces a simplicial map φ : K1 → K2 on the
complexes, if for every simplex σ = (v0, . . . , vk) ∈ K1, the
set (φ0(v0), . . . , φ0vk) spans a simplex in K2. A simplicial
map φ : K1 → K2 induced by an isomorphic map on the
vertex sets is said to be an isomorphic simplicial map, and in
this case, K1 and K2 are isomorphic simplicial complexes.

In Section III, this isomorphism between complexes will be
used to describe the uniqueness of the core obtained using
node dominance collapsing.

Given a graph G = G(V,E), we can think of G as the 1-
skeleton of a simplicial complex, whose higher-dimensional
simplices have not been directly observed. The maximal
simplicial complex whose 1-skeleton is equal to G is called
the flag complex.

Definition (Flag complex). Given a graph G = G(V,E), the
simplicial complex

X(G) = {σ = (vi0 , vi1 , . . . , vidim σ
) |

(vij , vik) ∈ E for all 0 ≤ j, k ≤ dimσ}

contains a simplex σ whenever all pairs of vertices in σ are
connected by an edge in E. X(G) is called the flag complex
of G.

As we will see in Section II-B1, if we have additional
information about the k-tuple relations in G, we may build a
simplicial complex using that information, adding k-simplex
σ whenever its vertices satisfy a k-tuple relation, and all
faces of the simplex are also present. In the absence of such
information, when only the graph G is given, we propose the
use of the flag complex, and see that it can be very informative.

A final notion we will mention here is the definition of the
homology of a simplicial complex.

Definition (Homology). We encode the structure of simpli-
cial complex X through boundary maps {∂k}dim(X)

k=1 , where
∂k gives the oriented connectivity information between k-
simplices and (k−1)-simplices. Then the k-th homology group
of X is

Hk(X) = ker(∂k)/ im(∂k+1)

See, for example, [20] for a more mathematically complete
definition of simplicial homology.

Intuitively, the dimension of the k-th homology space
counts the number of k-dimensional “holes” in the simplicial
complex. These can be thought of as (k + 1)-dimensional
voids enclosed by k-simplices, so H1 counts the number of
loops which are not “filled-in” by triangles, and H2 counts the
number of voids. The interpretation of H0 is slightly different:
it counts the number of connected components of X (which
may be interpreted as cycles of dimension zero).

The sequence of homology spaces of a simplicial complex,
in essence, specify the ”global structure” of the complex. For
our purposes, we will not be computing any homology directly,
but we will see that by preserving homology during our node
dominance collapse, we will in fact be preserving important
global structure of the network.

B. Node dominance

We will be representing a network using its flag complex,
and in that setting, node dominance is characterized by the
following definition.

Definition. The neighbor set of a node v, is the set of all
nodes sharing an edge with v, as well as v itself:

N [v] := {u ∈ V | (u, v) ∈ E} ∪ {v}.

A node v is dominated by one of its neighbors w, if and only
if N [v] ⊆ N [w] i.e., all the neighbors of v are also neighbors
of w.

To understand the importance and relevance of this defini-
tion, we will explore a bit of its history, and related concepts.

1) Homology of a relation:

Definition. A relation on two sets A and B is a function r :
A×B → {0, 1}. We say that elements ai, aj ∈ A are related
(through element b) if there exists an element b ∈ B such that
r(ai, b) = 1 and r(aj , b) = 1. Similarly, bi, bj ∈ B are related
if there exists an a ∈ A such that r(a, bi) = 1 and r(a, bj) =
1. For A and B finite, the relation r can be represented by an
|A| × |B| binary matrix R = (rij), where rij = r(ai, bj).

As an example, the elements of set A could be actors, and
the elements of set B could be movies, with r(a, b) = 1
whenever actor a appears in movie b.

Given a relation, there are two ways to encode its structure
as a simplicial complex. The first way, which we will denote
as XR(A,B), the elements of A are represented as vertices,
and vertices {ai0 , ai1 , . . . , aik} are spanned by a k-simplex
whenever there exists a b ∈ B such that r(ail , b) = 1 for
all l = 0, 1, . . . , k. The second way, which we will denote
as XR(B,A), the elements of B are represented as vertices,
and {bj0 , bj1 , . . . , bjk} are similarly spanned by a k-simplex
whenever they are all related by the same a ∈ A. Note also that
for any simplicial complex X (even if it wasn’t constructed
using a relation) one may form its dual complex X̂ , by letting
each maximal simplex in X correspond to a vertex in X̂ . In
that case, a set of vertices in X̂ are spanned by a simplex if
their associated simplices in X all had a vertex in common.
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In the example with actors and movies, this means that
we can represent their relationships by building a simplicial
complex where actors are vertices, and simplices are formed
between actors who are in the same movie; or alternatively,
we can encode it by using movies as vertices and spanning
a set of movies by a simplex when they all feature the same
actor.

Note that these two simplicial complexes may have drasti-
cally different structure (different number of vertices, different
dimension), but Dowker [21] proved that the two complexes
have exactly the same homology (in the sense that the kth

homology groups of the two complexes are isomorphic, for
all k).

Theorem II.1 (Dowker). If R is a relation on sets A
and B, with associated simplicial complexes XR(A,B) and
XR(B,A), then

Hk(XR(A,B)) ∼= Hk(XR(B,A)) for all k

2) Node dominance and equivalent notions: In light of the
dual simplicial complexes presented in Section II-B1, we can
now give the more general definition of node dominance.

Definition (Node dominance). Given simplicial complex X
and its dual complex X̂ , each vertex v ∈ X has an associated
simplex σv ∈ X̂ . We say a vertex v is dominated by vertex
w, if σv is a face of σw. This occurs exactly when the set of
simplices incident to (i.e. containing) v is a subset of the set
of simplices incident to w (in X).

When the simplicial complex of interest is a flag complex,
we know that the presence of a higher dimensional simplex
is determined by the presence of its constituent edges. This is
why we are able to check the node dominance criterion using
only the neighbor sets of our vertices, in the flag complex
setting: if the neighbors of v are all neighbors of w, then the
set of simplices incident to v is a subset of the set of simplices
incident to w.

To illustrate the concept of node dominance using the
example of actors and movies, consider two actors, represented
by separate vertices ai and aj in XR(A,B). If the movies
featuring actor ai is a (proper) subset of the movies featuring
actor aj (i.e. ai is dominated by aj), then in the dual complex
XR(B,A), the simplex σai will be a (proper) face of simplex
σaj . Thus, removing actor ai (and all its incident simplices)
completely, will not change the simplicial structure of the
dual complex XR(B,A) at all, and thus will not change the
homology of the original complex XR(A,B).

The insight that removing dominated nodes does not change
the homology of the simplicial complex, suggests an algo-
rithm, as originally proposed (independently) by [17] and [18],
to simplify a simplicial complex by iteratively removing such
vertices. In the work by Barmak and Minian [18], they term
the removal of a dominated node a strong homotopy collapse,
node dominance is a stricter condition than that required for
a regular homotopy-preserving simplicial collapse [22].

In Figure 1, vertex v is dominated by vertex w, where vertex
w could have additional connections in the network which
are not shown. The removal of vertex v does not create or

destroy any connected components, loops, or voids (preserves
homology), and does not affect shortest path lengths between
other nodes (see Section III-A).

• So, turn off all nodes satisfying this inclusion

v

w

• So, turn off all nodes satisfying this inclusion

w

Fig. 1. Node v, dominated by node w. Removal of v only has local effects.

One more definition we will note is that of a 2-hop neighbor
set, which is the neighbor set of a node that also contains all
“friends of friends”, instead of just immediate neighbors:

N2[v] = {u ∈ V | (u, v) ∈ E, or (u, vi) ∈ E for some vi ∈ N [v]}

Performing the node dominance collapse using the 2-hop neighbor
set can allow greater collapsability in networks with few dominated
nodes. It also allows small holes in the flag complex (i.e. those
with hop length ≤ 6) to be “filled in”, so only larger homological
features are preserved. We will use this version of the node dominance
collapse on one of the data sets in Section IV.

3) Distributed algorithm for flag complexes: Assuming a flag
complex structure, the node dominance collapse can be performed
referring only to its 1-skeleton (the original graph under analysis).
Moveover, the criterion for determining node dominance requires
only local information, making the algorithm of distributed nature.
This algorithm was first presented in [19].

Each node v has the list of its neighbor set N [v], and it then
executes the following steps during each iteration:

Distributed algorithm for node dominance collapse
Broadcast N [v] to neighbors
for vi ∈ N [v], vi 6= v

Receive N [vi]
if N [vi] ⊆ N [v]

Broadcast OFF to vi
if OFF received from vi

Handshake to determine if v or vi turns off
end if

end if
end for
if OFF received OR Handshake determined v turns off

v designated OFF
else

Update N [v], omitting OFF neighbors

A very similar distributed algorithm is also possible in the non-
flag complex setting, where there exists some a priori information
about which k-tuples of simplices are related. An example of this
would be the list of movies and actors, or some other relation
(eg. authors/papers). In that case three actors (vertices) are only
spanned by a triangle when there is a single movie they all appeared
in together, not only if they had all appeared in movies together
pairwise, as in the flag complex case. To compute node dominance
in that setting, we only need to assume that each node has access
to its list of maximal simplices (eg. an actor has its movie list, an
author has its paper list, etc.). Then the algorithm above can proceed
exactly as written, with N [v] replaced by the maximal simplex list
of v.

III. PROPERTIES OF CORE AND PERIPHERY

In this section, we will outline both the analytical and empirically
observed properties of the core-periphery decomposition obtained
through the iterative node dominance collapse. Examples of the
observed properties on real-world data sets are presented in Section
IV-A.
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Analytical properties:
1) Shortest paths in the core are shortest paths in the original

network. (Network flow)
2) Nodes with betweenness centrality zero are not in the core

(Network flow)
3) A node is more likely to be dominated by a node sharing the

community membership(s) of its neighborhood set, compared
to a node which does not. (Community structure)

4) The homology of the flag complex of the core is the same as
the homology of the flag complex of the entire network (Global
structure)

5) The structure of the core is unique (all possible cores for a
given network are isomorphic as simplicial complexes) (Global
structure)

Observed properties:
• Core nodes typically have high degree and high betweenness

centrality. ‘Hub’ nodes are in the core. (Network flow)
• Nodes with multiple ground-truth community membership la-

bels tend to be in the core, while nodes with just one (or
no) community labels are usually in the periphery. (Community
structure)

• Using the peripheral groups, we can obtain candidate sets
that are seen to contain a large proportion of ground-truth
communities. See Section IV-C for details, and our use of these
candidate sets for community detection. (Community structure)

• The core is stable with respect to the order of collapses in the
iterative algorithm. (Global structure)

Throughout this section, for a graph G = G(V,E), the core GC =
G(VC , EC) is the graph induced by the set of nodes VC ⊆ V which
remain upon an iterative and total removal of dominated nodes from
V . Note that the set VC (and thus the core itself) is not necessarily
unique, because of a potential random ‘handshake’ in the Algorithm
from Section II-B3. The statements given below are valid for any
core obtained by the procedure of iterative node dominance collapse.
As we will discuss further in Section III-C below, all possible cores
obtained from the same initial graph have the exact same structure
(are isomorphic) [23].

A. Network flow

The properties in this subsection involve statements about shortest
paths between given nodes in the network. An outline of a proof
similar to Property III.1 is given in [17], and we include the proof
here for completeness.

Definition (Shortest paths). Given a graph G′ = G(V,E), for any
pair of points vi, vj ,∈ V , a path p = (vi = v1, v2, . . . , vl = vj)

∗

is a sequence of vertices such that (vk, vk+1) ∈ E for all k =
1, . . . , l− 1. The path has length |p| = l, and p is a shortest path if
l ≤ |p′| for any other path p′ from vi to vj . The set of all shortest
paths from vi to vj , in the graph G′ is denoted SPG′(vi, vj).

Property III.1 (Shortest paths in the core are shortest paths in the
original network.). For v1, v2 ∈ VC , if p ∈ SPGC (v1, v2), then
p ∈ SPG(v1, v2).

Proof: For any graph G′, let vj be dominated by its neigh-
bor vi. Consider any shortest path p = (. . . , vk, vj , vl, . . .)
passing through vj . Note that k, l 6= i [Proof by contradic-
tion: p = (. . . , vi, vj , vl, . . .) could be replaced by shorter path
(. . . , vi, vl, . . .), since N [vj ] ⊆ N [vi] so vl ∈ N [vj ] ⇒ vl ∈
N [vi]]. So p = (. . . , vk, vj , vl, . . .) can be replaced by p′ =
(. . . , vk, vi, vl, . . .), which is the same length as p, but doesn’t
contain vj .
Therefore, the length of all shortest paths in G′ (where vj is not the
source or destination) are preserved when vj is removed.

∗Note that there is no loss of generality by using indices 1,2,. . . ,l

Definition (Betweenness centrality). The betweenness centrality of a
node v is defined as the proportion of shortest paths between nodes
s and t that pass through v, summed over all pairs s, t 6= v. i.e.)

bc(v) =
∑
s,t6=v

|{p ∈ SPG(s, t)|v ∈ p}|
|SPG(s, t)|

Property III.2 (If the size of the core is greater than 1∗, nodes with
betweenness centrality zero are not in the core).

bc(v) = 0⇒ v 6∈ Vc

Proof: Using the definition of betweenness centrality above, we
can see that

bc(v) = 0⇒ |{p ∈ SPG(s, t)|v ∈ p}| = 0 ∀s, t 6= v.

Therefore, either
(i) deg(v) = 1

(ii) ∀s, t,∈ N [v], (s, t) ∈ E (so that . . . , s, v, t, . . . will not be in
any shortest path)

If (i), then v is dominated.
If (ii), then N [v] is a clique, so for any w ∈ N [v] with w 6= v,
N [v] ⊆ N [w]. This implies v is dominated by all its neighbors. In
this case, either v is removed and therefore in the periphery, or all
its neighbors are removed and v is the only node in the core. Since
we assume that the size of the core is greater than 1, v 6∈ VC .

Both of these properties speak to the ‘centrality’ of the nodes in
the core, with respect to the original network. Property III.1 tells us
that there is no way to shortcut through the periphery when traveling
between two nodes in the core, and Property III.2 says the nodes
that are not involved in any shortest paths are guaranteed to be
contained in the periphery. Together, we can conclude that the node
dominance collapse only has local effects (with respect to shortest
paths in the network), in that only shortest paths beginning or ending
at the dominated node are affected.

Empirically, we see that nodes with high betweeness centrality
and nodes with high degree will lie in the core (see Section IV-A
for concrete examples). These are ‘hub’ nodes, in terms of network
flow properties, so removal of nodes in the core have a much greater
impact on network information flow than removal of nodes from the
periphery.

B. Community structure
The community affiliation graph model (AGM) proposed by Yang

and Leskovec [13] assumes that the probability of an edge forming
between two nodes depends on the community membership(s) of the
nodes under consideration. This is similar to the traditional stochastic
blockmodel (which require communities to form a partition of the
network), or generalizations [24] of the stochastic blockmodel that
allow for overlapping communities, with the notable exception that
under AGM the edge density in the intersections of communities
is higher than the edge density in the non-overlapping portions of
communities.

For notation, consider the set C = {ck}mk=1 defining the m
communities in the network, where ck is the set of nodes belonging
to the kth community. Note that each node in V may belong to
zero, one, or multiple communities. For two nodes u, v ∈ V ,
let Cuv = {c ∈ C | u, v ∈ c} denote the set of communities
containing both u and v. We will also use the more general notation
CS = {c ∈ C | ∃v ∈ S s.t. v ∈ c} to denote the set of community
memberships for nodes in a given set S. Under AGM, an edge forms
between u and v, independently, with probability pc for each of the
communities c ∈ Cuv . In other words, denoting the probability of an
edge between u and v by p(u, v) = P [(u, v) ∈ E], we have

p(u, v) = 1−
∏

c∈Cuv

(1− pc). (1)

∗In practice, this assumption is almost always satisfied.
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Further, Yang and Leskovec define a baseline edge probability
ε = p(u, v) for u, v with no communities in common. They choose
ε = 2|E|

|V |(|V |−1)
, which is typically a number of orders of magnitude

smaller than the pc probabilities. For the proof of the following
result, we assume the AGM model for network community structure,
however the result would still hold for any model that bases the prob-
ability of an edge between two nodes on the community membership
of the nodes, where the probability of an edge is significantly higher
for nodes sharing communities than nodes not sharing communities.

Property III.3 (A node is more likely to be dominated by a
node sharing the community membership(s) of its neighborhood set,
compared to a node which does not.). In other words, v is dominated
by w with much higher probability when CN [v] ⊆ Cw as compared
to the case when CN [v] 6⊆ Cw

Proof: The probability that v is dominated by w is

P [v dom. by w] =
∏

vi∈N [v]

p(w, vi)

=

 ∏
vi∈N [v]
Cwvi 6=∅

1−
∏

c∈Cwvi

(1− pc)


 ∏

vi∈N [v]
Cwvi=∅

ε

In other words, v will be dominated by w, only if there
exist edges between w and all vi ∈ N [v]. Each of these
edges occurs independently, with probability p(w, vi), with
the value given in Equation (1) if w and vi share community
membership(s) (i.e. if Cwvi 6= ∅), and p(w, vi) = ε otherwise.
Since ε� pk for all k,

P [(w, vi) ∈ E | Cwvi 6= ∅]� P [(w, vi) ∈ E | Cwvi = ∅]

Therefore

P [v dom. by w | CN [v] ⊆ Cw]�
P [v dominated by w | CN [v] 6⊆ Cw]

In real world networks (as described in Section IV-A), nodes in
the periphery typically have one (or no) community membership(s),
while nodes in the core have multiple community memberships, and
lie in the intersections of communities. In Section IV-C, we will
take this interpretation further, by proposing a method for using the
peripheral components to obtain candidate sets which are likely to
contain communities of the network. We can think of the peripheral
components as the non-overlapping portions of the communities,
in which case the true network communities would consist of a
peripheral component, along with adjoining nodes in the core. It is
also possible that a single community could have non-overlapping
portions which “stick out” from the core in multiple places, on
account of which we propose a method of combining peripheral
components according to which core nodes they connect to. This
yields an algorithm for obtaining “candidate sets” which are intended
to contain the true network communities. This method is discussed
further in Section IV-C.

C. Global structure
As described in Section II-B, when the flag complex representa-

tions of the original network and the core network are used, the core is
seen to have the exact same homology as the original complex, in the
sense that their homology spaces are isomorphic in all dimensions.

Property III.4 (Homology is preserved in the core).

Hk(X(GC)) ∼= Hk(X(G)) for all k

Proof: This property follows immediately from the result of
Dowker’s Theorem (that a simplicial complex and its dual complex
have the same homology), combined with the observation that if a
vertex is dominated, its corresponding simplex in the dual complex
will be a face of the simplex corresponding to the dominating node,
and thus will not contribute to the structure of the dual complex.
An alternative formulation and proof is available in [18].

A corollary of Property III.1 is that at least one shortest cycle
for each homology class is retained in the core. Thus, not only is the
dimension of each homology space preserved, but the ‘hole locations’
in the network are also preserved. It is this additional property that
truly allows us to interpret the core as the global scaffolding for the
network.

Property III.4, together with Property III.3 tell us that nodes with
diverse friend sets (including bridging ties) will be in the core. If they
are not, it is only because they are dominated by another node with
all the same diverse connections. In real-world networks, we see that
the average clustering coefficient for nodes in the core is much lower
than in the network as a whole (see Section IV-A), which supports
the ‘diverse friend set’ interpretation, because the friends of a core
node are usually not friends with each other.

IV. ANALYSIS OF REAL-WORLD NETWORKS

We will use two data sets in this section as a running illustration,
both obtained from the Stanford SNAP network database [25]. The
first is a coauthorship network built from the DBLP computer
science bibliography, and the second is a co-purchasing network
from Amazon. The networks were originally analyzed by Yang and
Leskovec [11] in one of the first papers to systematically analyze
the properties of ground-truth communities (abbreviated in figures
as GTCs) in real-world networks. Both communities have ground-
truth community labels: 13,477 ground-truth community labels in
DBLP, defined as connected components of authors within the same
publication venue; and 271,570 ground-truth community labels in
Amazon, defined using product categories. Additionally, Yang and
Leskovec labeled 5000 of the communities in each data set as
“best” in terms of having community-like properties such as low
conductance or high triangle-participation ratio. We computed the
core-periphery decomposition for both networks using the iterative
node dominance collapse algorithm described in Section II-B3. For
the Amazon co-purchasing network, the periphery consisted of 70716
nodes (accounting for only 21% of the nodes in the network), each
of which were singletons, connected only to the core and not to
other peripheral nodes. To allow further collapse, we re-computed
the core using the 2-hop neighbor sets N2[v] described in Section
II-B2. This yielded 193,195 nodes in the periphery (57.7% of the
nodes in the network), with 70716 peripheral components, of which
20136 were non-singletons (of varying sizes). All analysis presented
below uses the regular node dominance collapse on the DBLP data
set, and the node dominance collapse based on 2-hop neighbor sets
for the Amazon data set.

Descriptive statistics for the networks, as well as for their asso-
ciated core-periphery partitions, are presented in Table IV. For the
computations of average degree and clustering coefficient, the values
were computed with respect to the entire network, and again with
respect to the induced subgraph under consideration (either the core
or periphery).

To verify the stability of the core under multiple realizations of
the node dominance collapse algorithm, we performed the following
randomization: For one realization of the iterated node dominance
collapse, we would compute the set of dominated nodes, pick one
at random to collapse, add the newly dominated nodes to the set of
dominated nodes, randomly pick the next dominated node to collapse,
and so on. After performing 100 realizations of the core-periphery
decomposition on the two data sets, we found that 99.58% (DBLP)
and 99.43% (Amazon) of the nodes in the core were present in the
core on every realization. The set of nodes that appeared in the
core on some (but not all) realizations was 0.89% (DBLP) 1.24%
(Amazon) the size of the core. Thus, not only is the shape of the
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TABLE I
DESCRIPTIVE STATISTICS FOR THE DBLP AND AMAZON DATA SETS, AND

THEIR CORE-PERIPHERY DECOMPOSITIONS.

DBLP Amazon
Nodes in core: 71,018 141,688
Nodes in periphery: 246,062 193,195
Nodes (total): 317,080 334,863
Edges within core: 318,741 347,527
Edges within periphery: 274,367 218,237
Edges between core and periphery: 456,758 360,108
Edges (total): 1,049,866 925,872
Mean degree:

Entire network 6.62 5.53
Core (w.r.t entire network) 15.41 7.45
Core (w.r.t. core) 8.98 4.91
Periphery (w.r.t entire network) 4.09 4.12
Periphery (w.r.t periphery) 2.23 2.26

Clustering coefficient:
Entire network 0.632 0.397
Core (w.r.t entire network) 0.285 0.219
Core (w.r.t. core) 0.255 0.182
Periphery (w.r.t entire network) 0.733 0.527
Periphery (w.r.t periphery) 0.385 0.293

Communities (total):
Number 13,477 271,570
Average size 53.41 11.67
Standard deviation of size 257.58 273.66

Communities (best):
Number 5000 5000
Average size 22.45 13.49
Standard deviation of size 201.08 17.52

core unique, but the actual nodes composing it are very stable in
these real-world data sets.

A. Relationship of core-periphery to network structure
For both data sets, we observe (Table IV) that nodes in the core

have higher degree than nodes in the periphery, with the difference
especially pronounced in the DBLP network. Additionally, nodes in
the core have lower clustering coefficient, which corroborates our
intuition that core nodes have “diverse friend sets”, so their friends
are not all friends with each other. Along with their high degree, this
is also interpretable as having reach outside of their local community.

Scatterplots showing the natural logarithm of betweenness central-
ity versus node degree are shown in Figure 2, with the two plots of the
same data alternating whether core or periphery is plotted on top, to
help display the region of overlap. As mentioned in Section III-A, all
nodes with betweenness centrality of zero (i.e. nodes through which
no shortest paths pass) are guaranteed to be in the periphery, and we
observe that additionally, all of the nodes with highest betweenness
centrality are in the core. For example, in Figure 2, it can be seen
that in the DBLP data set there is a threshold betweenness centrality
value (around ln(bc) = 17), above which all nodes are in the core,
while in the Amazon data set, it is the nodes with both high degree
and high betweenness centrality that appear exclusively in the core.

Figure 3 shows the number of ground-truth community assign-
ments per node in the core and periphery of the DBLP and Amazon
networks. Out of all the nodes in the periphery, 22.11% had no
ground-truth community (GTC) membership labels, 57.39% had
exactly one, and 20.49% had more than one GTC membership label.
On the other hand, out of the nodes in the core 85.02% had multiple
GTC membership labels, while 12.65% had a single community,
and only 2.33% had no GTC label. From another perspective, the
periphery contained 97.05% of the nodes without a GTC label,
94.02% of the nodes with a single label, but 45.51% of the nodes
with multiple labels (however of those nodes multiply labeled, the
average number of labels was 2.9 in the periphery, but 7.0 in the
core). A similar behavior is observed in the Amazon network, albeit
to a lesser extent, and likely due to the average number of labels per
node being much higher.

Fig. 2. Log betweenness centrality vs degree in core and periphery (DBLP-
top, Amazon-bottom)
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Fig. 3. Number of community memberships for nodes in core and periphery
(DBLP-top, Amazon-bottom)

B. Role of core in network flow

To demonstrate the key role our core nodes play in information
flow over the network, we computed their contribution to the shortest
paths of the network. For each network, we randomly chose 1000
pairs of nodes, and computed shortest paths between them. Since
100% of these paths contain at least one node from the core,
we computed the proportion of each path that is in the core. For
comparison, we chose three sets of nodes, each with the same number
of nodes as the core: chosen uniformly randomly; using the nodes
of highest degree; and using the nodes with highest betweenness
centrality. Then, using the same 1000 shortest paths, we computed
the proportion of nodes from each path belonging to each of these
sets. Taking the average over all 1000 paths, the mean proportion
of each path contained in the four sets (Core, Highest BC, Highest
Degree, and Random) are shown in Table IV-B. Since betweenness
centrality measures how many shortest paths pass through a node,
the nodes with highest betweenness centrality should be the optimal
choice for this measure (if considering all shortest paths in the entire
network), so it is not surprising that they have the highest proportion
of shortest path nodes. What is somewhat more surprising, is that
for both data sets, the nodes in the core out-perform the nodes with
highest degree, so a greater proportion of nodes in shortest paths
belong to the core, than belong to the equal-sized set of highest
degree nodes. The proportion of nodes in the shortest paths that
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TABLE II
IMPORTANCE OF CORE NODES, HIGH BETWEENNESS CENTRALITY NODES,

HIGH DEGREE NODES, AND RANDOMLY CHOSEN NODES, IN SHORTEST
PATHS OF THE DBLP AND AMAZON NETWORKS

Proportion of nodes in shortest paths
belonging to important sets

DBLP Amazon
Highest BC 0.785 0.892
Core 0.753 0.841
Highest degree 0.739 0.698
Random 0.222 0.427

belong to the Random set give us a baseline probability from which
to compare the other choices of “important” nodes. Recall also, that
betweennness centrality is very expensive computationally, requiring
global information, so it is useful that the distributed core-periphery
computation be nearly comparable at obtaining nodes central to
network flow.

C. Community detection

The findings of this study are consistent with the community
affiliation graph model (AGM) of Yang and Leskovec [13], [14],
in the sense that it supports an overlapping community model
for social and information networks where the probability of an
edge between two nodes is related to their common community
membership(s), with higher probabilities of edges between nodes
that have multiple communities in common. Under this model, we
showed that nodes are only dominated (with very high probability)
by nodes which share their community memberships. Interpreting
our peripheral components with respect to this model, they appear to
be the ‘non-overlapping’ parts of communities that stick out of the
network. Figure 4 shows embeddings of some peripheral components
from the DBLP data set as examples, where the peripheral component
is drawn in black, while the core nodes and connecting edges are
grey. The internal structure and connectivity to the core can vary
considerably between peripheral components.
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Fig. 4. Example peripheral components.

In light of the interpretation of peripheral components as non-
overlapping portions of communities, we propose an algorithm which
consists of taking unions of these peripheral components, along with
their neighboring nodes in the core, to obtain candidate sets for
community detection.

More precisely, let PC = {pci}|PC|
i=1 denote the set of peripheral

components in the network, where each node in the periphery is
in exactly one peripheral component, pci. Then define the extended
peripheral components PC+ = {pc+i }

|PC|
i=1 where

pc+i = {v ∈ Vc | ∃ vj ∈ pci s.t. (vj , v) ∈ E} ∪ pci,

so each extended peripheral component additionally contains all the
nodes in the core that share an edge with a vertex of the peripheral
component. The extended peripheral components are meant to ap-
proximate ground-truth communities in the data set, however there
are large numbers of very small size (such as those consisting of an
isolated peripheral node and its single neighboring core node). We
consolidate extended peripheral components into “candidate sets” by
taking, for each v ∈ VC , the union of all extended peripheral groups

that include v. So we obtain {csv}v∈VC , where

csv =
⋃

pc+
i
∈PC+

v∈pc+
i

pc+i .

For example, if there were many peripheral nodes connected to
a single core node (but not connected amongst each other), this
group would be consolidated into a single candidate set. We then
remove any candidate sets csv that are repetitions or subsets of other
candidate sets, to obtain our final set of maximal candidate sets: CS.
Intuitively, our candidate sets are meant to approximate ground truth
communities, or unions of ground truth communities (that overlap on
common core nodes).

To judge the performance of our candidate sets for the purposes
of community detection, we also ran the BIGCLAM algorithm [15]
on the DBLP data set. Popular methods for detection overlapping
communities include clique percolation, link clustering, and fuzzy
detection methods using mixed-membership stochastic block models
(see [12] for a survey), however none of these methods scale up
well to networks with hundreds of thousands or millions of nodes.
The recent exception to this is Yang and Leskovec’s BIGCLAM
algorithm, which can estimate the overlapping community structure
for large networks. The BIGCLAM algorithm (available in the SNAP
C++ package [26]) allows the user to input the expected number
of communities, but runs into memory problems if the number of
communities is larger than a few hundred. It also has an option for
the algorithm to learn the appropriate number of communities, with a
default to test between 5 and 100 communities. Therefore, to obtain
a set of communities of the same order as the number of ground-
truth communities (13,477 for the DBLP data set), we performed
BIGCLAM in a nested manner. First obtaining 100 communities, and
then further subdividing each of these, where the optimal number of
subcommunities was most often also 100. This yielded a total of
9904 detected communities from the BIGCLAM algorithm. We used
the same method for analysis of the Amazon data set, yielding 8899
BIGCLAM communities, even though that network has a much larger
number of ground-truth communities (271,570). For both data sets,
the number of candidate sets obtained using our method was around
40,000 (47,134 for DBLP and 37,449 for Amazon).

To measure the fit of the candidate sets and BIGCLAM communi-
ties to the ground-truth communities, we used precision, recall, and
average F1 score. For a detected community C1 and ground truth
community C2 (the target), the precision is the proportion of detected
nodes that belong to the target:

precision(C1, C2) =
|C1 ∩ C2|
|C1|

,

the recall is the proportion of target nodes captured in the detected
community:

recall(C1, C2) =
|C1 ∩ C2|
|C2|

,

and the F1-score is the harmonic mean of precision and recall:

F1(C1, C2) =
precision(C1, C2) · recall(C1, C2)

2(precision(C1, C2) + recall(C1, C2))
.

These three values for a given ground-truth community are obtained
by maximizing each over all candidate sets (BIGCLAM communi-
ties), and an average precision, recall, and F1-score for the ground-
truth communities is obtained. Similarly, the three values are obtained
for each candidate set (BIGCLAM community) by thinking of it as
the “target” community, and maximizing precision, recall, and F1-
score over all ground-truth communities, and then taking the average
of these maxima.

Using all three of these values (precision, recall, and F1-score)
helps offset some of the discrepancies caused by the varying numbers
of ground-truth communities, candidate sets, and BIGCLAM commu-
nities. Since the matching of ground-truth communities onto detected
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TABLE III
DETECTION OF ALL GROUND-TRUTH COMMUNITIES BY CANDIDATE SETS

AND BIGCLAM COMMUNITIES

DBLP (all 13,477 communities)
Candidate sets BIGCLAM

ground-truth detected average ground-truth detected average
Recall 0.7620 0.5401 0.6511 0.7418 0.4478 0.5948
Precision 0.4319 0.4960 0.4640 0.2366 0.6261 0.4314
F1-score 0.4233 0.2565 0.3399 0.2696 0.2721 0.2709

Amazon (all 271,570 communities)
Candidate sets BIGCLAM

ground-truth detected average ground-truth detected average
Recall 0.8481 0.8721 0.8601 0.9213 0.8203 0.8708
Precision 0.2545 0.8728 0.5636 0.1124 0.9861 0.5492
F1-score 0.3218 0.4815 0.4017 0.1611 0.4685 0.3148

DBLP (5000 best communities)
Candidate sets BIGCLAM

ground-truth detected average ground-truth detected average
Recall 0.9414 0.2559 0.5987 0.9054 0.2678 0.5866
Precision 0.4313 0.3121 0.3717 0.3065 0.4216 0.3640
F1-score 0.5221 0.1446 0.3333 0.3840 0.1913 0.2877

Amazon (5000 best communities)
Candidate sets BIGCLAM

ground-truth detected average ground-truth detected average
Recall 0.9893 0.0222 0.5058 0.9072 0.0728 0.4900
Precision 0.4781 0.0404 0.2593 0.4535 0.1224 0.2880
F1-score 0.5753 0.0241 0.2997 0.5100 0.0753 0.2927

communities, but also the matching of detected communities onto
ground-truth communities, are considered, having more candidate sets
than BIGCLAM communities will not necessarily be an advantage.

Table IV-C gives the values for recall, precision and F1-score
when comparing the ground-truth communities to our candidate sets
(left three columns), and to the BIGCLAM communities (right three
columns). The performance using candidate sets and BIGCLAM
communities are compared for each measure (eg. “ground-truth com-
munity recall”, or “ average precision”), with the values in boldface
indicating the method (candidate sets or BIGCLAM) with superior
performance in that measure. The column “ground-truth” gives the
average values for the ground truth communities (when maximized
over the detected communities), and the column “detected” gives the
average for the detected communities (when maximized over ground-
truth communities).

Our candidate sets give better overall community detection perfor-
mance than the BIGCLAM communities (as measured by the average
F1-score). For the DBLP data set, the ground-truth communities
were contained in the candidate sets (based on higher ground-
truth recall scores), more so than the candidate sets found strongly-
matching ground-truth communities (although it is worth noting, as
Yang and Leskovec did, that not all “true” ground-truth communities
necessarily have ground-truth community labels in this data set). The
performance on the Amazon data set is quite good, with very high
ground-truth recall and detected recall and precision for both the
candidate sets and the BIGCLAM methods, although our candidate
sets out-performed BIGCLAM in detected recall, as well as ground-
truth, detected and average F1-scores.

The analysis was repeated using only the 5000 “best” ground-truth
communities, and again the candidate sets resulted in higher average
F1-scores than the BIGCLAM communities. The main difference
was that recall for the ground-truth communities increased (on
average, each ground-truth community had a candidate set it was
94% contained in), while recall and precision for the candidate sets
decreased (since there were fewer ground-truth communities to match
to, fewer detected had a well-matched ground-truth community). It
is also worth noting that for the DBLP data set 81.7% of the best
ground-truth communities were completely contained in at least one
candidate set, while 73.8% of the best ground-truth communities were
completely contained in at least one BIGCLAM community. For the

Amazon data set, these values were 94.8% for the candidate sets, and
82.8% for the BIGCLAM communities.

The challenge of detecting thousands of overlapping communities
from a large network is formidable. Currently there are no available
methods which achieve excellent performance when comparing de-
tected to ground-truth communities. Based on the analysis of two
large, real-world data sets with ground-truth community informa-
tion, our proposed algorithm of obtaining candidate sets from the
peripheral components of the core-periphery decomposition, yielded
more accurate community detection results than the state-of-the-art
BIGCLAM algorithm for overlapping community detection, with
much lower complexity and a distributed algorithm.

V. CONCLUSION

This study posed the question “How does the concept of node
dominance relate to local and global properties of a network?”.
Previous work determined that iteratively removing dominated nodes
is a homology-preserving way to perform a collapse/simplification of
a simplicial complex [18] [17]. This was extended into a distributed
algorithm for the case of flag complexes [19]. Here, we undertook an
investigation of the theoretical and practical properties of performing
such a collapse on social and information networks, and discovered
that it has implications for both a core-periphery decomposition of
the network, as well as uncovering network community structure.

The properties of the core and periphery that we developed in
Section III, and observed in Section IV, lead to the interpretation
that nodes in the core obtained using node dominance collapse are
important with respect to network flow, to the global structure of the
network, and to the network community structure.

The core nodes are essential to network flow because of two
properties: a shortest path between any two points in the core
is contained in the core; and nodes with betweenness centrality
zero (through which no shortest paths pass) are never in the core.
Observationally, ‘hub’ nodes are contained in the core, and core nodes
often have high degree and high betweenness centrality.

The global structure of the network is preserved in the core
because the homology of the core is the same as the homology of
the entire network, when considering the respective flag complexes.
This can be interpreted as node dominance collapses only having
‘local’ effects, and that nodes with diverse neighbor sets (including
bridging ties) are members of the core, maintaining a scaffolding
for the global structure of the network. The observation that each
core node typically has a diverse neighbor set (their friends are not
all friends with each other) is also quantified by their relatively low
clustering coefficient values.

Finally, the core is related to the community structure of the net-
work because under community membership models where within-
community connections have significantly higher probability than
cross-community connections, we see that nodes are dominated (with
high probability) by nodes that share their community membership(s).
In real-world networks with overlapping ground-truth community
labels, this is observed through nodes with multiple community
memberships typically residing in the core, and through nodes with
single (or no) community labels occupying the periphery.

The result relating the core-periphery to the community structure
of the network gives us an additional application: the use of the
peripheral components to generate “candidate sets” which are likely
to contain the true network communities. Many state-of-the-art com-
munity detection algorithms which allow for overlapping communi-
ties, are not scalable past network sizes of a few thousand nodes.
The notable recent exception is Yang and Leskovec’s BIGCLAM
algorithm, which our method is shown to outperform on their DBLP
dataset.

Implications of this work may be of interest not only to researchers
explicitly interested in a core-periphery decomposition of complex
networks, but to anyone studying community structure, or key nodes
for network flow. Hopefully this work will also serve to further
popularize the node dominance collapse for use in general contexts
where data is represented using a simplicial complex structure.
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One limitation of our method is that some networks don’t collapse
using node dominance. For example, on Facebook there are very
few people who have a friend list completely contained in the
friend list of another person. One option for future research in this
direction would involve performing the node dominance collapse
locally on ego networks, and consolidating the resulting communities.
Another potential drawback is the nondeterministic nature of the node
dominance collapse algorithm. Perhaps under some circumstances it
would be wise to consider the set of nodes that are “ever in the core”,
or “always in the core”, under repeated realizations of the algorithm.
In practice however (Section IV-A), we have seen that these two sets
are quite similar.

One other area for future research is in the study of the core under
a graph evolution. Either using observed or model-generated dynamic
networks, studying how the core varies over time could be used to
help evaluate or predict community structure and key players in the
network.
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