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Derivation and Analysis of the Primal-Dual Method
of Multipliers Based on Monotone Operator Theory

Thomas Sherson, Richard Heusdens, and W. Bastiaan Kleijn

Abstract—In this paper we present a novel derivation for
an existing node-based algorithm for distributed optimisation
termed the primal-dual method of multipliers (PDMM). In
contrast to its initial derivation, in this work monotone operator
theory is used to connect PDMM with other first-order methods
such as Douglas-Rachford splitting and the alternating direction
method of multipliers thus providing insight to the operation
of the scheme. In particular, we show how PDMM combines
a lifted dual form in conjunction with Peaceman-Rachford
splitting to remove the need for collaboration between nodes
per iteration. We demonstrate sufficient conditions for strong
primal convergence for a general class of functions while under
the assumption of strong convexity and functional smoothness,
we also introduce a primal geometric convergence bound. Finally
we introduce a distributed method of parameter selection in the
geometric convergent case, requiring only finite transmissions to
implement regardless of network topology.

Index Terms—Primal-Dual method of multipliers (PDMM),
alternating direction method of multipliers (ADMM), distributed
optimisation, monotone operator, optimisation over networks.

I. INTRODUCTION

Over the last three decades, there has been a signifi-
cant rise in the interest in and deployment of large scale
sensor networks for a wide range of applications [1], [2],
[3]. Motivated by the increase in computational power of
low cost micro-processors, the target applications for such
sensing networks have become more diverse and computa-
tionally demanding. Applications of such networks include
environmental monitoring [4], [5], power grid management
[6], [7], [8], as well as part of smart homes enabling the likes
of home health care systems [9], [10]. Additionally, where
centralised network topologies were once the port of call for
handling data processing of such systems, increasingly on-
node computational capabilities of such networks are exploited
to parallelise or even fully distribute data processing and
computation. In contrast to their centralised counterparts such
distributed networks have a number of distinct advantages
including robustness to node failure, scalability with network
size and localised transmission requirements.

Distributed networks, characterised by their limited connec-
tivity, implicitly restrict the data available at any one node. As
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this data is often generated within the network, this limited
connectivity, in combination with the removal of a single point
of computation, makes even straightforward signal processing,
such as the computation of inner products, cumbersome. To
address this point, within the literature, a number of algorithms
have been developed to solve a variety of signal processing
problems in a distributed context. In the case of linear av-
eraging problems, methods such as randomised gossip [11],
weighted gossip [12] and path averaging [13] have received
much attention due to their simplicity of implementation.
However, the limited scope of these algorithms restricts their
use in more general distributed settings.

Another family of distributed algorithms are those based
on message-passing or belief propagation schemes [14], [15].
Including the sum-product and min-sum algorithms, such
methods can be used to compute marginal distributions and
solve maximum a posteriori (MAP) problems in a distributed
fashion. By embedding a desired operation within such MAP
problems, these methods can be used for more general dis-
tributed computation than averaging alone. Unfortunately, such
methods are only provably convergent for acyclic networks,
which may not be present in practical applications.

A third approach commonly used in the literature, in appli-
cations such as sensor localisation [16], global averaging of
data [12] and network utility optimisation [17], is to embed
desired signal processing operations in a convex optimisation
problem, which can then be solved in a distributed man-
ner. Commonly used distributed convex solvers leverage sub-
gradient [18], [19], and primal-dual algorithms [20], where
each algorithm is chosen based on the specifications of a par-
ticular application. Solvers based on classical algorithms such
as proximal gradient [21], Douglas-Rachford splitting [22]
and the alternating direction method of multipliers (ADMM)
[23], have also seen a resurgence in the literature due to
their applicability to distributed optimisation. In addition, the
broad class of problems that can be transformed into convex
programs makes these methods highly attractive.

In more recent years, a number of novel approaches for
distributed optimisation, both convex and non-convex, have
also been proposed. In the convex case, the works of [24], [25],
[26], echoing advances in three term operator splitting such
as Vu-Condat splitting [27], [28], provide general frameworks
for distributed convex optimisation. Including more classical
approaches, such as ADMM, as special cases, these algorithms
leverage primal-dual type schemes to exploit functional sepa-
rability to create fully distributed implementations. In contrast,
the work in [29], [30] focuses on the more general problem
of potentially non-convex optimisation. In particular, by at
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each iteration approximating both objective and constraints
with specific strongly convex and smooth surrogates, the
proposed methods have provable guarantees on convergence
to local minima. Furthermore, in contrast to other methods,
the proposed approach need not explicitly require functional
separability, only the separability of the surrogates used. This
allows for the optimisation of problems typically outside of
the scope of distributed algorithms.

Recently, another new algorithm for distributed optimisation
was proposed within the literature termed the primal dual
method of multipliers (PDMM) [31]. While demonstrating
promising performance, including guaranteed average conver-
gence, which in some example applications was faster than
other methods such as ADMM [31], [32], in addition to an
asynchronous method of implementation, there are still a num-
ber of open questions surrounding the approach. The purpose
of this paper is therefore two-fold. Firstly we introduce a new
derivation for PDMM, constructed from the perspective of
monotone operator theory. In contrast to its original derivation,
this approach allows PDMM to be linked with classical
first order methods within the literature such as Peaceman-
Rachford and Douglas-Rachford splitting techniques as well as
the alternating direction method of multipliers (ADMM). Sec-
ondly, we use this approach to demonstrate new and stronger
convergence results for PDMM. The most important of these
points is its geometric convergence under strong convexity
and smoothness assumptions. This point was demonstrated
for ADMM in [33] but, prior to this paper, no such results
exist for PDMM. In this way, this work also strengthens the
performance guarantees of PDMM, an important point for
practical distributed optimisation.

The remainder of this paper is organised as follows. In Sec.
II and III we introduce appropriate nomenclature and back-
ground definitions to support the remainder of the document.
In Sec. IV we introduce a monotone operator based derivation
of PDMM based on a specific dual lifting approach. Sec. V
demonstrates a range of convergence results for the PDMM
algorithm under different assumptions of the distributed op-
timisation problems including sufficient conditions for primal
optimality. This is strengthened in Sec. VI were we demon-
strate primal geometric convergence under the assumption of
strong convexity and functional smoothness. We also highlight
a distributed method for parameter selection in this case.
Finally, Sec. VII includes simulation results to reinforce and
verify the underlying claims of the document and the final
conclusions are drawn in Sec. VIII

II. NOMENCLATURE

In this work we will denote by R the set of real numbers, by
RN the set of real column vectors of length N and by RM×N
the set of M by N real matrices. Let X ,Y ⊆ RN . A set
valued operator T : X → 2Y is defined by its graph, gra (T) =
{(x,y) ∈ X×Y | y ∈ T (x)} where 2Y is the power set of the
set Y . Similarly, the notion of an inverse of an operator T−1

is also defined via its graph so that gra
(
T−1

)
= {(y,x) ∈

Y × X | y ∈ T (x)}. We denote by JT,ρ = (I + ρT)
−1 the

resolvent of an operator and by RT,ρ = 2JT,ρ−I the reflected

resolvent. The composition of two operators T : X → 2Y and
S : Y → 2Z is given by S ◦ T : X → 2Z. The set of fixed-
points of T is denoted by fix (T) = {x ∈ X | T (x) =
x}. We denote by | • | the cardinality of a set. If |T (x) | =
1 ∀ x ∈ X then T = f is a single valued. In this case
f∗ denotes the Fenchel conjugate of f defined as f∗ (y) ,
supx

(
yTx− f (x)

)
and ∂f denotes the subdifferential of f .

Furthermore, the set of all closed, convex, and proper (CCP)
functions f : HN → R ∪ {+∞} is denoted by Γ0

(
HN

)
.

Finally, if T : HN → HM is a linear operator, we denote by
ran (T) and ker (T) the range and kernel of T respectively.

III. BACKGROUND

We begin by introducing some basic definitions that will be
used throughout this paper (see [34] for a detailed overview).

Definition III.1. Monotonicity: An operator T : H → 2H is
monotone iff

〈u− v,x− y〉 ≥ 0 ∀ (x,u) , (y,v) ∈ gra (T) ,

is strictly monotone if

〈u− v,x− y〉 > 0 ∀ (x,u) , (y,v) ∈ gra (T) ,x 6= y,

and is σ-strongly monotone if

〈u− v,x− y〉 ≥ σ‖x− y‖2 ∀ (x,u) , (y,v) ∈ gra (T) .

Furthermore, an operator T is maximal monotone if

∀ (x̂, û) 6∈ gra(T) ∃ (x,u) ∈ gra(T) | 〈u− û,x− x̂〉 < 0.

Definition III.2. Nonexpansiveness and Lipschitz: An opera-
tor T : H → 2H is nonexpansive if

‖u− v‖ ≤ ‖x− y‖ (x,u) , (y,v) ∈ gra (T) ,

and strictly nonexpansive if

‖u− v‖ < ‖x− y‖ ∀ (x,u) , (y,v) ∈ gra (T) ,x 6= y,

Furthermore, T is L-Lipschitz if

‖u− v‖ ≤ L‖x− y‖ ∀ (x,u) , (y,v) ∈ gra (T) .

and is contractive if L < 1.

Definition III.3. Convexity: A function f is convex if

f (θx + (1− θ)y) ≤ θf (x)+(1−θ)f (y) ∀x,y ∈ dom (f)

is strictly convex if

f (θx + (1− θ)y) < θf (x) + (1− θ)f (y)

∀x,y ∈ dom (f) ,x 6= y,

and is σ-strongly convex if f − σ
2 ‖ • ‖2 is convex.

It follows that ∂f is σ-strongly monotone if f is σ-strongly
convex. Furthermore, ∂f is maximal if f ∈ Γ0 (H).

Definition III.4. Smoothness: A function f is L-smooth if it
is differentiable and L

2 ‖ • ‖2 − f is convex.
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Equivalently it can be shown that an L-smooth function
satisfies the inequality

f (x) ≤ f (y)+〈∇f (y) ,x− y〉+L

2
‖x−y‖2 ∀x,y ∈ dom (f) .

Thus the gradient of an L-smooth function is L-Lipschitz.

IV. A MONOTONE DERIVATION OF THE PRIMAL-DUAL
METHOD OF MULTIPLIERS

In this section we reintroduce a node based algorithm for
distributed optimisation termed the Primal-Dual method of
multipliers (PDMM) [31]. Unlike earlier efforts within the
literature [31], [32], here we demonstrate how PDMM can
be derived from the perspective of monotone operator theory.
Additionally, a connection previously unnoted in the literature
between PDMM and distributed ADMM is highlighted.

A. Node Based Distributed Optimisation

Consider a general undirected network consisting of N
nodes. The associated graphical model of such a network is
given by G(V,E) where V = {1, ..., N} and E denote the set
of nodes and undirected edges respectively. Assume that each
node is equipped with a function fi ∈ Γ0

(
RMi

)
∀i ∈ V

parameterised by a local variable xi ∈ RMi . Under this
model, consider solving the following optimisation problem
in a distributed manner.

min
xi ∀ i∈V

∑

i∈V
fi(xi)

s.t Ai|jxi + Aj|ixj = bij ∀ (i, j) ∈ E.
(1)

Here Ai|j ∈ RMij×Mi and bij ∈ RMij . Note the distinction
between the subscripts i|j and ij. The prior is a directional
identifier used to denote the directed edge from node i to node
j, while the later is an undirected identifier. Furthermore, let
MV =

∑
i∈V Mi and ME =

∑
(i,j)∈EMij .

We will refer to these problems as distributed convex
optimisation problems where Ai|j and bij impose affine
constraints between the local variables at neighbouring nodes.

The prototype problem in (1) includes, as a subset, the
family of distributed consensus problems which minimise the
sum of the local cost functions under network wide consensus
constraints. Such problems have received much attention in the
literature in recent years [11], [23], [35], [36]. The algorithm
presented in this paper can therefore be used for this prupose.

The associated Lagrange dual [37] of (1) is given by

min
ν

∑

i∈V


f∗i


 ∑

j∈N (i)

AT
i|jνij


−

∑

j∈N (i)

bij
2

T

νij


 , (2)

where each νij ∈ RMij denotes the dual vector variable
associated with the constraint function along edge (i, j),
N (i) = {j ∈ V | (i, j) ∈ E} is the set of neighbours of
node i and f∗i is the Fenchel conjugate of fi. By inspection,
each νij in (2) is utilised in two conjugate functions, f∗i and
f∗j resulting in a coupling between neighbouring nodes.

To address the linking of the objective terms, the dimension
of the dual problem can be lifted by introducing additional di-
rected edge variables λi|j and λj|i. These are then constrained

so that at optimality λi|j = λj|i, leading to what we term as
the extended dual of Eq (1)

min
λ

∑

i∈V


f∗i


 ∑

j∈N (i)

AT
i|jλi|j


−

∑

j∈N (i)

bij
2

T

λi|j




s.t. λi|j = λj|i ∀i ∈ V, j ∈ N (i).
(3)

While seemingly straightforward, it is this choice of lifting
in the dual domain that distinguishes our contribution from
existing approaches.

Remark 1. In the specific case that all Ai|j = I, the extended
dual form reflects a similar structure to that demonstrated in
(Sec. 3.3) [38] where by the duplication of the edge variables
was also considered. The method in [38] focused on the case of
stochastic coordinate descent based approaches. In contrast,
our motivation for the use of the extended dual form here,
which considers the case of arbitrary Ai|j matrices, is to allow
us to link PDMM with existing algorithms within the literature
via monotone operator theory.

We denote by λ the stacked vector of all λi|j . The ordering
of this stacking is given by 1|2 < 1|3 < · · · < 1|N < 2|1 <
2|3 < · · · < N |N−1. In the case of a fully connected network
the vector λ ∈ RME is given by

λ =
[
λ1|2; · · · ;λ1|N ;λ2|1; · · · ,λN |N−1

]
.

For the primal constraints we introduce the matrix C ∈
RME×MV and vector d ∈ RME where in the case of a fully
connected network

C =




C1 · · · 0
...

. . .
...

0 · · · CN




Ci =
[
Ai|1; Ai|2; · · · ; Ai|i−1; Ai|i+1; · · · ; Ai|N

]
∀i ∈ V

d =
[
d1; d2; · · · ; dN

]

di =
1

2

[
bi1; bi2; · · · ; bi(i−1); bi(i+1); bi2; · · · ; biN

]
∀i ∈ V.

(4)

For other network topologies the unnecessary rows of λ, C
and d, corresponding to non-existent edges, can be removed.

We further introduce the symmetric permutation matrix P
that maps between each pair of variables λi|j and λj|i so that
the constraints in (3) can be rewritten as λ = Pλ. Finally, we
define the function

f(x) : RMV 7→ R ,
∑

i∈V
fi(xi)

as the sum of all local functions where RMV = RM1×RM2×
...× RMN . It follows that (3) is equivalent to

min
λ

f∗(CTλ)− dTλ + ιker(I−P) (λ) , (5)

where ιker(I−P) is the indicator function of the edge based
constraints defined as

ιker(I−P)(y) =

{
0 (I−P)y = 0

+∞ otherwise.
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B. From an Unconstrainted Optimisation Problem to a Non-
expansive PDMM Operator

From the unconstrained optimisation problem in (5) we now
introduce a method of solving (1) in a distributed manner. We
do so via the relationship between (5) and its subdifferential,
ultimately forming a nonexpansive PDMM operator TP,ρ to
use as part of a classic fixed point iterative algorithm.

As the operator I − P is continuous, ker(I − P) is a
closed subspace. It follows from (Example 1.25) [34] that
ιker(I−P) ∈ Γ0. By combining this point with Theorem 13.37
and Proposition 13.3, both of [34], and the assumption that
f ∈ Γ0, it follows that λ∗ is a minimiser of (5) if and only if
(Theorem 16.3) [34]

0 ∈ C∂f∗
(
CTλ∗

)
− d + ∂ιker(I−P) (λ∗) , (6)

where ∂ιker(I−P) is a normal cone operator [39].
Given the maximal monotonicity of T1 = C∂f∗

(
CT
)
−d

and of the normal cone operator T2 = ∂ιker(I−P), it follows
that a zero-point of (6) can be found via a range of classical
operator splitting methods (see [40] for an overview). In this
particular instance, we consider the use of Peaceman-Rachford
(PR) splitting to construct a nonexpansive PDMM operator
which can be used to rephrase the zero-point condition in (6)
as a more familiar fixed-point condition. A derivation of this
equivalence, as demonstrated in (Section 7.3) [39], is given by

0 ∈ (I + ρT2) (λ)− (I− ρT1) (λ)

0 ∈ (I + ρT2) (λ)−RT1,ρ ◦ (I + ρT1) (λ) (7a)
0 ∈ (I + ρT2) ◦ JT1,ρ (z)−RT1,ρ (z) , λ = JT1,ρ (z)

JT2,ρ ◦RT1,ρ (z) = JT1,ρ (z) , λ = JT1,ρ (z) (7b)
RT2,ρ ◦RT1,ρ (z) = z, λ = JT1,ρ (z) , (7c)

where RTi,ρ and JTi,ρ are the reflected resolvent and re-
solvent operators of Ti respectively. Here, (7a) uses the
maximality of T1 [39], (7b) uses that the reflected resolvent
of a maximal monotone operator is single valued, and (7c)
uses the definition of the reflected resolvent. The introduced
auxiliary z variables will be referred to as such from here on
out.

As both T1 and T2 are maximal monotone operators, JT1,ρ

and JT2,ρ are both firmly nonexpansive. By Proposition 4.2
in [34] it follows that RT1,ρ and RT2,ρ are nonexpansive.

The resulting PDMM operator, given by

TP,ρ = RT2,ρ ◦RT1,ρ, (8)

is nonexpansive and will be used repeatedly throughout this
work. Importantly, the nonexpansive nature of TP,ρ allows us
to utilise fixed-point schemes to ultimately solve (1).

C. On the link with the Primal Dual Method of Multipliers

We will now demonstrate how PDMM, as defined in [31],
can be linked with classical monotone operator splitting theory.
For this purpose we will consider the fixed-point iteration of
TP,ρ given by

z(k+1) = TP,ρ

(
z(k)

)
= RT2,ρ ◦RT1,ρ

(
z(k)

)
. (9)

To aid in the aforementioned relationship, the evaluation of
the reflected resolvent operators RT1,ρ and RT2,ρ are outlined
in the following Lemmas.

Lemma IV.1. y(k+1) = RT1,ρ

(
z(k)

)
can be computed as

x(k+1) =arg min
x

(
f(x)−

〈
CT z(k),x

〉
+
ρ

2
||Cx− d||2

)

λ(k+1) =z(k) − ρ
(
Cx(k+1) − d

)

y(k+1) =2λ(k+1) − z(k)

Proof. As RT1,ρ = 2JT1,ρ−I, we begin by defining a method
for computing the update

λ(k+1) = JT1,ρ

(
z(k)

)
.

Firstly, by the definition of the resolvent of an operator,

λ(k+1) = (I + ρT1)
−1
(
z(k)

)

z(k) ∈ (I + ρT1)
(
λ(k+1)

)

λ(k+1) ∈ z(k) − ρT1

(
λ(k+1)

)
.

From the definition of the operator T1, it follows that

λ(k+1) ∈ z(k) − ρ
(
C∂f∗

(
CTλ(k+1)

)
− d

)
.

Let x ∈ ∂f∗
(
CTλ

)
. For f ∈ Γ0, it follows from Proposition

16.10 [34], that x ∈ ∂f∗
(
CTλ

)
⇐⇒ ∂f (x) 3 CTλ so that

λ(k+1) = z(k) − ρ
(
Cx(k+1) − d

)

CTλ(k+1) ∈ ∂f
(
x(k+1)

)
.

(10)

Thus, x(k+1) can be computed as

0 ∈ ∂f
(
x(k+1)

)
−CT

(
z(k) − ρ

(
Cx(k+1) − d

))
(11)

or equivalently as

x(k+1) =arg min
x

(
f(x)−

〈
CT z(k),x

〉
+
ρ

2
||Cx− d||2

)

(12)

Combining (10) and (12) with the fact that y(k+1) =
(2JT1,ρ − I)

(
z(k)

)
= 2λ(k+1)−z(k) completes the proof.

Remark 2. Note that due to the block diagonal structure of
C and the separability of f , the computation of this reflected
resolvent can be performed in parallel across nodes.

Lemma IV.2. z(k+1) = RT2,ρ

(
y(k+1)

)
can be computed as

z(k+1) = Py(k+1).

Proof. As in Lemma IV.1, we begin by utilising the definition
of the reflected resolvent where RT2,ρ = 2JT2,ρ − I. We
therefore shift our attention to the computation of JT2,ρ.

The resolvent of a normal cone operator can be computed
via

JT2,ρ

(
y(k+1)

)
=arg min

u

(
ιker(I−P)(u) +

1

2ρ
‖u− y(k+1)‖2

)

=arg min
u=Pu

(
‖u− y(k+1)‖2

)
.
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By inspection, the solution of this problem is given by the
projection onto the set of feasible u vectors. As such,

JT2,ρ

(
y(k+1)

)
= Π

ker(I−P)
y(k+1).

It follows that the reflected resolvent can be computed as

z(k+1) =

(
2 Π
ker(I−P)

− I

)
y(k+1)

= Py(k+1),

completing the proof.

Remark 3. Note that this permutation operation is equivalent
to a sharing of data between neighbouring nodes and is
therefore distributable.

Utilising Lemmas IV.1 and IV.2 it follows that

TP,ρ = P ◦RT1,ρ,

so that (9) can be computed via Algorithm 1.

Algorithm 1 Primal-Dual Method of Multipliers (PDMM)

1: Initialise: z(0) ∈ RME

2: for k=0,..., do
3: x(k+1) = argmin

x

(
f(x)−

〈
CT z(k),x

〉
+ ρ

2 ||Cx−d||2
)

4: λ(k+1) = z(k) − ρ
(
Cx(k+1) − d

)

5: y(k+1) = 2λ(k+1) − z(k)

6: z(k+1) = Py(k+1)

7: end for

By noting that z(k+1) = P
(
λ(k+1) − ρ

(
Cx(k+1) − d

))
,

the dependence on y(k+1) and z(k+1) can be removed, reduc-
ing the scheme to that given in Algorithm 2. This algorithm

Algorithm 2 Simplified PDMM

1: Initialise: λ(0) ∈ RME , x(0) ∈ RMV

2: for k=0,..., do
3: x(k+1) = argmin

x

(
f(x)−

〈
CTPλ(k),x

〉
+

ρ
2 ||Cx + PCx(k) − 2d||2

)

4: λ(k+1) = Pλ(k) − ρ
(
Cx(k+1) + PCx(k) − 2d

)

5: end for

is identical to a particular instance of PDMM proposed in
[31]. Thus, PDMM is equivalent to the fixed-point iteration
of the PR splitting of the extended dual problem, linking the
approach with a plethora of existing algorithms within the
literature [21], [23], [24], [26].

The distributed nature of PDMM can be more easily visu-
alised in Algorithm 3 where by we have utilised the definitions
of C and d. Here the notation Nodej ← Nodei(•) indicates
the transmission of data from node i to node j.

Remark 4. The form of the distributed PDMM algorithm
lends itself to implementation in practical networks. Each
iteration of the algorithm only requires one-way transmission
between neighbouring nodes. Thus, no direct collaboration is
required during the computations of each iteration.

Algorithm 3 Distributed PDMM

1: Initialise: z(0) ∈ RME

2: for k=0,..., do
3: for all i ∈ V do . Primal Update

4: x
(k+1)
i = arg minxi

(
fi(xi) +

∑
j∈N (i)

(
−
〈
AT
i|jz

(k)
i|j ,xi

〉
+ ρ

2 ||Ai|jxi−bij

2 ||2
))

5: for all j ∈ N (i) do . Dual Update
6: λ

(k+1)
i|j = z

(k)
i|j − ρ

(
Ai|jx

(k+1)
i − bij

2

)

7: z
(k+ 1

2 )

i|j = 2λ
(k+1)
i|j − z

(k)
i|j

8: end for
9: end for

10: for all i ∈ V, j ∈ N (i) do . Transmit Variables
11: Nodej ← Nodei(z

(k+ 1
2 )

i|j )
12: end for
13: for all i ∈ V, j ∈ N (i) do . Auxiliary Update
14: z

(k+1)
i|j = z

(k+ 1
2 )

j|i
15: end for
16: end for

D. On the Link with the Distributed Alternating Direction
Method of Multipliers

While in [31] it was suggested that PDMM and the
alternating direction method of multipliers (ADMM) were
fundamentally different due to their differences in derivation,
in the following we demonstrate how they are more closely
related than first thought. This link is masked via the change
of variables typically used in the updating scheme for ADMM
and PDMM (see [23] Sec. 3 and [31] Sec. 4 respectively for
such representations). For this purpose we re-derive an ADMM
variant from the perspective of monotone operator theory.

Consider again the problem given in (1). By introducing
the directed edge variables yi|j ,yj|i ∈ RMij ∀(i, j) ∈ E, an
equivalent version of (1) is given by

min
x

∑

i∈V
fi(xi)

s.t

Ai|jxi − bij

2 = yi|j

Aj|ixj − bij

2 = yj|i
yi|j + yi|j = 0




∀(i, j) ∈ E.

(13)

Defining the stacked vector y ∈ RME and adopting the
matrices C, P and d as per the derivation in Sec. IV-A, this
can be more simply written as

min
x

f(x) + ιker(I+P) (y)

s.t Cx− d = y.
(14)

Here, the indicator function is used to capture the final set
of equality constraints in (13). This is exactly in the form
of a standard ADMM problem with the objective being the
summation for two CCP functions of different variables with
affine constraints coupling them together. The associated dual
problem of (14) is given by

min
λi ∀ i∈V

f∗
(
CTλ

)
− dTλ + ι∗ker(I+P) (λ) , (15)
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where λ, as in the case of PDMM, denotes the stacked vector
of dual variables associated with the directed edges.

Comparing (15) and (6), we can note that the apparent
difference in the dual problems is simply the use of either
an indicator function, in the case of PDMM, or the conjugate
of an indicator function in the case of ADMM. In actual fact
these two functions are equivalent. This can be trivially seen
by considering the definition of the Fenchel conjugate of an
indicator function given by

ι∗ker(I+P) (λ) = sup
y

(
〈y,λ〉 − ιker(I+P)

)

=

{
0 λ ∈ ran (I + P)

−∞ otherwise.

As ran (I + P) = ker (I−P), it follows that ι∗ker(I+P) =
ιker(I−P). The problems in (5) and (15) are therefore identical.

ADMM is equivalent to applying Douglas Rachford (DR)
splitting [22] to (15). As DR splitting is equivalent to a
half averaged form of PR splitting [34], the operator form
of ADMM is given by TA,ρ = 1

2 (I + TP,ρ). In this man-
ner, despite their differences in earlier derivations, the two
approaches are fundamentally linked. Within the literature,
PDMM could therefore also be referred to as a particular
instance of generalised [41] or relaxed ADMM [42].

V. GENERAL CONVERGENCE RESULTS FOR PDMM

Having linked PDMM with more classical monotone based
approaches, we now move to demonstrate a set of convergence
results of the algorithm under different assumptions on the
underlying optimisation problem. These results include a suffi-
cient condition for strong primal convergence and a reiteration
of the asymptotic rate bound for averaged PDMM variants,
which provides guaranteed convergence for all f ∈ Γ0.

A. Sufficient Conditions for the Optimality of the PDMM
Variables in the Limit

Firstly we show how either the differentiability or the strict
convexity of f is sufficient for the optimality of the limit
points of the primal or dual variables of PDMM respec-
tively. Strengthening this, when f is both strictly convex and
differentiable we will demonstrate how PDMM guarantees
convergence of the auxiliary variables to a particular set, in
turn guaranteeing primal convergence.

Consider the PDMM operator TP,ρ given in (8). Assume
that fix (TP,ρ) 6= ∅ and define a point z∗ ∈ fix (TP,ρ). We
will denote by x∗ and λ∗ the corresponding primal and dual
vectors generated by the PDMM algorithm corresponding to
z∗. Consider the sequence

(
z(k)

)
k∈Z+

as defined by (9). It
follows that, for a given iteration k ∈ Z+,

‖z(k) − z∗‖2 =‖P
(
y(k) − y∗

)
‖2

=‖y(k) − y∗‖2

= ‖z(k−1) − z∗‖2 − 4
〈
λ(k) − λ∗, ρC

(
x(k) − x∗

)〉
,

where the final line uses the polarization identity of norms
(Lemma 2.12) [34] and the definition of the dual update step

in Lemma IV.1. As x ∈ ∂f∗
(
CTλ

)
, by Proposition 16.10

[34], CTλ ∈ ∂f (x). It follows that
〈
λ(k) − λ∗,C

(
x(k) − x∗

)〉
=

〈
∂f
(
x(k)

)
− ∂f (x∗) ,x(k) − x∗

〉
=

〈
λ(k) − λ∗,C∂f∗

(
CTλ(k)

)
−C∂f∗

(
CTλ∗

)〉
.

If ∂f is strictly monotone
〈
∂f
(
x(k)

)
− ∂f (x∗) ,x(k) − x∗

〉
> 0 ∀x(k) 6= x∗. (16)

Similarly, if ∂f∗ is strictly monotone
〈
λ(k) − λ∗,Cf∗

(
CTλ(k)

)
−Cf∗

(
CTλ∗

)〉
> 0

∀ Π
ran(C)

(
λ(k)

)
6= Π

ran(C)
(λ∗) .

(17)

From Rockafellar ([43] Theorem 23.6), a function f ∈ Γ0 is
strictly convex if and only if f∗ is differentiable. Given that
f∗∗ = f for f ∈ Γ0, the strict monotonicity of ∂f∗ holds if
and only if f is differentiable. If f is differentiable or strictly
convex, we now show how the limits of the primal and dual
variables are optimal respectively.

Lemma V.1. In the limit if
(i) f is strictly convex then limk→∞ x(k) = x∗

(ii) ∂f = ∇f then limk→∞ Π
ran(C)

(
λ(k)

)
= Π

ran(C)
(λ∗)

Proof. Consider the first case (i). Due to the strict convexity of
f and the convexity of the domain of (1), x∗ ∈ X∗ is unique
where X∗ denotes the set of primal optimal vectors.

Under such an assumption, from (16), it follows that the
sequence

(
‖z(k) − z∗‖2

)
k∈Z+

is strictly nonexpansive unless
x(k) = x∗. Thus limk→∞ x(k) = x∗ in this case.

For the second case (ii) we have a similar result. Denote by
Λ∗ the set of optimal dual variables. Due to the differentia-
bility of f , C∂f∗

(
CT •

)
is strictly monotone over ran (C).

It follows that ∀λ ∈ Λ∗, Π
ran(C)

(λ) = Π
ran(C)

(λ∗) is unique.

From (17), the sequence
(
‖z(k) − z∗‖2

)
k∈Z+

is strictly
nonexpansive unless Π

ran(C)

(
λ(k)

)
= Π

ran(C)
(λ∗). Thus

limk→∞ Π
ran(C)

(
λ(k)

)
= Π

ran(C)
(λ∗) in this case.

The importance of Lemma V.1 is that unlike the original
derivation of PDMM [31], here we postulate that primal
convergence cannot be guaranteed for all f ∈ Γ0 without
additional modifications to the algorithm. This modification
may take the form of operator averaging, as introduced in
Section V-C although other options may also be sufficient.
This postulation is verified in Sec. VII-B by demonstrating an
instance where f ∈ Γ0 is insufficient for primal optimality.

B. Sufficient Conditions for Auxiliary Convergence of PDMM

We will now demonstrate that if the function f is both
differentiable and strictly convex we can strengthen the result
of Sec. V-A to guarantee auxiliary convergence. This also
guarantees primal convergence for the same function class.



TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 7

Consider the one and two-step PDMM updates given by

z(k+1) =P
(
z(k) − 2ρ

(
Cx(k+1) − d

))

z(k+2) =P
(
z(k+1) − 2ρ

(
Cx(k+2) − d

))

=z(k) − 2ρ
(
PCx(k+2) + Cx(k+1) − 2d

)
.

(18)

From (18) it is clear that for k even and for any given z0,

Π
ker(C)∩ker(PC)

z(k+2) = Π
ker(C)∩ker(PC)

z(0).

Similarly for k odd

Π
ker(C)∩ker(PC)

z(k+2) = Π
ker(C)∩ker(PC)

TP,ρ

(
z(0)

)
.

The auxiliary variables therefore contain a nonconvergent
component determined by the vector z0. We therefore define
a measure of auxiliary error, given by ‖z(k+2) − z̃0‖2 where
the vector z̃0 is defined to remove the dependence on this
nonconvergent component.

Our particular choice of z̃0 is derived as follows. Assume
that f is both differentiable and strictly convex. Consider the
two-step PDMM operator T2

P,ρ = TP,ρ ◦ TP,ρ, and note
that z∗ ∈ fix (TP,ρ) ⊆ fix

(
T2
P,ρ

)
. From (18) and as such a

point produces a unique primal optimal update as f is strictly
convex, it follows that

z∗ =P (z∗ − 2ρ (Cx∗ − d))

=z∗ − 2ρ (PCx∗ + Cx∗ − 2d) = z∗,

where PCx∗ + Cx∗ − 2d = 0 so that x∗ is primal feasible.
Additionally, from the primal updates of PDMM and the

differentiability of f , for a single PDMM iteration

x∗ =∇f(x∗)−CT z∗ + ρCT (Cx∗ − d) .

while for a second iteration
x∗ =∇f(x∗)−CT z∗ + ρCT (Cx∗ − d)

=∇f(x∗)−CTPz∗ + ρCTP (Cx∗ − d) ,

where again we have used the fact that PCx∗+Cx∗−2d = 0.
By stacking these two equalities, it follows that
[
C PC

]T
z∗ =

[
∇f(x∗)− x∗ + ρCT (Cx∗ − d)
∇f(x∗)− x∗ + ρCTP (Cx∗ − d)

]
= ĝ,

and thus

Π
ran(C)+ran(PC)

z∗ =
([

C PC
]T)†

ĝ,

where •† denotes the Moore-Penrose pseudo inverse.
We can therefore define the unique vector

z̃0 =
([

C PC
]T)†

ĝ + Π
ker(C)∩ker(PC)

z(0). (19)

By again considering the PDMM two-step operator T2
P,ρ,

it follows from nonexpansiveness that, for k even,

‖z(k+2) − z̃0‖2 =‖ Π
ran(C)+ran(PC)

(
z(k+2) − z̃0

)
‖2

≤‖ Π
ran(C)+ran(PC)

(
z(k) − z̃0

)
‖2

=‖z(k) − z̃0‖2.

(20)

Thus the sequence
(
z(2k)

)
k∈Z+

is Fejér monotone with respect
to the point z̃0. It follows from (Proposition 5.4) [34] that the
sequence of auxiliary errors is both bounded and converges.
Note that for odd iterations the vector z̃1 = TP,ρ (z̃0) can be
used to define a similar error.

Using the proposed auxiliary error, the limit points of the
sequence of two-step auxiliary variables can be derived. We
do so by noting that for differentiable and strictly convex f ,
Lemma V.1 implies that

lim
k→∞

x(2k) = lim
k→∞

x(2k+1) =x∗

lim
k→∞

Π
ran(C)

(
λ(2k)

)
= Π

ran(C)

(
λ̃0

)

lim
k→∞

Π
ran(C)

(
λ(2k+1)

)
= Π

ran(C)

(
λ̃1

)
,

(21)

where λ̃0 = JT1,ρ (z̃0) and λ̃1 = JT1,ρ ◦TP,ρ (z̃0). From the
definition of the reflected resolvent it follows that

lim
k→∞

Π
ran(C)

(
z(2k)

)
= Π

ran(C)
(z̃0)

lim
k→∞

Π
ran(C)

(
z(2k+1)

)
= Π

ran(C)
(z̃1) ,

(22)

where z̃1 = TP,ρ (z̃0). Combining (22) with (21) and the one-
step PDMM update given in (18), it follows that

0 = lim
k→∞

Π
ran(C)

(
z(2k+1) − z̃1

)

= lim
k→∞

Π
ran(C)

P
(
z(2k) − z̃0 − 2ρC

(
x(k+1) − x∗

))

= lim
k→∞

P Π
ran(C)

P
(
z(2k) − z̃0

)

= lim
k→∞

Π
ran(PC)

(
z(2k) − z̃0

)
,

(23)

where the second line uses Lemma IV.1 and the third line uses
the fact that limk→∞ x(2k+1) = x∗ and that P is full rank.

By then combining (22) and (23), it follows that

lim
k→∞

Π
ran(C)+ran(PC)

(
z(2k)

)
= Π

ran(C)+ran(PC)
(z̃0) ,

so that limk→∞ ‖z(2k) − z̃0‖2 = 0. The vector z̃0 is thus
the unique weak sequential cluster point of the sequence(
z(2k)

)
k∈Z+

. Due to the finite dimensionality of the domain
of TP,ρ, combining Theorem 5.5 and Lemma 2.51, both from
[34], verifies that z(2k) → z̃0 and z(2k+1) → z̃1 where • → •
is used to denote strong convergence.

Strong convergence of the primal variables follows by
reconsidering the primal update equation given in Lem. IV.1.
Specifically, by rearranging (11), it can be shown that

x(k+1) =
(
∇f + ρCTC

)−1
CT

(
z(k) + ρd

)
.

From the monotonicity of ∇f , ∀k ∈ Z+ even,

‖x(k+1) − x∗‖2 ≤ 1

ρσ2
min6=0 (C)

‖CT
(
z(k) − z̃0

)
‖2

≤ σ2
max (C)

ρσ2
min6=0 (C)

‖z(k) − z̃0‖2
(24)
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Thus, ‖x(k+1)−x∗‖2 → 0, x(k+1) → x∗ and the combination
of differentiability and strict convexity is sufficient for strong
primal convergence.

While this proof is sufficient for primal convergence, no
information is provided about the rate at which this conver-
gence occurs. However, as we will demonstrate in Secs. V-C
and VI-A, with either the use of operator averaging or under
stronger functional assumptions, such rates can be defined.

C. Averaged PDMM Convergence

As with other operator splitting methods, PDMM can be
combined with an averaging stage to guarantee convergence
∀f ∈ Γ0, even those which do not satisfy the strict convexity
or differentiability assumptions introduced in Sec. V-A. The
general form of the averaged PDMM operator is given by

TP,ρ,α = (1− α)I + αTP,ρ,

where the scalar α ∈ (0, 1). In the particular case that α = 1
2 ,

averaged PDMM is equivalent to ADMM, as was previously
noted in Sec. IV-D. In this case, by Proposition 4.4 [34], the
operator TP,ρ,α is firmly nonexpansive.

The fixed-point iteration of TP,ρ,α is therefore given by

z(k+1) = (1− α)z(k) + αTP,ρz
(k).

This can be equivalently referred to as the α-Krasnosel’skiı̆-
Mann iteration [34] of the operator TP,ρ which is a well docu-
mented method of guaranteeing convergence for nonexpansive
operators. To demonstrate this, the following is a repetition of
the guaranteed convergence of Krasnosel’skiı̆-Mann iterations,
as demonstrated in Theorem 5.15 [34].

Consider again the sequence
(
z(k)

)
k∈Z+

and a vector z∗ ∈
fix (TP,ρ). By the definition of the averaged PDMM operator,
it follows that

‖z(k+1) − z∗‖2 = ‖ ((1− α)I + αTP,ρ)
(
z(k)

)
− z∗‖2

= (1− α)‖z(k) − z∗‖2 + α‖TP,ρ

(
z(k)

)
− z∗‖2

− α(1− α)‖ (TP,ρ − I)
(
z(k)

)
‖2

≤ ‖z(k) − z∗‖2 − α(1− α)‖ (TP,ρ − I)
(
z(k)

)
‖2,

(25)

where the first equality stems from Corollary 2.15 [34] and
the final line uses the nonexpansiveness of TP,ρ. Recursively
applying (25), if follows that

k∑

i=1

α(1− α)‖ (TP,ρ − I)
(
z(i)
)
‖2 ≤ ‖z0 − z∗‖2. (26)

As shown in Theorem 5.15 [34],

‖ (TP,ρ − I)
(
z(k)

)
‖2 ≤ ‖ (TP,ρ − I)

(
z(k−1)

)
‖2,

so that the inequality in (26) can be lower bounded as

kα(1− α)‖ (TP,ρ − I)
(
z(k)

)
‖2 ≤ ‖z0 − z∗‖2.

This leads to the final inequality,

‖ (TP,ρ − I)
(
z(k)

)
‖2 ≤ 1

kα(1− α)
‖z0 − z∗‖2.

It follows that the fixed-point residual (TP,ρ − I)
(
z(k)

)
con-

verges at an asymptotic rate of O
(
1
k

)
and thus that z(k)

converges to fix (TP,ρ). As such, operator averaging is a
form of algorithm modification, alluded to in Sec. V-A, which
guarantees primal convergence of PDMM for general f ∈ Γ0.

VI. GEOMETRIC CONVERGENCE AND DISTRIBUTED
PARAMETER SELECTION

Under stronger functional assumptions, namely strong con-
vexity and smoothness, we can demonstrate that a geomet-
rically contracting upper bound exists for the primal error
of PDMM. To complement this, we also introduce a finite-
time distributed algorithm to select a step size to optimise this
bound and improve the worst case convergence rate of PDMM.

A. A Primal Geometric Convergence Bound for Strongly Con-
vex and Smooth Functions

In the following we demonstrate that for strongly convex
and smooth functions the primal variables of PDMM converge
at a geometric rate. More formally we show that ∃ ε ≥ 0, γ ∈
[0, 1) so that

∀k ∈ Z+, ‖x(k) − x∗‖2 ≤ γkε,
This process is broken down into two stages. Firstly we
demonstrate how, under the assumption of strong convexity
and smoothness, PDMM is contractive over a certain subspace.
We then show how, for such “partially contractive” operators,
a global convergence bound can be found by linking PDMM
with the generalised alternating method of projections (GAP)
[44] allowing us to derive the aforementioned γ and ε.

B. Partially Contractive Nature of PDMM Over a Subspace

We begin by demonstrating the contractive nature of the
PDMM operator over a subspace determined by the constraint
matrix C by showing that the operator T1 is both strongly
convex and Lipschitz continuous over this subspace. This is
summarised in Lemma VI.1.

Lemma VI.1. If f is both µ-strongly convex and β-smooth
then C∂f∗(CT •) is

(i) σ2
max(C)
µ -Lipschitz continuous

(ii)
σ2
min 6=0(C)

β -strongly monotone ∀z ∈ ran (C) where
σmin 6=0 (C) is the smallest nonzero singular value of C.

Proof. Under the assumption that f ∈ Γ0 is σ-strongly convex
and β-smooth, from Theorem 18.15 [34], f∗ is both 1

β -
strongly convex and 1

σ -smooth. It follows that ∂f∗ is therefore
both 1

β strongly monotone and 1
σ Lipschitz continuous.

In the case of (i), due to the Lipschitz continuity of ∂f∗

||C
(
∂f∗(CT z1)− ∂f∗(CT z2)

)
||

≤ σmax (C) ||∂f∗(CT z1)− ∂f∗(CT z2)||

≤ σmax (C)

µ
||CT (z1 − z2) ||

≤ σ2
max (C)

µ
||z1 − z2||,
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As such, C∂f∗(CT •) is σmax(C)2

µ -Lipschitz continuous.
In the case of (ii), due to the strong monotonicity of ∂f∗
〈
C
(
∂f∗(CT z1)− ∂f∗(CT z2)

)
, z1 − z2

〉

=
〈
∂f∗(CT z1)− ∂f∗(CT z1),CT (z1 − z2)

〉

≥ 1

β
||CT (z1 − z2) ||2.

∀z1, z2 ∈ ran(C) it follows that

1

β
||CT (z1 − z2) ||2 ≥

σ2
min6=0 (C)

β
||z1 − z2||2,

completing the proof.

Remark 5. This proof reflects that of the method adopted in
[45] in the centralised case. Note however that the similar
result demonstrated therein does not hold in the distributed
context due to the row-rank deficiency of the matrix C.
Specifically, Assumption 2 of [45] is violated.

From [45], as C∂f∗(CT •) is both strongly monotone and
Lipschitz continuous over ran (C), RT1,ρ is contractive ∀z ∈
ran (C) with an upper bound on this contraction given by

δ = max


ρ

σ2
max(C)
µ − 1

ρ
σ2
max(C)
µ + 1

,
1− ρσ

2
min 6=0(C)

β

1 + ρ
σ2
min 6=0(C)

β


 ∈ [0, 1).

The “partially contractive” nature of RT1,ρ therefore leads
to the following results. Let z̃0 be defined as per (19) and
ỹ1 = RT1,ρ (z̃0). As y(k+1) = RT1,ρ

(
z(k)

)
, it follows that,

‖y(k+1) − ỹ1‖2 ≤ δ2‖ Π
ran(C)

(
z(k) − z̃0

)
‖2

+‖ Π
ker(C)

(
z(k) − z̃0

)
‖2,

(27)

where the vector

Π
ker(C)

(
y(k+1) − ỹ1

)
= Π

ker(C)

(
z(k) − z̃0

)
.

By the same arguments as used in Lemma VI.1, the operator
P ◦RT1,ρ ◦P is δ contractive over ran (PC) so that,

‖z(k+2) − z̃0‖2 ≤ δ2‖ Π
ran(PC)

(
y(k+1) − ỹ1

)
‖2

+‖ Π
ker(PC)

(
y(k+1) − ỹ1

)
‖2,

(28)

where

Π
ker(PC)

(
z(k+2) − z̃0

)
= Π

ker(PC)

(
y(k+1) − ỹ1

)
.

The two-step PDMM iteration given by

z(k+2) = (P ◦RT1,ρ ◦P) ◦RT1,ρ

(
z(k)

)
,

can therefore be thought of as the composition of the operators
RT1,ρ and P ◦RT1,ρ ◦P with each being δ-contractive over
ran (C) and ran (PC) respectively.

While the “partially contractive” nature of the PDMM
updates suggests its geometric convergence, it is unclear
what this convergence rate may be. For this reason, in the
following we derive a geometrically primal convergence bound
by connecting two-step PDMM with the GAP algorithm [44].

C. A Geometric Rate Bound for PDMM Based on the Gener-
alised Alternating Method of Projections

Consider the computation of an upper bound on the geomet-
ric contraction factor of the sequence

(
z(2k) − z̃0

)
k∈Z+

where
z̃0 is defined as per (19). This bound can be computed as the
solution of the optimisation problem

max
z(k+2)

‖z(k+2) − z̃0‖2

s.t. y(k+1) = RT1,ρ

(
z(k)

)

z(k+2) = P ◦RT1,ρ ◦P
(
y(k+1)

)

‖z(k) − z̃0‖2 ≤ 1.

(29)

For this particular choice of z̃0, as in (20), it follows that

‖z(k+2) − z̃0‖2 = ‖ Π
ran(PC)+ran(C)

(
z(k+2) − z̃0

)
‖2.

Therefore, applying, (27) and (28), (29) is equivalent to

max
z(k)

‖
(
δ Π
ran(PC)

+ Π
ker(PC)

)(
y(k+1) − ỹ1

)
‖2

s.t. ‖ Π
ran(C)

(
y(k+1) − ỹ1

)
‖2 ≤ δ2‖ Π

ran(C)

(
z(k) − z̃0

)
‖2

(30a)

Π
ker(C)

(
y(k+1) − ỹ1

)
= Π

ker(C)

(
z(k) − z̃0

)
(30b)

‖z(k) − z̃0‖2 ≤ 1, (30c)

where in the objective we have exploited the orthogonality
of ran (PC) and ker (PC). The constraints (30a), (30b) and
(30c) collectively define the feasible set of the vectors y(k+1)−
ỹ1. As the set of the feasible vectors z(k) − z̃0 (30c) denotes
a sphere, the set of y(k+1) − ỹ1 is an ellipsoid given by

Ey =

{(
δ Π
ran(C)

+ Π
ker(C)

)
u | ‖u‖ ≤ 1

}
.

The optimisation problem in (29) is therefore equivalent to

max
z(k)

‖
(

Π
ker(PC)

+ δ Π
ran(PC)

)(
Π

ker(C)
+ δ Π

ran(C)

)
u‖2

s.t. ‖u‖2 ≤ 1

u ∈ ran (PC) + ran (C) ,

where the additional domain constraint stems from (20).
Furthermore, this is equivalent to

max
z(k)

‖
(

(1− δ) Π
ker(PC)

+ δI

)(
(1− δ) Π

ker(C)
+ δI

)
u‖2

s.t. ‖u‖2 ≤ 1

u ∈ ran (PC) + ran (C) , (31)

which corresponds to finding the convergence rate bound
for a particular instance of the GAP algorithm [44]. In the
following, we will denote the GAP operator via

T̂2
P,ρ =

(
(1− δ) Π

ker(PC)
+ δI

)(
(1− δ) Π

ker(C)
+ δI

)
.
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Note that, as T̂2
P,ρ is the composition of nonexpansive opera-

tors and is similar to the positive semidefinite matrix,

T =

(
Π

ker(PC)
+ δ Π

ran(PC)

)− 1
2

T̂2
P,ρ

(
Π

ker(PC)
+ δ Π

ran(PC)

) 1
2

,

the spectrum σ
(
T̂2
P,ρ

)
∈ [0, 1]. Furthermore, ∀λ ∈

σ
(
T̂2
P,ρ

)
| λ = 1, by inspection the corresponding eigen-

vector v ∈ ker(C)∩ker(PC). In the case of (31), the conver-
gence rate will therefore be determined by the subdominant
eigenvalue of T̂2

P,ρ, given by

γ = max
{
λ | λ ∈ σ

(
T̂2
P,ρ

)
, λ 6= 1

}
< 1.

Optimal rate bounds for generalisations of the classic al-
ternating projections algorithm has been an area of recent
attention in the literature with two notable papers on the
subject being [46] and [44]. Specifically, determining γ for the
GAP problem was considered in [44]. In particular, applying
basic algebraic manipulation to equation 8 of [44] leads to

γ =

∣∣∣∣∣max

{
δ + (1− δ) cos(θF )

(
(1− δ) cos(θF )

2

±
√

(1− δ)2 cos2(θF )

4
+ δ

)}∣∣∣∣∣ < 1,

(32)

where θF > 0 denotes the Freidrichs angle, the smallest
nonzero principle angle, between the subspaces ran(C) and
ran(PC). It follows that, for two-step PDMM,

‖z(k+2) − z̃0‖2 ≤ γ2‖z(k) − z̃0‖2.
For even k, we therefore obtain

‖z(k+1) −TP,ρ (z̃0) ‖2 ≤γk‖z1 − z̃1‖2

≤γk‖z0 − z̃0‖2,
so that a geometrically converging upper bound for the auxil-
iary error of PDMM is given by

‖z(k+2) − z̃0‖2 ≤γk+2 ‖z0 − z̃0‖2
γ

.

Applying the inequality in (24) it follows that

‖x(k+2) − x∗‖2 ≤ γk+2 σ2
max (C)

ρσ2
min 6=0 (C)

‖z(0) + z̃0‖2
γ

= γk+2ε

Thus x(k+2) → x∗ is upper bounded by a geometrically con-
tracting sequence which, to the best of the authors knowledge,
is a first for PDMM within the literature.

D. Step Size Selection for PDMM

We now move to demonstrating how we can optimise the
geometric convergence rate bound introduced in Sec. VI to
improve the performance guarantees of PDMM. In particular,
we consider the optimal selection of the step size ρ for a
given problem instance. The proposed method is inherently
distributed and only requires a finite number of communica-
tions between nodes, making it practical to implement.

For a given instance of problem (1), with θF fixed (but not
nescessarily known), γ, as defined in (32) is monotonically
increasing with the contraction factor δ. Thus, convergence
rate can be maximised by selecting an appropriate step size ρ
to minimize δ. In [45] this optimal ρ was shown to be

ρ∗ =

√
βµ

σmax (C)σmin 6=0 (C)
, (33)

resulting in a corresponding subspace contraction factor

δ∗ =

√
κ− 1√
κ+ 1

, κ =
σ2
max (C)β

σ2
min 6=0 (C)µ

.

The problem of optimal step size selection therefore reduces
to determining the largest and smallest non-zero singular
values of the matrix C as well as the strong convexity (µ)
and smoothness (β) constants of the function f . The latter
two parameters can be computed as the minimum µi and
maximum βi across all nodes. Furthermore, from the block
diagonal structure of the matrix C, the singular values can
also be computed in a parallel fashion across nodes. In
particular, each node i can determine its local maximum and
minimum (non-zero) singular values which we will denote by
σmax,i = max {σ (Ci)} and σmin 6=0,i = min {σ (Ci) > 0}
respectively. The task, therefore, is to find the variables

σmax (C) = max {σmax,i,∀i ∈ V }
σmin 6=0 (C) = min {σmin 6=0,i,∀i ∈ V }

µ = max {µi,∀i ∈ V }
β = min {βi,∀i ∈ V } ,

so that ρ∗ can be computed as per (33).
In the context of a distributed network, intuitively each

node can learn the maximum or minimum of a set by re-
peatedly exchanging local estimates of these values with their
neighbours. This allows the extreme values of a set to be
diffused into a network regardless of topology. Importantly,
this process requires only D transmissions per node, where D
is the diameter of the underlying network, allowing each node
to compute the optimal step size choice within a finite number
of transmissions. This method is summarised in Algorithm 4.
Note that this process is only executed once, at the instantiation
of the PDMM problem and therefore comes at a negligible
transmission cost in contrast to the iteration of the algorithm.

VII. NUMERICAL EXPERIMENTS

In this section, we verify the analytical results of Sec. V
and VI with numerical experiments. These results are broken
down into three subsections.

A. PDMM for Differentiable and/or Strictly Convex Functions

The first set of simulations aims to validate the sufficiency
of strict convexity and differentiability to guarantee primal
convergence as introduced in Sec. V-B. For these simulations,
as testing all such functions would be computationally infea-
sible, we instead considered the family p-th power of p-norms
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Algorithm 4 Optimal Step Size Selection for PDMM

1: Initialise:
2: σ

(0)
max,i (Cj) = max {σ (Ci)} ∀i ∈ V

3: σ
(0)
min 6=0,i (Ci) = min {σ (Ci) > 0} ∀i ∈ V

4: µ
(0)
i , β

(0)
i ∈ R ∀i ∈ V

5: for k=0,...,D-1 do . Iterative Set Max and Min
6: for all i ∈ V do
7: σ

(k+1)
max,i = max

{
σ
(k)
max,j∀j ∈ N (i) ∪ i

}

8: σ
(k+1)
min6=0,i = max

{
σ
(k)
min6=0,j∀j ∈ N (i) ∪ i

}

9: µ
(k+1)
i = min

{
µ
(k)
j ∀j ∈ N (i) ∪ i

}

10: β
(k+1)
i = max

{
β
(k)
j ∀j ∈ N (i) ∪ i

}

11: end for
12: end for
13: for all i ∈ V do . Compute Optimal Step Size

14: ρ∗i =

√
β
(D)
i µ

(D)
i

σ
(D)
max,iσ

(D)
min 6=0,i

15: end for

for p ∈ {3, 4, 5, · · · }. The prototype optimisation problem for
these simulations was given by

min
x

∑

i∈V
‖xi − ai‖pp

s.t. xi − xj = 0 ∀(i, j) ∈ E,
where ai are local observation vectors and, for simplicity, edge
based consensus constraints were chosen.

An N = 10 node undirected Erdős-Rényi network [47] was
considered for these simulations. Such a network is based on
a random graph model where ∀ i, j ∈ V, i 6= j, there is
equal probability that (i, j) ∈ E. This probability determines
the density of the connectivity in the network and in this case
was set to log(N)

N . This resulted in a total of 12 undirected
edges and a resulting network which was verified as forming
a single connected component as per the assumptions in Sec.
IV. The resulting C and P matrices were generated as per (4)
and were used for all simulations. Additionally, a randomly
generated initial auxiliary vector z(0) was also used for all
problem instances.

For p = 3, · · · 10, 180 iterations of PDMM were performed
and the resulting primal error computed. Figure 1 demonstrates
the convergence of this error with respect to iteration count.
The squared Euclidean distance between the primal iterates
and the primal optimal set was used as a measure of conver-
gence for these simulations. Such a measure has the additional
benefit of being stricter than all of the p-norms considered
and thus also guarantees convergence in these metrics. As the
purpose of this figure was to verify the convergence guarantee
rather than demonstrate convergence rate, the step size ρ was
selected for each instance to improve visual clarity. Note that
the final finite precision stems from the use of MATLABs
fminunc function during each primal update.

Figure 2 further demonstrates that the choice of ρ does
not effect the guarantee of convergence. In this instance, the
number of iterations required to reach an auxiliary precision
of 1e−5 was used as a surrogate for overall algorithmic
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Fig. 1: The primal convergence of different p-normp consensus
problem for a 10 node Erdős-Rényi network.

convergence. This measure was chosen as the auxiliary error
of PDMM forms a monotonically decreasing sequence. In
contrast the primal error need not satisfy this, a point which
can be verified in Figure 1. Note that while there is a clear
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Fig. 2: A comparison to the required iterations for ‖z(k) −
z̃0‖2 ≤ 1e−5 for variation in step size (ρ).

variation in the rate of convergence for different choices of ρ,
the guarantee of convergence of the algorithms is unaffected.

B. Averaged PDMM for General Functions in Γ0

We now move our attention to demonstrating, via contra-
diction, that f ∈ Γ0 alone is insufficient to guarantee the
convergence of PDMM without additional modification such
as operator averaging. We highlight this point as while it is
well known with respect to PR splitting, currently within the
literature, there are no results suggesting this point for PDMM.

For the purpose of this example we will consider the
problem of distributed L1 consensus, given by

min
x

∑

i∈V
‖xi − ai‖1

s.t. xi − xj = 0 ∀(i, j) ∈ E.
To demonstrate the contradiction, we need only demonstrate a
single problem instance for which convergence is not achieved.
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For this purpose the same network from section VII-A was
used and a step size of ρ = 1

2 was selected. Figure 3 demon-
strates the observed convergence plots of both standard PDMM
and ADMM for this problem. Due to the lack of uniqueness of
the optimal variables, convergence was measured via objective
sub-optimality given by ‖f

(
x(k)

)
− f (x∗) ‖2.
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-10

10
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10
0

Lack of Convergence of L1-Consensus

PDMM

ADMM

Fig. 3: A comparison of the (lack of) convergence of PDMM
(green) and averaged PDMM (blue) based L1-Consensus.
Without the use of averaging primal convergence cannot be
guaranteed for PDMM for general functions f ∈ Γ0.

One can clearly observe the lack of convergence of PDMM
for the considered L1 problem with the algorithm instead
oscillating around a suboptimal value. In contrast, the averaged
PDMM instance does not suffer from this shortcoming. As
such, f ∈ Γ0 is not sufficient to guarantee primal optimality
for general PDMM functions.

C. Geometric Convergence of PDMM for Strongly Convex and
Smooth Functions

Finally we move to verifying the geometric convergence
bound proposed in Sec. VI. We do so by comparing the conver-
gence of multiple problem instances to this bound. For these
simulations, 10000 Erdős-Rényi networks, each comprised of
10 nodes, were generated with a connection probability of
log(N)
N . The considered network instances were all verified

as forming single connected networks. Each network was
then paired with a randomly generated distributed quadratic
objective function. The local variables at each node were
chosen to be three element vectors so that xi ∈ R3 ∀i ∈ V
resulting in a total of 30 variables. The constraint functions
were again chosen to be consensus constraints between neigh-
bouring nodes. The resulting problem instances were therefore
all of the form

min
x

∑

i∈V

(
1

2
xTi Qixi − qTi xi

)

s.t. xi − xj = 0 ∀(i, j) ∈ E.
For each problem instance, the matrices Qi � 0 were gener-
ated in such a way that a constant convergence rate bound was
achieved. In this case the contraction factor of this rate bound
was specified as γ = 0.9. Furthermore, the initial vectors z(0)

were generated randomly and for each the associated z̃0 was

computed as per Eq. (19). This randomisation procedure was
implemented so that ε = 1 for all instances. Thus, a single
global convergence bound was considered for all realisations.

For each problem instance a total of 120 iterations of
PDMM, as per Algorithm 3, were performed and the auxiliary
errors, ‖z(k)−z̃0‖2 for k even and ‖z(k)−z̃1‖2 for k odd, were
computed for each iteration. The distribution of the resulting
data is demonstrated in Figure 4 which highlights both the
worst case convergence and the spread of the convergence
curves for all problem instances.

0 20 40 60 80 100 120
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-20
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Geometric Convergence Bound of PDMM

Bound 100% 75% 50% 25% 0%

Fig. 4: Convergence of simulated PDMM problem instances.
From top to bottom, the solid green line denotes the conver-
gence rate bound while the remaining 5 lines denote the 100%,
75%, 50%, 25% and 0% quantiles respectively.

As expected, the proposed bound holds for all instances.
One can further note that the rate of the worst case sequence
(100% quantile) does not exceed that of the bound. Addi-
tionally, while the bound holds for the worst case functions,
most problem instances exhibit far faster convergence than
that predicted. This suggests that for more restrictive problem
classes stronger bounds may be able to be guaranteed. While
the ρ selection defined in Sec. VI-D may optimise the proposed
convergence rate bound, it is highly unlikely that it is optimal
for all problems and thus a more refined parameter selection
process may be needed for a given problem instance.

VIII. CONCLUSIONS

In this paper we have presented a novel derivation of
the node-based distributed algorithm termed the primal-dual
method of multipliers (PDMM). Unlike existing efforts within
the literature, monotone operator theory was used for this
purpose, providing both a succinct derivation for the algorithm
while highlighting the relationship between PDMM and other
existing first order methods such as PR splitting and ADMM.
Furthermore, the proposed derivation lead to a collection of
new results for the algorithm. Guaranteed primal convergence
was demonstrated for strictly convex, differentiable functions
and, in the case of strongly convex, smooth local functions,
a geometric convergence bound was presented, a first for
PDMM. In conclusion the demonstrated results unify PDMM
with existing solvers in the literature while providing new
insight into its operation and convergence characteristics.
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