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Stochastic Multidimensional Scaling

Ketan Rajawat,Member, IEEE, and Sandeep Kumar,Student Member, IEEE.

Abstract

Multidimensional scaling (MDS) is a popular dimensionality reduction techniques that has been

widely used for network visualization and cooperative localization. However, the traditional stress mini-

mization formulation of MDS necessitates the use of batch optimization algorithms that are not scalable

to large-sized problems. This paper considers an alternative stochastic stress minimization framework that

is amenable to incremental and distributed solutions. A novel linear-complexity stochastic optimization

algorithm is proposed that is provably convergent and simple to implement. The applicability of the

proposed algorithm to localization and visualization tasks is also expounded. Extensive tests on synthetic

and real datasets demonstrate the efficacy of the proposed algorithm.

Index Terms

Multidimensional Scaling, Stochastic SMACOF, Visualization, Localization.

I. INTRODUCTION

Multidimensional scaling addresses the problem of embedding relational data onto a low-

dimensional subspace. Originally proposed in the context of psychometrics and marketing [1],

MDS and its variants have since found applications in socialnetworks [2]–[6], genomics [7],

computational chemistry [8], machine learning [9], and wireless networks [10]. As an exploratory

technique, MDS is often used as a first step towards uncovering the structure inherent to high-

dimensional data. In the context of machine learning and data mining, the pairwise dissimilarities

are calculated using high- or infinite-dimensional nodal attributes, and MDS yields a distance-

preserving, low-dimensional embedding. Of particular importance are the embeddings obtained

in two or three dimensional euclidean spaces, that serve as perceptual maps for visualizing

relationships between objects. In the context of social networks, such representations reveal
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interconnections between people and communities, and are often more insightful than simpler

metrics such as centrality and density. Different from the classical MDS framework that utilizes

principal component analysis, modern MDS formulations arebased on the minimization of a

non-convex stress function [1]. Since the stress function is a weighted sum of squared fitting

errors, it allows for the possibility of missing and noisy dissimilarities. Consequently variants of

the stress minimization problem have been developed for robust MDS [11], visualization of time-

varying data [12], and cooperative localization of static [10], [13]–[15] and mobile networks [13].

Popular algorithms for solving the stress minimization problem include ‘scaling by majorizing

a complicated function’ (SMACOF) [1], semidefinite programming [16], alternating directions

method of multipliers [14], [15], and distributed SMACOF [10].

The attractiveness of the MDS framework has however startedto diminish with the advent

of the data deluge. Specifically, when embeddingN objects, the per-iteration complexity and

memory requirements of the aforementioned algorithms increase at least asO(N2), making them

impractical for large-scale problems. To this end, approximate versions of SMACOF have been

proposed for large-scale visualization applications [17], [18]. Nevertheless, most approximate

MDS algorithms are still too complex for large-scale data, and cannot be generalized to other

applications such as cooperative localization of large networks.

Visualization or localization of time-varying data is evenmore challenging since the iterative

majorization algorithm must converge at every time instant[10], [12], [13]. In mobile sensor

networks, carrying out a large number of iterations at each time instant incurs a tremendous

communication overhead, and is generally impractical. Forinstance, the distributed weighted

MDS approach [10] still requires at leastN operations per iteration per time instant, which is

prohibitive for large networks. For large-scale applications, where localization or visualization

is constrained by the per-iteration complexity and memory requirements, it is instead desirable

to have an online algorithm. Towards this end, the goal is to obtain an adaptive algorithm

that processes dissimilarity measurements in a sequentialor online manner. For instance, an

adaptive algorithm can allow visualization of large networks by reading and processing the

pairwise dissimilarities in small batches. Similarly, thecommunication cost required for large-

scale network localization can be reduced by processing only a few range measurements at a

time.

This paper considers the stress minimization problem in a stochastic setting, where the dis-
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similarity measurements and the weights are modeled as random time-varying quantities with

unknown distributions. The first contribution of this paperis a novel stochastic SMACOF

algorithm that processes the dissimilarities in an online fashion, and is therefore applicable

to both static and time-varying scenarios (Sec. III). The proposed algorithm is not only scalable,

but is also amenable to a distributed and asynchronous implementation in ad hoc networks

(Sec. IV). As our second contribution, it is shown that the trajectory of the stochastic SMACOF

algorithm remains close to that of an averaged algorithm, which itself converges to a stationary

point of the stochastic stress minimization problem (Sec. III-B). The analysis borrows tools

from spectral graph theory, stochastic approximation, andconvergence analysis of the SMACOF

algorithm. Finally, as the third contribution, the performance of the proposed algorithm is tested

extensively on various synthetic and real-world data sets (Sec. V). The numerical tests confirm

the applicability of the stochastic SMACOF algorithm to a variety of scenarios.

The notation used in this paper is as follows. Bold upper (lower) case letters denote matrices

(vectors). The (m,n)-th entry of a matrixA is denoted by[A]mn. IN is theN × N identity

matrix, 0 denotes the all-zero matrix or vector, and1 denotes the all-one matrix or vector,

depending on the context. For a vectorx, ‖x‖ denotes itsℓ2 norm. For a matrixA, ‖A‖ denotes

its Frobenious norm,‖A‖2 denotes theℓ2 norm, tr(A) denotes its trace, and det(A) denotes its

determinant.

II. BACKGROUND AND PROBLEM STATEMENT

A. Classical MDS and SMACOF

The classical MDS framework seeksP -dimensional embedding vectors{xn}Nn=1, given the

pairwise distances or dissimilarities{δmn}(m,n)∈E , whereE ⊆ {(m,n) | 1 ≤ m < n ≤ N},

betweenN different nodes or objects, denoted by the setN := {1, . . . , N}. The embedding

vectors, collected into the rows ofX ∈ R
N×P , are estimated by solving the following non-

convex optimization problem [1]

X̂ = argmin
X

∑

1≤m<n≤N

wmn (δmn − ‖xm − xn‖2)
2 (1)

wherewmn is the weight associated with the measurementδmn, and is set to zero for all(m,n) /∈
E . The non-zero weights can be chosen in a number of ways, depending on the application, and

are often simply set to one. The objective function in (1) is referred to as the stress function,
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and is henceforth denoted byσ(X). It can be seen that the optimum̂X obtained in (1) is not

unique, and exhibits translational, rotational, and reflectional ambiguity.

The stress-minimization problem in (1) is non-convex, and can be solved up to a local optimum

using the well known SMACOF algorithm. Expanding the stressfunction, we obtain

σ(X) =
∑

m<n

wmn

(

δ2mn + ‖xm − xn‖2 − 2δmn ‖xm − xn‖
)

(2)

=
∑

m<n

wmnδ
2
mn + tr(XTLX)− 2tr(XTB(X)X) (3)

where,

[L]mn =











−wmn m 6= n

∑m
k=1wmk m = n

(4)

[B(X)]mn =























− wmnδmn

‖xm−xn‖
m 6= n,xm 6= xn

0 m 6= n,xm = xn

−∑m
k=1[B(X)]mk m = n

(5)

The SMACOF algorithm works by iteratively majorizing the last term in (3) with a linear function

and subsequently minimizing the majorized stress functionwith respect toX. Starting with an

initial X̂(0), the SMACOF update at thek-th iteration entails carrying out the following update:

X̂(k+1) = argmin
X

tr(XTLX)− 2tr(XTB(X̂(k))X̂(k)) (6)

= L†B(X̂(k))X̂(k) (7)

where (7) follows sinceB(X)X lies in the range space ofL. Observe that sinceL is rank-

deficient, the solution to (6) is not unique. However, when the weights{wmn} specify a fully

connected graphG := ({1, . . . , N}, E), bothL andB(X) have rankN − 1, with the null space

of L being 1. Therefore, any solution to (6) is of the formL†B(X̂(k))X̂(k) + 1c for c ∈ R.

Further, if the initialX(0) is chosen such that it is centered at the origin, i.e.,1TX(0) = 0, the

updates in (7) ensure that1TX(k) = 0 for all k ≥ 1.

B. Stochastic MDS

This paper considers the MDS problem in a stochastic setting, where the weights, and dissim-

ilarities or distance measurements are random variables with unknown distributions. Specifically,
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given {δmn(t)} and{wmn(t)}, the stochastic stress minimization problem is formulatedas

min
X

σ̄(X) :=
∑

m<n

E[wmn(t)(δmn(t)− ‖xm − xn‖)2]. (8)

In the absence of the distribution information, the expression for σ̄(X) cannot be evaluated in

closed-form, and the SMACOF algorithm cannot be applied. Instead, (8) must be solved using

a stochastic optimization algorithm. Of particular interest are the so-calledonline algorithms

that can process the observations{δmn(t)}, {wmn(t)} in an incremental manner. Within this

context, efficient implementations of the stochastic (sub-)gradient descent (SGD) method have

been used to solve very large-scale problems [19]. The SGD updates utilize the subgradient of

the instantaneous objective function, and for the present case, take the form:

X̌t+1 = X̌t + µ
(

Bt(X̌t)X̌t − LtX̌t

)

(9)

where µ ∈ (0, 1) is the learning rate or step size parameter. While the performance of the

SGD has been well-studied for convex problems, the same is not true for non-convex problems,

such as the one in (8). Indeed, the standard SGD algorithm does not necessarily converge for

many non-convex problems [20]. In the present case also, theSGD method exhibits divergent

behavior; see Sec. V. The general-purpose stochastic majorization-minimization method [21] is

also not applicable in the present case since it requires a strongly convex surrogate function.

On the other hand, problem-specific stochastic algorithms have been developed and applied

with great success. Examples include the online expectation-maximization and the online matrix

factorization approaches [19], [22]. Along similar lines,the next section details the stochastic

version of the SMACOF algorithm, and studies its asymptoticproperties.

III. ONLINE EMBEDDING VIA STOCHASTIC SMACOF

A. Algorithm outline

Given{δmn(t)} and{wmn(t)}, and starting with an arbitrary origin-centeredX̂0, the updates

for the proposed stochastic SMACOF algorithm take the form,

X̂t+1 = (1− µ)X̂t + µL†
tB

ǫ
t(X̂t)X̂t t ≥ 0 (10)

where, [Bǫ
t(X)]mn =











− wmn(t)δmn(t)√
‖xm−xn‖

2+ǫx
m 6= n

−∑N
k=1[B

ǫ
t(X)]mk m = n

(11)
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with ǫx being a small positive constant that ensures that the entries of Bǫ
t(X) stay bounded for

all X. The update rule can be viewed a stochastic version of the SMACOF algorithm with the

following modifications (a) at each time instant, only one iteration of SMACOF is executed

using the modified definition ofBǫ(X) in (11); (b) the estimated coordinateŝXt at time t are

used for initialization att+1; and (c) the estimated coordinatesX̂t+1 are constructed by taking a

convex combination of̂Xt and the SMACOF output. The last modification endows the algorithm

with tracking capabilities since the parameterµ may be interpreted as the forgetting factor, and

can be tuned in accordance with the rate of change of{δmn(t)} and{wmn(t)}. For example, the

embedding at timet+ 1 can be forced to be close to those at timet by settingµ≪ 1. Finally,

the proposed update rule subsumes the SMACOF algorithm for static scenarios, where we set

δmn(t) = δmn andwmn(t) = wmn for all t, andµ = 1.

The update rule in (10) is valid only if the graphGt defined by{wmn(t)} is connected for

all t ≥ 1. In the case whenGt has more than one connected component, the coordinates within

each component must be updated separately. LetCj
t be the set of nodes belonging to thej-th

component andIjt be the|Cj
t | ×N selection matrix containing the rows ofIN corresponding to

the elements inCj
t . DefiningL

(j)
t := I

j
tLtI

j
t

T
andBǫ

t(X
(j)
t ) := I

j
tB

ǫ
t(Xt)I

j
t

T
, the update rule for

the nodes inCj
t is given by

X̂
(j)
t+1 = (I− µJt)X̂

(j)
t + µ(L

(j)
t )†Bǫ

t(X̂
(j)
t )X̂

(j)
t (12)

whereJt := I − 11T/|Cj(t)|, is the |Cj(t)| × |Cj(t)| centering matrix which ensures that the

coordinate center of each component does not change after the update, i.e.,1T X̂
(j)
t+1 = 1T X̂

(j)
t .

The general update rule

X̂t+1 = (I− µL†
tLt)X̂t + µL†

tBt(X̂t)X̂t (13)

subsumes the forms specified in (10) and (12), irrespective of the number of connected compo-

nents inGt, since it holds that

[LtL
†
t ]mn =























1− 1/|Cj
t | m = n ∈ Cj

t

−1/|Cj
t | m 6= n,m, n ∈ Cj

t

0 otherwise.

(14)

In contrast to the classical SMACOF algorithm, the proposedalgorithm is flexible enough to

be used in a number of different scenarios. As already discussed, a specific choice of parameters
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allows us to interpret the SMACOF algorithm as a special caseof the proposed algorithm.

On the other hand, the stochastic SMACOF can also be used to solve very large-scale MDS

problems, where the full set of measurements{δmn} cannot be processed simultaneously. Instead,

it is possible to apply (13) on a small subset of observations, corresponding to a subgraphGt.

A special case occurs when exactly one edge is chosen per timeinstant and per cluster, i.e.,

|Cj
t | = 2, and the updates in (13) reduce to those in encountered in thestochastic proximity

embedding (SPE) algorithm [6],

xi(t + 1) = (1− µ)xi(t) + µ
δij(t)

‖xi(t)− xj(t)‖
xi(t)

+ µ

(

1− δij(t)

‖xi(t)− xj(t)‖

)

xj(t) (15)

and likewise for nodej. The proposed stochastic SMACOF is therefore a generalization of

SPE, applied to components of arbitrary sizes. Since the updates in (13) for any two clusters

Cj
t and Ck

t do not depend on each other, the proposed algorithm can also be implemented in

a distributed and asynchronous manner. Such an implementation is particularly suited to the

range-based localization problems that arise in wireless networks.

Finally, akin to the classical adaptive filtering algorithms such as LMS, the proposed algorithm

can also be applied to time-varying scenarios, i.e., whenδmn(t) is non-stationary. The applications

of interest include localization of time-varying networks, and visualization of time-varying data.

In both cases, the first term(I−µJt)X̂
(j)
t in the update (13) serves as a momentum term. That is,

a smallµ encourageŝXt+1 to stay close tôXt, resulting in a smooth trajectory of{X̂t}. On the

other hand, a large value ofµ enables tracking in highly time-varying scenarios, while making

the updates sensitive to noise [23, Ch-21] [24, Ch-9]. Further implementation details pertaining

to the localization and visualization problems are discussed in Sec. IV. Before proceeding with

the asymptotic analysis, the following remark is due.

Remark 1. Building further on the link with adaptive algorithms,µ may be interpreted as a

forgetting factor that downweights the past information. When µ is a constant that is strictly

greater than zero, the algorithm forgets the old data exponentially quickly, thus offering superior

tracking capability. In contrast, it is possible to have a long-memory version of the algorithm

with a time-varyingµt → 0. As t→ ∞, such an algorithm would no longer track the changes in

δmn(t), and can be applied to a static scenarios where the algorithmcan stop once the embeddings
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converge. While the bounds developed here apply only to the case of constantµ > 0, diminishing

step size is in fact utilized in Sec. V.

B. Asymptotic Performance

In general, establishing convergence of stochastic algorithms for non-convex problems is quite

challenging [20]. Here, the asymptotic performance of the proposed algorithm is established in

two steps. First, it is shown that the trajectory of the stochastic SMACOF algorithm stays close to

that of an averaged algorithm, in an almost sure sense. This part involves establishing a hovering

theorem, and utilizes techniques from stochastic approximation [24]–[26]. Next, it is shown that

the averaged algorithm converges to a stationary point of (8).

1) Assumptions:For the purposes of establishing convergence, a simplified setting is con-

sidered, wherein the graphGt at eacht consists ofN/p ≥ 1 components of sizep each. Let

jm(t) := {j | m ∈ Cj
t } be the index of the component to which nodem belongs at timet, and

defineΘt ∈ R
N×N such that

[Θt]mn :=























−1/N jm(t) 6= jn(t)

−1/N + µ/p jm(t) = jn(t), m 6= n

(1− µ)− 1/N + µ/p m = n.

(A1) The random processes{wmn(t)}t≥0 and{δmn(t)}t≥0 are independent identically distributed

(i.i.d.).

(A2) The random variables{δmn(t)} have support(0, Cδ], while the weights{wmn(t)} have

support{0} ∪ [ǫw, 1].

(A3) The online algorithm is initialized such that
∥

∥

∥
(I− 11T/N)X̂0

∥

∥

∥
≤ Cx.

(A4) There existst0 such that for anyµ ∈ (0, 1), there exists̺ ∈ (0, 1) such that
∥

∥

∏t
s=τ+1Θs

∥

∥

2
<

̺t−τ for all t− τ ≥ t0.

(A5) For eacht, the non-zero weights{wmn(t)}m,n are i.i.d. withw̄ := E[wmn(t)].

The i.i.d. assumption in (A1) is standard in the analysis of most stochastic approximation

algorithms. For the applications at hand, the support ofδmn(t) andwmn(t) is naturally finite. It

is required from (A2) that the non-zero weights be bounded away from zero. Such a condition

is required to ensure the numerical stability of the Laplacian system of equations that must be
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solved at every iteration [cf. (10), (13)]. Specifically, itis shown in Appendix that (A2) implies

the following result

Lemma 1. Under (A2), it holds that
∥

∥

∥
L

†
t

∥

∥

∥

2
≤ ǫL := (N − 1)2/2ǫw for all t ≥ 1.

The proof of Lemma 1 is provided in Appendix A. The initial configuration can always

be normalized to satisfy the bound in (A3). Assumption (A4) restricts the extent to which

the graphsGt can stay disconnected over time. To obtain intuition on (A4), observe first the

largest eigenvalue ofΘt is 1 − µ if Gt has a single connected component and one otherwise.

Consequently, if all{Gs}ts=τ+1 are connected, (A4) holds with̺ = 1 − µ. Conversely, it holds

that
∥

∥

∏t
s=τ+1Θs

∥

∥

2
= 1 if and only if (a) each{Gs}ts=τ+1 has more than one components, and

(b) the components do not change over time, i.e.,jm(t) = jn(t) for all m, n, andt. Intuitively,

(A4) allows {Gs} to have multiple connected components at eachs ≥ 1, as long as the nodes

belonging to these components keep changing over time.

Finally, (A5) is perhaps the most restrictive, and may not always be easy to satisfy. For instance,

the weights are not identically distributed in the context of dynamic network localization (cf. Sec.

IV-A), since non-zero weights are often assigned to neighboring nodes only. Likewise, weights

selected via Sammon mapping also result in non-identicallydistributed weights. The assumption

however greatly simplifies the proof of convergence for the averaged algorithm. Having stated

the assumptions, the averaging analysis is presented in thesubsequent subsection.

2) Hovering Theorem:The proposed stochastic SMACOF algorithm will be related toan

averaged algorithm with updates,

X̃t+1 = (1− µυ)X̃t + µBa(X̃t)X̃t (16)

where the time-invariant functionBa(X) := E[L†
tB

ǫ
t(X)] and υ = N(p−1)

p(N−1)
. Assuming that both

algorithms start from the same initialization, i.e.,X̂0 = X̃0, the following proposition states the

main result of this section.

Proposition 1. Under (A1)-(A5), and forµ < 1, it holds for the updates generated by(13) and

(16), that

max
1≤t≤1/µ

∥

∥

∥
X̂t − X̃t

∥

∥

∥
≤ c(µ) (17)

where the random variablec(µ) → 0 almost surely asµ → 0 with probability 1.
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Intuitively, Proposition 1 states that the trajectory of the proposed stochastic algorithm in (13)

stays close to that of the averaged algorithm in (16). Further, the stochastic ”oscillations” of (13)

are small ifµ is also small. However, choosing too small a value ofµ, which is also the step-size

in (16), will generally result in a slower convergence rate for any such iterative algorithm. The

parameterµ may therefore be seen as controlling the trade-off between the convergence rate and

asymptotic accuracy. Further characterization of this trade-off is pursued via numerical tests in

Sec. V.

Alternatively, consider the case whenT updates of (13) are performed withµ = 1/T . For

this case, the bound in (17) becomes

max
1≤t≤T

∥

∥

∥
X̂t − X̃t

∥

∥

∥
≤ c(1/T ) (18)

wherec(1/T ) → 0 almost surely asT → ∞. In other words, the stochastic oscillations can be

made arbitrarily small if sufficient number of updates can beperformed. It is remarked that such

results are commonplace in the stochastic approximation literature [24]–[26].

Next, an outline of the proof of Proposition 1 is presented, while the details are deferred to

Appendix B. The overall structure of the proof is similar to that in [24]. Significant differences

exist in the details however, since workarounds are introduced in order to avoid making any

assumptions on the boundedness ofX̂t. It is emphasized that such a modification is generally

not possible in a vast majority of problems, and is not trivial. It is however possible here due

to the special structure of the update (13) that depends onlyon the differences between pairs of

rows of X̂t; see (49).

Proof of Proposition 1: The difference between the iterates generated by (13) and (16) is

given by

∆t+1 := X̂t+1 − X̃t+1 = ∆t − µ
(

L
†
tLtX̂t − υX̃t

)

+ µ
(

L
†
tB

ǫ
t(X̂t)X̂t −Ba(X̃t)X̃t

)

(19)

Assuming that both the algorithms start from the same initialization, i.e.,X̂0 = X̃0, it follows

December 22, 2016 DRAFT
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that

∆t+1 = −
t
∑

τ=0

µ
(

L†
τLτX̂τ − υX̃τ

)

+ µ

t
∑

τ=0

(

L†
τB

ǫ
τ (X̂τ )X̂τ −Ba(X̃τ)X̃τ

)

= −µυ
t
∑

τ=1

∆τ + µ
(

K1
t +K2

t +K3
t

)

(20)

where for allt ≥ 0,

K1
t =

t
∑

τ=0

(

L†
τB

ǫ
τ (X̂τ )X̂τ − E[L†

τB
ǫ
τ (X̂τ )]X̂τ

)

(21a)

K2
t = −

t
∑

τ=0

(

L†
τLτ − υI

)

X̂τ (21b)

K3
t =

t
∑

τ=1

(

Ba(X̂τ )X̂τ −Ba(X̃τ )X̃τ

)

. (21c)

The following intermediate lemma develops bounds on the three terms in (21), and constitutes

the key step in the proof.

Lemma 2. The following bounds hold fori = 1, 2

∥

∥Ki
t

∥

∥ ≤ dit + Ciµ

t
∑

τ=1

πi
t (22)

∥

∥K3
t

∥

∥ ≤ C3

t
∑

τ=1

‖∆τ‖ (23)

where the constantsC1, C2, andC3 are independent oft, and the constantsd1t , π
1
t , d2t , andπ2

t

are such that

dit
t
→ 0

πi
t

t
→ 0 (24a)

for i = 1, 2, almost surely ast→ ∞.

The proof of Lemma 2 is provided in Appendix B. The norm of∆t+1 can therefore be

bounded by applying triangle inequality on (19) as follows.

‖∆t+1‖ ≤ µ(C3 + 1)

t
∑

τ=1

‖∆τ‖+ f(µ) (25)
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where we have used the fact that‖J‖2 = 1 and

f(µ) := max
0≤t≤1/µ

µ(d1t + d2t ) + µ2
t
∑

τ=1

C1π
1
t + C2π

2
t . (26)

It is further shown in Appendix B thatf(µ) → 0 almost surely asµ → 0. Proposition 1 then

follows from the application of the discrete Bellman-Gronwall Lemma [24] on (25), which yields

‖∆t‖ ≤ f(µ)(1 + µ(C3 + 1))t = f(µ)et log(1+µ(C3+1))

≤ f(µ)eµt(C3+1) ≤ f(µ)eC3+1 := c(µ) (27)

3) Convergence of the Averaged Algorithm:Having established that the trajectory of the

stochastic algorithm hovers around that of the averaged algorithm, we complete the proof by

establishing that the averaged algorithm converges to a local minimum of (1). The challenge

here is that the updates in (16) do not resemble those in otherclassical algorithms such as

SMACOF or gradient descent. For notational brevity, letδ̄mn := E[δmn(t)]/
√

‖xm − xn‖2 + ǫx

andJ = I− 11T/N , and note the following result.

Lemma 3. Under (A1)-(A5), it holds that

[Ba(X)]mn =
υ

N















−δ̄mn m 6= n

∑

k 6=m

δ̄mk m = n.

The proof of Lemma 3 is provided in the Appendix C. For the restof the section, we will

assume thatǫx ≪ 1 and thus negligible. Therefore from Lemma 3, we have that

σ̄(X) =
∑

m<n

E[wmn(t)δmn(t)
2] + tr

(

XT L̄X
)

− 2tr(XT B̄(X)X) (28)

where,L̄ := E[Lt] = w̄υpJ and

B̄(X) :=
w̄υp

N















−δ̄mn m 6= n

∑

k 6=m

δ̄mk m = n.
(29)

The main result of this subsection is stated as the followingproposition.
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Proposition 2. The mean-stress values̄σ(X̃t) decrease monotonically witht and converge to a

stationary point of(8).

Proof: Without loss of generality, let
∑

m<n E[wmn(t)δmn(t)
2] = 1, and defineη2(X) :=

1
µυ

tr
(

XT L̄X
)

andρ(X) := 1
2
(1/µυ−1)tr

(

XT L̄X
)

+ tr
(

XT B̄(X)X
)

, and observe that̄σ(X) =

1+ η2(X)− 2ρ(X). Similarly, define the mappingΓ(X) := (1−µυ)X+ µ
w̄p
B̄(X)X, so that the

updates in (16) becomẽXt+1 = Γ(X̃t).

Given any two embeddingsX andY, the following bounds hold from the Cauchy-Schwarz

inequality:

−tr(XT L̄X) ≤ −tr((2X−Y)T L̄Y) (30)

−tr(XT B̄(X)X) ≤ −tr(XT B̄(Y)Y) (31)

which allows us to conclude that

ρ(X) ≥ 1

µυ
tr
(

XT L̄Γ(Y)
)

− 1− µυ

2µυ
tr
(

YT L̄Y
)

(32)

⇒ σ̄(X) ≤ 1 + η2(X) +
1− µυ

µυ
tr
(

YT L̄Y
)

− 2

µυ
tr
(

XT L̄Γ(Y)
)

= 1 + (1− µυ)η2(Y)− η2(Γ(Y)) + η2(X− Γ(Y)) (33)

where equalities holds forX = Y. Denote the right-hand side of (33) byωY(X), and observe

that ωY(X) ≥ ωY(Γ(Y)) for all X. This yields the main inequality that̄σ(Y) = ωY(Y) ≥
ωY(Γ(Y)) ≥ σ̄(Γ(Y)). In other words, we have thatσ̄(X̃t) ≥ σ̄(X̃t+1), so that the non-negative

sequenceσt := σ̄(X̃t) is non-increasing and therefore convergent to a limit, sayσ̄∞. By squeeze

theorem for limits [27], it also holds thatωX̃t
(X̃t+1) → σ̄∞, yielding the following limits

lim
t→∞

η2(Xt) = (1− σ̄∞)/µυ (34)

lim
t→∞

ρ(Xt) = (1− σ̄∞)(1− µυ)/2 (35)

lim
t→∞

η2(X̃t − X̃t+1) = 0 (36)

Since the matrices{X̃t}t≥0 are origin centered, the result in (36) can equivalently be written

as
∥

∥

∥
X̃t − X̃t+1

∥

∥

∥
→ 0 as t → ∞. Denoting the limit point ofX̃t by X̃∞, it can be seen that

∇σ̄(X̃∞) = 0.
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IV. I MPLEMENTATION ASPECTS

A. Multi-agent network localization

Multidimensional scaling has been widely used for localization, where inter-node distances

are often obtained from time-of-arrival or received signalstrength measurements [10], [14], [28],

[29]. Wireless network localization is challenging because the pairwise distance measurements

are noisy, time-varying due to mobility, fading, and synchronization errors, and often partially

missing, due to the limited range of the sensors. Further, the limited battery life and resource

constraints at the nodes impose restrictions on the communication and computational load that

the network can tolerate [13], [14].

Towards addressing these limitations, the stochastic SMACOF algorithm for network local-

ization works by judiciously choosing{wmn(t)} to limit the communication and computational

cost at each update. The idea is to partition the network intoseveral non-overlapping clusters (or

components), chosen randomly at each timet. The coordinates within a cluster are updated as

in (13). Only neighboring nodes are included within each cluster, thus eliminating the need for

multihop communication between far off nodes. Finally, since the updates at different components

are independent of each other, the localization algorithm is run asynchronously as follows.

S1. At a given timet, a nodej randomly declares itself as a cluster head, and solicits cluster

members from among its neighborsn ∈ Nj. Available neighbors respond with their current

location estimateŝxn(t), resulting in a star shaped clusterCj
t . Once locked as cluster

members, these nodes respond only to the messages from nodej.

S2. The cluster head performs distance measurements between itself and all its neighbors and

collectsδjn(t) for all n ∈ Cj
t \ {j}.

S3. The cluster head performs the update in (13) with appropriately chosen weights{wjn(t)},

and broadcasts the new location estimates to each node inCj
t \ {j}

S4. Nodes inCj
t \ {j}, upon receiving the new location estimates (or upon timeoutor error

events), release their locks and become available.

As originally intended, the proposed algorithm can also be applied to mobile networks. The

algorithm is expected to perform well as long as the node velocities are not too high. The

asynchronous nature of the algorithm allows for delayed updates at nodes, balanced battery usage

within the network, and communication errors. In general, it is also possible to apply multiple
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updates of the form in (13) per time instant, without incurring any extra communication cost.

Nodes may declare themselves as cluster heads using a randombackoff-based contention

mechanism such as CSMA, and solicit neighbors by simply sending an RTS packet. An update

at a cluster thus takes up at most two message exchanges. Morecomplicated protocols that

ensure recovery from collisions, and robustness or errors can also be used [30]. The online

algorithm is flexible, and allows clusters of any shape or size, depending on the communication

and computational resources available within the network.The non-zero weights, corresponding

to available distance measurements, can be chosen according to the estimated noise variance

[10], [28], following Sammon mapping [1], [31], or simply asunity.

It is remarked that the node coordinates obtained from (S1)-(S4) are relative and centered at

the origin. In applications where node coordinates are required with respect to a set of GPS-

enabled anchor nodes, appropriate rotation and translation operations must be applied at each

node. Since the anchor nodes are generally not power constrained, it is possible for them to

determine these transformations [10], and convey the result to all other nodes. As shown later

in Sec. V, it is generally sufficient to calculate the transformations periodically every few time

slots.

Finally, similar to the SMACOF algorithm, the stochastic SMACOF algorithm is sensitive to

initialization. A random initialization may result in the algorithm getting trapped in a “poor”

local minimum. In practice, superior location estimation performance is obtained if the initial-

ization is at least roughly correct. Simple low-complexitylocalization algorithms can be used

for initialization. For instance, nodes can roughly triangulate themselves using noisy distance

estimates from the anchor nodes [32].

B. Large network visualization

It is possible to visualizeN objects in a 2 or 3 dimensional euclidean space by applying

MDS to the pairwise dissimilarities{δmn}. The SMACOF algorithm is however ill-suited for

large-scale visualization since it requires at leastO(N2) operations per iteration. Further, even

processing the full measurements{δmn} simultaneously may not be feasible for datasets with

more than a hundred thousand objects.

Visualization via stochastic embedding can be achieved by partitioning the objects into several

subsets of reasonable sizes, and performing the updates in (13). The following steps are performed
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for eacht ≥ 1.

1) Partition theN objects into random, mutually exclusive subsetsCj
t with p nodes per subset.

2) For each subset, randomly choose a small fractionft of pairs and measure (calculate or

fetch from memory) distancesδmn for the chosen pairs. LetF j
t denote the set of chosen

pairs for each clusterj and timet.

3) Apply the update in (13) for each subsetCj
t .

Compared to the localization algorithm, in this case all pairwise distances are available a priori

and without noise, but cannot be read or processed simultaneously. The aforementioned steps

result in making{wmn(t)} sparse and thus reducing the per-iteration complexity. Algorithm 1

summarizes the implementation of stochastic SMACOF for large network visualization.

Algorithm 1 Stocahstic SMACOF for Large Network Visualization

1: Initialize X0 and setµ to some value in(0, 1)

2: for t = 1, 2, . . . do

3: Partition the setN into C disjoint subsets{Cj
t }Cj=1

4: for j = 1, . . . , C do

5: Measure or fetch from memory pairwise distances{δmn(t)}, for a subset of object pairs

(m,n) ∈ F j
t .

6: Set weightswmn(t) = 1 for all (m,n) ∈ F t
j .

7: Perform the update in (13) for each subsetCj
t .

8: end for

9: end for

Again, as envisioned earlier, the algorithm is also applicable to visualization of dynamic

networks. The idea here is to create an animation consistingof embeddings that vary over time.

By specifying a small enough value forµ in (13), it is possible to force the embeddings to

change slowly over time, thus preserving the user’smental map[12]. Unlike existing algorithms

however, the proposed algorithm can allow visualization ofvery large datasets.

C. Algorithm complexity

Unlike the SMACOF algorithm, whose per-iteration complexity is O(N2), the stochastic

SMACOF algorithm processes the data in small batches and cantherefore be implemented at
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near-linear complexity. This is because ifGt consists of multiple components of sizep each, the

updates in (13) decouple and can even be carried out in parallel. Further, the weights for each

cluster are chosen to be sparse, i.e., thep×p matrixL(j)
t has at mostq ≪ p2 non-zero elements.

The problem of solving a sparse Laplacian system of equations has been well studied, and state-

of-the-art solvers return a solution in timeO(q log p) for each component. Thus, usingN/p

sparse matrices{Lj
t} results in an overall complexity ofO

(

Nq
p
log p

)

. As we will show next,

the appropriate choice of the batch sizep results in a near-linear complexity. The complexity

results obtained in this section are summarized in Table I.

Note that a sublinear per-iteration complexity ofO(q log(p)) is also achievable by updating

only one component per iteration. Such an implementation would however require proportionally

large number of iterations. Alternatively, the per-iteration complexity of the algorithm can be

calibrated using the total number of dissimilarity measurements processed per-iteration, given

by f(N) = q(N/p). To this end, we provide approximate rules for choosingp and q so as to

minimize the per-iteration complexity, given the total number of non-zero weightsf(N).

First, assume that eachLj
t is sparse, i.e.,q ≪ p2, so thatf(N)/N = q/p ≪ p. In this case,

since the per-iteration complexity is given byO(f(N) log(p)), the value oflog(p) should be as

small as possible. It can be seen that the choice

p ∼ O
(

(

f(N)

N

)β
)

q ∼ O
(

(

f(N)

N

)β+1
)

(37)

for someβ ≫ 1 results in the complexityO(f(N) log(f(N)/N)), while ensuring thatLj
t is

still sparse withq ∼ O(p1+1/β). Note that it is not necessary forβ to be very large, as long

as the sparse Laplacian solvers can still be used. On the other hand, whenLj
t is dense so that

q ∼ O(p2), the per-iteration complexity is given byO(Nq) = O(f(N)p). In this case, it holds

that f(N)/N = q/p ≤ p, so that one must choosep ∼ O(f(N)/N) and q ∼ O(f(N)2/N2).

Consequently, the optimal iteration complexity for this case becomesO(f(N)2/N).

Table I shows a few example choices off(N) and the corresponding per-iteration complexity

values. It can be observed that whenf(N) is almost linear inN , so is the per-iteration complexity,

regardless of the sparsity ofLj
t . On the other hand, using a sparseL

j
t becomes important when

f(N) is large.

December 22, 2016 DRAFT



18

Non-zero weightsf(N) sparseLj
t denseLj

t

O(N1+ω), 0 < ω ≪ 1 O(N1+ω log(N)) O(N1+2ω)

O(N logN) O(N logN log logN) O(N log2 N)

O(N3/2) O(N3/2 logN) O(N2)

TABLE I: Algorithm complexity for different choices off(N)

V. SIMULATION RESULTS

This section provides simulation results evaluating the performance of the proposed algo-

rithm. The general properties of the stochastic SMACOF algorithm are first characterized using

numerical tests. Next, simulation results are provided forthe online localization algorithm,

evaluating its performance in various mobile network scenarios. Finally, applicability to large-

scale visualization is demonstrated by running the algorithm on two different datasets. Before

proceeding, it is remarked that the proposed stochastic SMACOF is better suited to applications

where the size of the dataset is large, preferablyN > 50. Indeed, if the problem at hand

is small (sayN < 20), conventional SMACOF would likely be faster, since the proposed

algorithm generally requires more iterations to converge.The computational advantage arising

from processing only a few distance measurements per time instant becomes significant only

whenN is sufficiently large.

A. Algorithm Behavior

This section provides several numerical tests that allow usto study various properties of the

stochastic SMACOF algorithm. Towards this end, consider a network with 100 nodes, distributed

uniformly over a10×10 planar area. The measured distances between nodesm andn are given

by δmn(t) = ‖xm − xn‖+ vmn(t), wherevmn(t) ∼ N (0, 0.01). Negative distance measurements

were discarded by setting the correspondingwmn(t) = 0. The algorithm is run for different

values ofµ, with p = 25 and about35% density of non-zeros1. All non-zero weights are chosen

to be unity.

1) Transient performance:Fig 1 (Top) shows the sequence of normalized stress values ob-

tained from an example run of the algorithm [cf. (13)]. For comparison, the stress values

1Non-zero locations are generated randomly, and the number of non-zeros vary between different instantiations.
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Fig. 1: (Top) Performance of the stochastic SMACOF algorithm, the averaged algorithm, and the SMACOF

algorithm; (Bottom) Steady state fluctuations in the stress.

obtained from running the averaged algorithm (cf. (16)) andthe SMACOF algorithm for weighted

MDS (cf. (7)) are also plotted. All algorithms are intialized with the same randomly chosen

configuration. The MDS algorithm runs with all-one weights,while the updates for the averaged

algorithm are obtained via empirical averaging.
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As expected, the convergence speed of the algorithm varies monotonically withµ. Consis-

tent with Proposition 1, the trajectory of the proposed algorithm follows that of the averaged

algorithm. As expected, the steady-state stress value achieved by the averaged algorithm is very

close to that of SMACOF. Further, as shown in the inset, the proposed algorithm hovers above

the averaged algorithm, with steady-state deviation decreasing withµ.

It is remarked that the SGD algorithm, with updates specifiedin (9), tended to diverge in

the presence of noisy distance measurements, different weight choices, and poor initializations.

For instance, when using Sammon mapping, i.e.,wmn = 1/δmn, the noisy measurement model

specified earlier, andµ = 0.05, the SGD algorithm converged for only 19 out of 100 test runs.

In contrast, no divergent behavior was ever observed for theproposed algorithm even with

measurement noisevij ∼ N (0, 10).

2) Steady state performance:The algorithm is allowed to run for 5000 time instants with

different values ofµ, and the minimum, mean, and maximum steady-state stress values are

evaluated. We setTss = [4801, . . . , 5000] and evaluate

ηmin = min
t∈Tss

σ(X̂t) η̄ =
∑

t∈Tss

σ(X̂t)

|Tss|
ηmax = max

t∈Tss

σ(X̂t).

Starting with the same initialization, the entire experiment is repeated for 100 Monte Carlo

iterations. Fig. 1 (Bottom) shows the minimum, mean, and maximum steady state errors plotted

againstµ. As expected, the stress values converge to a small non-zerovalue that decreases with

µ.

B. Dynamic Network Localization

The localization performance of the proposed algorithm is studied on a mobile network. Video2

shows an example run of the algorithm on a mobile network withN = 8 and µ = 0.3. The

performance of the algorithm is further analyzed by carrying out simulations over networks with

different sizes and node velocities. For a mobile network with N nodes, nodes are deployed

randomly with an average density of one node per unit area. Nodes can measure distances and

communicate within a radius of
√
N/2. For all values ofN , five nodes are randomly chosen to

be anchors. The node velocities are initialized randomly and updated according to the following

2https://www.youtube.com/watch?v=-MQFR3yiv7U
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modelvmn(t+ 1) = αvmn(t) +
√
1− α2nv(t), wherevmn(0),nv(t) ∼ N (0, σ2

vI). The mobility

parameterσv is directly proportional to the average speed of the nodes, and influences the

tracking performance of the algorithms used.

The performance of the proposed algorithm is compared with the weighted MDS solution ob-

tained by running the SMACOF algorithm till convergence. The non-zero weights, corresponding

to node pairs within the communication radius of each other,are all set to one. Note however

that a direct comparison between the SMACOF solution and theproposed algorithm is unfair,

since SMACOF is too complex to be directly implemented in a mobile network. Even among

cooperative localization techniques that focus on efficient implementation (see e.g. [10], [14],

[28], [29]), localization requires several iterations pertime instant. In contrast, the proposed

algorithm is asynchronous, and incurs linear or sublinear complexity, but is inaccurate for the

first few time instants.

In order to perform a fair comparison between algorithms, the following modifications are

adopted. First, a time-slotted version of the stochastic SMACOF algorithm is considered. Within

each time slot, the network forms several clusters, and performs steps (S1)-(S4). In order to reduce

the overhead associated with cluster formation, nodes withfewer than 5 neighbors do not form

clusters. Similarly, to limit the computational complexity at each node, cluster heads respond

to at most 10 nearest neighbors. With these settings, the computational and communication

complexity incurred by the network at every time slot is approximatelyN/5. The computational

and communication complexity of the SMACOF variants in [10], [14], [33] is also normalized

appropriately. As a first order approximation, it is assumedthat these algorithms requireO(N)

message exchanges per iteration. Equivalently, if we allowN/5 message exchanges per iteration,

and assume that 10 iterations are required for convergence,SMACOF requires about 50 time

slots for convergence. For obtaining the plots however, SMACOF is run till convergence, and

the number of iterations incurred was often more than 50. Both algorithms start with an initial

estimate of the node locations. Approximate node estimatescan be quickly obtained using simple

techniques such as those in [32]. For the purpose of simulations, the initial locations are chosen

as x̂m(0) = xm(0) + vm wherevm ∼ N (0, N/100). Warm starts are utilized at subsequent time

slots by initializing SMACOF with the previously estimatednode locations.

Fig. 2(top) shows an example run of the two algorithms withσv = 0.01, N = 50, and

µ = 0.5. The best possible estimation error obtained by solving theMDS problem is also
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shown for comparison. Observe that the proposed algorithm is inaccurate initially, and gradually

approaches its steady state value. Interestingly, the transient period required by the proposed

algorithm is small, especially when compared to the 50 time slots required by the SMACOF

implementation.

Next, the steady-state localization error of the two algorithms is compared. Both algorithms

are run for 700 iterations, and the maximum localization error incurred in the last 200 iterations

is evaluated aseℓ = maxt∈Tss
1
N

∥

∥

∥
X̂t −Xt

∥

∥

∥
whereTss = [501, . . . , 700]. The entire process is

repeated for 100 Monte-Carlo repetitions. For the proposedalgorithm, the value ofµ is tuned a

priori to minimize the localization error. Fig. 2(bottom) shows the steady-state localization error

incurred by the online and SMACOF algorithms, plotted for different values ofN andσv. It is

evident that the proposed algorithm performs significantlybetter than the complexity-normalized

SMACOF. In particular, while the performance of the two algorithms deteriorates with increasing

node mobility, the gap between their performance also increases. This is because at higher node

speeds, the node locations change significantly within the 50 time slots required by SMACOF to

run. Observe that for a given average node velocity, the performance of all algorithms appears

to improve withN . However, this is simply because the average node distancesincrease with

N , thereby reducing the relative average node speeds.

Fig. 3 shows an example run of the algorithm on a mobile network with N = 8 andµ = 0.3.

The network has four static anchors placed at the four corners of the1×1 region, that provide the

necessary translation and rotation information to all other nodes. For simplicity, only one 8-node

cluster is formed at each time instant by a randomly selectednode. The actual and estimated

node locations are shown as circles and squares respectively, with markers drawn every 10 time

instants. The nodes move in the direction indicated by decreasing marker sizes. As evident from

the figure, the trajectory of the estimated node locations converges to the actual trajectory within

30-40 time instants, and follows it thereafter.

C. Large-scale Visualization

This section demonstrates the use of the stochastic SMACOF algorithm for large-scale vi-

sualization. Given the plethora of highly sophisticated visualization algorithms a full-fledged

comparison is beyond the scope of the present work. Instead,we only present the visualizations

obtained from running the proposed algorithm for both static and dynamic datasets. The proposed
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Fig. 2: (Top) Estimation error for an example run of the Stochastic SMACOF and SMACOF algorithms; (Bottom)

Localization error for different network sizes and averagenode velocities.

algorithms are implemented in MATLAB and run on an Intel Corei7 CPU. This is in contrast

to the state-of-the-art visualization algorithms that require large compute clusters with hundreds

of processors for similar-sized datasets [17].
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Fig. 3: Example run of the dynamic network localization algorithm. Marker size decreases with time to indicate

the direction of motion.

1) PubChem Dataset:We consider a subset of 800,000 unique chemical compounds taken

from the pubchem compound database [34], [35]. The structural information about each com-

pound is represented by its 166 bit MACCS fingerprint. Dissimilarities between two compounds

is calculated using the Tanimoto score. Dissimilarities between two compounds with binary

fingerprintsh andg is calculated using the Tanimoto score [36, Ch-8], given by

γ = 1−
∑

i hi ∩ gi
∑

i hi ∪ gi
(38)

where∩ and ∪ denote the logical AND and OR operators respectively. It is remarked that

for this case, it is no longer possible to load anN × N matrix in the memory. Following the

December 22, 2016 DRAFT



25

Fig. 4: Visualization of PubChem Datasets.

discussion in Sec. IV-B, we usep = 100 and q = 50, so as to obtain linear complexity per

iteration. The simulation is run for 5000 iterations, and the value ofµ is reduced every 1000

iterations from 0.2 to 0.001. Figure. 4 shows the visualization obtained from the stochastic
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SMACOF algorithm. Each dot represents a compound, and is colored according to itsmolecular

complexity, a measure available from the PubChem dataset. Specifically, the blue dots represent

simpler (lower complexity) molecules, while green, yellow, and red colored dots represent

progressively more complex molecules. It is observed that MDS yields two distinct clusters

of compounds, while the lower complexity compounds are scattered towards the edges. The

visualization obtained here is comparable to those obtained in [8], [17].

2) MovieLens Dataset:The proposed algorithm is used to perform dynamic visualization of

the 27,000 movies on the MovieLens database [37]. To this end, the time-stamp associated with

each movie rating is utilized to generate a dynamic networkGt that only contains the movies

released and rated till the week numbert. The distance between two movies is estimated from

their cosine similarities. Video shows a visualization of the evolution of the movie-space over

the duration 1995-2015. Each movie is colored in accordancewith its popularity, and the newly

released movies start at the origin. From the video, it can beseen that the popular movies move

quickly (within few weeks) towards the edge of the graph, while the less popular ones tend to

remain near the center. See the video at the link3.

3) Newcomb Fraternity’s Dataset:The dynamic visualization of the Newcomb Fraternity

dataset [38] is considered. Since the dataset consists of only 16 nodes, and yields only 14 snap-

shots overall, computational complexity is not an issue. Nevertheless, the dynamic visualization

is obtained so that it may be compared with the regularized MDS technique of [12]. Video4

shows the dynamic visualization obtained from running the stochastic SMACOF algorithm for

50 iterations per time slot withµ = 0.2. The video is generated following the procedure similar

to that in [12]. The resulting video is quite similar to the one obtained via the graph-regularized

framework of [12]. Intuitively, the momentum term in the updates in (13) plays the role of the

regularization term here, and keeps the embeddings from changing too quickly.

VI. CONCLUSION

The multidimensional scaling (MDS) problem is considered within a stochastic setting, and

a novel stochastic scaling by majorizing a complicated function (SMACOF) is proposed. The

3https://www.youtube.com/watch?v=iJbY3HPHAUM

4https://www.youtube.com/watch?v=G9geUI3U7Tw&feature=youtu.be
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proposed algorithm is highly scalable, and is applicable tovisualization and localization problems

of very large sizes. Asymptotic analysis of the stochastic SMACOF algorithm shows that it stays

close to the trajectory of an averaged algorithm, which itself converges to a stationary point of

the stochastic stress minimization problem. Implementation details, as well as the computational

complexity analysis of the proposed algorithms are also provided. The performance of the

proposed algorithm is discussed for large-scale localization and visualization examples. The

efficacy of the proposed algorithm is demonstrated for localization of mobile networks, and

visualization of both, static and dynamic networks.

APPENDIX A

LOWER BOUND ON THE ALGEBRAIC CONNECTIVITY

In order to obtain intuition on (A3), consider the undirected graphGt whose edges have weights

{wmn(t)}, and recall thatLt is the graph Laplacian ofGt. The eigenvalues ofLt constitute the

spectrum of the graphGt [39]. If Gt is connected, the smallest eigenvalue ofLt is zero, while

the second-smallest eigenvaluea(Gt) = 1/
∥

∥

∥
L

†
t

∥

∥

∥

2
is always non-zero and is referred to as the

algebraic connectivity ofGt. As the name suggests,a(G) captures the overall connectivity of

the graph. On the other hand, ifGt hasK ≥ 2 connected components{Gk
t }Kk=1, theK smallest

eigenvalues ofLt are zero, so the smallest non-zero eigenvalue is simplya(Gt) = mink a(Gk
t ).

Next, we establish a lower bound on the algebraic connectivity of the weighted graphGt.

Proof of Lemma 1: If Gt is connected, the second smallest eigenvalue is given by

a(Gt) = N min
1Ty=0,y 6=0

∑

m<n wmn(ym − yn)
2

∑

m<n(ym − yn)2
. (39)

Here, the minimum is attained by the corresponding eigenvector y̆, that satisfiesLty̆ = a(Gt)y̆.

Recall thatE := {(m,n) | wmn ∈ [ǫw, 1]}, and observe that sinceGt is connected, there exists a

pathP between any two nodesm andn, such that

(y̆m − y̆n)
2 = [

∑

(i,j)∈P

y̆i − y̆j]
2≤ (N − 1)

∑

(i,j)∈P

(y̆i − y̆j)
2 (40)

≤ (N − 1)
∑

(i,j)∈E

(y̆i − y̆j)
2 (41)

where, (40) holds sinceP may contain at mostN−1 edges. Summing both sides over all edges

in the graph, we have that
∑

m<n

(y̆m − y̆n)
2 ≤ N(N − 1)2

2

∑

(m,n)∈E

(y̆m − y̆n)
2 (42)
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Substituting (42) into (39) fory = y̆, we have that

a(G) = N

∑

m<n wmn(y̆m − y̆n)
2

∑

m<n(y̆m − y̆n)2
(43)

≥ 2

(N − 1)2

∑

(m,n)∈E wmn(y̆m − y̆n)
2

∑

(m,n)∈E(y̆m − y̆n)2
≥ 2ǫw

(N − 1)2
(44)

which is the required bound. IfGt is not connected, it holds for a componentGk
t with p nodes that

a(Gk
t ) ≥ 2ǫw/(p−1)2 ≥ 2ǫw/(N−1)2, so that we again havea(Gt) = min a(Gk

t ) ≥ 2ǫw/(N−1)2,

which is the desired result.

APPENDIX B

PROOF OFLEMMA 2

Before proceeding with the proof, we state some basic results, and introduced necessary

notation. In the subsequent analysis, we will repeatedly use the following inequalities [40]

‖AB‖ ≤ ‖A‖2 ‖B‖ ≤ ‖A‖ ‖B‖ (45)

whereA andB matrices of compatible sizes. For notational brevity,dmn :=
√

‖xm − xn‖2 + ǫx

and ďmn :=
√

‖x̌m − x̌n‖2 + ǫx, and note thatdmn, ďmn ≥ √
ǫ.

We begin by defining thetotal deviationfunctions corresponding toK1
t andK2

t as

D1
t (X) :=

t
∑

τ=1

(

L†
τB

ǫ
τ (X)X− E[L†

τB
ǫ
τ (X)X]

)

(46)

D2
t (X) :=

t
∑

τ=1

(

L†
τLτ − E[L†

τLτ ]
)

X (47)

The following lemma lists several preliminary results required in deriving the bounds in

Lemma 2.
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Lemma 4. There existst0 <∞, such that for allt ≥ t0, it holds that
∥

∥

∥
L

†
tB

ǫ
t(X)X− L

†
tB

ǫ
t(X̌)X̌

∥

∥

∥
≤ C3

∥

∥X− X̌
∥

∥ (48a)
∥

∥

∥
L

†
tB

ǫ
t(X)X

∥

∥

∥
≤ C4 (48b)

∥

∥

∥
JX̂t

∥

∥

∥
≤ C5 (48c)

∥

∥D1
t (X)

∥

∥ ≤ d1t (48d)
∥

∥D1
t (X)−Dt(X̌)

∥

∥ ≤ π1
t

∥

∥X− X̌
∥

∥ (48e)
∥

∥D2
t (X)

∥

∥ ≤ d2t (48f)
∥

∥D2
t (X)−D2

t (X̌)
∥

∥ ≤ π2
t

∥

∥X− X̌
∥

∥ (48g)

whereJ = I−11T/N , C3 andC4 are constants, while the random variablesd1t , d
2
t , π

1
t , andπ2

t

follow (24). Results in(48f) and (48g) also requireX to be such that‖JX‖ ≤ C5.

The proof organized into four steps, each considering one ormore inequalities.

Proof of (48a) and (48b): Observe that them-th row of Bǫ
t(X)X for eacht ≥ 0 can be

written as

[Bǫ
t(X)X]m,: =

∑

n 6=m

wmn(t)δmn(t)

dmn
(xm − xn)

which implies that
∥

∥

∥
[Bǫ

t(X)X]m,:

∥

∥

∥
≤
∑

n 6=m

|wmn(t)δmn(t)|. ≤ NCδ. (49)

The bound in (48b) therefore follows from the use of (45),
∥

∥

∥
L

†
tB

ǫ
t(X)X

∥

∥

∥
≤
∥

∥

∥
L

†
t

∥

∥

∥

2
‖Bǫ

t(X)X‖ ≤ N2Cδ

ǫL
. (50)

which yieldsC4 = N2Cδ/ǫL. Likewise, them-th row of Bǫ
t(X)X−Bǫ

t(X̌)X̌ becomes

[

Bǫ
t(X)X−Bǫ

t(X̌)X̌
]

m,:

=
∑

n 6=m

wmn(t)δmn(t)

(

xm − xn

dmn

− x̌m − x̌n

ďmn

)

. (51)

December 22, 2016 DRAFT



30

Adding and subtracting the term(x̌m − x̌n)/dmn to each term within the summation in (51), it

can be seen that

xm − xn

dmn
− x̌m − x̌n

ďmn

=
xm − x̌m

dmn

− xn − x̌n

dmn

+ (x̌m − x̌n)

(

1

dmn

− 1

ďmn

)

=
xm − x̌m

dmn

− xn − x̌n

dmn

+
x̌m − x̌n

ďmn

ď2mn − d2mn

dmn(ďmn + dmn)
. (52)

Further, the term̌d2mn − d2mn can be written compactly as

ď2mn − d2mn = x̌T
mx̌m + x̌T

n x̌n − 2x̌T
mx̌n − xT

mxm − xT
nxn + 2xT

mxn

= (xm − xn + x̌m − x̌n)
T (xm − x̌m + x̌n − xn) (53)

Consequently, it is possible to write (51) as,

[

Bǫ
t(X)X−Bǫ

t(X̌)X̌
]

m,:

=
∑

n 6=m

wmn(t)δmn(t)Amn ((xm − x̌m)− (xn − x̌n))

where the matrixAmn is given by

Amn =
1

dmn

I+
(x̌m − x̌n)(xm − xn + x̌m − x̌n)

T

dmnďmn(ďmn + dmn)
. (54)

Thus, the full difference becomes

Bǫ
t(X)X−Bǫ

t(X̌)X̌ = At(X, X̌)vec
(

X− X̌
)

(55)

where the(m,n)-th p× p block of At(X, X̌) is given by

[

At(X, X̌)
]

:=











−Amnwmn(t)δmn(t) m 6= n

∑

n 6=mAmnwmn(t)δmn(t) m = n
(56)

Next, repeated use of the triangle inequality yields

‖Amn‖2

≤ 2

d2mn

(

‖I‖2 + ‖x̌m − x̌n‖2

ď2mn

‖x̌m − x̌n + xm − xn‖2

(ďmn + dmn)2

)
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Here, it holds from the definition of̌dmn that ‖x̌m − x̌n‖ /ďmn ≤ 1. Similarly, it holds that

‖x̌m − x̌n + xm − xn‖2 (57)

≤ ‖x̌m − x̌n‖2 + ‖xm − xn‖2 + 2 ‖x̌m − x̌n‖ ‖xm − xn‖

≤ ď2mn + d2mn + 2ďmndmn = (ďmn + dmn)
2 (58)

Therefore, the bound on‖Amn‖2 becomes

‖Amn‖2 ≤
2(N + 1)

ǫ
(59)

Similarly, it holds for
∥

∥At(X, X̌)
∥

∥ that

∥

∥At(X, X̌)
∥

∥

2 ≤ C2
δ

∑

m

∑

n 6=m

‖Amn‖2 +
(

∑

n 6=m

‖Amn‖
)2

≤ 3C2
δ

∑

m

∑

n 6=m

‖Amn‖2 (60)

≤ 3C2
δ

N(N − 1)(N + 1)

ǫ
< C2

δ

6N3

ǫx
(61)

which in turn, yields the bound

∥

∥At(X, X̌)
∥

∥

2 ≤ 6N3C
2
δ

ǫx
. (62)

The Lipschitz continuity ofL†
tBt(X)X thus follows as

∥

∥

∥
L

†
tB

ǫ
t(X)X− L

†
tB

ǫ
t(X̌)X̌

∥

∥

∥
≤
∥

∥

∥
L

†
t

∥

∥

∥

2

∥

∥Bǫ
t(X)X−Bǫ

t(X̌)X̌
∥

∥

≤ NCδ

ǫL

√

6N

ǫx

∥

∥X− X̌
∥

∥ , (63)

so thatC3 =
NCδ

ǫL

√

6N
ǫx

.

Proof of (48c): Observe thatLtJ = Lt and JL
†
t = L

†
t . Right multiplying both sides of

(13) by J, it follows that

JX̂t+1 = J(I− µL†
tLt)X̂t + µJL†

tB
ǫ
t(X̂t)X̂t (64)

= (JJ− µJL†
tLtJ)X̂t + µL†

tB
ǫ
t(X̂t)X̂t (65)

= (J− µL†
tLt)JX̂t + µL†

tB
ǫ
t(X̂t)X̂t (66)

= (J− µL†
tLt)(J− µL†

t−1Lt−1)JX̂t−1 + µL†
tB

ǫ
t(X̂t)X̂t

+ µ(J− µL†
tLt)L

†
t−1Bt−1(X̂t−1)X̂t−1 (67)
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Continuing in a similar manner, taking norm on both sides of (67), applying triangle inequality,

and using (48b) yields

∥

∥

∥
JX̂t+1

∥

∥

∥
≤
∥

∥Q0
t

∥

∥

2

∥

∥

∥
JX̂0

∥

∥

∥
+ µ(1 +

t
∑

τ=1

‖Qτ
t ‖2)C4 (68)

whereQτ
t :=

∏t
κ=τ (J − µL†

tLt). Next, from (A4), there exists somet0 < ∞ and ̺ < 1 such

that ‖Qτ
t ‖ ≤ ̺t−τ+1 for all t − τ + 1 ≥ t0. Since‖Qτ

t ‖ ≤ 1 for all t ≥ τ + 1, bound in (68)

becomes
∥

∥

∥
JX̂t+1

∥

∥

∥
≤ Cx̺

t + µC4(1 + t0 +
̺t

1− ̺
)

= Cx + µC4(1 + t0 +
1

1− ̺
) =: C5 (69)

for all t ≥ t0.

Proof of (48d) and (48e): Observe that each term ofD1
t (X) in (46) is zero mean, and

bounded as

∥

∥(L†
τB

ǫ
τ (X)X− E[L†

τB
ǫ
τ (X)X]

∥

∥ (70)

≤
∥

∥(L†
τB

ǫ
τ (X)X

∥

∥+
∥

∥E[L†
τB

ǫ
τ (X)X]

∥

∥ (71)

≤
∥

∥(L†
τB

ǫ
τ (X)X

∥

∥+ E[
∥

∥L†
τB

ǫ
τ (X)X

∥

∥] ≤ 2C4 (72)

The law of large numbers therefore implies thatD1
t (X)/t → 0 almost surely ast → ∞. This

also implies that there existsd1t such that‖D1
t (X)‖ ≤ d1t andd1t/t→ 0 as t→ ∞.

The Lipschitz continuity ofD1
t (X) can similarly be shown using (48a). Towards this end,

observe that

D1
t (X)−D1

t (X̌) =

t−1
∑

τ=1

(

L†
τB

ǫ
τ (X)X− E[L†

τB
ǫ
τ (X)X]

)

−
t−1
∑

τ=1

(

L†
τB

ǫ
τ (X̌)X̌− E[L†

τB
ǫ
τ (X̌)X̌]

)

=
t−1
∑

τ=0

L†
τ

(

Bǫ
τ (X)X−Bǫ

τ(X̌)X̌
)

− E[L†
τ

(

Bǫ
τ(X)X−Bǫ

τ (X̌)X̌
)

] (73)
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The vectorized version of the first term can be written as

vec
(

L†
τB

ǫ
τ(X)X− L†

τB
ǫ
τ (X̌)X̌

)

=
(

I⊗ L†
τ

)

vec
(

Bǫ
τ(X)X−Bǫ

τ (X̌)X̌
)

(74)

=
(

I⊗ L†
τ

)

Aτ (X, X̌)vec
(

X− X̌
)

(75)

Using a similar transformation on the second term of (73), the vectorized version of the right-

hand side can be written as

vec
(

D1
t (X)−D1

t (X̌)
)

=

(

t−1
∑

τ=0

Cτ (X, X̌)− E[Cτ (X, X̌)]

)

vec
(

X− X̌
)

(76)

whereCτ (X, X̌) =
(

I⊗ L†
τ

)

Aτ(X, X̌) is bounded as
∥

∥Cτ (X, X̌)
∥

∥ ≤
∥

∥

∥
L

†
t

∥

∥

∥

2

∥

∥Aτ (X, X̌)
∥

∥ ≤
C3. It is therefore possible to write

∥

∥D1
t (X)−D1

t (X̌)
∥

∥ ≤ πt
∥

∥X− X̌
∥

∥ (77)

where, πt =

∥

∥

∥

∥

∥

t−1
∑

τ=0

Cτ (X, X̌)− E[Cτ (X, X̌)]

∥

∥

∥

∥

∥

(78)

Since the term within the norm is a bounded zero-mean random variable, it follows from law

of large numbers that

1

t

t−1
∑

τ=0

Cτ (X, X̌)− E[Cτ (X, X̌)] → 0 (79)

with probability 1 ast→ ∞. This also implies thatπt/t→ 0 almost surely ast→ ∞.

1) Proof of (48f) and (48g): Observe that the zero mean random variableD2
t (X) can be

written as

D2
t (X) =

t
∑

τ=0

(

L†
τLτ − E[L†

τLτ ]
)

JX (80)

so that it follows form (48c) that
∥

∥

(

L†
τLτ − E[L†

τLτ ]
)

JX
∥

∥ ≤ 2C5 for all X such that‖JX‖ ≤
C5. Invoking the law of large numbers as before,D2

t (X)/t → 0 almost surely ast → ∞.

Consequently, there existsd2t such that‖D2
t (X)‖ ≤ d2t andd2t/t→ 0 almost surely ast→ ∞.

December 22, 2016 DRAFT



34

In order to establish the Lipschitz continuity ofD2
t (X), observe thatD2

t (X) − D2
t (X̌) =

C′
t(X− X̌), where

C′
t :=

t
∑

τ=0

L†
τLτ − E[L†

τLτ ] (81)

Since each summand in (81) is zero mean and bounded, it holds from law of large numbers that

C′
t/t→ 0 almost surely ast→ ∞. Consequently, there existsπ2

t such that
∥

∥D2
t (X)−D2

t (X̌)
∥

∥ ≤
π2
t

∥

∥X− X̌
∥

∥, andπ2
t /t→ 0 almost surely ast→ ∞.

Proof of Lemma 2: Bounds in (22) can be derived by observing that for1 ≤ τ ≤ t and

ι = 1, 2, it holds that

Dι
τ (X̂τ )−Dι

τ−1(X̂τ−1) = Kι
τ −Kι

τ−1+

Dι
τ−1(X̂τ)−Dι

τ−1(X̂τ−1). (82)

Summing (82) overτ = 1, . . . , t, it follows that

Dι
t(X̂t)−Dι

0(X̂0) = Kι
t −Kι

0 +

t
∑

τ=1

(

Dι
τ (X̂τ+1)−Dι

τ (X̂τ )
)

Observing thatKι
0 = Dι

0(X̂0), a bound onKι
t can be derived by using (48d) and (48e) as

follows:

‖Kι
t‖ ≤

∥

∥

∥
Dι

t(X̂t)
∥

∥

∥
+

t
∑

τ=1

∥

∥

∥
Dι

τ (X̂τ+1)−Dι
τ (X̂τ )

∥

∥

∥
(83)

≤ dιt +

t
∑

τ=1

πι
τ

∥

∥

∥
X̂τ+1 − X̂τ

∥

∥

∥
(84)

= dιt + µ

t
∑

τ=1

πι
τ

∥

∥

∥
L†

τB
ǫ
τ(X̂τ )X̂τ − L†

τLτ X̂τ

∥

∥

∥
(85)

≤ dιt + µ

t
∑

τ=1

πι
τ

(

C4 +
∥

∥

∥
L†

τLτJX̂τ

∥

∥

∥

)

(86)

≤ dιt + µ(C4 + C5)
t
∑

τ=1

πι
τ (87)

so thatC1 = C2 = (C4 + C5) for ι = 1, 2.
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The bound on‖K3
t‖ follows form applying triangle inequality on (21c), and using (48a) as

follows:

∥

∥K3
t

∥

∥ ≤
t−1
∑

τ=1

∥

∥

∥
E[L†

τB
ǫ
τ (X̂τ)X̂τ − L†

τB
ǫ
τ (X̃τ )X̃τ ]

∥

∥

∥
(88)

≤
t−1
∑

τ=1

E[
∥

∥

∥
L†

τB
ǫ
τ (X̂τ)X̂τ − L†

τB
ǫ
τ (X̃τ )X̃τ

∥

∥

∥
] (89)

≤
t−1
∑

τ=1

C3

∥

∥

∥
X̂τ − X̃τ

∥

∥

∥
= C3

t−1
∑

τ=1

‖∆τ‖ (90)

Finally, to show thatft(µ) ≤ fT (µ) → 0 for the interval0 ≤ t ≤ T/µ, observe that for

ι = 1, 2, it holds thatµdιt ≤ Tdιt/t. From (24), it is known that given anyε, there existst0(ε)

andCd such that

P [dιt/t ≤ Cd] = 1 ∀ t, (91)

and P [dιt/t ≤ ε] = 1 ∀ t > t0(ε). (92)

Such at0(ε) exists within[0, T/µ] for all µ ≤ T/t0(ε). Therefore, givenε, if t ≤ t0(ε), it holds

that

P [µdιt ≤ ε] = 1 (93)

for all µ ≤ ε/t0(ε)Cd. On the other hand, ift > t0(ε), (93) holds for allµ ≤ T/t0(ε/T ).

Combining the two cases, it holds thatmax0≤t≤T/µ µd
ι
t → 0, with probability one asµ → 0.

For the other two terms, observe similarly that givenε, there existsTε andCπ such that

P [πι
t/t ≤ Cπ] = 1 ∀ t, (94)

and P [πι
t/t ≤ ε] = 1 ∀ t > Tε. (95)

Thus, givenε, if t ≤ Tε, it holds that

P

[

µ2
t
∑

τ=2

πι
τ ≤ ε

]

= 1, ∀µ, s.t, µ ≤ 1

Tε

√

ε

Cπ
. (96)

Similarly, the result in (96) holds fort > Tε for all µ ≤ T
Tε/T2

.
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APPENDIX C

PROOF OFLEMMA 3

For notational convenience, letδ̆mn(t) :=
δmn(t)√

‖xm−xn‖
2+ǫx

and recall that̄δmn = E[δ̆mn(t)]. The

proof is divided into two parts. In the first part, we considerthe case whenGt is connected, so

that p = N . In this case, the goal is to show that

N
[

E[L†
tB

ǫ
t(X)]

]

mn
=











−δ̄mn m 6= n

∑

n 6=m δ̄mn m = n.
(97)

Since the graph is connected, it holds thatL
†
t = (Lt+11T/N)−1−11T/N . Let ψmn denote the

(m,n)-th co-factor ofLt+11T/N andΨ := det(Lt+11T/N), so that[L†
t ]mn = ψmn/Ψ−1/N .

SinceL†
t has zero row and column sums, we also have that

∑M
n=1 ψmn = Ψ. Therefore, expanding

along them-th row, the expression forΨ becomes

Ψ =
∑

n 6=m

wmn(t)(ψmm − ψmn) +
1

N

M
∑

n=1

ψmn (98)

=
N

N − 1

∑

n 6=m

wmn(t)(ψmm − ψmn) (99)

for each1 ≤ m ≤ N . Straightforward manipulations allow us to conclude that

[

L
†
tB

ǫ
t(X)

]

mn
=

1

Ψ



























−δ̆mn(t)wmn(t)(ψmm − ψmn) m 6= n

−∑k 6=m,nwnk(t)δ̆nk(t)(ψmn − ψmk)

∑

k 6=m

wmk(t)δ̆mk(t)(ψmm − ψmk) m = n.

Next, we show that the random variablesψmn andψmk are identically distributed forn 6= k 6=
m. Without loss of generality, letm = 1. Also, letLnk

i denote the(N − 2)× (N − 2) submatrix

of Lt + 11T/N after the removal of rows(1, i) and columns(n, k). The Laplace expansion of
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ψ1n along thek-th column yields

ψ1n = −
∑

i 6=1,n,k

(
1

N
− wki(t))(−1)n+i+k|Lnk

i |

− (
1

N
− wkn(t))(−1)k|Lnk

n | − (
1

N
+
∑

i 6=k

wki(t))(−1)n|Lnk
k |

= −
∑

i 6=1

(
1

N
− wki(t))(−1)n+i+k|Lnk

i |

− (
∑

i 6=k,n

wki(t) + 2wkn(t))(−1)n|Lnk
k | (100)

Likewise, the expansion ofψ1k along then-th column yields

ψ1k = −
∑

i 6=1

(
1

N
− wni(t))(−1)n+i+k|Lnk

i |

− (
∑

i 6=k,n

wki(t) + 2wkn(t))(−1)k|Lnk
n | (101)

It can be seen that the first terms in (100) and (101) are identically distributed sincewni(t)

and wki(t) are identical (cf. (A5)). Further, performingn − k row exchanges onLnk
n , it is

possible to obtaiñLnk
n which only differs fromLnk

k in the k-th row. Indeed, the elements of

the k-th row of L̃nk
n are {(1/N − wki(t))}i 6=k,n, while the elements of thek-th row of Lnk

n are

{(1/N − wni(t))}i 6=k,n. Since the determinant is linear in its rows, it follows that|Lnk
n | and

|L̃nk
n | = (−1)n+kLnk

k are identically distributed. In summary, we have that the distributions of

ψmn andψmk are identical for allk 6= n 6= m.

Next, define identical random variablesχmn := wmn(t)(ψmm −ψmn) for eachn 6= m, so that

Ψ = N
N−1

∑

n 6=m χmn. SinceGt is connected, it holds thatΨ > 0. Therefore from symmetry, we

have that

E[
χmn

Ψ
] =

N − 1

N
E[

χmn
∑

n 6=m χmn
] =

1

N
(102)

Further, using the fact thatE[χmn] = E[χmk] for eachk 6= n, it can be seen that

E

[

L
†
tB

ǫ
t(X)

]

mn
=

1

N















−δ̄mn m 6= n

∑

k 6=m

δ̄mk m = n.

which is the required result.
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Finally, if Gt consists of multiple connected components, the quantityL
†
tB

ǫ
t(X) is a permuted

version of the block-diagonal matrix withN/p block matrices of sizep×p each. LetΨj denote

the determinant ofj-th block, and the random variablesχj
mn be similarly defined block-wise.

Proceeding along similar lines, it can be seen that

E[
χj
mn

Ψj
] =

p− 1

p
E[

χj
mn

∑

n 6=m χ
j
mn

] =
1

p
. (103)

Consequently,[L†
tB

ǫ
t(X)]mn is non-zero if and only if the node pair(m,n) belong to the same

component, and is zero otherwise. From(A5), we have that the probability that a given pair of

nodes(m,n) belongs to the same connected component is given by(p− 1)/(N − 1), yielding

the required expression

E

[

L
†
tB

ǫ
t(X)

]

mn
=

p− 1

p(N − 1)















−δ̄mn m 6= n

∑

k 6=m

δ̄mk m = n.
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