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Abstract

Origin-Destination Matrix (ODM) estimation is a classical problem in transport engineering
aiming to recover flows from every Origin to every Destination from measured traffic counts
and a priori model information. In addition to traffic counts, the present contribution takes
advantage of probe trajectories, whose capture is made possible by new measurement technolo-
gies. It extends the concept of ODM to that of Link dependent ODM (LODM), keeping the
information about the flow distribution on links and containing inherently the ODM assign-
ment. Further, an original formulation of LODM estimation, from traffic counts and probe
trajectories is presented as an optimisation problem, where the functional to be minimized con-
sists of five convex functions, each modelling a constraint or property of the transport problem:
consistency with traffic counts, consistency with sampled probe trajectories, consistency with
traffic conservation (Kirchhoff’s law), similarity of flows having close origins and destinations,
positivity of traffic flows. A primal-dual algorithm is devised to minimize the designed func-
tional, as the corresponding objective functions are not necessarily differentiable. A case study,
on a simulated network and traffic, validates the feasibility of the procedure and details its
benefits for the estimation of an LODM matching real-network constraints and observations.

1 Introduction

The estimation of traffic flows over networks is a keystone for understanding their usage and
behaviour in specific situations, e.g., network has a limited capacity or traffic may significantly

∗Preliminary versions of this work were presented in [1, 2]. Work supported by ANR-14-CE27-0001 GRAPHSIP
grant and ANR-12-SOIN-0001-02 Vél’Innov grant.
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vary with time or with particular events. Estimating traffic flows is thus needed for the network
efficiency analysis, for traffic prediction, and traffic optimisation. Origin-Destination matrices
(ODM) estimation is one of the classical problem in transport engineering [3] but also in the
study of Internet traffic [4, 5, 6]. ODM are double entry tables indexed by network zones or major
nodes, whose elements contain the demand of traffic from origins indexed by rows, to destinations,
indexed by columns. With respect to the transport field, ODM can be recovered from traveller
interviews directly. This is however a long, difficult and costly process. Thus, since the 70’s and
as a consequence of the generalisation, in occidental cities, of the access to link counts (e.g., by
magnetic/inductive loops), many researches have sought to estimate the ODM with traffic counts
as their primary source of data.

Estimating ODM from link counts. Formally, a road network is represented by a graph
G = (V,L), with T the corresponding ODM, of size |V | × |V |. Magnetic loops, on links l ∈ L,
produce |L| measures represented by vector q. Thus, ODM estimation problem amounts to solving
the following inverse problem:

q = F (T ) + ε (1)

where the assignment function F relates OD flows to network link, for comparisons against traffic
counts q, and where ε models the measurement error. The two main difficulties in solving Problem
(1) stem, first, from its being ill-conditioned: the size of the quantity to be estimated T is larger
than that of the available measures q and second, from F being unknown and thus often modelled.

To solve Problem (1), a common approach is to rely on the so-called four-steps model, that con-
sists of Trip Generation, Trip Distribution, Modal Split1, and Trip Assignment. The first two steps
permit to design T while the Assignment step, amounts to specifying F . Interested readers can re-
fer to [7] for more information on this framework. The use of this model requires a fine parameters
tuning for the three steps. Hence, a large literature can be found, with numerous variations for
both trip distribution and assignment. A detailed review is beyond the scope of the present contri-
bution, and interested readers are referred to e.g., [8, 3, 9, 10, 11, 12, 13, 14] and references therein.

Goals, contributions and outline. Despite the fact that T is of size |V |×|V |, solving (1) is in
fact an inverse problem of size |V |×|V |×|L|, because of the required assignment step that actually
involves the number of links in the network. The goal of the present contribution is to directly
account for the real dimensionality of the problem by proposing a new and original description
tool for traffic, that directly includes assignment: the Link dependent Origin Destination Matrix
(LODM). LODM represents the OD flows already assigned to each link of the network, thus in-
corporating the assignment, or equivalently making its independent specification unnecessary. We
also propose to estimate LODM as an inverse problem of dimension |V | × |V | × |L|. We rely on
traffic counts q and, in addition, on a new set of data: partial (or sampled) knowledge of trajec-
tories, whose collection is now made possible by new technologies such as GPS [15], Bluetooth
[16, 17, 18], Floating car data [19]. Section 2 formalises the transport problem, from its engineer-
ing perspective. Section 3 details five significant properties imposed either by the network or for
consistency with the observed data and turns them into five components of an objective function

1The Modal Split’s interest lies when one consider several modes of transport. Here however, the focus is on car
trips only and this step is ignored.
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that formalises LODM estimation from traffic counts and sampled trajectories. Because these five
functions are convex but non necessarily differentiable, a proximal primal-dual algorithm is devised
to minimize the corresponding optimisation problem results. To finish with, the feasibility of the
proposed approach and the assessment of its estimation performance are investigated in Section
4, on a case study consisting of network and traffic simulations, designed to match closely various
realistic network and traffic in large western metropolitan cities.

Notations. The following notations are used throughout this article: X, X and X refer to

vectors, matrices and tensors, respectively. The Hadamard product (element-wise product) of Y

and X is denoted Y ◦X. Subscript indices are used for dimensions over the nodes of the graph and

the index i is used to label origins, j to label destinations, k,m, n and p to label nodes in general.
Superscript indices are used for dimensions over the links and the indexes l and e are favoured.

The symbol • is used to denote the dimension that does not contribute to a sum: e.g., the sum
over first and third dimensions, indexed respectively with i and l, is written

∑
i•lX.

We denote by ‖ · ‖1 the element-wise first norm for matrices: e.g., ‖X‖1 =
∑

ij |Xij |.

2 Road Network and Link-Dependent ODM

2.1 The problem

The network is described as a graph G = (V,L) where the finite set of nodes V models intersections
of the road network. Each node also defines a possible origin or destination. L is the set of directed
edges, each corresponding to a direct itinerary (or road) linking two nodes (i.e., not going through
another node in V ). The number of road users is denoted N . A schematic (small) such graph is
illustrated in Fig. 1a.

On such a graph, LODM consists of a tensor of size |V |×|V |×|L|, labelled Q = (Qlij)(i,j)∈V 2,l∈L.

As illustrated in Fig. 1, each trajectory adds a count of 1 in Qlij if the link l is on the origin-
destination path (i, j). Therefore, Q consists, for each link l ∈ L, in an OD matrix of size |V |×|V |.

To perform the estimation of Q, we use information stemming from probe trajectories as well

as traffic counts on each link. The set of trajectories can be measured from various sources (GPS,
Bluetooth, ...) and the actual technology matters little in the procedure. We propose here, though,
to refer to the Bluetooth technology, which is of great interest as it currently provides trajectory
datasets with the highest penetration rate, compared to other technologies; the penetration rate is
the fraction of vehicles equipped with the chosen technology and from which information needed to
reconstruct trajectory can be collected [16]. Trajectory information is stored into a tensor labelled
B, of size |V | × |V | × |L|. This tensor can be read as a sampled version of Q, from only a fraction

of the total traffic. Traffic counts consists of the total volume of traffic on each link l ∈ L, labelled
q, of size |L|, irrespective of OD pairs. Traffic counts can be, for instance, measured by magnetic
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Figure 1: Example of a simple network (a) with the associated tools describing the topology and
the traffic (b).

loops.

A variational approach will now be devised to estimate Q?, the real LODM, by means of non-

smooth convex optimisation from B and q. The involved criterion represents on the one hand the

relationship between the tensor Q and the measures (B, q) and, on the other hand, properties of

the road network and traffic constraints (e.g., car conservation at intersections).

2.2 Structure of the graph and of the traffic

The structure of the graph is given by the incidence and excidence matrices denoted respectively
I and E of size |V | × |L|. These matrices describe the relations between the nodes and the edges,
such that, for every (k, l) ∈ V × L,

I lk =

{
1 if the link l is arriving to the node k,
0 otherwise,

Elk =

{
1 if the link l is starting from the node k,
0 otherwise.

(2)

Note that in graph theory, it is customary to name the difference (I −E) as Incidence Matrix ;
however we need both matrices separately in this work.
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Let us also define the tensors I1 and I2 (resp. E1 and E2) corresponding to the replication of

I (resp. E) such that,

(∀m ∈ V ) (I1)
l
km =

{
1 if link l is arriving to node k,
0 otherwise,

(∀k ∈ V ) (I2)
l
km =

{
1 if link l is arriving to node m,
0 otherwise.

(3)

Using these notations, we relate the LODM Q to the classical OD matrix T of size |V | × |V |
where each element Tij contains the traffic flow originating from the node i and having j for
destination as follows:

T =
∑
••l

E1 ◦Q =
∑
••l

I2 ◦Q. (4)

We denote by O (resp. D) the origin (resp. destination) vector, of size |V | as the sum of T over
the second (resp. first) dimension. It represents the flows originating (or having for destination)
each node of the graph. Formally,

{
D = (

∑
i• T )>,

O =
∑
•j T .

(5)

2.3 Model, Measures and Estimates

For this problem, we consider an urban road network composed of major roads, ignoring residential
and service streets, seldom equipped with traffic sensors.

The set of users with their trajectories on those major roads, are represented through the tensor
Q, as described above and that we wish to estimate.

For this estimation, we first assume that every road is equipped with a magnetic loop, counting
the number of cars using it. It implies therefore that every element in q is known. This assumption
is realistic in our case considering major roads only. The magnetic loops are usually subject to
counting errors and it is modelled here by a noise ε. Hence the measured quantity q reads:

q = q? + ε (6)

where q? is the true traffic volumes.

Second, we also assume that the proportion of Bluetooth equipped vehicle can vary with each
possible pair of OD but that it doesn’t change along a trajectory (the tracking devices are not
turned off and on while the car is running). This assumption allows us to define an OD-dependant
penetration rate ηo of size |V | × |V |. Experiments in Brisbane have shown that the average
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Bluetooth penetration rate is around 25% [20]. Moreover, B appears as a noisy version of Q? for

which the noise level depends on the penetration rate. The relation between the tensors B to Q?

can thus be modelled by a Poisson law, typically involved in counting processes. This leads to a
model

(∀i, j, l ∈ V × V × L) Bl
ij = P((ηo)ijQ

?l
ij). (7)

3 Variational Approach

Instead of using the traditional four-steps model resolution, iterating over a process involving a
priori information, modelling of the traffic, estimating the variables of interest, comparing to the
observed measures and tuning the models, we propose here the use of a variational approach. Both
our knowledge of the network and of the traffic states are included within an objective function
that combines together five terms to be jointly minimised.

3.1 Objective Function

The terms of the objective functions can be classified in three types: The first type, composed of
functions 3.1.1, 3.1.2 and 3.1.3, is aiming for consistency between the measures and the estimate.
The second type, with function 3.1.4, stems from the topology of the network. The third and
last type, with function 3.1.5, comes from an additional assumption based on our knowledge of
transport networks.

3.1.1 Traffic Count Data Fidelity fTC

Ensuring the consistency with traffic counts would require that Eq. (6) is satisfied. Noting that:

q? =
∑
ij•

Q? (8)

and assuming a random unbiased Gaussian noise ε for the magnetic loops, as in Eq. (6), the
constraint of Eq (8) can be released and leads to the following function:

fTC(Q) = ‖q −
∑
ij•

Q‖2. (9)

3.1.2 Poisson Bluetooth Sampling Data Fidelity fP

Second, the consistency with Bluetooth measures, as modelled in Equation (7) requires the knowl-
edge of the OD-dependent penetration rate ηo. This information, of size |V | × |V |, is not directly
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available from q and B, therefore we introduce an approximation of this penetration rate of size

|L|, noted η and calculated as:

η =
q∑
i,j,•B

. (10)

The resulting data fidelity term, denoted fP , models the minus log-likelihood associated with
the Poisson model [21]:

fP (Q) =
∑
ijl

ψ
(
Bl
ij , η

lQlij

)
(11)

where, for every (u, v) ∈ R2,

ψ(u, v) =


−u log v + v if v > 0 and u > 0,

v if v ≥ 0 and u = 0,

+∞ otherwise.

(12)

3.1.3 Definition Domain Constraint fC

Third, another term ensuring data consistency models that the total flow should be greater than
the flow of Bluetooth enabled vehicles. It consists thus in imposing that Q belongs to the following

convex set C:
C =

{
Q =

(
Qlij
)
(ijl)∈V×V×L ∈ R|V |×|V |×|L| | Qlij ≥ Bl

ij

}
. (13)

The corresponding convex function is the indicator function ιC :

fC(Q) = ιC(Q) =

{
0 if Q ∈ C,

+∞ otherwise.
(14)

3.1.4 Kirchhoff’s Law fK

This property is the classical law for flows on network, the Kirchhoff’s law, describing the conser-
vation of cars at intersections. It takes into account the network topology. It requires that, for
each OD pairs and at every node, the number of cars is conserved when properly accounting for
origins and destinations. For every origin i ∈ V , destination j ∈ V and node k ∈ V of the network,
this yields to, ∑

l

ElkQ
l
ij − δikTij︸ ︷︷ ︸

origin
(source)

=
∑
l

I lkQ
l
ij − δjkTij︸ ︷︷ ︸

destination
(sink)

. (15)

This constraint can then be summarized as(
∀(i, j, k) ∈ V 3

) ∑
l

AlijkQ
l
ij = 0 (16)

7



where the |V | × |V | × |V | × |L| tensor A is defined as

(
∀(i, j, k, l) ∈ V 3 × L

)
Alkij =

(
Elk − I lk

)
− (δik − δjk)Eli. (17)

It results in a convex function to be minimised:

fK(Q) =
∑
ijk

(∑
l

AlijkQ
l
ij

)2
. (18)

Compared to our previous works [1, 2], here the Kirchhoff’s law is applied per OD pairs and
not simply at a global scale. Indeed, the Kirchhoff’s law needs also to be satisfied at each node,
independently of the origin and destination of the cars. Satisfying this global Kirchhoff’s law of
[1, 2] is a consequence of the one used here.

3.1.5 Total Variation fTV

Finally, from a transport perspective it seems realistic to assume that for two paths having close
origins (resp. destinations) and same destination (origin), the trajectories in the network should
be correlated (e.g., use of similar roads). Such property can be written as

(∀i ∼ i′)(∀j ∈ V )(∀l ∈ L) Qlij ∼ Qli′j (19)

(∀j ∼ j′)(∀i ∈ V )(∀l ∈ L) Qlij ∼ Qlij′ (20)

In order to be used in a variational approach these relationships can be gathered within the convex
function fTV defined as the total variation:

fTV (Q) =
∑
i∼Ni′

∑
j,l

ωii′ |Qlij −Qli′j |+
∑
j∼Nj′

∑
i,l

ωjj′ |Qlij −Qlij′ | (21)

where Ni′ models the neighbourhood of i′ and where ωii′ are positive weights on edges detailed
later. The use of the `1-norm is justified for its edge preservation properties. Indeed, it has been
shown in [22, 23] that the `1-norm is adapted for cases where one seeks for spatial correlations
while allowing some irregularities, e.g., edges, in image analysis. From a traffic perspective, we
want to encourage users from similar origin (resp. destination) and with same destination (resp.
origin) to use similar routes, but also want to allow some irregularities, e.g., for nodes in between
two major roads where both could be a possible choice. Those nodes can be interpreted as edges
in image analysis.

Equation (21) can further be simplified using a weighted effective incidence matrix, denoted J ,
defined as (

∀(k, l) ∈ V × L
)

J lk = W l(I lk − Elk) (22)

and thus having a size |V | × |L|, where each element W l denotes the weight for the link l. For this
work we choose the following vector W of size |L|:(

∀l ∈ L
)

W l = e
− dl
d0 (23)

8



where dl models the length of the link l and d0 is the average distance of the nodes. For the
simulated network:

d0 =

√
GridWidth ·GridHeight

|V |
. (24)

Note that W l = ωkm if l is a link between k and m.

Eq. (21) can then be rewritten as

fTV (Q) =
∑
l

‖J>Ql‖1 +
∑
l

‖J>(Ql)>‖1. (25)

where Ql models the l-th extracted matrix from Q. Its dimension is thus |V | × |V |.

3.2 Algorithm

To sum up, the objective is to find an estimate of Q? satisfying

Q̂ ∈ Argmin
Q

{
γTCfTC + γP fP + γCfC

+ γKfK + γTV fTV
}

(26)

where γ· are positive weights applied to the objectives and model their relative importance within
the global objective.

All the five functions involved in Eq. (26) follow the usual assumptions required when deal-
ing with convex optimisation tools: they are convex, lower-semicontinuous (l.s.c.) and proper.
Moreover, both the functions fTC and fK are differentiable and their gradients are given below:

∇fTC(Q) =


−2

ql −∑
k,m

Qlkm

l

ij


(ijl)∈V×V×L

(27)

and

∇fK(Q) =

(2
∑
k

Aljik
∑
e

Aeijk Q
e
ij)

)l
ij


(ijl)∈V×V×L

. (28)

Their Lipschitz constants are denoted βTC and βK respectively [24]. The other three functions
however are not differentiable and fTV involves a linear transformation H such as:

fTV (Q) = ‖H(Q)‖1 (29)

where H satisfies:
H : R|V |×|V |×|L| → R|L|×|V |×|L| × R|L|×|V |×|L|

Q 7→
((
J>Ql

)
l∈L,

(
J>(Ql)>

)
l∈L

) (30)

9



Algorithm 1 Primal Dual algorithm

Choose: γTC ≥ 0, γK ≥ 0, γTV ≥ 0, γP ∈ [0, 1], γD ∈ [0, 1]
Compute: χH , β = γTCβTC + γKβK , if γTV = 0, τ = 1.99

β , else choose (τ, σ) such as

τ = 0.9
β
2
+σχH

∈ [23σ,
3
2σ]

Set : Q0 = 0, (R0, S0) = (0, 0)

For k = 0,... :

1. Q̃
k+1

= Qk − τ
(
γTC∇fTC(Qk) + γK∇fK(Qk)

)
− τH∗(Rk, Sk)

2. Qk+1 = proxγCfC

(
proxτγP fP

(
Q̃
k+1
))

3.
(
R̃
k+1

, S̃
k+1)

= σH(2Q̃
k+1
−Qk) +

(
Rk, Sk

)
4.
(
Rk+1, Sk+1

)
=
(
R̃
k+1

, S̃
k+1
)
− σ · proxγTV /σ,`1

(
1
σ R̃

k+1
, 1σ S̃

k+1
)

Stop if:
‖Qk+1−Qk‖2

‖Qk+1‖2
< 10−6 OR k > 105

and whose adjoint is

H∗ : (R,S) 7→
(
J Rl

)
l∈L

+
(

(J Sl)>
)
l∈L

. (31)

In the following, we denote χH the norm of this operator. For further details about the way to
compute this norm, the reader can refer to [24].

This optimisation problem is solved by means of a primal-dual proximal algorithm, as in
[25, 26, 27, 28], which is particularly suited when the objective combines differentiable and
non-differentiable functions along with linear operators. In such an iterative scheme, the non-
differentiable functions are involved through their proximity operator [29] defined as:

(∀u ∈ H) proxf (u) = arg min
x∈H

f(x) +
1

2
‖u− x‖22 (32)

where H denotes a real Hilbert space and f a convex, l.s.c., proper function from H to ]−∞,+∞].
For further details on proximal algorithms, the reader could refer to [30, 31, 32].

The proximity operator of the indicator of the convex set C has a closed form expression as a
projection [33]:

proxγCfC (Q) =

{
PC(Q) = max(Q,B) if γC > 0

Q if γC = 0.
(33)

10



The proximity operator of the function, fP , also have a closed form expression [21]:

proxγP fP (Q)

=
(

proxγPψ(Bl
ij , η

lQlij)
)
(ijl)∈V×V×L

=

(
Qlij − γP ηl +

√
|Qlij − γP ηl|2 + 4γPBl

ij

2

)
(ijl)∈V×V×L

.

(34)

The proximal operator of the sum of these two functions satisfies the following property [34]:

proxγCfC+γP fP (Q) = PC(proxγP fP (Q)). (35)

Last, the `1-norm, applied to H, as in Eq. (29), also has a closed form expression for its
proximity operator [35, 36, 37, 38]:

proxγTV ‖·‖1(R,S) =

(
sign(R) max{|R| − γTV , 0},

sign(S) max{|S| − γTV , 0}

)
.

(36)

The primal-dual proximal iterations designed for minimizing Eq. (26) are described in Algo-
rithm 1. Under some technical assumptions regarding the domain of definition and the following
condition [27, theorem (3.1)]:

1

τ
− σχH ≥

β

2
, (37)

where the β = γTCβTC + γKβK denotes the Lipschitz constant of γTCfTC + γKfK and σ > 0, the
sequence

(
Qk+1

)
k∈N converges to a minimizer of Eq. (26).

4 Simulated Case Study

4.1 Experimental setup

4.1.1 Simulation context

To test and validate the proposed method, a simplified road network model has been created. This
has been preferred to a real case study for three reasons: tractability, the possibility to access the
ground truth and the opportunity to explore the behaviour of the method for varied conditions.
However, the number of nodes, the connectivity, the number of users and their OD patterns have
been chosen to be consistent with those of a real networks.
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The number of nodes of the simulated network is |V | = 50 nodes. This number is kept
relatively low to allow for a thorough exploration of the possible weights γ· of problem (26). For
comparison, the Brisbane Bluetooth scanner network has around 900 intersections equipped with
vehicle identification devices. Other works on ODM estimation consider often few tens of nodes
(∝ 100 OD flows) [39] while very recent works considered up to 300 nodes [40].

For the simulation, nodes are first located randomly on a grid and then links are created while
aiming for an average connectivity of 6, a value consistent with that of real road networks [41].
This is done first, by means of a minimum spanning tree (computed by the Kruskal’s algorithm
[42]), then, by adding links randomly to the nodes with lower degree (sum of in and out edges)
provided that the added links do not cross or repeat an existing one.

The number of users is fixed to N = 105. This leads to an mean flow per link of 3000 users. In
big cities, it would correspond to around one hour of traffic during peak hours. Each node i has a
probability pO(i) of being an origin and similarly we define pD(j) the probability of node j to be
a destination. Thus pO and pD satisfy:{

D = E(N × pD),

O = E(N × pO).
(38)

An origin and a destination are randomly associated to each user, according to the probabilities
pO and pD. We simulate a preferred direction of travel, consistent with the trends observed in
urban context (mostly due to commuters). To this end, pO is decreasing linearly with the X-axis
of the grid while pD is increasing linearly. The shortest path from origin to destination is then
attributed to each user.

For each OD pair, a Bluetooth penetration rate is drawn from a Gaussian distribution of mean
30% and standard deviation of 10% (and truncated to be between 0 and 1). This choice accounts
for the variability of the ownership distribution of Bluetooth devices (which is not known) from
one node to another, depending, as an example, on the wealth of the neighbourhoods of the node.
Each user has a probability equal to the Bluetooth penetration rate drawn for its OD of being
equipped with a Bluetooth device. This gives us B while the full set of trajectories gives Q? for

ground truth. The measured traffic flow per link q is obtained from Q?, assuming the addition a

noise ε, for which each independent component is drawn from a Gaussian distribution N (0, r · q?).
For consistency with the noise usually measured on magnetic loops [43], we take r = 5%. Figure
2 illustrates the simulated case study with total volumes on the links (q) and the realisation of pO
and pD for the 105 users on the nodes.

4.1.2 Algorithmic parameters setup

As discussed in section 3.2, the objective function (26) depends on five parameters γ· ≥ 0. It
appears however that, as fC can only be 0 or ∞, exploring γC ∈ {0; 1} is enough. Moreover, the
minimum in Equation (26) is preserved by a linear operation over the four remaining parameters
γ·, and thus we choose γP ∈ {0; 1}. This would then correspond to two situations: with or without

12
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considering the data stemming from sampled trajectories in the estimation process. We then
explore the space of positive real numbers for the three remaining parameters γ·.

For those parameters, it has been observed that, for comparison purposes, it is justified to
compare scenarii for rescaled values γ·β·. Indeed, β· depends on the setup, in particular on q and
B.

The algorithm stops if the convergence criteria is satisfied (cf. Alg. 1) or after 105 iterations.

4.1.3 Performance evaluation

The efficiency of the estimation algorithm is assessed by comparing its results to the ground truth
Q? with two indicators. First, we denote RMSE the `2 norm of the error divided by the norm of

the ground truth (RMSE standing for Root Mean Square Error):

RMSE(Q̂) =
‖Q̂−Q?‖

‖Q?‖
. (39)

Second, EMD refers to the Earth Movers’ Distance [44], a metric often used for image or distribu-
tion comparisons. It corresponds to the minimal cost that must be paid to transform the histogram
of one image or distribution into the other.

We also provide a comparison of the estimates with two naive solutions denoted Q̂
0

and Q̂
1
,
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computed as the Bluetooth LODM multiplied by the mean Bluetooth penetration rate over the
whole network (η̂), or over each link (η) respectively, for every (i, j, l) ∈ V × V × L,

(Q̂0)lij = η̂ Bl
ij where η̂ =

∑
l

q/
∑
i,j,l

B,

(Q̂1)lij = ηl Bl
ij where ηl = ql/

∑
i,j,•

B.
(40)

4.2 Results

4.2.1 Finding the best estimates

Solutions to problem (26) have been explored through a systematic exploration of the γ· values
within the positive real numbers. Figures 3 and 4 illustrate the evolution of the criteria RMSE
(Fig. 3) and EMD (Fig. 4) as a function of one γ·, the others being fixed. It highlights the existence
of sets of parameters γ· for which the estimates have minimal criteria while being lower than the

criteria of the naive estimates Q̂
0

and Q̂
1
. Therefore, in the following we denote by Q̂

RMSE
the

estimate Q̂ minimizing the RMSE and by Q̂
EMD

the one minimising the EMD. That is:

Q̂
RMSE

∈Argmin
Q̂

RMSE(Q̂), (41)

Q̂
EMD

∈Argmin
Q̂

EMD(Q̂). (42)

Figure 5 represents the distribution of the elements in Q̂
0
, Q̂

1
, Q̂

RMSE
, Q̂

EMD
as histograms,

superposed to the ground truth Q? for comparison. As one could have expected from Eq (40), Q̂
0

contains only multiples of the penetration rate value η̂. It has therefore a higher EMD value than
other estimates.

For those four same estimates, Table 1 presents the values for RMSE, EMD, fTC (consistency
with observed counts) and fK (conformity with Kirchhoff’s law). These two functions are chosen
because they are the most important from a transport perspective point-of-view. When applicable,

the corresponding values for the γ· are indicated. The table illustrates that Q̂
0

is a good solution

from a transport perspective as it has low values for fTC and fK but is the worst performing

when it is compared to the ground truth Q? (both for EMD and RMSE). On the opposite, Q̂
1

has

better RMSE and EMD values than Q̂
0

but performs poorly on the relevant transport indicators.

Hence it is justified to actually solve problem (26) as none of the naive solutions bring satisfying
results. While doing so, both Q̂

RMSE
and Q̂

EMD
give similar results in term of comparison to

ground truth. As one might expect, their performances with respect to the transport indicators
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Figure 3: RMSE as a function of γTC βTC for γK = γTV = 0 and γC = γP = 1. Note that the
first point on the left is for γTC βTC = 0, to be distinguished from the logarithmic scale from the
second point and after.

are consistent with the weights applied to the corresponding functions: The solution Q̂
RMSE

is

reached for higher γTC and, therefore, performs much better on the fTC criterion while Q̂
EMD

has a relatively higher γK and hence satisfies the Kirchhoff’s law better. The question of which
solution is the best partly depends on the reliability of the link counts (if the noise is high, satisfying
perfectly fTC might not be relevant). Anyway, choosing between the two amounts to choosing the
best γ·, a question left for future work.

Table 1: Results for LODM estimates: the two naive solution and the ones minimizing RMSE and
the EMD

γTC γK γTV RMSE EMD fK fTC

Q̂
0

0.320 0.086 0 55

Q̂
1

0.307 0.069 1142 84

Q̂
RMSE

31.6 0.008 0.015 0.239 0.047 289 1

Q̂
EMD

1 0.025 0.027 0.244 0.045 133 28

4.2.2 Impact of each objective

If it appears from these results that it is justified to solve problem (26), the question of the
importance of each function can be raised. To answer such a question, Tables 2(a) (resp. (b))
summarises the best RMSE values (resp. EMD) when only the objectives indexed by the rows and
column are not set to zeros. Thus diagonal elements correspond to a single term in the objective
function while the four others are set to zero and non diagonal elements involve at most the two
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Figure 4: EMD as a function of γTV βTV for γK = 0 and γTC = γC = γP = 1. Again, note that
the first point on the left is for γTV βTV = 0 whereas the rest is drawn on a logarithmic scale.

terms indexed by the row and column. For example, element (1,2) of Table 2(a) corresponds to
the best value of RMSE achieved for γTV = γP = γC = 0 and values of γK and γTC evaluated
on a grid. For those tables, light-grey cells correspond to estimates that could not outperform the
naive estimates, and darker grey elements, cases for which Algorithm 1 reached the 100000 steps
limit without convergence.

The observation of both tables (for RMSE and EMD) leads to the conclusion that neither term
gives satisfactory results by itself. None of the diagonal elements outperform the naive estimates.
To improve on those values, one must involve the Poisson assumption and either the traffic counts
function or the Kirchhoff’s law. This means that one cannot obtain a good estimate of the traffic
flows while there are not at least one term ensuring data fidelity along with a regularization term.
The fact that the Poisson function seems to be the most important can be expected as B brings the

most information and confirms the importance of probe trajectories to solve such traffic problem.

Thus in a second step, the Poisson function has been imposed (γP = 1) with either one or
two extra functions and similar results are gathered in Tables 3(a) and (b). In those tables, the
indicator function corresponding to the projection on the convex set fC has also been imposed
(γC = 1) for three reasons: First its additional computational cost is negligible compared to the
other functions, second, it accelerates the convergence speed of the algorithm by reducing the
number of steps required while having little impact on the values of the criteria at convergence.
Last, it corresponds to the weakest assumption of our model: that the total flow is greater than
the measured probe trajectories.

In this second scenario (with γP = γC = 1 and one or two additional functions), any estimate
performs better than the naive one but for the case where only the total variation (TV) is added.
Depending on whether a minimum is sought for RMSE or for the EMD, it is either the pair
Kirchhoff’s law and TV, or the pair Traffic Counts and TV, that are the best suited to complement
the Poisson assumption. In any case, best results, as summarised in Table 1, are achieved when
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Figure 5: Distribution as histograms of the elements in Q̂
0
, Q̂

1
, Q̂

RMSE
, Q̂

EMD
(in blue) super-

posed to the ground truth Q? (in red).

all functions are involved. However, these results might question the role of the TV: First one can
not reach better results than with naive estimates if at least the Poisson assumption and another
function (K or TC) are not also involved. Second, the additional computation cost in Algorithm 1
caused by the realisation of H, its adjoint and the proximal of the `1-norm multiplies by four the
time needed for each iteration (convergence reached in ∼4 hours instead of ∼1 on a Core i7 laptop).
However, the total variation bring a slight improvement to the results for both RMSE (0.262 to
0.239) and the EMD (0.067 to 0.045). This is probably caused by the difficulty of estimating flows
not sampled at all by the probe trajectories, task to which, in this version of the problem, the
total variation is the only answer.

Table 2: Best values of RMSE and EMD when only one or two constraints are considered

(a)

RMSE TC K TV P C

TC 0.99 0.98 0.99 0.30 0.67
K 1 1 0.29 0.68
TV 1 0.39 0.68
P 1 0.68
C 0.68

(b)

EMD TC K TV P C

TC 2.03 1.20 1.20 0.07 1.43
K 1.20 1.20 0.08 0.81
TV 1.20 0.19 0.78
P 1.20 0.81
C 0.81
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Table 3: Best values of RMSE and EMD when γC = γP = 1 and with one or two additional
constraints

(a) (b)

RMSE TC K TV

TC 0.27 0.26 0.26
K 0.27 0.25
TV 0.35

EMD TC K TV

TC 0.067 0.067 0.046
K 0.069 0.069
TV 0.605

4.3 Results with fewer users on the networks

Finally, one might wonder whether this method, as presented in this article, can achieve similar
results over smaller time periods, that is in our case, a lower number of users. In this section the
main results are presented again for N = 104 users. This correspond to an average flow of 300
vehicles per link. In a big city, this correspond to 5 to 10 minutes of traffic during peak hours.
With such a low number of users we are reaching the limits of our model as 104 users corresponds
to ∼4 users (that is, in average, 1.3 probe trajectories) per OD. Therefore the impact of the Poisson
assumption, inferring information from B decreases. Table 4 summarises the results in this case.

Yet there is still a 14% improvement on the RMSE and a 30% improvement on the EMD. These
results are very encouraging as even in the limit cases, the estimates achieved with the algorithm
are still an improvement with respect to the naive estimates.

Table 4: Best Achieved Results with N=10 000
γTC γK γTV RMSE EMD fK fTC

Q̂
0

0.398 0.021 0 13.3

Q̂
1

0.396 0.017 128 0.1

Q̂
RMSE

1.78 0.25 0.027 0.341 0.013 10.7 9.8

Q̂
EMD

1 0.45 0.026 0.342 0.012 5.8 13.7

5 Conclusion

We have shown that the Link dependent Origin-Destination matrix is an interesting tool for traffic
representation. Moreover we have evidenced that its estimation can be performed with a primal
dual algorithm and that the objective function to be minimized can be partially derived from
natural properties of the problem (the consistency between measured and estimated traffic counts,
the domain of definition and the Kirchhoff’s law). Then by adding a few sensible relationships, as
for example, the Poisson sampling assumption and the similarities between nearby flows computed
as the total variation, one can obtain from such method, estimates that outperform the naive
solutions. However improvements can still be sought, especially by designing new functions. Future
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works will demonstrate that, if available, traffic turn fractions at intersections can be involved as
an additional term to achieve even better results. Another trail for developing this problem is to
look for an online algorithm as the one presented in [45, Section 5.2]. Last, one could think about
implementing time dependencies. This could be done by adding new relationships that would link
successive estimations of the LODM or, alternatively, by using other methods: for example, a
Kalman filter similarly to what have been done on traffic counts based ODM estimation [46], or
also with supplementary data (e.g., Bluetooth [47] or other sensors [48]).
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