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Abstract

Multidimensional scaling (MDS) is a popular dimensionalieduction techniques that has been
widely used for network visualization and cooperative lzedion. However, the traditional stress mini-
mization formulation of MDS necessitates the use of batdimapation algorithms that are not scalable
to large-sized problems. This paper considers an altemstidbchastic stress minimization framework that
is amenable to incremental and distributed solutions. Aehbrear-complexity stochastic optimization
algorithm is proposed that is provably convergent and gmplimplement. The applicability of the
proposed algorithm to localization and visualization taiskalso expounded. Extensive tests on synthetic

and real datasets demonstrate the efficacy of the propogedthm.

Index Terms
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I. INTRODUCTION

Multidimensional scaling addresses the problem of emimegdelational data onto a low-
dimensional subspace. Originally proposed in the contéxtsgchometrics and marketing![1],
MDS and its variants have since found applications in sao@orks [2]-[6], genomics [7],
computational chemistry [8], machine learnifg [9], andel@ss networks [10]. As an exploratory
technique, MDS is often used as a first step towards uncayéhie structure inherent to high-
dimensional data. In the context of machine learning and nhhing, the pairwise dissimilarities
are calculated using high- or infinite-dimensional nod#ilaites, and MDS yields a distance-
preserving, low-dimensional embedding. Of particular ami@nce are the embeddings obtained
in two or three dimensional euclidean spaces, that serveeeemual maps for visualizing

relationships between objects. In the context of socialvaets, such representations reveal
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interconnections between people and communities, and fege more insightful than simpler

metrics such as centrality and density. Different from tlassical MDS framework that utilizes
principal component analysis, modern MDS formulations lzeeed on the minimization of a
non-convex stress function![1]. Since the stress functioon weighted sum of squared fitting
errors, it allows for the possibility of missing and noisgsimilarities. Consequently variants of
the stress minimization problem have been developed farstddDS [11], visualization of time-

varying datal[1R2], and cooperative localization of stati@][ [13]-[15] and mobile networks [13].

Popular algorithms for solving the stress minimizationlgpeon include ‘scaling by majorizing

a complicated function’ (SMACOF)_[1], semidefinite prognaing [16], alternating directions

method of multipliers[[14],[[15], and distributed SMACOFRJ]1

The attractiveness of the MDS framework has however stadgediminish with the advent
of the data deluge. Specifically, when embeddi¥igobjects, the per-iteration complexity and
memory requirements of the aforementioned algorithmsase at least a8(N?), making them
impractical for large-scale problems. To this end, appr@te versions of SMACOF have been
proposed for large-scale visualization applications [JI8]. Nevertheless, most approximate
MDS algorithms are still too complex for large-scale datag @annot be generalized to other
applications such as cooperative localization of largevoeks.

Visualization or localization of time-varying data is everore challenging since the iterative
majorization algorithm must converge at every time insfd, [12], [13]. In mobile sensor
networks, carrying out a large number of iterations at eatte instant incurs a tremendous
communication overhead, and is generally impractical. iRstance, the distributed weighted
MDS approach[[10] still requires at leaat operations per iteration per time instant, which is
prohibitive for large networks. For large-scale applioati, where localization or visualization
is constrained by the per-iteration complexity and memeguirements, it is instead desirable
to have an online algorithm. Towards this end, the goal is litaia an adaptive algorithm
that processes dissimilarity measurements in a sequentiahline manner. For instance, an
adaptive algorithm can allow visualization of large netkgoiby reading and processing the
pairwise dissimilarities in small batches. Similarly, tbemmunication cost required for large-
scale network localization can be reduced by processing arfew range measurements at a
time.

This paper considers the stress minimization problem iroahststic setting, where the dis-
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similarity measurements and the weights are modeled amartisne-varying quantities with
unknown distributions. The first contribution of this papera novel stochastic SMACOF
algorithm that processes the dissimilarities in an onliaghion, and is therefore applicable
to both static and time-varying scenarios ($e¢. Ill). Theppised algorithm is not only scalable,
but is also amenable to a distributed and asynchronous mgpiation in ad hoc networks
(Sec[1V). As our second contribution, it is shown that ttegeictory of the stochastic SMACOF
algorithm remains close to that of an averaged algorithmchviiself converges to a stationary
point of the stochastic stress minimization problem ($#eB). The analysis borrows tools
from spectral graph theory, stochastic approximation,@rergence analysis of the SMACOF
algorithm. Finally, as the third contribution, the perf@nte of the proposed algorithm is tested
extensively on various synthetic and real-world data s&&c.(\f). The numerical tests confirm
the applicability of the stochastic SMACOF algorithm to aigety of scenarios.

The notation used in this paper is as follows. Bold upper ¢igvease letters denote matrices
(vectors). The 1, n)-th entry of a matrixA is denoted by|A],... Iy is the N x N identity
matrix, 0 denotes the all-zero matrix or vector, aidddenotes the all-one matrix or vector,
depending on the context. For a vectgr||x|| denotes itd, norm. For a matrixA, || A|| denotes
its Frobenious norm||A||, denotes the, norm, t(A) denotes its trace, and dét) denotes its

determinant.

II. BACKGROUND AND PROBLEM STATEMENT
A. Classical MDS and SMACOF

The classical MDS framework seek&dimensional embedding vectofs, }Y_,, given the
pairwise distances or dissimilariti€®,,, } ;n)ce, WhereE C {(m,n) | 1 < m < n < N},
betweenN different nodes or objects, denoted by the Aét= {1,..., N}. The embedding
vectors, collected into the rows & < RY*", are estimated by solving the following non-

convex optimization problem [1]

X = arg H%%n Z Wmn (5mn - me - Xn||2)2 (1)

1<m<n<N
wherew,,, is the weight associated with the measurendgnt and is set to zero for alin, n) ¢
£. The non-zero weights can be chosen in a number of ways, deyean the application, and

are often simply set to one. The objective function[ih (1)aferred to as the stress function,
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and is henceforth denoted byX). It can be seen that the optimuk obtained in[{l) is not
unique, and exhibits translational, rotational, and réfeal ambiguity.
The stress-minimization problem ial (1) is non-convex, aa lse solved up to a local optimum

using the well known SMACOF algorithm. Expanding the strizsgction, we obtain

= Z Wi (6727171 + [|%m — Xn||2 — 20 ||1Xm — Xn”) 2)
m<n
=) Winbr, + (X'LX) — 2tr(X"B(X)X) (3)
m<n
where,
)
—Wynn, m#n
[L]mn = (4)
\2?21 Wl M =1
- &Kf;:” m # N, Xy, 7 Xy
[B(X)]mn =40 m#n, X, = X, (5)
- Z;nzl[B(X)]mk m=n

The SMACOF algorithm works by iteratively majorizing thetaerm in [(8) with a linear function
and subsequently minimizing the majorized stress funolih respect toX. Starting with an
initial X(©, the SMACOF update at thieth iteration entails carrying out the following update:

X+ — arg min tr(X"LX) — 2tr(X B (X *))X®)) (6)

= LIB(X®™)X® (7

where [7) follows sinceB(X)X lies in the range space df. Observe that sincé& is rank-
deficient, the solution td{6) is not unique. However, whea weights{w,,,} specify a fully
connected grapl := ({1,...,N},&), bothL and B(X) have rankN — 1, with the null space
of L being 1. Therefore, any solution td](6) is of the foria B(X*)X® + 1¢ for ¢ € R.

Further, if the initial X¥) is chosen such that it is centered at the origin, 1€X® = 0, the
updates in[{7) ensure that X*) = 0 for all & > 1.

B. Stochastic MDS

This paper considers the MDS problem in a stochastic settvhgre the weights, and dissim-

ilarities or distance measurements are random variablgsumknown distributions. Specifically,

December 22, 2016 DRAFT



given {6,,,(t)} and {w,,,(t)}, the stochastic stress minimization problem is formulatsd

m)én 0(X) = Z E [ (8) (8 (8) — [|%m — Xn[)?]- (8)

m<n

In the absence of the distribution information, the exgoes$or (X)) cannot be evaluated in
closed-form, and the SMACOF algorithm cannot be appliedtelad, [(B) must be solved using
a stochastic optimization algorithm. Of particular insgrare the so-callednline algorithms
that can process the observatiofis,,,(t)}, {w.,(t)} in an incremental manner. Within this
context, efficient implementations of the stochastic (Jyfadient descent (SGD) method have
been used to solve very large-scale problems [19]. The SGiatep utilize the subgradient of
the instantaneous objective function, and for the presas¢,ctake the form:

X1 = Xy + p (Bo(X) X, — LX) (9)
where . € (0,1) is the learning rate or step size parameter. While the pedoce of the
SGD has been well-studied for convex problems, the sametigumfor non-convex problems,
such as the one i ](8). Indeed, the standard SGD algorithra doenecessarily converge for
many non-convex problem5s [20]. In the present case alsoS@B method exhibits divergent
behavior; see SeL.]V. The general-purpose stochastic imetjon-minimization method [21] is
also not applicable in the present case since it requiresoagdy convex surrogate function.
On the other hand, problem-specific stochastic algorithiange hbeen developed and applied
with great success. Examples include the online expeatatiaximization and the online matrix
factorization approaches [19], [22]. Along similar lindee next section details the stochastic

version of the SMACOF algorithm, and studies its asymptptimperties.
[1l. ONLINE EMBEDDING VIA STOCHASTIC SMACOF

A. Algorithm outline

Given {6, (t)} and{w,.,(t)}, and starting with an arbitrary origin-center&d), the updates

for the proposed stochastic SMACOF algorithm take the form,

X1 = (1 — )X, + pLiBS(X,)X, t>0 (10)

 Wnn(®dmn(?) m#n

where, [BS(X)]pm =4 VIxm—alP+e 1)
o lecvzl[Bg(X)]mk m=n
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with e, being a small positive constant that ensures that the erafi8(X) stay bounded for
all X. The update rule can be viewed a stochastic version of the @®Aalgorithm with the
following modifications (a) at each time instant, only oneration of SMACOF is executed
using the modified definition oB¢(X) in (11); (b) the estimated coordinatds at timet are
used for initialization at-+1; and (c) the estimated coordinat¥s, ; are constructed by taking a
convex combination oX, and the SMACOF output. The last modification endows the éhyor
with tracking capabilities since the parametemay be interpreted as the forgetting factor, and
can be tuned in accordance with the rate of chang®ef, ()} and{w,.,(t)}. For example, the
embedding at time + 1 can be forced to be close to those at timigy settingu < 1. Finally,
the proposed update rule subsumes the SMACOF algorithmtdtic scenarios, where we set
S (t) = Oy @ANA W, (1) = Wiy, for all ¢, andp = 1.

The update rule in[(10) is valid only if the gragh defined by{w,.,(t)} is connected for
all t > 1. In the case wheg; has more than one connected component, the coordinateis with
each component must be updated separatelyCfdie the set of nodes belonging to tlih
component and’ be the|C/| x N selection matrix containing the rows bf; corresponding to
the elements ir;. Defining LY := UL,I" andB{(X") := EB{(X,)I’, the update rule for
the nodes irC/ is given by

X = (1 - pd)X + p(L) By (X)X (12)
whereJ, := I — 117/|C;(¢)|, is the|C;(t)| x |C;(¢)| centering matrix which ensures that the

coordinate center of each component does not change afterpitiate, i.e. 17X, = 17X,

The general update rule
X1 = (I - pLiL)X, + pL{B, (X)X, (13)
subsumes the forms specified in](10) aind (12), irrespecfitheonumber of connected compo-
nents ingG,, since it holds that
1-1/[Cl] m=ned]
L L] = —1/|C/| m #n,m,n €C} (14)
0 otherwise.

In contrast to the classical SMACOF algorithm, the proposlgdrithm is flexible enough to

be used in a number of different scenarios. As already ds&dljsa specific choice of parameters

December 22, 2016 DRAFT



allows us to interpret the SMACOF algorithm as a special aafséhe proposed algorithm.
On the other hand, the stochastic SMACOF can also be usedie gery large-scale MDS
problems, where the full set of measuremedis, } cannot be processed simultaneously. Instead,
it is possible to apply[(13) on a small subset of observaticnsgresponding to a subgragi.

A special case occurs when exactly one edge is chosen periristent and per cluster, i.e.,
IC/| = 2, and the updates il (113) reduce to those in encountered isttimhastic proximity
embedding (SPE) algorithm][6],

Ll

xi(t+1) = (1 — p)x(t) + MHXi( —tij(t)ll

B d;(¢) .
*”Q H&@—xﬁﬂ)]@ (13)

and likewise for nodej. The proposed stochastic SMACOF is therefore a generalizatf

t

SPE, applied to components of arbitrary sizes. Since thetepdn [(IB) for any two clusters
¢/ and CF do not depend on each other, the proposed algorithm can alsmpiemented in
a distributed and asynchronous manner. Such an implenantat particularly suited to the
range-based localization problems that arise in wireleta/aorks.

Finally, akin to the classical adaptive filtering algorithisuch as LMS, the proposed algorithm
can also be applied to time-varying scenarios, i.e., whgtit) is non-stationary. The applications
of interest include localization of time-varying networksd visualization of time-varying data.
In both cases, the first ter(ﬂ—th)Xﬁj) in the update[(13) serves as a momentum term. That is,
a small; encourage,.; to stay close tX,, resulting in a smooth trajectory c§1§(t}. On the
other hand, a large value @f enables tracking in highly time-varying scenarios, whilaking
the updates sensitive to noise [23, Ch-21]/[24, Ch-9]. Furttmplementation details pertaining
to the localization and visualization problems are disedss Sec[1V. Before proceeding with

the asymptotic analysis, the following remark is due.

Remark 1. Building further on the link with adaptive algorithmg, may be interpreted as a
forgetting factor that downweights the past informationhéf /. is a constant that is strictly
greater than zero, the algorithm forgets the old data exptaaily quickly, thus offering superior
tracking capability. In contrast, it is possible to have aganemory version of the algorithm
with a time-varyingu, — 0. Ast — oo, such an algorithm would no longer track the changes in

dmn(t), and can be applied to a static scenarios where the algociéimstop once the embeddings
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converge. While the bounds developed here apply only todke of constant > 0, diminishing

step size is in fact utilized in Sec] V.

B. Asymptotic Performance

In general, establishing convergence of stochastic algus for non-convex problems is quite
challenging [[20]. Here, the asymptotic performance of thappsed algorithm is established in
two steps. First, it is shown that the trajectory of the ststit SMACOF algorithm stays close to
that of an averaged algorithm, in an almost sure sense. &hisryolves establishing a hovering
theorem, and utilizes techniques from stochastic appratian [24]-[26]. Next, it is shown that
the averaged algorithm converges to a stationary poirt)of (8

1) Assumptions:For the purposes of establishing convergence, a simpligtihg is con-
sidered, wherein the grapfi at eacht consists of N/p > 1 components of size each. Let
Jm(t) := {j | m € C]} be the index of the component to which nogebelongs at time, and
define®, € RV*¥ such that

—1/N Jm(t) 7 jn(t)
[Odmn =4 =1/N+p/p Gm(t) = jult),m #n
(1=p)=1/N+p/p m=n.
(A1) The random process€®,,,(t)}:>o and{d,..(t)}:>o are independent identically distributed
(i.i.d.).
(A2) The random variable$o,.,(t)} have support0, Cs|, while the weights{w,,,(t)} have
support{0} U [e,, 1].
(A3) The online algorithm is initialized such th#(l - 11T/N)XOH <,
(A4) There exists, such that for any. € (0, 1), there existg € (0, 1) such thaf|[T._, ,, ©,]|, <
ot~ for all t — 7 > t,.
(A5) For eacht, the non-zero weight$w,,, (t)},., are i.i.d. withw := E[w,,(t)].
The i.i.d. assumption inA1) is standard in the analysis of most stochastic approxanati
algorithms. For the applications at hand, the suppo#t,gf(¢) andw,,,(t) is naturally finite. It
is required from A2) that the non-zero weights be bounded away from zero. Suanditon

is required to ensure the numerical stability of the Laglacsystem of equations that must be
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solved at every iteration [cfL.(10),_(IL3)]. Specificallyjstshown in Appendix thatA2) implies

the following result

Lemma 1. Under (A2), it holds that‘ L]

<= (N —1)?/2¢, forall t > 1.
2

The proof of Lemmdll is provided in Appendixl A. The initial diguration can always
be normalized to satisfy the bound iAJ). Assumption A4) restricts the extent to which
the graphsj; can stay disconnected over time. To obtain intuition 8@)( observe first the
largest eigenvalue o®, is 1 — u if G; has a single connected component and one otherwise.
Consequently, if al{G,},__,, are connected A4) holds with o = 1 — p. Conversely, it holds
that |TT.,_,,, ©;||, = 1 if and only if (a) each{G,}!_,,, has more than one components, and
(b) the components do not change over time, ig(f) = j,(t) for all m, n, andt. Intuitively,
(A4) allows {G,} to have multiple connected components at each 1, as long as the nodes
belonging to these components keep changing over time.

Finally, (A5) is perhaps the most restrictive, and may not always be easatisfy. For instance,
the weights are not identically distributed in the conteitlynamic network localization (cf. Sec.
[V-A), since non-zero weights are often assigned to neighigonodes only. Likewise, weights
selected via Sammon mapping also result in non-identichéiributed weights. The assumption
however greatly simplifies the proof of convergence for thieraged algorithm. Having stated
the assumptions, the averaging analysis is presented isutbeequent subsection.

2) Hovering Theorem:The proposed stochastic SMACOF algorithm will be relatedamo

averaged algorithm with updates,

X1 = (1— pw)Xy + uBY(X)X, (16)

where the time-invariant functioB?(X) := E[L/B¢(X)] andv = %{,’:B Assuming that both

algorithms start from the same initialization, i.Xy = X, the following proposition states the

main result of this section.

Proposition 1. Under (A1)-(A5), and foru < 1, it holds for the updates generated {#3) and
(@8), that

X, — X < elp) 17)

max
1<t<1/u

where the random variable(;:) — 0 almost surely ag. — 0 with probability 1.
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Intuitively, Propositiori L states that the trajectory of firoposed stochastic algorithm in13)
stays close to that of the averaged algorithniid (16). Furthe stochastic "oscillations” of (13)
are small if is also small. However, choosing too small a valugipivhich is also the step-size
in (18), will generally result in a slower convergence raie dny such iterative algorithm. The
parameteyp: may therefore be seen as controlling the trade-off betweerdnvergence rate and
asymptotic accuracy. Further characterization of thiddraff is pursued via numerical tests in
Sec.[V.

Alternatively, consider the case whénupdates of[(13) are performed wifh= 1/T. For
this case, the bound if_(fL7) becomes

max th ~ x| < e/ (18)

1<t<T

wherec(1/T) — 0 almost surely a§” — oo. In other words, the stochastic oscillations can be
made arbitrarily small if sufficient number of updates campbgormed. It is remarked that such
results are commonplace in the stochastic approximatierature [24]-[25].

Next, an outline of the proof of Propositidh 1 is presentetijlevthe details are deferred to
Appendix[B. The overall structure of the proof is similar tat in [24]. Significant differences
exist in the details however, since workarounds are intteduin order to avoid making any
assumptions on the boundednessXof It is emphasized that such a modification is generally
not possible in a vast majority of problems, and is not ttiviiis however possible here due
to the special structure of the upddaiel(13) that dependsamipe differences between pairs of
rows of X,; see [4D).

Proof of Propositiori]L: The difference between the iterates generated Dy (13)[a@)dig1
given by

At+1 = Xt+1 — Xt+1 = At — U (LILtXt - Uxt)
+ p (LIB:(Xt)Xt - Ba(Xt)Xt> (19)

Assuming that both the algorithms start from the same iiztigion, i.e.,X, = X, it follows
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11
that

t
A =-Y u <LILTXT . UXT>
7=0

+ Z (LiB(X )X, - BY(X,)X, )

7=0
t
= -y A, +p (K} + K} +Kj) (20)
T=1
where for allt > 0,
t
K} = (LiBi(X,)X, — E[LIBS (X)X, ) (21a)
7=0
t
K;=-) (LIL, —oI) X, (21b)
7=0
t
K? = Z <Ba(XT)XT - Ba(XT)XT> . (21C)
=1

The following intermediate lemma develops bounds on theetlerms in[(21), and constitutes

the key step in the proof.
Lemma 2. The following bounds hold for= 1,2

t
IKi|| <dj+Cin )y (22)

T=1

t
K3 <05 1A (23)
=1
where the constant§, C,, and Cs are independent of, and the constantg}, =}, d?, and «}
are such that
d;
5 0 - 0 (24a)

for i = 1,2, almost surely ag — oc.

The proof of Lemmdl2 is provided in AppendiX B. The norm Af,,; can therefore be
bounded by applying triangle inequality dn {19) as follows.

1Al < u(Cs+ 1) A+ f(1) (25)

T=1
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where we have used the fact thgk||, = 1 and

t
R 1 2 2 1 2
f(p) = Oggfjuu(dt +di) + ;:1 Chmy + Comy. (26)

It is further shown in AppendikIB thaf(x) — 0 almost surely ag. — 0. Propositior 1L then
follows from the application of the discrete Bellman-GrailWw.emma [24] on[(Zb), which yields

1A < F()(1 + p(Cs + 1)) = F(pu)etlerrm(@s+1)
< F(p)ettC ) < F ()l = e(p) -

[

3) Convergence of the Averaged AlgorithrHaving established that the trajectory of the
stochastic algorithm hovers around that of the averagedrigign, we complete the proof by
establishing that the averaged algorithm converges to @ Iminimum of [1). The challenge
here is that the updates ih_{16) do not resemble those in afhssical algorithms such as
SMACOF or gradient descent. For notational brevity,dgt, := E[émn(t)]/\/nxm — x| + €

andJ =I—117/N, and note the following result.

Lemma 3. Under (A1)-(A5), it holds that

" —0mn m#n
B X)|n = % _
k#m

The proof of Lemmd]3 is provided in the Appendix C. For the & sthe section, we will

assume that, < 1 and thus negligible. Therefore from Lemila 3, we have that

7(X) = Elwyn ()0 (t)’] + tr (X"LX)

m<n
—2tr(X"B(X)X) (28)
where,L := E[L;] = wvpJ and
_ — O m#n
B(X) .= 22 i (29)
N S O m=n.
k#m

The main result of this subsection is stated as the follovgrgposition.
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Proposition 2. The mean-stress vaIU6$Xt) decrease monotonically withand converge to a
stationary point of (g).

Proof: Without loss of generality, led" _ E[w,(t)dm,(t)?] = 1, and definen*(X) :=
ot (XTLX) andp(X) := 3(1/pv — Dtr (XTLX) +tr (X"B(X)X), and observe that(X) =
1+7*(X) — 2p(X). Similarly, define the mapping(X) := (1 — pv)X + wLpB(X)X, so that the
updates in[(16) becomK, ; = T'(X;).

Given any two embeddingX andY, the following bounds hold from the Cauchy-Schwarz

inequality:
—tr(XTLX) < —tr((2X - Y)'LY) (30)
—tr(X'B(X)X) < —tr(X'B(Y)Y) (31)

which allows us to conclude that

1—pv

p(X) > Ly (XTLL(Y)) —

.
= TR (YTLY) (32)

= F(X) < 1+%(X) + ;v’wtr (Y'LY)
2
L (XTLT(Y)
=1+ (1= po)n*(Y) = *(D(Y)) + n*(X = T(Y)) (33)

where equalities holds foK = Y. Denote the right-hand side df {33) by (X), and observe
that wy (X) > wy(I'(Y)) for all X. This yields the main inequality that(Y) = wy(Y) >
wy(T(Y)) > (T (Y)). In other words, we have thatX,) > (X,,1), so that the non-negative
sequence; := 5()@) is non-increasing and therefore convergent to a limit, 83y By squeeze

theorem for limits[[27], it also holds thatxt(fitﬂ) — 0+, Yielding the following limits

lim 7*(Xy) = (1 = 00c) /v (34)
lim p(Xy) = (1= 000) (1 = pv) /2 (39)
tlgglo 772(5@ - Xt+1) =0 (36)

Since the matriceif(t}tzo are origin centered, the result in {36) can equivalently lviten
Xt - Xt+1

Vi(Xy) =0. m

as — 0 ast — co. Denoting the limit point ofX, by X, it can be seen that
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IV. IMPLEMENTATION ASPECTS

A. Multi-agent network localization

Multidimensional scaling has been widely used for locdi®a where inter-node distances
are often obtained from time-of-arrival or received sigstatngth measurements [10], [14], [28],
[29]. Wireless network localization is challenging beaaudlse pairwise distance measurements
are noisy, time-varying due to mobility, fading, and syrwtization errors, and often partially
missing, due to the limited range of the sensors. Furtherlithited battery life and resource
constraints at the nodes impose restrictions on the conwation and computational load that
the network can toleraté [13], [114].

Towards addressing these limitations, the stochastic S®IR@lgorithm for network local-
ization works by judiciously choosin§uw,,,(¢)} to limit the communication and computational
cost at each update. The idea is to partition the networksaeteral non-overlapping clusters (or
components), chosen randomly at each tim&he coordinates within a cluster are updated as
in (13). Only neighboring nodes are included within eactstdy thus eliminating the need for
multihop communication between far off nodes. Finallycsithe updates at different components

are independent of each other, the localization algorithmuin asynchronously as follows.

S1. At a given time, a nodej randomly declares itself as a cluster head, and solicitstelu
members from among its neighborss ;. Available neighbors respond with their current
location estimatesk,,(¢), resulting in a star shaped clustéf. Once locked as cluster
members, these nodes respond only to the messages fromjnode

S2. The cluster head performs distance measurements beitsel and all its neighbors and
collectsd;,(¢) for all n € ¢/ \ {5}.

S3. The cluster head performs the updatd_in (13) with apjatsly chosen weight$w,,(t)},
and broadcasts the new location estimates to each nodg\if;j}

S4. Nodes inC/ \ {j}, upon receiving the new location estimates (or upon time@vugrror

events), release their locks and become available.

As originally intended, the proposed algorithm can also jpeliad to mobile networks. The
algorithm is expected to perform well as long as the nodecieds are not too high. The
asynchronous nature of the algorithm allows for delayedatgglat nodes, balanced battery usage

within the network, and communication errors. In genetais ialso possible to apply multiple
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updates of the form i (13) per time instant, without incugriany extra communication cost.

Nodes may declare themselves as cluster heads using a raoadkoff-based contention
mechanism such as CSMA, and solicit neighbors by simplyisgnain RTS packet. An update
at a cluster thus takes up at most two message exchanges. ddumglicated protocols that
ensure recovery from collisions, and robustness or errars atso be used [30]. The online
algorithm is flexible, and allows clusters of any shape oe,siiepending on the communication
and computational resources available within the netwbhie non-zero weights, corresponding
to available distance measurements, can be chosen aagdaditne estimated noise variance
[10], [28], following Sammon mappind [1]/ [31], or simply amity.

It is remarked that the node coordinates obtained from (S4)-are relative and centered at
the origin. In applications where node coordinates are irequvith respect to a set of GPS-
enabled anchor nodes, appropriate rotation and translaperations must be applied at each
node. Since the anchor nodes are generally not power comvestrat is possible for them to
determine these transformations|[10], and convey the trésudll other nodes. As shown later
in Sec.[V, it is generally sufficient to calculate the tramsfations periodically every few time
slots.

Finally, similar to the SMACOF algorithm, the stochastic S&#OF algorithm is sensitive to
initialization. A random initialization may result in thdgarithm getting trapped in a “poor”
local minimum. In practice, superior location estimaticgrfprmance is obtained if the initial-
ization is at least roughly correct. Simple low-complexibgalization algorithms can be used
for initialization. For instance, nodes can roughly triatege themselves using noisy distance
estimates from the anchor nodés|[32].

B. Large network visualization

It is possible to visualizeV objects in a 2 or 3 dimensional euclidean space by applying
MDS to the pairwise dissimilaritie$é,,,,}. The SMACOF algorithm is however ill-suited for
large-scale visualization since it requires at le@$fV?) operations per iteration. Further, even
processing the full measurements,,,} simultaneously may not be feasible for datasets with
more than a hundred thousand objects.

Visualization via stochastic embedding can be achievedanijtipning the objects into several

subsets of reasonable sizes, and performing the updat&3)inthe following steps are performed
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for eacht > 1.
1) Partition theN objects into random, mutually exclusive subs&tsvith p nodes per subset.
2) For each subset, randomly choose a small fracfioof pairs and measure (calculate or
fetch from memory) distance$,,, for the chosen pairs. LeF/ denote the set of chosen
pairs for each clustef and timet.
3) Apply the update in[{13) for each subskt
Compared to the localization algorithm, in this case alhpie distances are available a priori
and without noise, but cannot be read or processed simoliahe The aforementioned steps
result in making{w,,,(¢)} sparse and thus reducing the per-iteration complexity.oAtigm[1

summarizes the implementation of stochastic SMACOF faydaretwork visualization.

Algorithm 1 Stocahstic SMACOF for Large Network Visualization
1. Initialize X, and setu to some value in0, 1)

2. for t =1,2,...do

3. Partition the set\ into C' disjoint subsetgC/ o

4. for j=1,...,C do

5: Measure or fetch from memory pairwise distan¢és,, (¢)}, for a subset of object pairs
(m,n) € F.

6: Set weightsw,,,(t) = 1 for all (m,n) € F.

7: Perform the update in_(13) for each sub&gt

8. end for

9: end for

Again, as envisioned earlier, the algorithm is also appleao visualization of dynamic
networks. The idea here is to create an animation consisfiegnbeddings that vary over time.
By specifying a small enough value for in (13), it is possible to force the embeddings to
change slowly over time, thus preserving the userantal magdl2]. Unlike existing algorithms

however, the proposed algorithm can allow visualizatiowvery large datasets.

C. Algorithm complexity

Unlike the SMACOF algorithm, whose per-iteration comptexis O(N?), the stochastic
SMACOF algorithm processes the data in small batches andheaafore be implemented at
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near-linear complexity. This is becausejif consists of multiple components of sigeeach, the
updates in[(113) decouple and can even be carried out in elrlirther, the weights for each
cluster are chosen to be sparse, i.e. thep matrix LY has at mosy < p? non-zero elements.
The problem of solving a sparse Laplacian system of equatias been well studied, and state-
of-the-art solvers return a solution in tin@®(qlogp) for each component. Thus, using/p
sparse matrice$L’} results in an overall complexity aP (% log p). As we will show next,
the appropriate choice of the batch sjzeesults in a near-linear complexity. The complexity
results obtained in this section are summarized in Table |.

Note that a sublinear per-iteration complexity @fqlog(p)) is also achievable by updating
only one component per iteration. Such an implementatiomavbowever require proportionally
large number of iterations. Alternatively, the per-itewatcomplexity of the algorithm can be
calibrated using the total number of dissimilarity meamanats processed per-iteration, given
by f(N) = q(N/p). To this end, we provide approximate rules for choogingnd ¢ so as to
minimize the per-iteration complexity, given the total ren of non-zero weightg(N).

First, assume that eadlj is sparse, i.e.q < p?, so thatf(N)/N = ¢/p < p. In this case,
since the per-iteration complexity is given I8 f (V) log(p)), the value oflog(p) should be as

small as possible. It can be seen that the choice

ol()) o)) e

for somes > 1 results in the complexity)(f(N)log(f(N)/N)), while ensuring thall! is
still sparse withg ~ O(p'*'/#). Note that it is not necessary fgt to be very large, as long
as the sparse Laplacian solvers can still be used. On the lotinel, whenL? is dense so that
q ~ O(p?), the per-iteration complexity is given b (Ng) = O(f(N)p). In this case, it holds
that f(N)/N = q/p < p, so that one must chooge~ O(f(N)/N) andq ~ O(f(N)?*/N?).
Consequently, the optimal iteration complexity for thisedecome® (f(N)?/N).

Tablell shows a few example choices{fV) and the corresponding per-iteration complexity
values. It can be observed that whgiV) is almost linear inV, so is the per-iteration complexity,
regardless of the sparsity &f . On the other hand, using a spalsebecomes important when
f(N) is large.
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Non-zero weightsf () sparseL’ denseL’
ON'"™), 0 <w<x 1 O(N'“log(N)) O(N1T2)
O(Nlog N) O(Nlog Nloglog N) | O(N log* N)
O(N3/?) O(N*?1log N) O(N?)

TABLE [: Algorithm complexity for different choices of (V)

V. SIMULATION RESULTS

This section provides simulation results evaluating thegpmance of the proposed algo-
rithm. The general properties of the stochastic SMACOF ritlgm are first characterized using
numerical tests. Next, simulation results are provided tfer online localization algorithm,
evaluating its performance in various mobile network sdesaFinally, applicability to large-
scale visualization is demonstrated by running the algoribn two different datasets. Before
proceeding, it is remarked that the proposed stochastic SOIAis better suited to applications
where the size of the dataset is large, preferally> 50. Indeed, if the problem at hand
is small (sayN < 20), conventional SMACOF would likely be faster, since the gosed
algorithm generally requires more iterations to conveijge computational advantage arising
from processing only a few distance measurements per tistarihbecomes significant only

when NN is sufficiently large.

A. Algorithm Behavior

This section provides several numerical tests that allowoustudy various properties of the
stochastic SMACOF algorithm. Towards this end, consideztavark with 100 nodes, distributed
uniformly over al0 x 10 planar area. The measured distances between nodexln are given
BY 8rn () = ||X0m — X || + Vmn (t), Wherewv,,,, (t) ~ N(0,0.01). Negative distance measurements
were discarded by setting the corresponding,(t) = 0. The algorithm is run for different
values ofyu, with p = 25 and abouB5% density of non-zer@s All non-zero weights are chosen
to be unity.

1) Transient performanceFig [ (Top) shows the sequence of normalized stress values ob

tained from an example run of the algorithm [cf._](13)]. Fomgmarison, the stress values

INon-zero locations are generated randomly, and the nunfbeorezeros vary between different instantiations.
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Fig. 1: (Top) Performance of the stochastic SMACOF algarmitithe averaged algorithm, and the SMACOF

algorithm; (Bottom) Steady state fluctuations in the stress

obtained from running the averaged algorithm (cfl (16)) teedSMACOF algorithm for weighted
MDS (cf. (@)) are also plotted. All algorithms are intializevith the same randomly chosen
configuration. The MDS algorithm runs with all-one weightdiile the updates for the averaged

algorithm are obtained via empirical averaging.
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As expected, the convergence speed of the algorithm varg®tonically with . Consis-
tent with Propositiori]1, the trajectory of the proposed athm follows that of the averaged
algorithm. As expected, the steady-state stress valueathiby the averaged algorithm is very
close to that of SMACOF. Further, as shown in the inset, tlop@sed algorithm hovers above
the averaged algorithm, with steady-state deviation deaong with ..

It is remarked that the SGD algorithm, with updates speciiiredd), tended to diverge in
the presence of noisy distance measurements, differeigthtvehoices, and poor initializations.
For instance, when using Sammon mapping, €., = 1/J,.,, the noisy measurement model
specified earlier, ang = 0.05, the SGD algorithm converged for only 19 out of 100 test runs.
In contrast, no divergent behavior was ever observed forptioposed algorithm even with
measurement noisg; ~ A (0, 10).

2) Steady state performancd&:he algorithm is allowed to run for 5000 time instants with
different values ofu, and the minimum, mean, and maximum steady-state stresgsvalre
evaluated. We sefg = [4801,...,5000] and evaluate

o . $ — U(Xt) . A~
Mhain = Min o(Xy) n= t; T Tnax = max o (Xy).

Starting with the same initialization, the entire expené repeated for 100 Monte Carlo
iterations. Fig[Il (Bottom) shows the minimum, mean, andimar steady state errors plotted

againstu. As expected, the stress values converge to a small nornvaére that decreases with

I

B. Dynamic Network Localization

The localization performance of the proposed algorithntudied on a mobile network. \ﬁdgo
shows an example run of the algorithm on a mobile network with= 8 and 4 = 0.3. The
performance of the algorithm is further analyzed by cagymut simulations over networks with
different sizes and node velocities. For a mobile networthw nodes, nodes are deployed
randomly with an average density of one node per unit aredeblcan measure distances and
communicate within a radius af N /2. For all values ofN, five nodes are randomly chosen to

be anchors. The node velocities are initialized randomty @pdated according to the following

2https://www.youtube.com/watch?v=-MQFR3yiv7U
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modelv,,, (t + 1) = avu,(t) + /1 — a2n,(t), wherev,,,(0), n,(t) ~ N(0, 2I). The mobility
parametero, is directly proportional to the average speed of the noded, iafluences the
tracking performance of the algorithms used.

The performance of the proposed algorithm is compared \wghateighted MDS solution ob-
tained by running the SMACOF algorithm till convergenceeTton-zero weights, corresponding
to node pairs within the communication radius of each othes,all set to one. Note however
that a direct comparison between the SMACOF solution andptbposed algorithm is unfair,
since SMACOF is too complex to be directly implemented in abiteonetwork. Even among
cooperative localization techniques that focus on efficierplementation (see e.d. [10], [14],
[28], [29]), localization requires several iterations gane instant. In contrast, the proposed
algorithm is asynchronous, and incurs linear or sublin@anpdexity, but is inaccurate for the
first few time instants.

In order to perform a fair comparison between algorithms, fisllowing modifications are
adopted. First, a time-slotted version of the stochastidSRF algorithm is considered. Within
each time slot, the network forms several clusters, anaped steps (S1)-(S4). In order to reduce
the overhead associated with cluster formation, nodes fewler than 5 neighbors do not form
clusters. Similarly, to limit the computational complgxiat each node, cluster heads respond
to at most 10 nearest neighbors. With these settings, thepuational and communication
complexity incurred by the network at every time slot is apgmately N/5. The computational
and communication complexity of the SMACOF variants[in/ [1[dH], [33] is also normalized
appropriately. As a first order approximation, it is assurtfeat these algorithms requi@(N)
message exchanges per iteration. Equivalently, if we allo\w message exchanges per iteration,
and assume that 10 iterations are required for converg&SMACOF requires about 50 time
slots for convergence. For obtaining the plots however, 8@k is run till convergence, and
the number of iterations incurred was often more than 50h Bdgorithms start with an initial
estimate of the node locations. Approximate node estinwede quickly obtained using simple
techniques such as those n|[32]. For the purpose of simualgtihe initial locations are chosen
asx,,(0) = x,,(0) + v,,, wherev,, ~ N (0, N/100). Warm starts are utilized at subsequent time
slots by initializing SMACOF with the previously estimatedde locations.

Fig. 2(top) shows an example run of the two algorithms with= 0.01, N = 50, and
i = 0.5. The best possible estimation error obtained by solving NHi2S problem is also

December 22, 2016 DRAFT



22

shown for comparison. Observe that the proposed algorighimaiccurate initially, and gradually
approaches its steady state value. Interestingly, thesiganperiod required by the proposed
algorithm is small, especially when compared to the 50 tihoéssequired by the SMACOF
implementation.

Next, the steady-state localization error of the two alipons is compared. Both algorithms
are run for 700 iterations, and the maximum localizatiomreimcurred in the last 200 iterations

is evaluated ag, = maXtegs% HXt — X;|| where7ss = [501,...,700]. The entire process is

repeated for 100 Monte-Carlo repetitions. For the propadgdrithm, the value of: is tuned a
priori to minimize the localization error. Figl 2(bottonf)@vs the steady-state localization error
incurred by the online and SMACOF algorithms, plotted fdfedtent values ofV ando,. It is
evident that the proposed algorithm performs significabéiter than the complexity-normalized
SMACOF. In patrticular, while the performance of the two altfons deteriorates with increasing
node mobility, the gap between their performance also as@se. This is because at higher node
speeds, the node locations change significantly within €heérbe slots required by SMACOF to
run. Observe that for a given average node velocity, theopadnce of all algorithms appears
to improve with V. However, this is simply because the average node distance=ase with
N, thereby reducing the relative average node speeds.

Fig.[d shows an example run of the algorithm on a mobile nééwoth N = 8 and . = 0.3.
The network has four static anchors placed at the four cemithel x 1 region, that provide the
necessary translation and rotation information to all oti@es. For simplicity, only one 8-node
cluster is formed at each time instant by a randomly seleotate. The actual and estimated
node locations are shown as circles and squares respgctingd markers drawn every 10 time
instants. The nodes move in the direction indicated by @esong marker sizes. As evident from
the figure, the trajectory of the estimated node locatiomyemes to the actual trajectory within

30-40 time instants, and follows it thereafter.

C. Large-scale Visualization

This section demonstrates the use of the stochastic SMAQ@dfitam for large-scale vi-
sualization. Given the plethora of highly sophisticatedualization algorithms a full-fledged
comparison is beyond the scope of the present work. Insteaanly present the visualizations

obtained from running the proposed algorithm for both statid dynamic datasets. The proposed
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Fig. 2: (Top) Estimation error for an example run of the Stmtlt SMACOF and SMACOF algorithms; (Bottom)

Localization error for different network sizes and averagele velocities.

algorithms are implemented in MATLAB and run on an Intel CofeCPU. This is in contrast
to the state-of-the-art visualization algorithms thatuieg) large compute clusters with hundreds

of processors for similar-sized dataséts| [17].
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Fig. 3: Example run of the dynamic network localization aitlon. Marker size decreases with time to indicate

the direction of motion.

1) PubChem DatasetWe consider a subset of 800,000 unique chemical compoukés ta
from the pubchem compound database [34]] [35]. The stractoformation about each com-
pound is represented by its 166 bit MACCS fingerprint. Dislsirities between two compounds
is calculated using the Tanimoto score. DissimilaritiebMeen two compounds with binary

fingerprintsh and g is calculated using the Tanimoto score![36, Ch-8], given by

> hing
-] it S
K ZihiUgi (38)

where N and U denote the logical AND and OR operators respectively. Itesmarked that

for this case, it is no longer possible to load Anx N matrix in the memory. Following the

December 22, 2016 DRAFT



25

Fig. 4: Visualization of PubChem Datasets.

discussion in Sed.IVIB, we use = 100 and ¢ = 50, so as to obtain linear complexity per
iteration. The simulation is run for 5000 iterations, ané tralue ofy is reduced every 1000

iterations from 0.2 to 0.001. Figuré]l 4 shows the visualirabbtained from the stochastic
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SMACOF algorithm. Each dot represents a compound, and esexnblaccording to itsnolecular
complexity a measure available from the PubChem dataset. Specifittadlyplue dots represent
simpler (lower complexity) molecules, while green, yelloand red colored dots represent
progressively more complex molecules. It is observed th&8SWields two distinct clusters
of compounds, while the lower complexity compounds aretemad towards the edges. The
visualization obtained here is comparable to those olbxdaing8], [17].

2) MovielLens DatasetThe proposed algorithm is used to perform dynamic visutadinaof
the 27,000 movies on the MovieLens databasé [37]. To this taedtime-stamp associated with
each movie rating is utilized to generate a dynamic netw@rkhat only contains the movies
released and rated till the week numbeilhe distance between two movies is estimated from
their cosine similarities. Video shows a visualization lo¢ tevolution of the movie-space over
the duration 1995-2015. Each movie is colored in accordantteits popularity, and the newly
released movies start at the origin. From the video, it casda® that the popular movies move
quickly (within few weeks) towards the edge of the graph, le/ttihe less popular ones tend to
remain near the center. See the video at thelink

3) Newcomb Fraternity’s DatasetThe dynamic visualization of the Newcomb Fraternity
dataset[[38] is considered. Since the dataset consistslpflémodes, and yields only 14 snap-
shots overall, computational complexity is not an issueveédteless, the dynamic visualization
is obtained so that it may be compared with the regularizedSM&chnique of([12]. Vid
shows the dynamic visualization obtained from running tteelsastic SMACOF algorithm for
50 iterations per time slot with = 0.2. The video is generated following the procedure similar
to that in [12]. The resulting video is quite similar to theeoobtained via the graph-regularized
framework of [12]. Intuitively, the momentum term in the wtes in [(IB) plays the role of the

regularization term here, and keeps the embeddings fromgaig too quickly.

VI. CONCLUSION

The multidimensional scaling (MDS) problem is considerethiw a stochastic setting, and

a novel stochastic scaling by majorizing a complicated fionc(SMACOF) is proposed. The

3https://www.youtube.com/watch?v=iJbY3HPHAUM
“https://www.youtube.com/watch?v=G9geUI3U7 Tw&featyeutu.be
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proposed algorithm is highly scalable, and is applicabldgoalization and localization problems
of very large sizes. Asymptotic analysis of the stochastlASOF algorithm shows that it stays
close to the trajectory of an averaged algorithm, whichifitsenverges to a stationary point of
the stochastic stress minimization problem. Implemeoadietails, as well as the computational
complexity analysis of the proposed algorithms are alsovigenl. The performance of the
proposed algorithm is discussed for large-scale localimadnd visualization examples. The
efficacy of the proposed algorithm is demonstrated for laatibn of mobile networks, and
visualization of both, static and dynamic networks.

APPENDIX A

LOWER BOUND ON THE ALGEBRAIC CONNECTIVITY

In order to obtain intuition onA3), consider the undirected graphwhose edges have weights
{w,.,(t)}, and recall thal, is the graph Laplacian of,. The eigenvalues dk, constitute the
spectrum of the graply, [39]. If G, is connected, the smallest eigenvaluelgfis zero, while
L]

algebraic connectivity ofj;. As the name suggests(G) captures the overall connectivity of

the second-smallest eigenvalugj,) = 1/‘

is always non-zero and is referred to as the
2

the graph. On the other hand,gf has K > 2 connected componen{g©} X | the K smallest
eigenvalues oL, are zero, so the smallest non-zero eigenvalue is sim{@y) = min, a(GF).
Next, we establish a lower bound on the algebraic connégtofithe weighted graply,.

Proof of Lemmall:If G, is connected, the second smallest eigenvalue is given by

=N msn ) 39
a(Gi) e TS (m =) (39)

Here, the minimum is attained by the corresponding eigdoveg that satisfied.,y = a(G,)y.

Recall thatf := {(m,n) | w., € [ew, 1]}, and observe that sin@@ is connected, there exists a

path’P? between any two nodes andn, such that

W = 0)* = [ D U= GPP<(N=1)> (i —i)° (40)
(4,5)eP (4,4)eP
<S(N=1) > (i) (41)
(i,7)€€

where, [40) holds sinc® may contain at mos — 1 edges. Summing both sides over all edges

in the graph, we have that

_1)2

m<n (m,n)e€
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Substituting [(4R) into[(39) foy = y, we have that
2 men Win (Fm — Yn)”
> in<n(Um = Un)?
S 2 Z(m,n)eg Wi (Yo — Tn)? N 26y
T IN=1? YmeeWm — ) T (N —1)2
which is the required bound. §; is not connected, it holds for a componéitwith p nodes that
a(GF) > 2e,/(p—1)% > 2¢,,/(N—1)2, so that we again haveG,) = min a(GF) > 2¢,/(N—1)2,

which is the desired result. [ ]

a(G) =N (43)

(44)

APPENDIX B

PROOF OFLEMMA

Before proceeding with the proof, we state some basic gsahd introduced necessary

notation. In the subsequent analysis, we will repeatedéythe following inequalities [40]

[AB] < [[Afl, [IBI| < [[A[[][B]] (45)

where A andB matrices of compatible sizes. For notational brevity, := \/||xm — x| + e
andd,,, = \/||5<m — ;zn||2 + €, and note thatl,,,, d,, > /.

We begin by defining théotal deviationfunctions corresponding t&! and K? as

D;(X) := i (LIB; (X)X — E[LIB{(X)X]) (46)
D?(X) := Zt: (L'L, - E[L'L,]) X (47)

The following lemma lists several preliminary results riegd in deriving the bounds in
Lemmal2.
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Lemma 4. There existg, < oo, such that for allt > ¢,, it holds that

‘LIB;(X)X—LIB;(X)X <G| X = X| (48a)
‘LIB;(X)X <0, (48b)

lax,| < (48c)

Dy (X)|| < d; (48d)

D} (X) = D(X)|| < =/ [| X = X|| (48e)
DX < d (48)
ID?(X) - DI(X)|| < 7 [|X — X]| (489)

whereJ =1—117/N, C; and C, are constants, while the random variablés 47, =}, and 77
follow (24). Results in{481) and (@8d) also requireX to be such thaf|JX|| < Cs.

The proof organized into four steps, each considering ormaare inequalities.
Proof of (48d)and (488) Observe that then-th row of B§(X)X for eacht > 0 can be

written as

BiX)X],,, = 3 Lo o )
n#m mn
which implies that
|B5 X)X, | < Dl (0ma ()] < NCs. (49)
n#m

The bound in[(48b) therefore follows from the use [of] (45),

which yieldsC; = N2Cjs/er,. Likewise, them-th row of B§(X)X — B(X)X becomes

N2C,
B XX < = (50)

€L

L]

LiB; (X)X | <|

=" W ()8 (£) (de;nx" _ Xm = X") . (51)
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Adding and subtracting the teriix,, — %,,)/d,., to each term within the summation in_(51), it

can be seen that

dmn dmn
_Xm—fim_Xn—an_l_(X %) 1 B 1
Xy — Xy Xy — Xy Xy — %, d2, —d?
Further, the termi?,  — d2, can be written compactly as
a2, —d2, = X%, + X0k, — 2%D %, — XE X — X0 %, + 2%X0 %,
= (Xm - X, + km - Xn>T(Xm - km + kn - Xn) (53)
Consequently, it is possible to write {51) as,
(B{(X)X - B{(X)X]
= Z Wi () (£) A (X = X)) — (X0 — %5))
n#m
where the matrixA,,,, is given by
1 s _ e _\T
A, = gy B = X)X = Xn + R = %) (54)
Thus, the full difference becomes
B;{(X)X — B{(X)X = A(X, X)vec(X — X) (55)
where the(m, n)-th p x p block of A,(X,X) is given by
3 — A Wi () O (1) m#n
[A(X, X)] := (56)

Zn;ém Amnwmn(t)émn(t) m=n

Next, repeated use of the triangle inequality yields

2

[ A
~ ~ 2 1|~ - 2
< 2 HIHZ X HXmV_XnH 1% — X + X — Xy ||
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Here, it holds from the definition of,,, that ||%,, — %,|| /dm, < 1. Similarly, it holds that
1% — Xy + Xy — X || (57)
< 1% — kn||2 + [|%m — XnH2 + 2% — X[ [[Xm — Xa|
<&+ d2 4 2dndimn = (dpn + din)? (58)

Therefore, the bound ofA.,,.,,||> becomes

2(N +1
A < 2D (59)
Similarly, it holds for || A;(X, X)|| that
[AX X" <C3 0D Aml® + (Z ||AmnH>
<3CEY D 1Al (60)
m n#Em
_ 3
- 3C§N(N 16)(N +1) 026?7 (61)
which in turn, yields the bound
(12 Ne
|AL(X, X)||” < 68— (62)
The Lipschitz continuity ofl,/ B,(X)X thus follows as
‘ B{(X)X — LiB{(X XH X)X — B{(X)X||
N
<2 HX x| 3)
€L

so thatCy = == / GEN u

Proof of @8d) Observe thafl,J = L, and JL] = L. Right multiplying both sides of
(@3) by J, it follows that

IX, 1 = JI — pLiL)X, + pJLIBL(X)X, (64)
= (JJ — WJLILD)X, + uLiB{(X,)X, (65)
= (J — pLiL)JIX, + pLiBS(X,) X, (66)

— (J— pLL)(J — pL} L, )IX, + pLiBY(X) X,

pw(J — MLILt)LI_1Bt—1(Xt—1)Xt—1 (67)
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Continuing in a similar manner, taking norm on both sidede&df)( applying triangle inequality,
and using[(48b) yields

9% IXo| + u(1 + Z 1Q71,)C (68)

<!,

where Q] := [[._ (T — uLIL,). Next, from (@4), there exists som& < oo andp < 1 such
that |Q7|| < o™ for all t — 7+ 1 > t,. Since|Q}|| < 1 for all t > 7 + 1, bound in [€8)

becomes
t

1—-o

HJXH-lH < Cpo' + pCy(1 4t + )

1

for all t > t,. [ ]
Proof of (48d) and (488) Observe that each term &;(X) in (46) is zero mean, and

bounded as

[(LIBL(X)X — E[LIBL(X)X]]| (70)
< |LIBLX)X| + ||E[LIBL(X)X]|| (71)
< [(LIBL(X)X|| + E[||LIBS (X)X]|] < 2C, (72)

The law of large numbers therefore implies thag(X)/t — 0 almost surely ag — oo. This
also implies that there exist§ such that||D;(X)|| < d} andd}/t — 0 ast — cc.
The Lipschitz continuity ofD}(X) can similarly be shown using (48a). Towards this end,

observe that
t—1

D}(X) - D}(X) = Y (LIBL(X)X — E[L!B;(X)X))

3 (LIBLX)X — B[LIBS(X)X))

=) LI (B{(X)X - B{(X)X)

~ E[L! (B{(X)X - BS(X)X)] (73)
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The vectorized version of the first term can be written as

vec(L{B: (X)X — LB (X)X)
= (I®LI)vec(BL(X)X — BE(X)X) (74)
= (I® L) A (X, X)vec(X — X) (75)
Using a similar transformation on the second term[of (733, thctorized version of the right-

hand side can be written as

vec(D; (X) — D} (X))

= ( 3 C,(X,X) - E[C,(X, X)]) vec(X — X) (76)
7=0
where C, (X, X) = (I® L1) A, (X, X) is bounded ad|C, (X, X)|| < ’LI a-xx)| <
Cs. It is therefore possible to write
|D;(X) = D/(X)| < [|X = X]| (77)
where, m, = iCT(X,X) —E[CT(X,X)]H (78)
7=0

Since the term within the norm is a bounded zero-mean randamable, it follows from law

of large numbers that

t

C.(X,X) - E[C,(X,X)] — 0 (79)

~~ | =

-1
7=0
with probability 1 ast — oo. This also implies that; /¢t — 0 almost surely ag — co.

1) Proof of (48f) and (48d) Observe that the zero mean random variabiEX) can be

written as
t

D}(X) =Y (LIL, - E[LIL.]) JX (80)

7=0
so that it follows form [48c) thall (L!L, — E[LIL,]) JX|| < 2C; for all X such thatf| JX|| <
Cs. Invoking the law of large numbers as befoi®?(X)/t — 0 almost surely ag — oo.

Consequently, there exist§ such that||D?(X)|| < d? andd?/t — 0 almost surely as — oo.
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In order to establish the Lipschitz continuity #?(X), observe thaiD?(X) — D?(X) =
C/(X — X), where

t
;=Y LIL, — E[L{L,] (81)
7=0
Since each summand in_(81) is zero mean and bounded, it holasldw of large numbers that

C}/t — 0 almost surely as — oo. Consequently, there existg such thaf|D?(X) — D?(X)|| <

, andw?/t — 0 almost surely as — oo. |
Proof of Lemmad12: Bounds in [(2R) can be derived by observing that fox + < ¢ and
v = 1,2, it holds that

D{(X,) - D! (X)) =K — KL+
D, (X;) =D (X,0). (82)

Summing [(8R) over = 1, ..., t, it follows that

D!(X,) — D4(X,) = K! — K6+Z< X, 11) D;(Xf))

Observing thatK = Dg(Xo), a bound onK; can be derived by using _(48d) and (#8e) as

follows:

Ik < || ik + Z HD;(M - DL(X,) (83)
<d+ Z X1 — X- (84)
=d + MZ B (X)X, (85)
§d§+u;ﬂi< ) (86)
< di+ p(Cy+ Cs) i w; (87)

T=1

so thatC; = Cy = (Cy + C5) for v =1, 2.
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The bound on|K?|| follows form applying triangle inequality o (2l1c), and migi(484&) as

follows:
k3| < Z HE LIB:(X,)X, — LIB:(X,)X,] (88)
A t—1
sch} X =Y A (90)
=1 =1

Finally, to show thatf;(1) < fr(x) — 0 for the interval0 < ¢ < T'/u, observe that for
v = 1,2, it holds thatud; < T'd,/t. From [24), it is known that given any, there existg,(c)
and C; such that

P[d'/t < Cyl =1 v t, (91)
and Pld;/t <¢]=1 YVt > to(e). (92)

Such aty(e) exists within[0,7"/u] for all © < T'/ty(e). Therefore, giver, if ¢t < ty(¢), it holds
that

Plud <=1 (93)

for all 1 < ¢/ty(e)Cq. On the other hand, if > ty(s), (@3) holds for allu < T'/to(c/T).
Combining the two cases, it holds thatx)<,<7/, nd; — 0, with probability one ag: — 0.
For the other two terms, observe similarly that giverthere existsl. andC,; such that

Plm/t <Cr] =1 Vi, (94)
and Pm/t<el =1 Vit>T.. (95)

Thus, givene, if t < T, it holds that

t
1
P[ﬁE:w;sE]:l, Vi, stop< o Ci. (96)
T—9 5 ™

Similarly, the result in[(96) holds for > 7 for all 1 < -~

e/T?
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APPENDIX C

PROOF OFLEMMA

For notational convenience, 181, (¢) := ——2m2® ___ and recall thab,,,, = E[5,,,(t)]. The
Ohn (1) 1= = [0 (1))
proof is divided into two parts. In the first part, we consitlee case whew,; is connected, so
thatp = N. In this case, the goal is to show that
—On m#mn
N [E[LIB;(X)]] - (97)

mn N

> nm Omn =1

Since the graph is connected, it holds théat= (L, + 117 /N)~* — 117 /N. Let ¢,,, denote the
(m,n)-th co-factor ofL, + 117 /N and ¥ := det L, + 117 /N), so that{L{],., = ¥mn/¥ —1/N
SinceL| has zero row and column sums, we also haveﬂj%il Ymn = V. Therefore, expanding

along them-th row, the expression fo¥ becomes

M
W = 3 ) W — o) + 5 D o (98)
n#m n=1
__N 99

for eachl < m < N. Straightforward manipulations allow us to conclude that

(

_Smn( )W (1) (Yrmim — VYmn) m#n
UBI0] =28~ Do w3 = Vot
k; Wik (1) Ok (8) (Y. — k) =10,

Next, we show that the random variables,, and+,,, are identically distributed fon # k #
m. Without loss of generality, let» = 1. Also, let L?* denote thg N — 2) x (N — 2) submatrix
of L, + 117 /N after the removal of rows$1,i) and columngn, k). The Laplace expansion of
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Y1, along thek-th column yields

V== 3 (g () (- 1)L
i#£1,n,k
~ (5~ o) DL — (5 + §w 1)L
= =3 = w1
(3 ) + 2una () (1)L (100
i#k,n

Likewise, the expansion af,;, along then-th column yields

Yri= = D055 — w1 (~ 1)L
(X wnalt) + 2w () (DI (101)

It can be seen that the first terms [n_(L00) ahd [101) are iclhtidistributed sincew,;(t)
and wy;(t) are identical (cf. A5)). Further, performingn — k row exchanges oid.*, it is
possible to obtalrLQ’C which only differs fromL2* in the k-th row. Indeed, the elements of
the k-th row of L* are {(1/N — wyi(t)) }izrn, While the elements of thé-th row of L** are
{(1/N — wyi(t)) }izr.n- Since the determinant is linear in its rows, it follows tHBf*| and
IL7*| = (—1)"**L7* are identically distributed. In summary, we have that thetritiutions of
Umn @anda,,, are identical for allk # n # m.

Next, define identical random variabl€s,, := W, (t)(Vmm — Ymn) fOr eachn # m, so that
v = % Zn#m Xmn- SINCEG; IS connected, it holds thalt > 0. Therefore from symmetry, we

have that

Further, using the fact thd|x,.,] = E[x...| for eachk # n, it can be seen that
-6 m#n
1 mn
E|LB{(X)| =— _
|: t=t ]mn N E 5mk m = n.
k#m

which is the required result.
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Finally, if G; consists of multiple connected components, the quaﬁﬁiﬁ};(X) is a permuted
version of the block-diagonal matrix with'/p block matrices of size x p each. Let¥/ denote
the determinant ofi-th block, and the random variablgg,, be similarly defined block-wise.

Proceeding along similar lines, it can be seen that

Xtnny _ P — 1 Xinn 1
E[ 0 ] = 5 E[Z#m o = (103)
Consequently]L!B¢(X)],.., is non-zero if and only if the node pajrn, n) belong to the same
component, and is zero otherwise. FroAb), we have that the probability that a given pair of
nodes(m, n) belongs to the same connected component is give(pby1)/(N — 1), yielding

the required expression

-6 m#n
—1 mn
ELB(X)| =t
k#m
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