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Abstract

In this work, we study a generic network cost minimization problem, in which every node has a local

decision vector to determine. Each node incurs a cost depending on its decision vector and each link also

incurs a cost depending on the decision vectors of its two end nodes. All nodes cooperate to minimize

the overall network cost. The formulated network cost minimization problem has broad applications in

distributed signal processing and control over multi-agent systems. To obtain a decentralized algorithm

for the formulated problem, we resort to the distributed alternating direction method of multipliers

(DADMM). However, each iteration of the DADMM involves solving a local optimization problem

at each node, leading to intractable computational burden in many circumstances. As such, we propose a

distributed linearized ADMM (DLADMM) algorithm for network cost minimization. In the DLADMM,

each iteration only involves closed-form computations and avoids local optimization problems, which

greatly reduces the computational complexity compared to the DADMM. We prove that the DLADMM

converges to an optimal point when the local cost functions are convex and have Lipschitz continuous

gradients. Linear convergence rate of the DLADMM is also established if the local cost functions are

further strongly convex. Numerical experiments are conducted to corroborate the effectiveness of the

DLADMM and we observe that the DLADMM has similar convergence performance as DADMM

does while the former enjoys much lower computational overhead. The impact of network topology,

connectivity and algorithm parameters are also investigated through simulations.

Index Terms

Decentralized optimization, network optimization, alternating direction method of multipliers
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I. INTRODUCTION

The last decade has witnessed the advances of decentralized signal processing and control over

networked multi-agent systems, which result in great research interest in distributed optimizations over

networks. Such distributed optimization problems arise in fields such as adaptive signal processing over

networks [1], distributed estimation over sensor networks [2], [3], decentralized power system state

estimation and management [4], [5] as well as signal processing for communication networks [6],

[7]. In these applications, data are distributed over individual nodes across the network. Centralized

data processing and optimization suffer from high or even prohibitive communication overload and

are vulnerable to link failures and network congestions. As such, optimizing and processing data in

a decentralized manner, where only local information exchange among neighbors is allowed, are more

favorable.

In the literature, distributed optimization has been extensively studied recently. Two important categories

of distributed optimization problems are distributed network utility maximization (NUM) and consensus

optimization. In distributed NUM, each agent has a local decision variable, based on which it obtains

some utility. Agents cooperatively maximize the total utilities of the network subject to some coupling

resource constraints such as the link capacity constraint in communication networks. For NUM, Wei et

al. propose and analyze a distributed Newton method in [8], [9], while the effect of noisy information

exchange is studied in [10]. Moreover, Niu and Li present an asynchronous decentralized algorithm with

elegant pricing interpretations for NUM [11]. On the other hand, in consensus optimization, all agents

share the same decision variable but have different local cost functions and the goal is to cooperatively

minimize the total cost of the network. Nedic and Ozdaglar propose a decentralized subgradient method

for consensus optimization in [12] while a dual averaging method is presented in [13]. Specific forms

of consensus problems such as adaptive signal processing over networks [1] and average consensus

(where agents cooperate to compute the average of individuals’ data) [14] have been studied by using

the alternating direction method of multipliers (ADMM). More recently, the general form of consensus

problem is investigated by using the distributed ADMM (DADMM) in [15], where linear convergence

rate is established under some technical conditions. Later, several variants of DADMM are proposed for

the consensus problems, including linearized ADMM [16], quadratically approximated ADMM [17] and

dynamic ADMM [18].

In all the aforementioned works, only costs or utilities at individual nodes are taken into consideration

while the costs or gains of links are ignored. For example, for consensus optimization, the network

cost is only composed of local cost at each node and the effect of the link is not incorporated. In fact,
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for consensus problems, though the decentralized algorithms may depend on the network topology (the

links connecting nodes), the problem formulation itself is independent of the network structure. This

is not suitable for many applications in distributed signal processing and control, where the notion of

link cost or link utility naturally arises. For example, in multitask adaptive learning [19], each node i

aims at estimating its weight vector wi, which, in contrast to the consensus problems, is different from

other nodes’ weight vectors. In most networks, neighbor nodes tend to have similar weight vectors. To

incorporate this prior knowledge into the estimator, the objective function to be minimized should include

terms promoting similarity between neighbors such as ‖wi −wj‖22, where i, j are neighbors. This term

is tantamount to a link cost of the link (i, j).

In this paper, we study the network cost minimization problem, where the network cost encompasses

both node costs and link costs. To obtain a distributed algorithm for the problem, we resort to the

distributed alternating direction method of multipliers (DADMM) [20], which generally converges faster

than distributed subgradient method [12]. However, each iteration of the DADMM algorithm involves

solving a local optimization problem at each node, which is a major computational burden. To avoid

this, we propose a distributed linearized ADMM (DLADMM) algorithm for network cost minimization.

The DLADMM algorithm replaces the local optimization problem with closed form computations

through linearizations and thus greatly reduce the computational complexity compared to DADMM. We

further theoretically demonstrate that the DLADMM algorithm has appealing convergence properties.

Our contributions can be summarized as follows.

• We formulate a generic form of network cost minimization problem incorporating both node costs

and link costs. The formulated problem has broad applications in distributed signal processing and

control in networked systems.

• A distributed linearized ADMM algorithm for the network cost minimization problem is presented.

The DLADMM algorithm operates in a decentralized manner and each iteration only consists of

simple closed form computations, which endows the DLADMM with much lower computational

overhead than the DADMM algorithm.

• We prove that the DLADMM algorithm converges to an optimal point if the local cost functions

are convex and have Lipschitz continuous gradients. Linear convergence rate of the DLADMM

algorithm is also established provided that the local cost functions are further strongly convex.

• Numerical experiments are conducted to validate the performance of the DLADMM algorithm. We

empirically observe that the DLADMM algorithm has similar convergence speed as the DADMM

algorithm does while the former enjoys much lower computational complexity. The impact of
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network topology, connectivity and algorithm parameters is also investigated.

The organization of the rest of this paper is as follows. In Section II, the network cost minimization

problem is formally formulated and the DLADMM, DADMM algorithms are developed. In Section III,

the convergence properties of the DLADMM algorithm are analyzed. In Section IV, numerical simulations

are conducted. In Section V, we conclude this work.

II. PROBLEM STATEMENT AND ALGORITHM DEVELOPMENT

In this section, we first motivate and formulate the network cost minimization problem. Then, we

present a brief review of the basics of the ADMM, following which a distributed ADMM (DADMM)

algorithm for the network cost minimization problem is shown. Finally, to reduce the computational

burden of the DADMM, we propose a distributed linearized ADMM (DLADMM) algorithm for the

network cost minimization problem.

A. The Statement of the Problem

Consider a network of n nodes and some links between these nodes. We assume that the network is a

simple graph, i.e., the network is undirected with no self-loop and there is at most one edge between any

pair of nodes. Denote the number of links as m, in which (i, j) and (j, i) are counted as two links for

ease of later exposition. Denote the set of neighbors of node i (those who are linked with node i) as Ωi.

The network can be either connected or disconnected (there does not necessarily exist a path connecting

every pair of nodes). Suppose each node i has a p-dimensional local decision variable xi ∈ R
p. Given

xi, the cost at node i is fi(xi), where fi is called the node cost function at node i. Moreover, given two

connected nodes i and j and their decision variables xi and xj , there is a cost of gij(xi,xj) associated

with the link (i, j), where gij is called the link cost function of the link (i, j). The goal of the network

is to solve the following network cost minimization problem in a decentralized manner:

Minimize

n∑

i=1

fi(xi) +

n∑

i=1

∑

j∈Ωi

gij(xi,xj). (1)

The problem formulation (1) has broad applications, among which we name three in the following.

• In distributed estimation over (sensor) networks, each node i has a local unknown vector xi to be

estimated. The cost at node i, i.e., fi(xi) may be some squared error or the negative log-likelihood

(the former can be regarded as a special case of the latter when the noise is Gaussian) with respect

to the local data observed by node i. The link cost gij(xi,xj) for a link (i, j) can be used to enforce

similarity between neighbor nodes, e.g., ‖xi − xj‖22 in multitask adaptive networks in [19], [21].
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• For resource allocation over networks, xi corresponds to some resources at node i and the node cost

fi(xi) is the negative of node i’s utility. The link cost gij(xi,xj) for a link (i, j) may represent the

negative effect of the consumption of the resources xi and xj . For instance, in wireless networks,

xi may be the transmission power of node i and two nodes are linked if they are within the wireless

interference range. In such a case, the link cost gij(xi,xj) for a link (i, j) can be used to quantify

the cost incurred by mutual interference in wireless communications.

• For an image, each xi is the value of the i-th pixel and two pixels (or nodes) are linked if they are

adjacent. In the image denoising problem, one wants to minimize the total variations of the pixels (as

noises are often irregular values making the pixels abnormally different from their neighbor pixels)

while remaining faithful to the given noisy image. The node cost fi(xi) can be used to quantify

the deviation of xi from the given noisy pixel x̃i and the link cost gij(xi, xj) can represent the

difference between the two neighbor pixels i and j.

For ease of reference, we define the following assumptions, some of which will be adopted in later

theorems.

Assumption 1. All the node cost functions fi’s and the link cost functions gij’s are convex.

Assumption 2. All the node cost functions fi’s and the link cost functions gij’s have Lipschitz continuous

gradients with constant L > 0, i.e., (a) ∀i,xi,x
′
i ∈ R

p:

‖∇fi(xi)−∇fi(x′
i)‖2 ≤ L‖xi − x′

i‖2; (2)

(b) ∀i, j ∈ Ωi,xi,xj ,x
′
i,x

′
j ∈ R

p:

‖∇gij(xi,xj)−∇gij(x′
i,x

′
j)‖2 ≤ L

∥∥∥∥∥∥


 xi

xj


−


 x′

i

x′
j



∥∥∥∥∥∥
2

. (3)

Assumption 3. All the node cost functions fi’s and the link cost functions gij’s are strongly convex with

constant τ > 0, i.e., (a) For any i = 1, ..., n:

(∇fi(xi)−∇fi(x′
i))

T(xi − x′
i) ≥ τ‖xi − x′

i‖22, ∀xi,x
′
i ∈ R

p; (4)

(b) For any i, j ∈ Ωi:




 ∇xi

gij(xi,xj)

∇xj
gij(xi,xj)


−


 ∇x′

i
gij(x

′
i,x

′
j)

∇x′

j
gij(x

′
i,x

′
j)






T 


 xi

xj


−


 x′

i

x′
j






≥ τ

∥∥∥∥∥∥


 xi

xj


−


 x′

i

x′
j



∥∥∥∥∥∥

2

2

, ∀xi,xj ,x
′
i,x

′
j ∈ R

p.

(5)
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Remark 1. We note the following facts. When fi is twice differentiable, the condition (4) of Assumption

3 is equivalent to ∇2fi(xi) � τIp,∀xi. Similarly, when gij is twice differentiable, the condition (5) of

Assumption 3 is equivalent to ∇2gij(xi,xj) � τI2p,∀xi,xj . This second order definition of strong

convexity is more intuitively acceptable and has been used in the analysis of convex optimization

algorithms in the literature [22]. But it requires twice differentiability and is not directly useful in the

analysis in this work.

Remark 2. All three assumptions are standard in the literature of numerical optimization when analyzing

the performance of optimization algorithms [15], [22], [23].

B. Preliminaries of ADMM

ADMM is an optimization framework widely applied to various signal processing applications,

including wireless communications [6], power systems [24] and multi-agent coordination [25]. It enjoys

fast convergence speed under mild technical conditions [23] and is especially suitable for the development

of distributed algorithms [20], [26]. ADMM solves problems of the following form:

Minimizex,zf(x) + g(z) s.t. Ax+Bz = c, (6)

where A ∈ R
p×n, B ∈ R

p×m, c ∈ R
p are constants and x ∈ R

n, z ∈ R
m are optimization variables.

f : Rn 7→ R and g : Rm 7→ R are two convex functions. The augmented Lagrangian can be formed as:

Lρ(x, z,y) = f(x) + g(z) + yT(Ax+Bz− c) +
ρ

2
‖Ax+Bz− c‖22, (7)

where y ∈ R
p is the Lagrange multiplier and ρ > 0 is some constant. The ADMM then iterates over the

following three steps for k ≥ 0 (the iteration index):

xk+1 = argmin
x

Lρ

(
x, zk,yk

)
, (8)

zk+1 = argmin
z

Lρ

(
xk+1, z,yk

)
, (9)

yk+1 = yk + ρ
(
Axk+1 +Bzk+1 − c

)
. (10)

The ADMM is guaranteed to converge to the optimal point of (6) as long as f and g are convex [20],

[26]. It is recently shown that global linear convergence can be ensured provided additional assumptions

on problem (6) holds [23].

February 27, 2017 DRAFT



7

C. Development of the Distributed ADMM (DADMM) for Network Cost Minimization

To develop an ADMM algorithm for (1), we introduce auxiliary variables yi and zij ∀i, j ∈ Ωi and

reformulate (1) equivalently as:

Minimize

n∑

i=1

fi(xi) +

n∑

i=1

∑

j∈Ωi

gij(yi, zij). (11)

s.t. xi = yi, i = 1, ..., n, (12)

xj = zij , i = 1, ..., n, j ∈ Ωi. (13)

Further introducing Lagrangian multipliers λi,µij ∈ R
p,∀i = 1, ..., n, j ∈ Ωi, we form the augmented

Lagrangian of the above optimization problem as:

Lρ(x,y, z,λ, µ) =

n∑

i=1

fi(xi) +

n∑

i=1

∑

j∈Ωi

gij(yi, zij) +

n∑

i=1

λT

i (xi − yi) +

n∑

i=1

∑

j∈Ωi

µT

ij(xj − zij)

+
ρ

2

n∑

i=1

‖xi − yi‖22 +
ρ

2

n∑

i=1

∑

j∈Ωi

‖xj − zij‖22,
(14)

where x ∈ R
np is the concatenation of all xi’s into a column vector, i.e., x =

[
xT

1 , ...,x
T
n

]T
; y,λ ∈ R

np

are analogously defined; z ∈ R
mp is the concatenation of all zij’s in an arbitrary order of links; µ ∈ R

mp

is analogously defined with the same link order as z; ρ > 0 is some positive constant. The ADMM

algorithm can be derived as follows.

1) Updating x: The update of x in the ADMM is:

xk+1 = argmin
x

n∑

i=1

fi(xi) +

n∑

i=1

λkT
i xi +

n∑

i=1

∑

j∈Ωi

µkT
ij xj +

ρ

2

n∑

i=1

∥∥∥xi − yk
i

∥∥∥
2

2
+

ρ

2

n∑

i=1

∑

j∈Ωi

∥∥∥xj − zkij

∥∥∥
2

2
,

(15)

which can be decomposed across nodes: ∀i,

xk+1
i = argmin

xi

fi(xi) + λkT
i xi +

∑

l∈Ωi

µkT
li xi +

ρ

2

∥∥∥xi − yk
i

∥∥∥
2

2
+

ρ

2

∑

l∈Ωi

∥∥∥xi − zkli

∥∥∥
2

2
. (16)

2) Updating y, z: The update of y, z in the ADMM is:

{
yk+1, zk+1

}
= argmin

y,z

n∑

i=1

∑

j∈Ωi

gij(yi, zij)−
n∑

i=1

λkT
i yi −

n∑

i=1

∑

j∈Ωi

µkT
ij zij +

ρ

2

n∑

i=1

∥∥∥yi − xk+1
i

∥∥∥
2

2
,

+
ρ

2

n∑

i=1

∑

j∈Ωi

∥∥∥zij − xk+1
j

∥∥∥
2

2

(17)
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which can be decomposed across nodes: ∀i,
{
yk+1
i ,

{
zk+1
ij

}
j∈Ωi

}
= arg min

yi,{zij}j∈Ωi

∑

j∈Ωi

gij(yi, zij)− λkT
i yi −

∑

j∈Ωi

µkT
ij zij +

ρ

2

∥∥∥yi − xk+1
i

∥∥∥
2

2

+
ρ

2

∑

j∈Ωi

∥∥∥zij − xk+1
j

∥∥∥
2

2
.

(18)

3) Updating λ,µ: The update of λ,µ is also decomposed across nodes: ∀i, j ∈ Ωi

λk+1
i = λk

i + ρ
(
xk+1
i − yk+1

i

)
, (19)

µk+1
ij = µk

ij + ρ
(
xk+1
j − zk+1

ij

)
. (20)

Equations (16), (18), (19) and (20) together lead to a distributed ADMM (DADMM) algorithm for

problem (1), which is summarized from the perspective of an arbitrary node i in Algorithm 1. We note

that only the values of x, z,µ at the neighbors are needed for the ADMM updates. Therefore, in terms

of information exchange, each node i only needs to (i) broadcast xi to the neighbors in Ωi; (ii) transmit

zij to the neighbor j for each j ∈ Ωi; (iii) transmit µij to the neighbor j for each j ∈ Ωi.

Algorithm 1 The DADMM algorithm run at node i

1: Initialize x0
i = y0

i = λ0
i = 0 and z0ij = µ0

ij = 0,∀j ∈ Ωi. k = 0.

2: Repeat:

3: Compute xk+1
i by solving the local optimization problem (16) and then broadcast xk+1

i to the

neighbors Ωi.

4: Compute yk+1
i and zk+1

ij , j ∈ Ωi by solving the local optimization problem (18) and then transmit

zk+1
ij to the neighbor node j for each j ∈ Ωi.

5: Compute λk+1
i and µk+1

ij , j ∈ Ωi according to (19) and (20), respectively. Transmit µk+1
ij to the

neighbor node j for each j ∈ Ωi.

6: k ← k + 1.

D. Development of the Distributed Linearized ADMM (DLADMM) for Network Cost Minimization

In the DADMM, i.e., Algorithm 1, the updates for x,y, z involve solving local optimization problems

(16) and (18), which generally do not admit close-form solutions and have to be solved iteratively. This

can be a major computational burden for Algorithm 1 especially when individual node has only limited

computational capability, e.g., the cheap sensors vastly deployed in sensor networks usually can only

carry out simple calculations. This motivates us to propose an algorithm which can approximately solve
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the local optimization problems efficiently and most preferably with closed form solutions. To this end,

we first define f(x) =
∑n

i=1 fi(xi) and g(y, z) =
∑n

i=1

∑
j∈Ωi

gij(yi, zij). We further define a block

matrix A ∈ R
mp×np consisting of m × n blocks of matrices Akj ∈ R

p×p, where Akj is equal to Ip×p

if the k-th p-dimensional block of z is zij for some i = 1, ..., n, otherwise Akj is equal to 0p×p. Then,

we may rewrite problem (11) compactly as:

Minimize f(x) + g(y, z) (21)

s.t. x = y, (22)

Ax = z. (23)

Further define w =
[
yT, zT

]T
and B =

[
I,AT

]T
. Thus, (21) can be rewritten as:

Minimize f(x) + g(w) (24)

s.t. Bx−w = 0. (25)

The augmented Lagrangian can be written as:

Lρ(x,w,α) = f(x) + g(w) + αT(Bx−w) +
ρ

2
‖Bx −w‖22, (26)

where α =
[
λT,µT

]T
is the Lagrangian multiplier. The original DADMM algorithm necessitates solving

local optimization problems involving f and g. To avoid this burden, we approximate f, g with their first

order approximations and propose a distributed linearized ADMM (DLADMM) algorithm for network

cost minimization in the following.

1) Updating x: The update of x in DLADMM is:

xk+1 = argmin
x
∇f

(
xk

)T (
x− xk

)
+

c

2

∥∥∥x− xk
∥∥∥
2

2
+αkTBx+

ρ

2

∥∥∥Bx−wk
∥∥∥
2

2
, (27)

where c > 0 is some positive constant and the term c
2

∥∥x− xk
∥∥2
2

is to refrain xk+1 from being too far

away from xk as the first order approximation of f around the point xk is only accurate when x is close

to xk. Note that this small step size or small variation between iterations is common in the literature of

numerical optimization [22] and adaptive signal processing such as least mean squares (LMS) [27]. Since

the objective function in (27) is a convex quadratic function of x, the problem of (27) can be solved in

closed form through the first order condition:

∇f
(
xk

)
+ c

(
xk+1 − xk

)
+BTαk + ρ

(
BTBxk+1 −BTwk

)
= 0. (28)
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We note that the optimization problem (27) can be decomposed across nodes:

xk+1
i = argmin

xi

∇fi
(
xk
i

)
T
(
xi − xk

i

)
+

c

2

∥∥∥xi − xk
i

∥∥∥
2

2
+ λkT

i xi +
∑

l∈Ωi

µkT
li xi +

ρ

2

∥∥∥xi − yk
i

∥∥∥
2

2

+
ρ

2

∑

l∈Ωi

∥∥∥xi − zkli

∥∥∥
2

2
,

(29)

which can be solved in closed form:

xk+1
i =

1

c+ ρ+ ρ|Ωi|

[
−∇fi

(
xk
i

)
+ cxk

i − λk
i −

∑

l∈Ωi

µk
li + ρyk

i + ρ
∑

l∈Ωi

zkli

]
. (30)

2) Updating w, i.e., y and z: The update of w in the DLADMM algorithm is:

wk+1 = argmin
w
∇g

(
wk

)
T
(
w −wk

)
+

c

2

∥∥∥w −wk
∥∥∥
2

2
−αkTw +

ρ

2

∥∥∥w −Bxk+1
∥∥∥
2

2
, (31)

which is equivalent to:

∇g(wk) + c
(
wk+1 −wk

)
−αk + ρ

(
wk+1 −Bxk+1

)
= 0. (32)

Notice that the problem (31) can also be decomposed across nodes:

{
yk+1
i ,

{
zk+1
ij

}
j∈Ωi

}
= arg min

yi,{zij}j∈Ωi

∑

j∈Ωi


 ∇yi

gij

(
yk
i , z

k
ij

)

∇zij
gij

(
yk
i , z

k
ij

)



T 
 yi − yk

i

zij − zkij


+

c

2

∥∥∥yi − yk
i

∥∥∥
2

2

+
c

2

∑

j∈Ωi

∥∥∥zij − zkij

∥∥∥
2

2
− λkT

i yi −
∑

j∈Ωi

µkT
ij zij

+
ρ

2

∥∥∥yi − xk+1
i

∥∥∥
2

2
+

ρ

2

∑

j∈Ωi

∥∥∥zij − xk+1
j

∥∥∥
2

2
,

(33)

which can be solved as:

yk+1
i =

1

c+ ρ


−

∑

j∈Ωi

∇yi
gij

(
yk
i , z

k
ij

)
+ cyk

i + λk
i + ρxk+1

i


 , (34)

zk+1
ij =

1

c+ ρ

[
−∇zij

gij

(
yk
i , z

k
ij

)
+ czkij + µk

ij + ρxk+1
j

]
. (35)

3) Updating α, i.e., λ and µ: The update of α is:

αk+1 = αk + ρ
(
Bxk+1 −wk+1

)
, (36)

which can be implemented in a decentralized manner as in (19) and (20). In other words, the update of

the dual variables in DLADMM is the same as that of DADMM. Combining (30), (34), (35), (19) and

(20) yields the proposed DLADMM algorithm, which is summarized in Algorithm 2. We remark that,

as opposed to Algorithm 1, each iteration of Algorithm 2 only involves direct closed form computations

without solving any local optimization problems iteratively. This enables DLADMM to enjoy significantly

lower computational complexity compared to DADMM.
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Algorithm 2 The DLADMM algorithm run at node i

1: Initialize x0
i = y0

i = λ0
i = 0 and z0ij = µ0

ij = 0,∀j ∈ Ωi. k = 0.

2: Repeat:

3: Compute xk+1
i according to (30) and then broadcast xk+1

i to the neighbors Ωi.

4: Compute yk+1
i and zk+1

ij , j ∈ Ωi according to (34) and (35), respectively. Then transmit zk+1
ij to the

neighbor node j for each j ∈ Ωi.

5: Compute λk+1
i and µk+1

ij , j ∈ Ωi according to (19) and (20), respectively. Transmit µk+1
ij to the

neighbor node j for each j ∈ Ωi.

6: k ← k + 1.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence behaviors of the proposed DLADMM algorithm for

the network cost minimization problem (1). Instead of analyzing the DLADMM algorithm outlined

in Algorithm 2, we will analyze its centralized version in (28), (32) and (36), which are tantamount to

their decentralized counterpart in Algorithm 2. We perform convergence analysis based on (28), (32) and

(36) as they are more compact and thus more amenable to analyses and expositions.1 Before formally

analyzing the convergence of DLADMM, we first present some preliminaries. After that, we show the

convergence guarantee of the DLADMM (Theorem 1) and in particular, a linear convergence rate of the

DLADMM (Theorem 2).

A. Preliminaries

Lemma 1. If Assumption 2 holds, then ∇f is Lipschitz continuous with constant L and ∇g is Lipschitz

continuous with constant M =
√
L2K2 + L2K, where K = maxi |Ωi| is the maximum degree of the

network.

Proof. The proof is given in Appendix A.

We further note that the following fact from convex analysis [28].

Lemma 2. For any differentiable convex function h : Rl 7→ R and positive constant L > 0, the following

two statements are equivalent:

1) ∇h is Lipschitz continuous with constant L, i.e., ‖∇h(x)−∇h (x′)‖2 ≤ L ‖x− x′‖2 ,∀x,x′ ∈ R
l.

1Note that completely equivalent analysis based on the decentralized implementation in Algorithm 2 can be conducted, though

the notations are more cluttered.
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2) ‖∇h(x)−∇h (x′)‖22 ≤ L (x− x′)T (∇h(x)−∇h (x′)) ,∀x,x′ ∈ R
l.

Utilizing the Lemma 1 and Lemma 2, we immediately have the following result.

Lemma 3. If Assumptions 1 and 2 hold, we have:

∥∥∇f(x)−∇f
(
x′
)∥∥2

2
≤ L

(
x− x′

)
T
(
∇f(x)−∇f

(
x′
))

,∀x,x′ ∈ R
np, (37)

∥∥∇g(w)−∇g
(
w′

)∥∥2
2
≤M

(
w −w′

)T (
∇g(w) −∇g

(
w′

))
,∀w,w′ ∈ R

np+mp, (38)

where M is defined in Lemma 1.

B. Convergence

We define a diagonal positive definite matrix Λ as:

Λ =




c
2Inp

ρ+c
2 Inp+mp

1
2ρInp+mp


 . (39)

For ease of notation, we define u ∈ R
3np+2mp to be the concatenation of x,w,α into a single column

vector and similarly for uk,u∗. Since Λ is a positive definite matrix, we can further define a norm on

R
3np+2mp as: ‖u‖Λ =

√
uTΛu. We have the following result.

Proposition 1. Suppose Assumptions 1 and 2 hold. Then, for any primal/dual optimal point of problem

(24) u∗ =
[
x∗T,w∗T,α∗T

]T
, the sequence uk =

[
xkT,wkT,αkT

]T
generated by the DLADMM

algorithm satisfies ∀k ≥ 0:

∥∥∥uk+1 − u∗
∥∥∥
2

Λ
≤
∥∥∥uk − u∗

∥∥∥
2

Λ
−
(
c

2
− L

4

)∥∥∥xk − xk+1
∥∥∥
2

2
−
(
c− ρ

2
− M

4

)∥∥∥wk −wk+1
∥∥∥
2

2

− 1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
.

(40)

Proof. The proof is given in Appendix B.

Now, we are ready to state our first main theorem of convergence.

Theorem 1. Suppose Assumptions 1,2 hold and c > M
2 + ρ. Then, the sequence uk generated by the

DLADMM algorithm converges to some primal/dual optimal point of problem (24), i.e., there exists a

primal/dual optimal point of problem (24) u∗ such that limk→∞ uk = u∗.
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Proof. Given any primal/dual optimal point of problem (24) u∗, according to Proposition 1 and c > M
2 +ρ,

we know that
∥∥uk − u∗

∥∥2
Λ

is a decreasing sequence. Since it is clearly lower bounded by 0, we have

that
∥∥uk − u∗

∥∥2
Λ

is convergent. From Proposition 1, we further deduce that:

0 ≤
(
c

2
− L

4

)∥∥∥xk − xk+1
∥∥∥
2

2
+

(
c− ρ

2
− M

4

)∥∥∥wk −wk+1
∥∥∥
2

2
+

1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
(41)

≤
∥∥∥uk − u∗

∥∥∥
2

Λ
−
∥∥∥uk+1 − u∗

∥∥∥
2

Λ
. (42)

Because
∥∥uk − u∗

∥∥2
Λ

is convergent, we know (42) converges to zero as k goes to infinity. Hence, (41)

converges to zero as well. Therefore,

lim
k→∞

(
xk − xk+1

)
= 0, (43)

lim
k→∞

(
wk −wk+1

)
= 0, (44)

lim
k→∞

(
αk −αk+1

)
= 0. (45)

Substituting the above limits into (28), (32) and (36) yields:

lim
k→∞

[
∇f

(
xk

)
+BTαk + ρ

(
BTBxk+1 −BTwk

)]
= 0, (46)

lim
k→∞

[
∇g

(
wk

)
−αk + ρ

(
wk+1 −Bxk+1

)]
= 0, (47)

lim
k→∞

(
Bxk+1 −wk+1

)
= 0. (48)

Equation (48) clearly implies:

lim
k→∞

(
Bxk −wk

)
= 0. (49)

Combining (47) and (48) leads to:

lim
k→∞

[
∇g

(
wk

)
−αk

]
= 0. (50)

Moreover, from (48) and (44), we obtain:

Bxk+1 −wk = Bxk+1 −wk+1 +wk+1 −wk → 0, as k →∞. (51)

Combining (51) and (46), we get:

lim
k→∞

[
∇f

(
xk

)
+BTαk

]
= 0. (52)

Since ∀k :
∥∥uk − u∗

∥∥
Λ
≤

∥∥u0 − u∗
∥∥
Λ

, we know that
{
uk

}
k=0,1,...

is a bounded sequence. So, it

has convergent subsequence, which is denoted as
{
uki

}
i=1,2,...

. Let û be the limit of this convergent
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subsequence, i.e., limi→∞ uki = û. Equations (49), (50) and (52) are still satisfied along the subsequence
{
uki

}
i=1,2,...

and hence,

lim
i→∞

(
Bxki −wki

)
= 0, (53)

lim
i→∞

[
∇g

(
wki

)
−αki

]
= 0, (54)

lim
i→∞

[
∇f

(
xki

)
+BTαki

]
= 0. (55)

Making use of the convergence of the subsequence
{
uki

}
i=1,2,...

to û, we obtain:

Bx̂− ŵ = 0, (56)

∇g (ŵ)− α̂ = 0, (57)

∇f (x̂) +BTα̂ = 0. (58)

These are the KKT conditions of problem (24). So û is a primal/dual optimal point of problem (24). In

the following, we endeavor to show that the sequence uk converges to û. Before that, we first prove a

lemma.

Lemma 4. If the sequence
{
uk

}
k=0,1,...

has two subsequences
{
uki

}
i=1,2,...

and
{
uk′

i

}
i=1,2,...

converging

to u and u, respectively, then u = u.

Proof. The proof is given in Appendix C.

Now, we show that uk converges to û by making use of Lemma 4. Suppose, on the contrary, uk does

not converge to û. Then, there exists some positive ǫ, such that for any positive integer N , there exists

some k ≥ N with
∥∥uk − û

∥∥
2
≥ ǫ. Thus, letting N = 1, we get some k̃1 ≥ 1 with

∥∥∥uk̃1 − û

∥∥∥
2
≥ ǫ.

Letting N = k̃1 + 1, we get some k̃2 ≥ k̃1 + 1 with

∥∥∥uk̃2 − û

∥∥∥
2
≥ ǫ. Continuing this process, we

obtain a subsequence
{
uk̃i

}
i=1,2,...

such that

∥∥∥uk̃i − û

∥∥∥
2
≥ ǫ,∀i. The subsequence

{
uk̃i

}
i=1,2,...

is

bounded as the original sequence
{
uk

}
k=0,1,...

is bounded. As such, the subsequence
{
uk̃i

}
i=1,2,...

has

a convergent sub-subsequence
{
uk̃ij

}
j=1,2,...

. Denote the limit of this convergent sub-subsequence as ũ,

i.e., limj→∞ uk̃ij = ũ. Obviously, ‖ũ− û‖2 ≥ ǫ. But, according to Lemma 4, we should have ũ = û.

This is a contradiction. So, we must have limk→∞ uk = û. Note that we have previously shown that û

is a primal/dual optimal point of problem (24). We hence conclude the theorem.

C. Linear Rate of Convergence

With the strong convexity assumption, we can further guarantee linear convergence rate of the

DLADMM algorithm. Before formally stating this result, we first show an implication of Assumption 3.
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Lemma 5. If Assumption 3 holds, then f and g are both strongly convex with constant τ .

Proof. The proof is given in Appendix D.

The strong convexity of f and g implies that there exists a unique primal/dual optimal point u∗ for

problem (24). Denote the spectral norm (maximum singular value) of B as Γ. Now, we are ready to state

our second main theorem regarding linear convergence rate.

Theorem 2. Suppose Assumptions 2,3 hold and c > max
{

L2

2τ , ρ+
M2

2τ

}
. Then, ∀k:

∥∥∥uk+1 − u∗
∥∥∥
2

Λ
≤ 1

1 + δ

∥∥∥uk − u∗
∥∥∥
2

Λ
. (59)

In (59), δ > 0 is a positive constant defined as:

δ = min

{
τ − L2

2c
c
2 +

3ρµΓ2

µ−1

,
τ − β

2
c+ρ
2 + 3ρµ

µ−1 + 2M2µ
ρ

,
1

4

}
, (60)

where β ∈
(

M2

c−ρ
, 2τ

)
is the solution of the equation:

τ − β
2

c+ρ
2 + 3ρµ

µ−1 + 2M2µ
ρ

=

c−ρ
2 − M2

2β

3c2µ
ρ(µ−1) +

2M2µ
ρ

, (61)

and µ > 1 is any constant greater than 1.

Proof. The proof is in Appendix E.

Remark 3. The constant δ determining the convergence rate of the DLADMM depends on the local cost

functions (L,M, τ ), the network topology (Γ) as well as the algorithm parameters (ρ, c). This sheds some

light on how to tune the parameters to achieve better convergence speed in practice. Furthermore, we

note that the Theorem 2 only provides a sufficient condition for linear convergence of the DLADMM. In

later numerical experiments, we will see that even when the assumptions of Theorem 2 is violated (e.g.,

the local cost functions are not strongly convex), the DLADMM algorithm may still converge in linear

rate.

IV. NUMERICAL EXPERIMENTS

In this section, numerical results are presented to corroborate the effectiveness of the proposed

DLADMM algorithm. In particular, we consider the problem of distributed logistic regression. Suppose

each node i has a training set of q training examples {uil, til}l=1,...,q, where uil ∈ R
p is the input feature

vector and til ∈ {−1, 1} is the corresponding output label. Logistic regression model postulates that, for
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node i, the probability of the output ti given the input ui is Pr(ti = 1|ui) = 1
1+exp{−uT

ixi}
, where xi

is the classifier for node i. Our goal is to estimate the classifiers of all nodes and thus, together with a

decision threshold, we can achieve a input-output mapping at each node. Moreover, we note that neighbor

nodes tend to have similar classifiers. Incorporating this prior knowledge into the maximum likelihood

estimator of the logistic regression yields the following optimization problem:

Minimize{xi}i=1,...,n

n∑

i=1

q∑

l=1

log
(
1 + exp

(
−tiluT

ilxi

))
+ β

n∑

i=1

∑

j∈Ωi

‖xi − xj‖22. (62)

The problem (62) is clearly in the form of (1) with:

fi(xi) =

q∑

l=1

log
(
1 + exp

(
−tiluT

ilxi

))
, (63)

gij(xi,xj) = β‖xi − xj‖22. (64)

We note that fi and gij are all convex, i.e., they satisfy Assumption 1. In addition, ∇fi is Lipschitz

continuous with constant 1
4

∑q
l=1 ‖uil‖22 and ∇gij is Lipschitz continuous with constant 4β. So,

Assumption 2 holds with L = max
{
4β, 14 maxi=1,...,n

∑q
l=1 ‖uil‖22

}
. Thus, Theorem 1 can be applied

with appropriate algorithm parameters and convergence of the DLADMM algorithm is guaranteed

theoretically. Moreover, though neither fi nor gij is strongly convex (Assumption 3 does not hold),

we can still empirically observe linear convergence of the DLADMM in later experiments.

A. Comparison between the DLADMM and the DADMM

We first conduct an experiment to compare the performance of the DLADMM and the DADMM

algorithms. We consider two scenarios: (i) a random network with n = 10 nodes; the dimension of each

data sample is p = 2; and each node has q = 50 data samples; (ii) a random network with n = 30 nodes;

the dimension of each data instance is p = 5; and each node has q = 10 data samples. The average

degree of the network is 2. The ADMM algorithm parameter is set to be ρ = 50 and the linearization

parameter is c = 3 in scenario (i) and c = 5 in scenario (ii). In Fig. 1, we compare the relative errors

‖xk−x∗‖
2

‖x∗‖
2

(x∗ is the optimal point of (62) obtained by solving the centralized optimization problem with

the CVX package [29], [30]) of the DADMM algorithm and the DLADMM algorithm. We observe that

the convergence curve of the DLADMM algorithm is very close to that of the DADMM algorithm in

both scenarios. Both the DADMM and the DLADMM converge linearly to the optimal point. However,

the computational complexity of the DLADMM is much lower than that of the DADMM. It takes several

hours for the DADMM to finish 400 iterations while the DLADMM only needs about 5 seconds to

finish the same number of iterations. The reason is that, for each node, each iteration of the DADMM
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Fig. 1: Comparison between the DLADMM and DADMM

necessitates solving a local optimization problem containing log functions, which must be approximated

iteratively. Thus, each iteration of the DADMM is carried out very slowly. On the contrary, each iteration

of the DLADMM only involves direct closed-form computations, which can be implemented very quickly.

This endows the DLADMM with great computational advantage over the DADMM.

B. Impact of Network Topology

Next, we investigate the impact of network topology on the performance of the DLADMM. We set the

total number of nodes to be n = 20 and the algorithm parameters to be ρ = 100, c = 50. We consider

four network topologies: the line network, the star network, the complete network and the small-world

network. The four network topologies are illustrated in Fig. 2. To obtain small-world network, we first

generate a cycle network, and then add 20 random links between them. As its name suggests, in small-

world networks, the distance between two nodes, i.e., the length of the shortest path connecting these two

nodes, is small. Many properties of real-world networks can be obtained by the small-world networks

[31]. The convergence curves of the DLADMM on different network topologies are shown in Fig. 3.

We observe that the convergence of the small-world network and the star network are faster than that of

the line network and complete network. The phenomenon can be explained as follows. For the complete

network, the number of constraints in the ADMM formulation of the network cost problem (11), i.e., the

number of nodes plus the number of links, is large. Thus, the number of dual variables at each node is

also large, resulting in slow convergence. For the line network, the distance between nodes is generally

large, so that information from a node cannot propagate quickly to many distant nodes. This also prohibits

the DLADMM from fast convergence. In contrast, for the star network and the small-world network: (i)

the distances between nodes are small so that information can be efficiently diffused; (ii) the average
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(a) Line network (b) Star network (c) Complete network (d) Small-world network

Fig. 2: Different network topologies
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Fig. 3: Performance of the DLADMM on different network topologies

degree of nodes is small so that each node only has a small number of dual variables to update, which

can converge quickly. Lastly, we remark that though the DLADMM converges at different speeds for

different network topologies, it converges linearly to the optimal point in all circumstances.

C. Impact of Network Connectivity

We further study the impact of network connectivity, measured by the average node degree, on the

performance of the DLADMM over small-world networks. To this end, we first form a cycle network and

then add different numbers of random links to obtain small-world networks of different average degrees.

The convergence curves of the DLADMM algorithm on small-world networks with different average

degrees are reported in Fig. 4. We observe that the small-world networks with smaller average degree

have faster convergence speed. The reason is that for small-world networks, even when the average degree

is small (e.g., 3), the distances between nodes are short so that information of one node can spread across

the network quickly. Additionally, for small-world network with lower degrees, each node only needs to

update a small number of dual variables and thus the convergence is faster. Note that when the average

degree is high, the small-world networks become analogous to the complete network, over which the

DLADMM converges slowly (Fig. 3).
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Fig. 4: Performance of the DLADMM on the small-world networks with different average degrees
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Fig. 5: Performance of the DLADMM with different values of c

D. Impact of the Linearization Parameter c

Finally, in Fig. 5, we study the impact of the linearization parameter c on the convergence of the

DLADMM over small-world networks. We observe that as long as the DLADMM converges, the

smaller the value of c , the faster the convergence speed. But c cannot be too small, otherwise the

DLADMM may diverge, e.g., when c = 1. Recall that the parameter c is introduced to limit the step size

between consecutive iterations and therefore plays a similar role as the step size parameter in numerical

optimization [22] and adaptive signal processing [27]. A general tradeoff for such parameters is that

(i) when they are too large, the convergence is slow; (ii) when they are too small, the algorithm risks

divergence. We note that similar phenomenon can be observed in Fig. 5.

V. CONCLUSIONS

In this paper, we study the generic form of network cost minimization problem, in which the network

cost includes both node costs and link costs. The formulated problem has broad applications in distributed
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signal processing and control over multi-agent networked systems. A distributed linearized ADMM

algorithm is presented for the formulated problem. The DLADMM algorithm operates in a decentralized

manner and each iteration only involves simple closed-form computations, which endows the DLADMM

much lower computational complexity than the distributed ADMM. Under the assumptions that the local

cost functions are convex and possess Lipschitz continuous gradients, we show that the DLADMM

converges to an optimal point of the network cost minimization problem. By further assuming that the

local cost functions are strongly convex, we can guarantee linear convergence rate of the DLADMM.

Numerical simulations are carried out to validate the performance of the DLADMM and we empirically

observe that the DLADMM has similar convergence performance as DADMM does while the former

has much lower computational overhead. The impacts of network topology, connectivity and algorithm

parameters on the convergence behaviors of the DLADMM are also discussed.

APPENDIX A

PROOF OF LEMMA 1

For any x,x′ ∈ R
np:

∥∥∇f(x)−∇f
(
x′
)∥∥2

2
=

n∑

i=1

∥∥∇fi(xi)−∇fi
(
x′
i

)∥∥2
2
≤ L2

n∑

i=1

∥∥xi − x′
i

∥∥2
2
= L2

∥∥x− x′
∥∥2
2
. (65)

So, ∇f is Lipschitz continuous with constant L. For any y,y′ ∈ R
np and z, z′ ∈ R

mp:

∥∥∇g(y, z)−∇g(y′, z′)
∥∥2
2

(66)

=

n∑

i=1

∥∥∥∥∥∥

∑

j∈Ωi

(
∇yi

gij(yi, zij)−∇y′

i
gij

(
y′
i, z

′
ij

))
∥∥∥∥∥∥

2

2

+

n∑

i=1

∑

j∈Ωi

∥∥∥∇zij
gij(yi, zij)−∇z′

ij
gij

(
y′
i, z

′
ij

)∥∥∥
2

2

(67)
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For the first term, we have:

∥∥∥∥∥∥

∑

j∈Ωi

(
∇yi

gij(yi, zij)−∇y′

i
gij

(
y′
i, z

′
ij

))
∥∥∥∥∥∥

2

2

(68)

≤




∑

j∈Ωi

∥∥∇yi
gij(yi, zij)−∇y′

i
gij

(
y′
i, z

′
ij

)∥∥
2




2

(69)

≤ L2




∑

j∈Ωi

∥∥∥∥∥∥


 yi

zij


−


 y′

i

z′ij



∥∥∥∥∥∥
2




2

(70)

≤ L2|Ωi|
∑

j∈Ωi

∥∥∥∥∥∥


 yi

zij


−


 y′

i

z′ij



∥∥∥∥∥∥

2

2

(71)

≤ L2K
∑

j∈Ωi

∥∥∥∥∥∥


 yi

zij


−


 y′

i

z′ij



∥∥∥∥∥∥

2

2

, (72)

where we invoke Cauchy’s inequality
(∑I

i=1 vi

)2
≤ I

∑I
i=1 v

2
i ,∀v ∈ R

I to obtain (71). Hence,

n∑

i=1

∥∥∥∥∥∥

∑

j∈Ωi

(
∇yi

gij(yi, zij)−∇y′

i
gij

(
y′
i, z

′
ij

))
∥∥∥∥∥∥

2

2

≤ L2K2

∥∥∥∥∥∥


 y

z


−


 y′

z′



∥∥∥∥∥∥

2

2

(73)

For the second term of (67), we have:

n∑

i=1

∑

j∈Ωi

∥∥∥∇zij
gij(yi, zij)−∇z′

ij
gij

(
y′
i, z

′
ij

)∥∥∥
2

2
(74)

≤ L2
n∑

i=1

∑

j∈Ωi

∥∥∥∥∥∥


 yi

zij


−


 y′

i

z′ij



∥∥∥∥∥∥

2

2

(75)

≤ L2K

∥∥∥∥∥∥


 y

z


−


 y′

z′



∥∥∥∥∥∥

2

2

(76)

Combining (73) and (76) yields:

∥∥∇g(y, z)−∇g(y′, z′)
∥∥2
2
≤

(
L2K2 + L2K

)
∥∥∥∥∥∥


 y

z


−


 y′

z′



∥∥∥∥∥∥

2

2

. (77)

So ∇g is Lipschitz continuous with constant M =
√
L2K2 + L2K.
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PROOF OF PROPOSITION 1

According to Assumption 1, problem (24) is a convex optimization problem. Thus, the Karush-Kuhn-

Tucker (KKT) conditions are necessary and sufficient for optimality. So, the primal/dual optimal point

u∗ satisfies the following KKT conditions:

∇f(x∗) +BTα∗ = 0, (78)

∇g(w∗)−α∗ = 0, (79)

Bx∗ −w∗ = 0. (80)

Subtracting (78) from (28) and exploiting (80) yields gives:

∇f
(
xk

)
−∇f(x∗) + c

(
xk+1 − xk

)
+BT

(
αk −α∗

)
+ ρBTB

(
xk+1 − x∗

)
+ ρBT

(
w∗ −wk

)
= 0.

(81)

Similarly, subtracting (79) from (32) and exploiting (80) yields:

∇g
(
wk

)
−∇g (w∗) + c

(
wk+1 −wk

)
+α∗ −αk + ρ

(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1

)
= 0. (82)

Combining (36) and (80) leads to:

αk+1 −αk + ρB
(
x∗ − xk+1

)
+ ρ

(
wk+1 −w∗

)
= 0. (83)

According to Lemma 3, we have:

1

L

∥∥∥∇f
(
xk

)
−∇f(x∗)

∥∥∥
2

2
(84)

≤
(
xk − x∗

)
T
(
∇f

(
xk

)
−∇f(x∗)

)
(85)

=
(
xk+1 − x∗

)
T
(
∇f

(
xk

)
−∇f(x∗)

)
+
(
xk − xk+1

)
T
(
∇f

(
xk

)
−∇f(x∗)

)
. (86)

For the first term of (86), according to (81), we have:

(
xk+1 − x∗

)
T
(
∇f

(
xk

)
−∇f(x∗)

)
(87)

=
(
xk+1 − x∗

)T
[
c
(
xk − xk+1

)
+BT

(
α∗ −αk

)
+ ρBTB

(
x∗ − xk+1

)
+ ρBT

(
wk+1 −w∗

)

+ ρBT

(
wk −wk+1

) ]
. (88)

On the other hand, using Lemma 3 again, we have:

1

M

∥∥∥∇g
(
wk

)
−∇g(w∗)

∥∥∥
2

2
(89)

≤
(
wk −w∗

)
T
(
∇g

(
wk

)
−∇g(w∗)

)
(90)

=
(
wk+1 −w∗

)T (
∇g

(
wk

)
−∇g(w∗)

)
+
(
wk −wk+1

)T (
∇g

(
wk

)
−∇g(w∗)

)
. (91)
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For the first term of (91), by using (82), we obtain:

(
wk+1 −w∗

)
T
(
∇g

(
wk

)
−∇g(w∗)

)
(92)

=
(
wk+1 −w∗

)T [
c
(
wk −wk+1

)
+αk −α∗ + ρ

(
w∗ −wk+1

)
+ ρB

(
xk+1 − x∗

)]
(93)

We note the following fact, which shall be used frequently.

Lemma 6. For any symmetric matrix A ∈ R
N×N and any vectors x,y, z ∈ R

N , we have:

2(x− y)TA(z− x) = (z− y)TA(z− y)− (x− y)TA(x− y)− (z− x)TA(z− x). (94)

Making use of Lemma 6, we obtain:

c
(
xk+1 − x∗

)
T
(
xk − xk+1

)
=

c

2

∥∥∥xk − x∗
∥∥∥
2

2
− c

2

∥∥∥xk+1 − x∗
∥∥∥
2

2
− c

2

∥∥∥xk − xk+1
∥∥∥
2

2
, (95)

and

c
(
wk+1 −w∗

)
T
(
wk −wk+1

)
=

c

2

∥∥∥wk −w∗
∥∥∥
2

2
− c

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
− c

2

∥∥∥wk −wk+1
∥∥∥
2

2
. (96)

Based on (83), we get:

(
xk+1 − x∗

)
T

BT

(
α∗ −αk

)
+
(
wk+1 −w∗

)
T
(
αk −α∗

)
(97)

=
[
−B

(
xk+1 − x∗

)
+wk+1 −w∗

]
T
(
αk −α∗

)
(98)

=
1

ρ

(
αk −αk+1

)
T
(
αk −α∗

)
(99)

= − 1

2ρ

∥∥∥α∗ −αk+1
∥∥∥
2

2
+

1

2ρ

∥∥∥αk −αk+1
∥∥∥
2

2
+

1

2ρ

∥∥∥α∗ −αk
∥∥∥
2

2
. (100)

Again, using (83), we obtain:

(
xk+1 − x∗

)
T
[
ρBTB

(
x∗ − xk+1

)
+ ρBT

(
wk+1 −w∗

)]

+
(
wk+1 −w∗

)
T
[
ρ
(
w∗ −wk+1

)
+ ρB

(
xk+1 − x∗

)]
(101)

= −ρ
∥∥∥B

(
xk+1 − x∗

)
+w∗ −wk+1

∥∥∥
2

2
(102)

= −1

ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
. (103)
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Once again, using (83), we have:

ρ
(
xk+1 − x∗

)
T

BT

(
wk −wk+1

)
(104)

=
[
αk+1 −αk + ρ

(
wk+1 −w∗

)]
T
(
wk −wk+1

)
(105)

=
(
αk+1 −αk

)
T
(
wk −wk+1

)
+

ρ

2

∥∥∥wk −w∗
∥∥∥
2

2
− ρ

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
(106)

≤ 1

2

∥∥∥∥
1√
2ρ

(
αk+1 −αk

)∥∥∥∥
2

2

+
1

2

∥∥∥
√

2ρ
(
wk −wk+1

)∥∥∥
2

2
+

ρ

2

∥∥∥wk −w∗
∥∥∥
2

2
− ρ

2

∥∥∥wk+1 −w∗
∥∥∥
2

2

− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
(107)

=
1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
+

ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
+

ρ

2

∥∥∥wk −w∗
∥∥∥
2

2
− ρ

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
. (108)

Adding the results in (95), (96), (100), (103) and (108) all together and noting (88) and (93), we get:

(
xk+1 − x∗

)
T
(
∇f

(
xk

)
−∇f(x∗)

)
+
(
wk+1 −w∗

)
T
(
∇g

(
wk

)
−∇g(w∗)

)
(109)

≤ c

2

∥∥∥xk − x∗
∥∥∥
2

2
− c

2

∥∥∥xk+1 − x∗
∥∥∥
2

2
− c

2

∥∥∥xk − xk+1
∥∥∥
2

2
+

c

2

∥∥∥wk −w∗
∥∥∥
2

2
− c

2

∥∥∥wk+1 −w∗
∥∥∥

− c

2

∥∥∥wk −wk+1
∥∥∥
2

2
− 1

2ρ

∥∥∥α∗ −αk+1
∥∥∥
2

2
+

1

2ρ

∥∥∥α∗ −αk
∥∥∥
2

2
− 1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
+

ρ

2

∥∥∥wk −w∗
∥∥∥
2

2

− ρ

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
(110)

=
∥∥∥uk − u∗

∥∥∥
2

Λ
−
∥∥∥uk+1 − u∗

∥∥∥
2

Λ
− c

2

∥∥∥xk − xk+1
∥∥∥
2

2
− c− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
− 1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
.

(111)

Combining (86), (91) and (111), we obtain:

1

L

∥∥∥∇f
(
xk

)
−∇f(x∗)

∥∥∥
2

2
+

1

M

∥∥∥∇g
(
wk

)
−∇g(w∗)

∥∥∥
2

2
(112)

≤
∥∥∥uk − u∗

∥∥∥
2

Λ
−
∥∥∥uk+1 − u∗

∥∥∥
2

Λ
− c

2

∥∥∥xk − xk+1
∥∥∥
2

2
− c− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
− 1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2

+
(
xk − xk+1

)T (
∇f

(
xk

)
−∇f(x∗)

)
+
(
wk −wk+1

)T (
∇g

(
wk

)
−∇g(w∗)

)
(113)

≤
∥∥∥uk − u∗

∥∥∥
2

Λ
−
∥∥∥uk+1 − u∗

∥∥∥
2

Λ
− c

2

∥∥∥xk − xk+1
∥∥∥
2

2
− c− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
− 1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2

+
L

4

∥∥∥xk − xk+1
∥∥∥
2

2
+

1

L

∥∥∥∇f
(
xk

)
−∇f(x∗)

∥∥∥
2

2
+

M

4

∥∥∥wk −wk+1
∥∥∥
2

2

+
1

M

∥∥∥∇g
(
wk

)
−∇g(w∗)

∥∥∥
2

2
(114)

We can rewrite (114) as:

∥∥∥uk+1 − u∗
∥∥∥
2

Λ
≤
∥∥∥uk − u∗

∥∥∥
2

Λ
−
(
c

2
− L

4

)∥∥∥xk − xk+1
∥∥∥
2

2
−
(
c− ρ

2
− M

4

)∥∥∥wk −wk+1
∥∥∥
2

2

− 1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
(115)
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APPENDIX C: PROOF OF LEMMA 4

Repeating the previous derivation, we know that u and u are both primal/dual optimal points of

problem (24). Hence, according to Proposition 1 and c > M
2 + ρ, we know that

∥∥uk − u
∥∥2
Λ

and
∥∥uk − u

∥∥2
Λ

are decreasing and convergent sequences. Define their limits to be η and η, respectively,

i.e., limk→∞

∥∥uk − u
∥∥2
Λ
= η and limk→∞

∥∥uk − u
∥∥2
Λ
= η. We have:

∥∥∥uk − u

∥∥∥
2

Λ
−
∥∥∥uk − u

∥∥∥
2

Λ
(116)

=
c

2

∥∥∥xk − x

∥∥∥
2

2
+

c+ ρ

2

∥∥∥wk −w

∥∥∥
2

2
+

1

2ρ

∥∥∥αk −α

∥∥∥
2

2

− c

2

∥∥∥xk − x

∥∥∥
2

2
− c+ ρ

2

∥∥∥wk −w

∥∥∥
2

2
− 1

2ρ

∥∥∥αk −α

∥∥∥
2

2
(117)

= cxkT(x− x) + (c+ ρ)wkT(w −w) +
1

ρ
αkT(α−α)

+
c

2
‖x‖22 +

c+ ρ

2
‖w‖22 +

1

2ρ
‖α‖22 −

c

2
‖x‖22 −

c+ ρ

2
‖w‖22 −

1

2ρ
‖α‖22 (118)

→ η − η, as k →∞. (119)

Hence, any subsequence of
∥∥uk − u

∥∥2
Λ
−

∥∥uk − u
∥∥2
Λ

converges to η − η as well. In particular,

subsequences
∥∥uki − u

∥∥2
Λ
−

∥∥uki − u
∥∥2
Λ

and
∥∥uk′

i − u
∥∥2
Λ
−

∥∥uk′

i − u
∥∥2
Λ

both converge to η − η, as

i goes to infinity. Noting that limi→∞ uki = u and (118), we obtain:

η − η (120)

= lim
i→∞

(∥∥∥uki − u

∥∥∥
2

Λ
−
∥∥∥uki − u

∥∥∥
2

Λ

)
(121)

= lim
i→∞

[
cxkiT(x− x) + (c+ ρ)wkiT(w −w) +

1

ρ
αkiT(α−α)

+
c

2
‖x‖22 +

c+ ρ

2
‖w‖22 +

1

2ρ
‖α‖22 −

c

2
‖x‖22 −

c+ ρ

2
‖w‖22 −

1

2ρ
‖α‖22

]
(122)

= cxT(x− x) + (c+ ρ)wT(w −w) +
1

ρ
αT(α−α)

+
c

2
‖x‖22 +

c+ ρ

2
‖w‖22 +

1

2ρ
‖α‖22 −

c

2
‖x‖22 −

c+ ρ

2
‖w‖22 −

1

2ρ
‖α‖22. (123)

Similarly, from the perspective of uk′

i , we can get:

η − η (124)

= cxT(x− x) + (c+ ρ)wT(w −w) +
1

ρ
αT(α−α)

+
c

2
‖x‖22 +

c+ ρ

2
‖w‖22 +

1

2ρ
‖α‖22 −

c

2
‖x‖22 −

c+ ρ

2
‖w‖22 −

1

2ρ
‖α‖22. (125)
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Combining (123) and (125) yields:

c‖x− x‖22 + (c+ ρ)‖w −w‖22 +
1

ρ
‖α−α‖22 = 0, (126)

which implies u = u.

APPENDIX D

PROOF OF LEMMA 5

For any x,x′ ∈ R
np, we have:

(
∇f(x)−∇f(x′)

)
T
(x− x′) =

n∑

i=1

(
∇fi(xi)−∇fi(x′

i)
)
T
(xi − x′

i) ≥
n∑

i=1

τ‖xi − x′
i‖22 = τ

∥∥x− x′
∥∥2
2
.

(127)

So, f is strongly convex with constant τ . Furthermore,

(∇g(y, z)−∇g(y′, z′))T




 y

z


−


 y′

z′




 (128)

=

n∑

i=1

∑

j∈Ωi


 ∇yi

gij(yi, zij)−∇y′

i
gij(y

′
i, z

′
ij)

∇zij
gij(yi, zij)−∇z′

ij
gij(y

′
i, z

′
ij)



T 
 yi − y′

i

zij − z′ij


 (129)

≥
n∑

i=1

∑

j∈Ωi

τ

∥∥∥∥∥∥


 yi

zij


−


 y′

i

z′ij



∥∥∥∥∥∥

2

2

(130)

= τ

n∑

i=1

|Ωi|‖yi − y′
i‖22 + τ

n∑

i=1

∑

j∈Ωi

‖zij − z′ij‖22 (131)

≥ τ

∥∥∥∥∥∥


 y

z


−


 y′

z′



∥∥∥∥∥∥

2

2

. (132)

So, g is strongly convex with constant τ as well.

APPENDIX E

PROOF OF THEOREM 2

We first show the properness of the definitions of δ and β. Because c > ρ+ M2

2τ ,
(

M2

c−ρ
, 2τ

)
is a proper

interval. On the interval
(

M2

c−ρ
, 2τ

)
, the function of β on the L.H.S. of (61) decreases from some positive

value to zero while the function of β on the R.H.S. increases from zero to some positive value. This

ensures that there exists a unique β ∈
(

M2

c−ρ
, 2τ

)
such that Equation (61) holds. As for δ, since c > L2

2τ ,

the first term on the R.H.S. of (60) is positive. Furthermore, because β < 2τ , the second term on the

R.H.S. of (60) is positive. Therefore, δ is positive.
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Based on the definitions of δ and β, we have:
(
τ − L2

2c
− cδ

2
− 3ρµΓ2δ

µ− 1

)∥∥∥xk+1 − x∗
∥∥∥
2

2
+

(
τ − β

2
− (c+ ρ)δ

2
− 3ρµδ

µ− 1
− 2M2µδ

ρ

)∥∥∥wk+1 −w∗
∥∥∥
2

2

+

(
c− ρ

2
− M2

2β
− 3c2µδ

ρ(µ− 1)
− 2M2µδ

ρ

)∥∥∥wk −wk+1
∥∥∥
2

2
+

1− 4δ

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
≥ 0. (133)

Hence,
(
τ − L2

2c
− cδ

2
− 3ρµΓ2δ

µ− 1

)∥∥∥xk+1 − x∗
∥∥∥
2

2
+

(
τ − β

2
− (c+ ρ)δ

2
− 3ρµδ

µ− 1

)∥∥∥wk+1 −w∗
∥∥∥
2

2

+

(
c− ρ

2
− M2

2β
− 3c2µδ

ρ(µ − 1)

)∥∥∥wk −wk+1
∥∥∥
2

2
+

1− 4δ

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
(134)

≥ 2M2µδ

ρ

(∥∥∥wk+1 −w∗
∥∥∥
2

2
+
∥∥∥wk −wk+1

∥∥∥
2

2

)
(135)

≥ M2µδ

ρ

∥∥∥wk −w∗
∥∥∥
2

2
. (136)

Equivalently,

cδ

2

∥∥∥xk+1 − x∗
∥∥∥
2

2
+

(c+ ρ)δ

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

δ

ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
+

δµM2

ρ

∥∥∥wk −w∗
∥∥∥
2

2

+
3c2µδ

ρ(µ− 1)

∥∥∥wk+1 −wk
∥∥∥
2

2
+

3ρµδ

µ− 1

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

3ρµδΓ2

µ− 1

∥∥∥x∗ − xk+1
∥∥∥
2

2

≤ τ
∥∥∥xk+1 − x∗

∥∥∥
2

2
+ τ

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

c− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
+

1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2

− L2

2c

∥∥∥xk+1 − x∗
∥∥∥
2

2
− β

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
− M2

2β

∥∥∥wk+1 −wk
∥∥∥
2

2
(137)

For the last three terms of the L.H.S. of (137), we note that:

∥∥∥c
(
wk+1 −wk

)
+ ρ

(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1

)∥∥∥
2

2
(138)

≤ 3c2
∥∥∥wk+1 −wk

∥∥∥
2

2
+ 3ρ2

∥∥∥wk+1 −w∗
∥∥∥
2

2
+ 3ρ2

∥∥∥B
(
x∗ − xk+1

)∥∥∥
2

2
(139)

≤ 3c2
∥∥∥wk+1 −wk

∥∥∥
2

2
+ 3ρ2

∥∥∥wk+1 −w∗
∥∥∥
2

2
+ 3ρ2Γ2

∥∥∥x∗ − xk+1
∥∥∥
2

2
, (140)

where the last step is due to the definition of Γ (the spectral norm of B). Substituting this result into

(137) yields:

cδ

2

∥∥∥xk+1 − x∗
∥∥∥
2

2
+

(c+ ρ)δ

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

δ

ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
+

δµM2

ρ

∥∥∥wk −w∗
∥∥∥
2

2

+
µδ

ρ(µ− 1)

∥∥∥c
(
wk+1 −wk

)
+ ρ

(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1

)∥∥∥
2

2

≤ τ
∥∥∥xk+1 − x∗

∥∥∥
2

2
+ τ

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

c− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
+

1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2

− L2

2c

∥∥∥xk+1 − x∗
∥∥∥
2

2
− β

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
− M2

2β

∥∥∥wk+1 −wk
∥∥∥
2

2
. (141)
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Based on Assumption 2, Lemma 1 and Equation (82), we have:

M2
∥∥∥wk −w∗

∥∥∥
2

2
(142)

≥
∥∥∥∇g

(
wk

)
−∇g (w∗)

∥∥∥
2

2
(143)

=
∥∥∥c

(
wk+1 −wk

)
+α∗ −αk + ρ

(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1

)∥∥∥
2

2
(144)

≥ 1

µ

∥∥∥α∗ −αk
∥∥∥
2

2
− 1

µ− 1

∥∥∥c
(
wk+1 −wk

)
+ ρ

(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1

)∥∥∥
2

2
, (145)

where µ > 1 is any constant greater than 1 and the last step makes use of the fact: ‖x+ y‖22 ≥
1
µ
‖y‖22 − 1

µ−1‖x‖22 for any µ > 1 and any vectors x,y. Thereby,

∥∥∥α∗ −αk
∥∥∥
2

2
≤ µM2

∥∥∥wk −w∗
∥∥∥
2

2
+

µ

µ− 1

∥∥∥c
(
wk+1 −wk

)
+ ρ

(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1

)∥∥∥
2

2
.

(146)

Using (146), we obtain:

∥∥∥αk+1 −α∗
∥∥∥
2

2
(147)

≤ 2
∥∥∥αk+1 −αk

∥∥∥
2

2
+ 2

∥∥∥αk −α∗
∥∥∥
2

2
(148)

≤ 2
∥∥∥αk+1 −αk

∥∥∥
2

2
+ 2µM2

∥∥∥wk −w∗
∥∥∥
2

2

+
2µ

µ− 1

∥∥∥c
(
wk+1 −wk

)
+ ρ

(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1

)∥∥∥
2

2
. (149)

By exploiting Cauchy’s inequality and Assumption 2, Lemma 1, we get:

−
(
xk+1 − x∗

)
T
(
∇f

(
xk+1

)
−∇f

(
xk

))
(150)

≥ L2

2c

∥∥∥xk+1 − x∗
∥∥∥
2

2
− c

2L2

∥∥∥∇f
(
xk+1

)
−∇f

(
xk

)∥∥∥
2

2
(151)

≥ L2

2c

∥∥∥xk+1 − x∗
∥∥∥
2

2
− c

2

∥∥∥xk+1 − xk
∥∥∥
2

2
, (152)

and

−
(
wk+1 −w∗

)
T
(
∇g

(
wk+1

)
−∇g

(
wk

))
(153)

≥ −β

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
− 1

2β

∥∥∥∇g
(
wk+1

)
−∇g

(
wk

)∥∥∥
2

2
(154)

≥ −β

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
− M2

2β

∥∥∥wk+1 −wk
∥∥∥
2

2
. (155)
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Therefore,

δ
∥∥∥uk+1 − u∗

∥∥∥
2

Λ
(156)

=
δc

2

∥∥∥xk+1 − x∗
∥∥∥
2

2
+

δ(ρ + c)

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

δ

2ρ

∥∥∥αk+1 −α∗
∥∥∥
2

2
(157)

≤ δc

2

∥∥∥xk+1 − x∗
∥∥∥
2

2
+

δ(ρ + c)

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

δ

ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
+

δµM2

ρ

∥∥∥wk −w∗
∥∥∥
2

2

+
δµ

ρ(µ− 1)

∥∥∥c
(
wk+1 −wk

)
+ ρ

(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1

)∥∥∥
2

2
(158)

≤ τ
∥∥∥xk+1 − x∗

∥∥∥
2

2
+ τ

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

c− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
+

1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2

− L2

2c

∥∥∥xk+1 − x∗
∥∥∥
2

2
− β

2

∥∥∥wk+1 −w∗
∥∥∥
2

2
− M2

2β

∥∥∥wk+1 −wk
∥∥∥
2

2
. (159)

≤ τ
∥∥∥xk+1 − x∗

∥∥∥
2

2
+ τ

∥∥∥wk+1 −w∗
∥∥∥
2

2
+

c

2

∥∥∥xk+1 − xk
∥∥∥
2

2
+

c− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2

+
1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2
−
(
xk+1 − x∗

)
T
(
∇f

(
xk+1

)
−∇f

(
xk

))

−
(
wk+1 −w∗

)T (
∇g

(
wk+1

)
−∇g

(
wk

))
, (160)

where (158) is due to (149); (159) comes from (141); and (160) is because of (152) and (155). Due to

Assumption 3 and Lemma 5, we have:

τ
∥∥∥xk+1 − x∗

∥∥∥
2

2
(161)

≤
(
∇f

(
xk+1

)
−∇f (x∗)

)T (
xk+1 − x∗

)
(162)

=
(
xk+1 − x∗

)T (
∇f

(
xk

)
−∇f (x∗)

)
+
(
xk+1 − x∗

)T (
∇f

(
xk+1

)
−∇f

(
xk

))
, (163)

and,

τ
∥∥∥wk+1 −w∗

∥∥∥
2

2
(164)

≤
(
∇g

(
wk+1

)
−∇g (w∗)

)
T
(
wk+1 −w∗

)
(165)

=
(
wk+1 −w∗

)
T
(
∇g

(
wk

)
−∇g (w∗)

)
+
(
wk+1 −w∗

)
T
(
∇g

(
wk+1

)
−∇g

(
wk

))
, (166)

Adding (163) and (166) and using (111), we get:

τ
∥∥∥xk+1 − x∗

∥∥∥
2

2
+ τ

∥∥∥wk+1 −w∗
∥∥∥
2

2

≤
∥∥∥uk − u∗

∥∥∥
2

Λ
−
∥∥∥uk+1 − u∗

∥∥∥
2

Λ
− c

2

∥∥∥xk − xk+1
∥∥∥
2

2
− c− ρ

2

∥∥∥wk −wk+1
∥∥∥
2

2
− 1

4ρ

∥∥∥αk+1 −αk
∥∥∥
2

2

+
(
xk+1 − x∗

)T (
∇f

(
xk+1

)
−∇f

(
xk

))
+
(
wk+1 −w∗

)T (
∇g

(
wk+1

)
−∇g

(
wk

))
. (167)
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Combining (160) and (167) leads to:

δ
∥∥∥uk+1 − u∗

∥∥∥
2

Λ
≤

∥∥∥uk − u∗
∥∥∥
2

Λ
−
∥∥∥uk+1 − u∗

∥∥∥
2

Λ
, (168)

which is tantamount to (59).
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