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Abstract

We address the problem of distributed cooperative localization in wireless networks, i.e. nodes

without prior position knowledge (agents) wish to determine their own positions. In non-cooperative ap-

proaches, positioning is only based on information from reference nodes with known positions (anchors).

However, in cooperative positioning, information from other agents is considered as well. Cooperative

positioning requires encoding of the uncertainty of agents’ positions. To cope with that demand, we

employ stochastic inference for localization which inherently considers the position uncertainty of

agents. However, stochastic inference comes at the expense of high costs in terms of computation and

information exchange. To relax the requirements of inference algorithms, we propose the framework of

position-constrained stochastic inference, in which we first confine the positions of nodes to feasible

sets. We use convex polygons to impose constraints on the possible positions of agents. By doing so,

we enable inference algorithms to concentrate on important regions of the sample space rather than

the entire sample space. We show through simulations that increased localization accuracy, reduced

computational complexity, and quicker convergence can be achieved when compared to a state-of-the-

art non-constrained inference algorithm.

I. INTRODUCTION

A. Motivation and State of the Art

Cooperative localization is gaining more and more attention throughout the research commu-

nity. The striking advantage over non-cooperative localization is that infrastructure requirements

can be greatly relaxed [1]–[3], i.e. agents require fewer anchors to obtain unambiguous position

estimates. Consider the example in Fig.1, where two agents want to localize. Both agents have

obtained distance estimates with respect to two anchors. With non-cooperative approaches, the
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Fig. 1: Running example - Two agents (orange and red nodes) aim to localize their positions. Each agent has obtained

distance measurements (dashed lines) to two anchors (green nodes). Agents cooperate to facilitate unambiguous

localization (dotted line). We will use this topology example for the sake of illustration throughout the entire paper.

agents cannot determine their positions unambiguously. On the other hand, cooperation among

the agents could resolve the ambiguity because each agent becomes a virtual anchor (an anchor

with some uncertainty) for the other agent. The primary challenge of cooperative localization

breaks down to expressing the uncertainty of agents’ positions accurately.

Cooperative positioning algorithms can be broadly classified in deterministic and stochastic

inference-based approaches. The former class encloses algorithms like (weighted) least squares

(LS) [4]–[7], geometric approaches [8]–[10], multi-hop approaches [11]–[13], and many others.

In many cases, deterministic approaches struggle to the account for the uncertainty regarding the

positions of agents, and hence they perform poorly compared to stochastic approaches in terms

of the positioning accuracy. Stochastic approaches inherently take the position uncertainty of

nodes into consideration. Almost all stochastic inference-based approaches can be traced back

to some variants of belief propagation (BP). BP is a message passing scheme, in which two

main operations are performed, namely, message filtering and message multiplication [14]–[16].

It is known from many inference problems in communication and coding [16]–[18]. In problems

from the communication and coding domain, latent random variables are typically discrete. In

that case, a belief assigns a certain probability to each state of a random variable (e.g. a bit is

0 with probability p0 and 1 with probability 1 − p0). In contrast to those problems, the latent

random variables in cooperative localization are continuous. Variants of belief propagation that

can cope with continuous random variables are based on parametric [19]–[23], nonparametric
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[24]–[28], and hybrid1 [29], [30] approaches.

In parametric belief propagation (PBP), the true beliefs are approximated by parametrized

distributions. The parameters of these distributions are determined by minimizing some diver-

gence metric between the true belief and the approximating distribution. The main drawback of

PBP is that the parameter determination is only feasible for certain families of distributions [31].

Hence complex distributions cannot be represented arbitrarily close. In [19], the approximating

distributions are members of the exponential family and Kullback-Leibler (KL) divergence is

minimized to determine the parameters, while in [20]–[23] the approximating distributions are

restricted to the class of Gaussian distributions. In nonparametric belief propagation (NBP),

particle representations (sets of samples with associated weights) are used to approximate the

true beliefs. If a sufficient number of particles is used, any distribution can be approximated

arbitrarily close [32]. To compute the particle representation of the belief of an agent, importance

sampling is employed [24]–[28]. In importance sampling, the samples are drawn according to

a proposal distribution. By adjusting the weights of the samples, the belief is determined. The

proposal distributions should resemble the beliefs of agents closely to assure that the samples

reside in regions where the beliefs have considerable probability mass. In [24]–[26], the proposal

distribution is given by any of the messages passed in BP. In contrast to [24], [26], so-called

parsimonious sampling is proposed in [25], where the proposal distribution generates samples

based on the beliefs of all neighbors from the previous iteration. Other proposal distributions are

presented in [27], [28]. In particular, mixture importance sampling with reference particles [27]

uses a proposal distribution that consists of the sum of all incoming messages from neighbors

and sprinkles a certain percentage of the samples uniformly over the considered area to increase

the robustness. Auxiliary sampling was also proposed in [27], where the proposal distribution is

augmented with an auxiliary variable. The auxiliary variable takes the messages from anchors

into account leading to samples that are more concentrated in the area close to the true location

of a node. Boxed importance sampling is presented in [28], where the support of the proposal

distribution is constrained heuristically by a rectangle. Hybrid belief propagation approaches

employ both particle representations and parametrized distributions to represent BP messages

and beliefs. Beliefs are represented by particles in [29], while other messages are approximated

by parametrized distributions. A similar approach is chosen in [30]. Messages are represented by

1Hybrid approaches employ tools from both the parametric and the nonparametric domain.
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Fig. 2: Schematic of our approach - Based on the distance estimates ẑi→j , we determine our constrained proposal

distributions qXj (xj) using POA. Subsequently, we obtain estimates of the positions of the agents x̂j by employing

NBP with our novel proposal distribution.

members of the exponential family, while beliefs are computed based on particle representations.

The proposal distribution, which is used in [30], draws samples based on the results of the

previous BP iteration. In general, the proposal distributions which are presented in literature do

not resemble the beliefs closely, and particles are utilized inefficiently.

B. Contribution and Paper Organization

Our essential finding is that constraints on the positions of agents can be leveraged in the

inference problem. We propose to pursue a two-phase approach: first we employ a cheap

algorithm called polygon outer-approximation (POA) to determine a set of constraints on the

sample space based on the distance estimates ẑi→j . We use these constraints to determine

the proposal distributions qXj
(xj). Secondly, we harness these constraints in order to ease the

inference problem which we use to obtain the position estimates x̂j . Fig. 2 depicts the high-level

overview of our approach. Employing our constrained proposal distribution for NBP increases

estimation accuracy and relaxes computational requirements.

The following list contains the main contributions of this paper:

• We derive the conditions which have to be met such that the positions of agents can be

constrained. In addition, we show that these conditions are fulfilled in the context of ultra-

wideband indoor localization.

• We develop an algorithm to tightly constrain the positions of agents.

• Based on these constraints, we introduce a novel type of proposal distribution that inherently

allows drawing samples from the important regions of the sample space.

• Through simulations, we show that increased localization accuracy, quicker convergence,

and reduced computation time can be achieved when compared to a state-of-the-art proposal

distribution.
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The remainder of this paper is organized as follows. Section II introduces our system model

and reviews nonparametric belief propagation. In section III, we derive the conditions necessary

to constrain support of the beliefs. We describe our algorithm which outer-approximates the

support of beliefs by polygons, and we show how to exploit the polygon outer-approximations

for sampling. Finally, we present our constrained proposal distribution in section IV. Section V

contains the numerical evaluation of our proposal distribution. Section VI concludes the paper.

II. FUNDAMENTALS AND ASSUMPTIONS

In this section, we briefly introduce the system and measurement model. Subsequently, we

concisely review the concept of nonparametric belief propagation.

A. System Model

We consider the problem of cooperative indoor localization using nonparametric belief prop-

agation.

1) Network Topology: In our setup, agents want to determine their positioning using distance

estimates to neighboring agents and anchors. We treat the positions of agents as random variables.

The position of agent j is denoted by Xj . Anchor coverage is assumed to be sparse, i.e. the

majority of agents sees only a single anchor. We assume that all nodes are static. Agents can

determine range estimates ẑi→j to neighboring nodes if neighbors are inside the communication

range rcom. We denote the set of neighbors of agent j by S→j = {∀i 6= j | ‖xi − xj‖2 ≤ rcom}.

2) Measurement Model: Distance estimates are given by

ẑi→j = ‖xi − xj‖2 + εi→j, (1)

where ‖xi − xj‖2 is the true distance between node i and node j, and εi→j denotes the ranging

error. The ranging error generally depends on the receiver characteristics, e.g., thermal noise,

distance estimation algorithm, and the environment of transmission. In the indoor environment,

multipath and non-line-of-sight (NLOS) propagation are especially critical [33]–[36]. For in-

stance, NLOS and multipath propagation introduce positive biases in distance estimates. Even in

the presence of a line-of-sight (LOS) path, positive ranging errors are mostly observed, because

time-of-flight-based distance estimation algorithm set a threshold such that the false alarm (noise

peaks causing distance estimates in the absence of a transmission) probability is small. Hence,

negative ranging errors are extremely unlikely, if they occur at all [37], [38]. We note that our
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POA algorithm relies on the assumption of non-negative ranging errors to determine constraints

of the sample space. Later in this paper, we show that the true location of a node can only be

guaranteed to reside inside the determined polygon if εi→j ≥ 0. However, in the unlikely case of

a negative ranging error, the corresponding distance estimate can be discarded from our proposed

POA algorithm, and the resulting polygon is still guaranteed to contain the true location of a

node. We employ the model used in [9], [22], [39]. The model assumes one-sided non-negative

exponentially distributed ranging errors resulting in the likelihood function

p(ẑi→j|xj,xi) =

λe
−λ|‖xj−xi‖−ẑi→j |, ẑi→j ≥ ‖xj − xi‖

0, else,
(2)

where 1/λ is the mean ranging error.

B. Nonparametric Belief Propagation for Cooperative

Localization

Let us briefly review the concept of nonparametric belief propagation, with its main two

pillars: message filtering and messages multiplication. Note that our aim is not to provide a

detailed derivation but to concisely review the concept. An excellent tutorial of the algorithm

can be found in [3].

We start with the following factorization of the joint a posteriori distribution of the positions

of all agents X given all distance estimates Ẑ

pX|Ẑ(x|ẑ) =
∏
j

∏
i∈S→j

p(ẑi→j|xi,xj)pXj
(xj). (3)

NBP employs message passing to determine the marginal distributions pXj |Ẑ(xj|ẑ),∀j, based

on which the position estimates are obtained. In the following, we describe the messages which

we encounter in NBP. The factorization in (3) can be visualized by a factor graph, which is a

bipartite graph that contains factor nodes, variable nodes, and edges to connect the nodes [40].

An exemplary factor graph is depicted in Fig. 3. Factor nodes and variable nodes perform a

filtering and multiplication operation, respectively.

Every factor node computes one outgoing message based on its incoming message2. Each

factor node Xi ∈ S→j computes the outgoing message to variable node Xj in the lth iteration

2In general, factors nodes can have more than one incoming and outgoing message. For cooperative localization, however,

factor nodes have only one incoming and outgoing message [3].



7

Fig. 3: Factor graph of the running example from Fig. 1 - Variable nodes are shown as circular vertices, factor nodes

as rectangular vertices, and messages are indicated by arrows. Wireless links are indicated by dotted (inter-agent)

and dashed (anchor-agent) lines according to Fig. 1. Solid edges determine intra-agent messages.

according to the following rule [40]

µ
(l)
φij→Xj

(xj) ∝
∫
φij(ẑi→j|xi,xj) · µ(l)

Xi→φij(xi)dxi, (4)

where µ(l)
Xi→φij(xi) denotes the incoming message from Xi and φij(ẑi→j|xi,xj) , p(ẑi→j|xi,xj).

Let φij be a shorthand notation for φij(ẑi→j|xi,xj). The operation in (4) is called message

filtering. Note that the integral in (4) cannot be solved in closed form for nonlinear φij (see

e.g. (2)) and/or arbitrary µ
(l)
Xi→φij(xi) [41]. Instead, we employ a particle representation to

approximate the resulting message, i.e. the continuous message in (4) is approximated by a

set of weighted samples

RNs

(
µ
(l)
φij→Xj

(xj)
)

=
{
w

(k,l)
ij ,x

(k,l)
ij

}Ns

k=1
, (5)

where RNs (·) denotes the particle representation of a continuous function using Ns particles. In

the context of cooperative localization, message filtering reduces to directly drawing Ns samples

with equal weight [19]. Hence message filtering shows linear complexity in the number of

samples. Consequently, the complexity is O(Ns).

Every variable node computes its outgoing message in the lth iteration as the product of all

incoming messages

µ
(l+1)
Xj→φjk(xj) ∝

∏
i∈S→j

RNs

(
µ
(l)
φij→Xj

(xj)
)
. (6)
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This operation is called message multiplication. The outgoing message in (6) also constitutes the

belief, i.e. b(l+1)
Xj

(xj) = µ
(l+1)
Xj→φjk(xj). That peculiarity gives rise to the name of the algorithm:

belief propagation. Note that messages RNs

(
µ
(l)
φij→Xj

(xj)
)

are given as particle representations.

Since the samples x
(k,l)
ij are drawn randomly and from independent proposal distributions, they

will be distinct with probability one. Direct message multiplication is therefore not possible. To

enable multiplication, interpolated versions of these messages are determined using kernel density

estimation [25]. These densities can, then, be multiplied. Recall that in kernel density estimation,

each particle
{
w

(k,l)
ij ,x

(k,l)
ij

}
[32] is coated with a continuous kernel and the superposition of all

Ns kernels yields the resulting density

µ̂
(l)
φij→Xj

(xj) =
Ns∑
k=1

w
(k,l)
ij K(xj; x

(k,l)
ij , Σ̂ij), (7)

where Σ̂ij is estimated using a kernel density estimator. We consider the least squares cross

validation estimator from [32]. Multiplying the kernel density estimates is possible in closed

form. However, it requires O(N
|S→j |
s ) computations, i.e. it scales exponentially in the number

of messages. Therefore, we resort importance sampling to approximate the resulting density

by a particle representation, i.e. our goal is to obtain a particle representation of the product

of messages without computing the product explicitly. In importance sampling, we draw Ns

samples, x
(k,l+1)
j k = 1, ..., Ns, from a suitable proposal distribution, qXj

(xj) [32]. To obtain a

particle representation, we have to assign a proper weight to each sample. The weight accounts

for the mismatch of the proposal distribution and the target distribution, which we wish to

approximate [32]. To compute the unnormalized weight of each sample ṽ(k,l+1)
j , the quotient of

the product of the kernel density estimates of the messages
∏

i∈S→j
µ̂
(l)
φij→Xj

(xj) and the proposal

distribution qXj
(xjin) is evaluated for each sample x

(k,l+1)
j , i.e.

ṽ
(k,l+1)
j ∝

∏
i∈S→j

µ̂
(l)
φij→Xj

(x
(k,l+1)
j )

qXj
(x

(k,l+1)
j )

. (8)

The particle representation of the product of messages is then given by the samples x
(k,l+1)
j

drawn according to the proposal distribution qXj
(xj) and the normalized weights v

(k,l+1)
j =

ṽ
(k,l+1)
j /

∑Ns

k=1 ṽ
(k,l+1)
j

RNs

(
µ
(l+1)
xj→fk(xj)

)
=
{
v
(k,l+1)
j ,x

(k,l+1)
j

}Ns

k=1
. (9)
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Note that the computationally intensive part is not sampling, but adjusting the weights. From

(8), we can infer that adjusting the weights, and thus, message multiplication scales quadratic

in the number of samples and linear in the number of incoming messages, O (|S→j|N2
s ).

To accurately approximate the product of messages, the proposal distribution qXj
(xj) should

generate samples that reside in regions that are close to the true location. Most proposal distri-

butions generate samples by just taking the samples of one of the incoming messages [24]–[26].

Recall that incoming messages are given as particle representations, and samples are readily

obtained. More advanced proposal distributions [25]3, [27], [28], aim to concentrate the samples

in the region of the sample space where the product of messages in (6) has significant probability

mass. Our goal is to constrain the support4 of each marginal in order to determine proposal

distributions which draw samples only from the relevant regions of the sample space. In other

words, if we know that the true marginals have zero probability mass in certain areas of the

sample space, it is not worth generating any samples in those areas because their weight will be

zero in anyway.

Message multiplication and message filtering are executed iteratively until the beliefs ap-

proximate the true marginals closely. We can obtain an estimate on the position of a node in

every iteration based on its current belief. Since the belief is given as particle representation

{v(k,l+1)
j ,x

(k,l+1)
j }Ns

k=1, an MMSE estimate of Xj is obtained by computing the centroid of the

particle cloud, i.e. x̂
(l+1)
j =

∑Ns

k=1 v
(k,l+1)
j x

(k,l+1)
j [3].

III. SUPPORT OUTER-APPROXIMATION

In this section, we prove the general conditions which need to be met in order to outer-

approximate the support of a marginal a posteriori distribution. We conclude this section by

showing that these conditions are met in cooperative indoor localization.

A. General Conditions for Support Outer-Approximation

Let pXj |Ẑ(xj|ẑ) be a marginal a posteriori distribution of the factorized joint distribution

pX|Ẑ(x|ẑ) =
∏K

k=1 fk(sk). The set of random variables which are argument of the kth factor fk

3Note that in [25] two proposal distributions were presented. The more advanced proposal distribution is parsimonious

sampling.
4The support of a distribution is the part of the sample space with non-zero probability.
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is denoted by sk. Moreover, we define the index set of all factors fk whose argument contains

xj , i.e. Fj = {k|sk ∩ xj 6= ∅}. Our goal is to show that under certain technical conditions

SUPP
(
pXj |Ẑ(xj|ẑ)

)
,
⋂
k∈Fj

SUPP (fk) (10)

is compact and convex. Note that the support of the marginals in (10) is generally neither compact

nor convex. In the following, we prove the conditions on the factorized joint distribution that

need to be fulfilled in order to guarantee that the support of the marginals is compact and convex.

In particular, we need compactness to outer-approximate the support, while we need convexity

of the support to efficiently the compute outer-approximating polygons.

Theorem 1. The support of the marginal a posteriori distribution pXj |Ẑ(xj|ẑ) is compact and

convex if and only if the supports of the factors fk(sk), ∀k ∈ Fj of the joint a posteriori

distribution pX|Ẑ(x|ẑ) are convex and at least one factor fk(sk), k ∈ Fj is compact.

Proof. See Lemma (1)-(3) in the Appendix.

B. Applicability of Support Outer-Approximation to Ultra-Wideband Indoor Localization

Recall that we assume that every agent j = 1, ..., N has obtained range estimates ẑi→j w.r.t. all

nodes i ∈ S→j . Ranging is performed using time-of-flight estimates with ultra-wideband radios.

As discussed in section II-A2, the errors which corrupt range estimates are non-negative [37],

[38], i.e.

‖xi − xj‖ ≤ ẑi→j. (11)

Let us recall the factorization from (3)

pX|Ẑ(x|ẑ) =
∏
j

pXj
(xj)

∏
i∈S→j

p(ẑi→j|xi,xj). (12)

To prove the applicability of Theorem 1 to ultra-wideband indoor localization, we show that

every factor in (12) is compact and convex. Let us start with the factors of the observation

model, p(ẑi→j|xj,xi),∀i, j. Regardless of the shape of the density, (11) ensures that each factor

p(ẑi→j|xj,xi) of the observation model will be convex and compact, i.e. as long as the distance

estimation error is non-negative, the support of the marginal is guaranteed to be compact and

convex. For instance, let xi be an anchor with true position x∗i and xj is an agent. If (11) is
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true, the true distance is overestimated and agent j must be inside the disk with radius ẑi→j and

center x∗i with probability one. Now let us consider the prior densities. We typically assume that

agents do not have prior knowledge on their position, i.e. the prior distributions pXj
(xj), ∀j are

uniform over the plane in which agents want to localize. It can be readily seen that the supports

of the priors are convex and compact. Note that other, more informative priors can be assumed,

as long as their supports are convex, e.g. a Gaussian prior with arbitrary mean and covariance

fulfills these requirements. Thus, the requirements of Theorem 1 are met.

In the following section, we describe how we outer-approximate the support of the marginal

a posteriori distributions. Since we are considering two-dimensional positions (localization in a

plane), we use polygons which tightly outer-approximate the supports of the marginal a posteriori

distributions. Confining the support of the marginal a posteriori distributions of the positions of

agents obviously constrains their possible positions. Hence we can employ these polygons to

concentrate the attention of the subsequently executed NBP to the relevant region of the sample

space.

Remark: Our findings from Theorem 1 extend beyond the problem of cooperative localization.

We emphasize that the support of any marginals can be outer-approximated if the conditions

of Theorem 1 are met. Only the geometric shape of the outer-approximating objects has to

be adjusted to the problem at hand. Thus, it can be verified with Theorem 1 whether an

inference problem can be treated as a constrained inference problem, which generally simplifies

the inference procedure.

IV. CONFINING THE POSITIONS OF NODES

This section contains the main contribution of this paper. We explain how we obtain our novel

proposal distributions. First, we outline how we outer-approximate the support of the marginal

distributions by polygons. Subsequently, we describe how we embed this side information in the

inference problem by incorporating the constraints. Finally, we show how to draw samples from

our proposal distributions.

A. Polygon Support Outer-Approximation

In the previous section, we showed that outer-approximation of the support of the marginal

a posteriori distributions is applicable to ultra-wideband indoor localization. We present an

algorithm in this section, which confines the location of every agent to a convex polygon. Ideally,
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for every agent j,we wish to find the smallest convex polygon Vj that outer-approximates the

support of the marginal distribution pXj |Ẑ(xj|ẑ), i.e.

minimize Area (Vj) (13)

subject to SUPP
(
pXj |Ẑ(xj|ẑ)

)
⊆ Vj. (14)

Since this problem is generally hard to solve, our proposed polygon outer-approximation al-

gorithms attempts to attain the optimal polygon Vj in (13) and (14). In general, there is no

guarantee that the optimal solution is achieved.

In our previous publication [39], we used ellipses to outer-approximate the support of marginal

a posteriori distributions. In [39], we adopted an algorithm from Gholami et al. which has its

roots in geometrical positioning [8], [10], [42]. The algorithm is called distributed bounding

of feasible sets and it confines the locations of agents to ellipses. To determine the ellipses

efficiently, a convex problem formulation is considered. This formulation guarantees convexity

but it comes at the expense of unnecessarily loose outer-approximations of the supports. We

empirically show in section V that our polygons-based approach achieves significantly tighter

outer-approximations when compared to the elliptical-approach from [8], [10], [42].

Polygon support outer-approximation (POA) iteratively determines a polygon for each agent.

Within this polygon, the agent resides with probability one. Two main operations are executed

alternately, namely polygon scaling and polygon intersection. Note that both operations preserve

convexity [43]. We emphasize this property when we describe the operations in detail.

In this paragraph, we describe the general procedure of polygon outer-approximation. Sub-

sequently, we describe the operations in detail and use the running example to graphically

visualize the operations. In all iterations, agent j first receives polygons from the set of neighbors,

V(l)
i , ∀i ∈ S→j . Then, agent j extends these polygons, V(l)

i , by the distance measurement ẑi→j .

This operation is called polygon scaling. The resulting (scaled) polygons are denoted by V(l)
ij . The

intersection of the scaled polygons V(l)
ij , ∀i ∈ S→j constitutes the polygon of agent j in the next

iteration V(l+1)
j . This operation is called polygon intersection. In contrast to circles and ellipses,

the intersection of multiple convex polygons can be determined very efficiently. This procedure

is executed in parallel by all agents. After every iteration, agents broadcast their polygons

to all neighbors. After a sufficient number of iterations, the size of the polygons converges.

Convergence is observed empirically. It is not proven theoretically and requires investigation in

future studies. The polygon that each agent has obtained, tightly outer-approximates the support
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Fig. 4: POA flow diagram.

of its marginal a posteriori distribution. The pseudo-code for the algorithm is shown in Algorithm

1 and a flow diagram is depicted in Fig. 4.

Recall that we assume that agents do not have prior knowledge regarding their position. With

this assumption, the first iteration differs from all subsequent iterations since only the information

from anchors is considered. For other priors, information from other agents is also considered.

We focus our description on the former case. Let A→j ⊆ S→j denote the set of anchors in the

communication range of j. Then, only the measurements ẑi→j, ∀i ∈ A→j are considered in the

first iteration (l = 1). Also, recall that anchors have perfect position information. Their position

is not confined by a polygon but rather by a single point (their true location), x∗j . Due to the

positive ranging errors, the position of agent j is somewhere inside the disk with radius ẑi→j

and center x∗i . Agent j’s position can be confined to the convex feasible set

Bij =
{
xj ∈ R2|‖xj − x∗i ‖ ≤ ẑi→j

}
. (15)

To obtain a polygon V(1)
ij , this disk is outer-approximated by a polygon with NE edges.

This operation is depicted in Fig. 5. We call such a polygon: anchor polygon processing.

Mathematically, we describe a convex polygon with NE edges by an ordered list of NE vertices

or by the intersection of a set of halfspaces. For now, we stick to the description with vertices. To

generate these vertices, we first determine a polygon outer-approximation of the disk with radius

ẑi→j which resides in the origin. This can be done efficiently in polar coordinates. Then, we

transform the resulting vertices into Cartesian coordinates and shift the vertices of the polygon

by the position of the anchor x∗i to obtain a polygon outer-approximation of Bij (see Fig. 5).

In more detail, we begin with generating points around the origin with uniform angular spacing

α = 2π
NE

and fixed radius

rij =
ẑi→j

cos(α/2)
. (16)

We have a list of vertices in polar coordinates, i.e. ṽ
(1)
ij,1 = [α0, rij]

T , ṽ
(1)
ij,2 = [α + α0, rij]

T , ...,

ṽ
(1)
ij,NE

= [(NE−1)α+α0, rij]
T , where α0 is a random angular offset. Subsequently, we transform
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Algorithm 1 Polygon Support Outer-Approximation

1: given z

2: for l = 1 to NFS do

3: nodes j = 1 to N do in parallel

4: if l=1 then (first iteration)

5: receive x∗i ,∀i ∈ Aj
6: for i ∈ A→j do

7: V(l)
ij = anchor polygon proc.(x∗i , ẑi→j)

- see. Algorithm 2 -

8: end for

9: V(1)
j = polygon intersection(V(l)

ij ∀i ∈ A→j)

- see. Algorithm 3 -

10: else (subsequent iterations)

11: broadcast V(l)
j

12: receive V(l)
i , ∀i ∈ S→j

13: for i ∈ S→j do

14: V(l)
ij = polygon scaling(ẑi→j , V(l)

i )

- see. Algorithm 4 -

15: end for

16: V(l+1)
j = polygon intersection(V(l)

ij ∀i ∈ S→j)

- see. Algorithm 3 -

17: end if

18: nodes end

19: end for

these vertices into Cartesian coordinates and shift them by the position of anchor i. Let v̄
(1)
ij,m

denote the mth vertex in Cartesian coordinates, the final polygon is given by

v
(1)
ij,m = v̄

(1)
ij,m + x∗i , m = 1, ..., NE. (17)

The ordered list of vertices v
(1)
ij,m constitutes the polygon V(1)

ij =
{

v
(1)
ij,1,v

(1)
ij,2, ...,v

(1)
ij,NE

}
. Note

that the polygon which is defined by V(1)
ij is always convex. When agent j has obtained all

anchor polygons V(1)
ij , ∀i ∈ Aj , it intersects these polygons to obtain V(1)

j . The intersection

of two polygons can be determined efficiently using the Sutherland-Hodgman algorithm [44].
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Fig. 5: Anchor polygon - We outer-approximate the feasible set BB1 by a polygon VB1 with NE = 6 edges. The

vertices of VB1 are spaced with uniform angle α = 2π
NE

around x∗B .

Algorithm 2 Anchor Polygon Processing

1: given x∗i , ẑi→j

2: vertex angular spacing α = 2π
NE

3: vertex radius rij =
ẑi→j

cos(α/2)

4: for m = 1 to NE do

5: compute vertex v
(1)
ij,m = [α0 +m · α, rij]T

6: v̄
(1)
ij,m = pol2cart(v(1)

ij,m)

7: shift vertex v
(1)
ij,m = v̄

(1)
ij,m + x∗i

8: end for

9: determine polygon V(1)
ij =

{
v
(1)
ij,1,v

(1)
ij,2, ...,v

(1)
ij,NE

}
We employ the Sutherland-Hodgman algorithm to intersect pairs of polygons. The Sutherland-

Hodgman algorithm selects a convex clipping polygon and a subject polygon; the choice is

arbitrary if both polygons are convex. All vertices of the subject polygon are added to an input

list. The vertices of this list are updated as the edges of the clipping polygon are considered

subsequently. Suppose that the polygon given by V(l)
ij is the clipping polygon, and it is given by

a set of vertices (v(l)
ij,m,m = 1, ..., NE) or by the intersection of the halfspaces

{
xj|aTV(l)

ij ,m
xj ≤ c

(l)
ij,m

}
m = 1, ..., NE, (18)
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with outward normal vector aV(l)
ij ,m
⊥(v

(l)
ij,m − v

(l)
ij,m+1) and c

(l)
ij,m = aT

V(l)
ij ,m

v
(l)
ij,m. If we consider

the halfspaces instead of the edges, we can update the vertices of the input list. We start

with an arbitrary halfspace and all vertices inside that halfspace, i.e. all vertices that reside

inside the halfspace are added to an output list. Vertices outside of the halfspace are not added.

Subsequently, the subject polygon is traversed. New vertices are added to the output list if the

subject polygon intersects with the hyperplane
{

xj|aTV(l)
ij ,i

xj = c
(l)
ij,m

}
. After the entire subject

polygon has been traversed, the next halfspace of the clipping polygon is considered. The output

list of the previous halfspace constitutes the input list to the next halfspace. After every halfspace

of the clipping polygon has been considered, the Sutherland-Hodgman algorithm terminates and

the resulting output list yields the intersection of the subject and clipping polygon. Note that

the number of vertices of the resulting polygon V(l+1)
j can differ from the original number of

vertices NE . An example of polygon intersection is depicted in Fig. 6. The pseudo-code for

polygon intersection is given in Algorithm (3).

Remark: the polygon intersection operation is identical in every iteration. However, in the first

iteration only anchor polygons, V(1)
ij ∀i ∈ A→j , are considered, while polygons of anchors and

others agents, V(1)
ij ∀i ∈ S→j , are considered for subsequent iterations.

Algorithm 3 Polygon Intersection

1: given V(l)
ij ∀i ∈ S→j

2: select index of the first neighbor i = S→j(1)

3: initialize V(l+1)
j = V(l)

ij

4: for k = 2 to |S→j| do

5: select index of the next neighbor

i = S→j(k)

6: intersect two polygons according to [44]

V(l+1)
j = Sutherland-Hodgman(V(l+1)

j ,V(l)
ij )

7: end for

From the second iteration onward, neighboring agents are also considered. In contrast to an

anchor, agent i cannot confine its location to an exact position. However, the position of agent

i is confined to the polygon V(l)
i , l > 1. Considering the range estimate to agent j, ẑi→j , the

polygon of agent i, V(l)
i , has to be extended by the range estimate. To ensure that agent j is
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Fig. 6: Polygon intersection - The intersection of the polygons V(1)
A1 and V(1)

B1 yields the polygon, V(1)
1 , which tightly

outer-approximates the feasible set (intersection of the two circles). Recall that in the first iteration only anchor

polygons are considered. Note that increasing the number of polygon edges, NE , tightens the outer-approximation.

inside the polygon V(l)
ij , all edges of the polygon V(l)

i have to be shifted by ẑi→j in the direction

of the outward pointing normal vector of the respective edge. Recall that convex polygons can

be represented by halfspaces according to (18). The scaled polygon is given by the intersection

of the halfspaces which are shifted by ẑi→j toward the outward normal vector. Wxe obtain these

halfspaces by manipulating the right-hand side of all inequalities in (18). Since c(l)i,m = aT
V(l)
i ,m

v
(l)
i,m,

where v
(l)
i,m is any point on the corresponding hyperplane, we obtain the shifted halfspace by

shifting v
(l)
i,m to

v̄
(l)
i,m = ẑi→j · aV(l)

i ,m
+ v

(l)
i,m. (19)

The point in (19) yields a point on the mth shifted hyperlane. Hence the mth shifted halfspace

is given by {
xj|aTV(l)

i ,m
xj ≤ c̄

(l)
i,m = aT

V(l)
i ,m

v̄
(l)
i,m

}
. (20)

The scaled polygon is fully described by the set of shifted halfspaces. In order to obtain a list of

vertices of the polygon, we have to determine the intersections of adjacent hyperplanes, i.e. for

the mth hyperplane we compute the intersection with the (m − 1)th and (m + 1)th hyperplane.

The resulting points constitute the vertices of the scaled polygon V(l)
ij . Algorithm 4 shows the

pseudo-code for polygon scaling. An illustrative example is shown in Fig. 7.

Polygon support outer-approximation (Algorithm 1) is readily implemented in a distributed

manner, with negligible communication overhead. In each iteration, every agent has to broadcast

the vertices of its polygon once. After NFS iterations, every agent has obtained a polygon
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Algorithm 4 Polygon Scaling

1: given V(l)
i , ẑi→j

2: for m = 1 to NE do

3: shift hyperplane according to (19)

v̄
(l)
i,m = ẑi→j · aV(l)

i ,m
+ v

(l)
i,m

4: determine shifted halfspace according to (20){
xj|aTV(l)

i ,m
xj ≤ c̄

(l)
i,m = aT

V(l)
i ,m

v̄
(l)
i,m

}
5: end for

6: determine intersection of adjacent hyperplanes{
xj|aTV(l)

i ,m
xj = c̄

(l)
i,m

}
∩
{

xj|aTV(l)
i ,m+1

xj = c̄
(l)
i,m+1

}
→ v

(l)
ij,m, for m = 1, ..., NE

7: determine scaled polygon Vij(l) =
{

v
(l)
ij,1, ...,v

(l)
ij,NE

]T
}
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ẑ1→2 · aV
(1)

12
,3

ẑ1→2 · aV
(1)

12
,4

ẑ1→2 · aV
(1)

12
,5

ẑ1→2 · aV
(1)

12
,6

ẑ1→2 · aV
(1)

12
,1

ẑ1→2 · aV
(1)

12
,2

V
(1)
12

Fig. 7: Polygon scaling - The resulting polygon of agent 1 after the first iteration, V(1)
1 , and its scaled version,

V(1)
12 , are depicted. The original polygon, V(1)

1 , is given by NE = 6 halfspaces, with outward normal vector

aV(1)
12 ,i

, i = 1, ..., 6. To scale the original polygon, each halfspace is shifted by ẑ12 in the direction of its normal

vector. The intersections of adjacent halfspaces yield the vertices of the scaled polygon.

that outer-approximates the support of its marginal a posteriori distribution. Therefore, also the

positions of nodes are confined.

Note that the proposed polygon outer-approximation method does not fail, as long as the

assumption in (11) is true, i.e. whenever the range estimates over-estimate the true distance, our

Algorithm 1 produces polygons which are guaranteed to contain the positions of the respective
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agents. If the assumption in (11) is violated, there are no guarantees that the supports of the

marginal distributions are compact and convex. Hence there is no assurance that a polygon exists

which contains the true location of the corresponding agent. As discussed in subsection II-A2,

the existence of negative range error is extremely unlikely. If a range estimate with negative

ranging error occurs, discarding it from Algorithm 1 will ensure the success of the algorithm.

Remark: Note that the polygon boundaries provide hard-decisions regarding the set of possible

location, which might unusual in the context of stochastic inference. However, the one-sided

positive measurement errors assign zero-probability to all regions outside of the feasible set.

Our polygon outer-approximation approach concentrates all particles inside the feasible set, i.e.

the region where the true a posteriori distribution has non-zero probability mass. If any other

proposal distribution generates particles outside of the feasible set, the resulting weight of that

particle would be computed to be zero, and the particle would not contribute in the estimation

process. In other words, the hard-decisions are imposed by the model, not by our polygon-based

approach.

In the following subsection, we describe how we leverage these polygonal constraints to obtain

the constrained proposal distributions.

B. Novel Proposal Distribution

After NFS iterations of polygon support outer-approximation, every agent j = 1, ..., N has

obtained a polygon V(NFS)
j which outer-approximates the support of its marginal a posteriori

distribution, pXj |Z(xj|z). Hence we choose these polygons to determine the supports of our

proposal distributions qXj
(xj), ∀j. We draw samples {x(k)

j }
Ns
k=1 uniformly over the polygon.

Thus, the proposal distribution is given by

qXj
(xj) =


1

A
(NFS)
p,j

, xj ∈ V(NFS)
j

0, otherwise,
(21)

where A(NFS)
p,j is the area of the polygon of the j th agent.

In order to draw samples uniformly inside a polygon, we use acceptance and rejection sam-

pling. We draw samples uniformly from a rectangle which comprises the polygon V(NFS)
j . Sam-

ples are drawn in horizontal and vertical direction independently, i.e. the edges of the rectangle

are aligned with the horizontal and vertical axis. A sample x
(k)
j is accepted if x

(k)
j ∈ V

(NFS)
j . The
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V
(2)
1

µ̂
(1)
φB1→X1

µ̂
(1)
φA1→X1 {

v
(k,1)
j ,x

(k,1)
j

}Ns

k=1

Fig. 8: Novel proposal distribution - Samples {x(k)
1 }

Ns

k=1 drawn according to our novel proposal distribution qX1
(x1).

With our proposal distribution, we can confine the region from which we draw samples to the relevant region close

to the true location.

area of the rectangle should be as small as possible in order to achieve the highest acceptance

rate. The acceptance rate is given by the ratio of the areas of the polygon and rectangle

Ra =
A

(NFS)
p,j

A
(NFS)
r,j

, (22)

where A(NFS)
r,j is the area of the rectangle. Consequently, Ns/Ra have to be drawn on average

in order to determine obtain Ns accepted samples.

Fig. 8 provides an example of samples which are drawn from the our proposal distribution.

The figure shows the polygon of agent 1, V(NFS)
1 , the rectangle for acceptance-and-rejection

sampling, the samples,
{

x
(k)
1

}Ns

k=1
, drawn (red dots), and the kernel density estimates of NBP

messages from anchor A and B (contour plots).

V. SIMULATION RESULTS

This section contains the numerical evaluation of our novel proposal distribution. In order

to determine meaningful parameters for computing our proposal distribution (number of poly-

gon edges NE and number of iterations NFS), we first investigate the polygon support outer-

approximation algorithm while disregarding NBP. Following this, we jointly investigate NBP

using the polygon-shaped proposal distributions.
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Fig. 9: Average polygon/ellipse area versus the number of iterations - It becomes evident that after a few iterations

(2-3) the polygon/ellipse area does not reduce significantly. Moreover, a small number of polygon edges NE ≈ 16

is sufficient to achieve tight polygons.

A. Simulation Setup and Performance Measures

As reference topology, we use a common topology from literature [3], [19], [22]. We simulate

a large-scale ultra-wideband network in a 100m x 100m plane, with 100 uniformly distributed

agents and 13 fixed anchors. We assume a circular communication range of 20 meters. The

ranging errors are distributed according to (2) with a mean of 1/λ = 0.38m. Note that in

practice the distribution of the ranging errors and its stochastic moments depend on the SNR,

the environment, the ranging algorithm itself, and many other aspects.

We quantify localization performance using the average localization error and the outage

probability. An agent is said to be in outage if its localization error e exceeds an error threshold

eth. We compute the localization error according to e = ‖x̂j − xj‖, where x̂j is the estimated

location of node j, taken as the minimum mean square error (MMSE) estimate of the belief. For

statistical significance, we consider 200 random network topologies (positions of agents vary

randomly) and collect position estimates at every iteration for every agent.

In order to assess the complexity NBP localization, we conduct two analyses. First, we consider

the number of operations required for each variant of the algorithm. Then, we measure the

computation time which is required. All computations of the simulation are performed on an

Intel i7-5820k desktop CPU which was exclusively dedicated to simulation. Three different

aspects of the computation time are considered, namely the time required to determine the

outer-approximating polygon, the time required to determine converged location estimates, and
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Fig. 10: Average localization error - The average localization error is depicted against the number of iterations.

Our proposed NBP variant converges significantly faster.

the accumulated time. Note that the time which is required to determine converged location

estimates depends on the number of iterations required to achieve convergence5.

B. Polygon Support Outer-Approximation

We first explore the influence of the number of polygon vertices on the area of the polygon. For

comparability, we also analyze the ellipse outer-approximation algorithm which was presented in

[8], [10], [42]. Fig. 9 depicts the polygon area in m2 against the number of iterations. Recall that

it is desirable to have polygons of small size in order to tightly constrain the positions of agents.

We can obtain from Fig. 9 that the polygon size reduces, as the number of vertices increases.

Increasing the number of vertices above NE > 16 adds no additional area reduction. Thus, we

restrict ourselves to polygons with NE = 16 vertices for all further analysis. In addition, we see

that the largest area reduction is achieved in the 2nd iteration. The reduction of polygon area

from the 2nd to the 3rd iteration is only minor. Using more than 3 iterations does not decrease

the polygon area notably. To determine our proposal distributions as cheap as possible in terms

of computation, we restrict ourselves to NFS = 2 iteration for all further analysis.

C. Novel Proposal Distribution for Belief Propagation

We now consider the impact of our novel proposal distribution on the localization accuracy

when using nonparametric belief propagation. We consider the following reference sampling

5For us, convergence is achieved if the average localization error does not change notably for successive iterations.
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techniques: 1) [25] parsimonious sampling (’NBP par.’), 2) [27] sampling based on an auxiliary

variable (’NBP aux.’), 3) [19] sampling based on the incoming message with the lowest entropy

(’NBP min.’), and 4) [39] sampling with elliptical constraints on the sample space (’NBP ell.’).

For better comparability, we also consider the weighted least squares (’WLS’) approach from

[5] and the parametric belief propagation (’PBP’) method from [19]. We analyze the the speed

of convergence, localization accuracy, the computation time, and the number of samples.

1) Convergence and Accuracy: Fig. 10 depicts the average localization error against the

number of iterations. The localization error decreases in every iteration until convergence is

reached. From Fig. 10, we can infer two benefits of our proposal distribution. First, convergence

is achieved quicker compared to the baseline approaches. Secondly, our approach achieves the

highest localization accuracy among all considered algorithms. Hence there is the two-fold benefit

of incorporating our proposal distribution. We can trace the previous two observations back to

the following reason. Quick convergences is achieved since the polygonal constraints already

restrict the possible locations, and the beliefs are concentrated in the areas close to the true

locations from iteration one. High localization accuracy is achieved since samples are reside in

the areas close to the true location, and, unlike in [19], [25], [27], almost all particles contribute

to the location estimate.

The gain in terms of localization accuracy becomes even more evident, when the outage

probability after convergence6 in Fig. 11 is considered. With our proposed NBP variant, the

outage probability decreases rapidly in the regime of small errors, and especially, large errors

can be mitigated better compared to the baseline approaches. Our proposal greatly outperforms

all considered variants of NBP. Parsimonious sampling from [25], shows poor performance in

the regime of larger errors, which can be traced back to the fact that samples are drawn based on

the belief of the previous iteration. When the previous belief was erroneous, the current belief

will be impaired by the previous belief. This also explains the non-monotonic decrease of the

average localization error in Fig. 10. The variant from [27], which is based on an auxiliary

variable, considers only information from anchors to draw samples. Due to the sparseness of the

anchors in the considered scenario, the samples are not concentrated tightly in the area of the

true location. Thus, no considerable advantage can be seen in terms of accuracy, compared to

6Most baseline approaches ( [25] ’NBP par.’, [27] ’NBP aux.’, [19] ’NBP min.’, and [19] PBP) need 5 iterations to converge,

while [39] ’NBP ell.’ and [5] ’WLS’ need 2 and 10 iterations, respectively.
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Fig. 11: Outage probability compared to baseline algorithms - Our proposed NBP variant outperforms all

benchmarks in terms of localization accuracy.

Algorithms

[19] NBP [27] NBP aux. [25] NBP par. [39] NBP ell. [19] PBP [5] WLS NBP prop.

tpoly in s - - - - - - 0.0019

tconv in s 16.7189 16.8082 19.0205 7.4425 0.6253 0.0618 7.3275

tc in s 16.7189 16.8082 19.0205 7.4425 0.6253 0.0618 7.3294

TABLE I: Computation time - Average time per node to achieve convergence.

the non-constrained sampling approach from [19]. The PBP variant provides the most accurate

results among the benchmark schemes.

2) Computation Time: Table I depicts the average computation time tc per agent. We break

the accumulated computation time up into the time that is required to compute the polygons tpoly

and the time required to achieve convergence with the respective localization algorithm tconv,

i.e. tc = tpoly + tconv. For the latter time, we use the convergence observations from the previous

discussion. In terms of computation time, WLS shows the lowest cost followed by PBP and our

proposed polygon-based NBP. We can infer two important conclusions

• Computation time for polygon support outer-approximation is almost negligible

• The increased speed of convergence reduces computation time significantly compared to

the baseline NBP approaches

These observations meet our expectations on the computation time. To gain some more in-

sight into the first observation, let us review polygon support outer-approximation. Note that

all operations in that algorithm can be solved in closed form. Polygon scaling and anchor
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polygon processing (Algorithm 2 and 4, respectively) both scale linear with the number of

edges, i.e. O(NE). In terms of computation, the most demanding part of the algorithm is polygon

intersection (Algorithm 3). The Sutherland-Hodgman algorithm scales quadratic in the number

of edges, NE [44]. Since it intersects only pairs of polygons, the intersection of |S→j| polygons

requires to execute the Sutherland-Hodgman algorithm |S→j| times. Recall that the number of

edges of intersected polygons depends on the input polygons and it cannot be generalized. Thus,

we cannot quantify the number of operations required to intersect |S→j| polygons in general.

We observed that the number edges of the two intersecting polygons ÑE is typically less than

the number of initial edges NE . Hence ÑE ≈ NE over-estimates the number of computations.

With this assumption, polygon intersection scales according to O((|S→j|)N2
E). Considering that

NE � NS , it is obvious that NBP is much more costly in terms of computation than polygon

outer-approximation. Observation 2) makes intuitively sense. If we consider 2), it becomes

evident that reducing the number of iterations also reduces the complexity of NBP linearly. We

see that our polygon-based NBP results in a considerable reduced computation time compared

the baseline variants of NBP. In particular, a reduction of approximately 60% is achieved. Yet,

our proposed NBP variant has somewhat larger computational requirements (approximately a

factor of 11), when compared to the parametric approach. It should be noted, however, that the

localization accuracy is generally higher with our proposal. This will become more evident in

the following subsection.

3) Number of Samples: Fig. 12 depicts the outage probability after convergence considering

different numbers of samples. Here, we only consider PBP since it is the strongest competitor in

terms of localization accuracy. Two observations can be made: 1) the number of samples should

be sufficiently large in order to outperform PBP, and 2) when the number of samples grows, larger

gains can be achieved compared the parametric approach. For large samples sizes (Ns ≥ 1000)

significant gains can be achieved in the regimes of both small and large error. Yet, larger samples

sizes result in higher computation times. Considering the results from the previous subsection,

we can draw the following conclusion regarding the accuracy-computation trade-off. For systems

which do not aim to maximize the localization accuracy, it may be sufficient to choose PBP

for network localization, since it is generally cheaper in terms of computations. When more

computational resources are available, however, NBP allows for a significant increase in terms

of localization accuracy far beyond what is possible with PBP. Compared to other NBP variants,

our polygon-based NBP provides a considerably improved accuracy-computation trade-off, i.e.
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Fig. 12: Outage probability for different sample sizes - With our proposal distribution, the number of particles

can be reduced by factor of four while still outperforming the proposal distribution from [19] in terms of outage

probability.

higher localization accuracy is achieved at only a fraction of the computational costs compared

to state-of-the-art variants of NBP.

D. Discussion and Summary

Generally, stochastic inference for cooperation localization is a hard task, when only a few

anchor nodes are available. In networks with sparse anchor coverage, the positioning uncertainty

is generally large. Nonparametric belief propagation is a powerful tool to perform inference

as it approaches the performance of the maximum a posteriori estimator, when infinitely many

samples are used. We saw in the previous section that there is a trade-off between localization

accuracy and computational costs. Due to the computational costs, large sample sizes may

become prohibitive, and small sample sizes have to be considered. We showed that state-of-

the-art variants of NBP perform relatively poor for a small number of samples, because samples

are not used efficiently, i.e. samples resides in areas of the sample space which are far away

from the true location. When the anchor coverage is sparse, PBP can outperform NBP with

small sample sizes in terms of accuracy and computation time. To leverage the full potential of

NBP at reasonable computational costs, we proposed a computationally cheap algorithm, called

polygon outer-approximation, which confines the sample space to convex polygons. With these

constraints, only a small number of samples is necessary to outperform both PBP and other NPB

variants in terms of accuracy.
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VI. CONCLUSION

We treat cooperative positioning in wireless networks as stochastic inference problems, and

we proposed a polygon-constrained variant of nonparametric belief propagation to solve these

problems. To relax the inference procedure, we split the problem into two stages. In the first stage,

we determine constraints on the sample space, which confine the positions of the nodes to convex

polygons. We also provide a mathematical proof under which conditions the sample space can

be constrained. In the second stage, we solve a constrained stochastic inference problem using

our polygon-constrained variant of nonparametric belief propagation to obtain estimates on the

positions of nodes. Our proposal shows significantly increased localization accuracy and speed

of convergence, compared to state-of-the-art cooperative positioning algorithms. At the same

time, the computation time is reduced considerable compared to state-of-the-art nonparametric

belief propagation variants. Hence polygon-constrained nonparametric belief propagation offers

the benefit of highly accurate localization with reasonable computational costs.

APPENDIX

PROOF OF THEOREM 1

Let us consider the factorized a posteriori distribution from (3). Our goal is to confine the

support of the marginal a posteriori distributions pXj |Z(xj|z), ∀j to feasible sets. The marginal

a posteriori distribution of xj is formally defined as

pXj |Z(xj|z) =

∫
pX|Z(x|z) d∼ {xj} =

∫ K∏
k=1

fk(sk) d∼ {xj} , (23)

where the joint a posteriori distribution pX|Z(x|z) factorizes into K factors fk which just depend

on subsets of variables, i.e. SK ⊆ X.

Lemma 1. The support of the product of two densities fk(xj, sk\xj) · fl(xj, sl\xj) is deter-

mined by the intersection of the support of each density, i.e. SUPP(fk(xj, sk\xj)fl(xj, sl\xj)) =

SUPP(fk(xj, sk\xj)) ∩ SUPP(fl(xj, sl\xj)).

Proof. Consider a simpler case: f(a, b)g(a, b). The support is determined by the closure of the

subset of all a ∈ A and b ∈ B for which f(a, b)g(a, b) 6= 0, i.e. SUPP(f(a, b)g(a, b)) = {a ∈

A, b ∈ B|f(a, b)g(a, b) 6= 0}. The product is either zero if one of the factors is zero or if both are.

Thus, the contribution of SUPP(f(a, b)) to SUPP(f(a, b)g(a, b)) is {SUPP(f(a, b))\a, b|g(a, b) =

0}. The same holds also for the contribution of SUPP(g(a, b)), i.e. {SUPP(g(a, b))\a, b|f(a, b) =
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0}. Thus, the support of the product of densities yields the intersection of the support of each

density SUPP(f(a, b)g(a, b)) = SUPP(f(a, b))∩ SUPP(g(a, b)). It is straightforward to extend this

idea to more than two variables and factors.

The support of the marginal a posteriori distribution pXj |Z(xj|z) will be determined by the

intersection of the support of the product of densities
∏K

k=1 fk(sk). The factors fk with argument

sk will not constrain the support of xj if the sets sk and xj are disjoint, i.e. xj ∩ sk = ∅.

Lemma 2. The support of pXj |Z(xj|z) is independent of the domain of ∼ {xj} = x\xj .

Proof. Consider the previous example in a slightly altered form: h(a) =
∫
f(a, b)g(a, b)db.

Also consider the support of the product of densities SUPP(f(a, b)g(a, b)) = SUPP(f(a, b)) ∩

SUPP(g(a, b)). Integrating of the entire domain of b does not constrain the support of h(a), i.e.

SUPP(h(a)) = SUPP(f(a)g(a)) = SUPP(f(a)) ∩ SUPP(g(a)). It is readily shown that this is also

valid for multiple integration variables and more than two factors.

Considering Lemma 1 and 2, we can infer that the support of the marginal a posteriori

distribution pXj |Z(xj|z) is compact, i.e. closed and bounded, if at least one factor fk(xj, sk\xj)

has compact support in xj .

We now turn to the next vital condition which allows for computationally efficient outer-

approximation, namely convexity of the support of the marginal a posteriori distribution pXj |Z(xj|z).

Lemma 3. The support of the marginal a posteriori distribution pXj |Z(xj|z) is convex if and

only if all factors fk(xj, sk\xj) have convex support in xj .

Proof. The support of the marginal a posteriori distribution is given by the intersection of the

support of each factor fk(xj, sk\xj) (Lemma 1). The intersection of sets is convex if and only

if all sets are convex [43, p. 36]. Hence the intersection of all supports is be convex if and only

if the support of each density fk(xj, sk\xj) is convex.
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