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Abstract—We propose a Kernel regression method to predict
a target signal lying over a graph when an input observation
is given. The input and the output could be two different
physical quantities. In particular, the input may not be a graph
signal at all or it could be agnostic to an underlying graph.
We use a training dataset to learn the proposed regression
model by formulating it as a convex optimization problem,
where we use a graph-Laplacian based regularization to enforce
that the predicted target is a graph signal. Once the model is
learnt, it can be directly used on a large number of test data
points one-by-one independently to predict the corresponding
targets. Our approach employs kernels between the various input
observations, and as a result the kernels are not restricted to be
functions of the graph adjacency/Laplacian matrix. We show that
the proposed kernel regression exhibits a smoothing effect, while
simultaneously achieving noise-reduction and graph-smoothness.
We then extend our method to the case when the underlying
graph may not be known apriori, by simultaneously learning an
underlying graph and the regression coefficients. Using extensive
experiments, we show that our method provides a good prediction
performance in adverse conditions, particularly when the training
data is limited in size and is noisy. In graph signal reconstruction
experiments, our method is shown to provide a good performance
even for a highly under-determined subsampling.

Index Terms—Linear model, regression, kernels, machine
learning, graph signal processing, graph-Laplacian.
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I. INTRODUCTION

Graph signal processing (GSP) has emerged recently as
a framework which employs graph-structural information in
the analysis and processing of vector-valued signals [1]], [2].
The framework has been shown to exhibit great potential in a
wide range of real-world applications that deal with data over
networks or graphs. By actively making use of the graph or
the network structure, GSP deals with the extension of several
traditional signal processing and machine learning concepts
to a graph signal setting. In this article, our contribution to
GSP is the development of a supervised kernel regression
method for predicting graph signal outputs from general input
observations. In the next two subsections, we provide a review
of the existing literature, followed by our contributions placed
in the context of the existing methods.

A. Literature review

The extension of traditional signal processing methods to
graph signal processing includes many conventional spectral

analysis concepts such as the windowed Fourier transforms,
filterbanks, multiresolution analysis, and wavelets [1[]-[18].
Spectral clustering approaches based on graph signal filtering
have also been proposed [19], [20]. The problems of sub-
sampling and interpolation of signals lying over graphs have
been considered extensively in diverse settings [21]-[31].
Techniques for compression and representation of signals such
as the principal component analysis (PCA) [32], [33] and
dictionary learning approaches [34]-[37] have also been pro-
posed for graph signals. Many researchers have considered the
statistical analysis of graph signals particularly in the context
of stationarity [38]-[43]. The reconstruction and estimation of
graph signals have also been steadily gaining interest in the
community. Berger et al. [44] and Chen et al. [45] consid-
ered the recovery of graph signals based on a total-variation
minimization formulated as a convex optimization problem.
Wang et al. [46] considered a distributed reconstruction of
time-varying bandlimited graph signals. Di Lorenzo et al.
[47] proposed a least mean squares approach for the adaptive
estimation and tracking of bandlimited graph signals. Several
approaches have also been proposed for learning an underlying
graph structure from the given graph signal data [48[-[58].
GSP is a rich and continually expanding area of research and
we refer the reader to [59] for a more comprehensive review
of the developments.

We now proceed to briefly survey the relevant literature
in kernel regression and kernel methods. Kernel regression
constitutes one of the fundamental building blocks of super-
vised and semi-supervised learning strategies, be it in simple
regression tasks or in the more advanced settings. Kernel
regression lies at the core of support vector machines [60]
and Gaussian processes [61]], and finds applications in deep
neural networks [62], [63]] and extreme learning machines [64],
[65]. Kernel regression in the setting of graphs or manifolds
has been investigated in the labeling and coloring of graphs
and in the context of graph clustering [66[]—[73[]. These works
generally deal with signals which are binary-valued. Kernel
regression has been employed in image deblurring by using a
graph-based constraint on the pixel intensities of the deblurred
image [74]. Kernel regression was recently used in object
saliency detection and spatial attention modeling in images,
wherein the kernel matrix was simultaneously used to define
a Laplacian matrix, in order to recover the smooth images
[75]]. These prior graph-based approaches incorporate a graph-



Laplacian based regularization by defining a graph between
the various observations/datapoints and are concerned with an
output/target that is scalar valued, such as the node label or the
pixel intensity. Kernels have also been extensively employed
in the smoothing and regression of brain signals, where the
functional connectivity or the topology of the brain surface is
described using meshes [[76[]-[81]].

Kernel-based reconstruction strategies specific to graph sig-
nals were proposed recently by Romero et al. in the framework
of reproducing kernel Hilbert spaces [82], [83]]. Using the
notion of joint space-time graphs, Romero et al. have also
proposed a kernel based reconstruction of graph signals and an
extension of the Kalman filter for kernel-based learning [84],
[85]]. Along the same lines of thought, loannidis et al. proposed
a more general approach for inferring functions over graphs
in both static and dynamic settings [86]. Kernel regression
combined with diffusion wavelets have been employed in the
modeling of mandible growth in CT images [87]. Shen et al.
used kernels in structural equation models for the identification
of network topologies from graph signals [[88]]. The prior works
of [82]-[86] use kernels across the nodes of a graph, while
considering the input comprising the signal values over a
subset of the nodes of the graph. In these prior works, the
setting is that all the observed inputs and the corresponding
outputs to be predicted lie jointly over a composite or an
augmented graph. As a result, the setting results in large-
sized graphs which may not provide a scalable solution when
the number of inputs and outputs becomes moderately large.
Further, the setting naturally requires that the input and the
output variables are of the same physical quantities. Therefore,
these prior works suffer from limitations when the input is a
fundamentally different physical quantity from the predicted
output, or when the input is not a graph signal. For example,
consider a scenario where we observe the air pressure of
several cities in a country as the input, and the task is to
predict the temperature of those cities as the output.

B. Our contributions vis-a-vis existing works

We propose a kernel regression method for graph signals
that can handle scenarios where the input and the output may
be entirely different physical quantities, or when the input is
not a graph signal or is agnostic to a graph. For example, our
method is applicable to the case when the hourly air pressure
measurements over the cities in a country is taken as the input,
and the predicted output is the temperature of those cities.
(Such a real signal example is indeed demonstrated in the
numerical experiments section.) This is possible because we
treat the input variables without any graph constraints, or as
being agnostic to a graph. The graph-awareness is employed
only for the output: that the predicted output is a vector lying
over a graph. Since we do not use kernels between the nodes of
the underlying graph but only across the different observations
of the graph signal, our kernel is not necessarily defined or
dictated by the underlying graph. This is in contrast with the
prior works where the kernel matrix is an explicit function
of the graph adjacency matrix and the kernel is across the
different nodes of the same graph. In several applications

where the input is also a graph signal, experiments with real-
world datasets show that our method performs better than those
which exploit the graph structure in the input.

The success of our method can be attributed to a standard
machine learning concept where a set of training data is used
to learn a regression model and then the trained model is used
to make predictions on the test data. The prediction at each test
datapoint is made independent of the other test datapoints, and
is based only on the kernels between the training datapoints
and the relevant test datapoint (and not all the test datapoints
together). In contrast, in the prior works involving kernels and
graph signals [82]], [[85]], the estimation of the graph signal
value at even one of the nodes involves the computation of the
entire kernel matrix for all the nodes over the graph, and not
just over the input or the training nodes. In other words, they
employ the entire kernel matrix across all the available training
and test datapoints and do not treat a relevant test datapoint
independently with respect to the other test datapoints. This
is true even for the cases where one predicts a subset of the
unobserved nodes or test datapoints.

Further, the independent treatment of the test datapoints
allows us to use our regression method on any number of
test datapoints. The method does not assume that the number
of test datapoints is known from the beginning. Therefore,
our method scales well with a large amount of test datapoints
and naturally extends to a dynamic tracking setup, such as the
Gaussian process model [89]]. On the other hand, the works of
[82]—[85] assume that the number of test datapoints is specified
from the beginning.

C. Signal processing over graphs

We next briefly review some of the basic concepts from
graph signal processing. Let G = (V, £, A) denote a graph
with M nodes indexed by the vertex set V = {1,---,M}.
Let £ and A denote the edge set containing pairs of nodes,
and the weighted adjacency matrix, respectively. The (4, j)th
entry of the adjacency matrix A(7, j) denotes the strength of
the edge between the ¢th and jth nodes. There exists an edge
between the ith and the jth nodes if A(i,7) > 0 and the
edge pair (i,j) € £ < A(i,j) # 0. In our analysis, we
consider only undirected graphs with symmetric edge-weights
or A = AT. The graph-Laplacian matrix L of the graph G is
then defined as

L=D-A,

where D is the diagonal degree matrix with the ith diagonal
element given by the sum of the elements in the ith row of
A. A vector x = [z(1)z(2) ---x(M)]" € RM is said to be a
graph signal if x(i) denotes the value of the signal at the ith
node of G. The quadratic form of x with L is given by

x'Lx= > A(i,j)(x(i) — x(4))*.

(1,5)€E

We observe that x | Lx is minimized when the signal x takes
the same value across all the connected nodes, which agrees
with the intuitive concept of a smooth signal. In general, a
graph signal is said to be smooth or a low-frequency signal if
it has similar values across all the connected nodes in a graph,



and is said to be a high-frequency signal if it has dissimilar
values across the connected nodes, x ' Lx being the measure
of similarity. This motivates the use of x' Lx as a constraint
in the applications where either the signal x or the graph-
Laplacian L is to be estimated [48]], [50]. The eigenvectors
of L are referred to as the graph Fourier transform basis for
G, and the corresponding eigenvalues are referred to as the
graph frequencies. The smaller eigenvalues (the smallest being
zero by construction) are referred to as the low frequencies
since the corresponding eigenvectors result in small values of
the quadratic form of L, and vary smoothly over the nodes.
Similarly, the larger eigenvalues are referred to as the high
frequencies. Then, a smooth graph signal is one which has
the energy of the GFT coefficients predominantly in the low
graph frequencies.

II. KERNEL REGRESSION OVER GRAPHS
A. Linear basis model for regression over graphs

Let {x,}N_, denote a set of N input observations. Each
input x,, is paired with a target t,, € RM. Our goal is to
model the target t,, with y, given by:

Yn = WT¢(Xn)7 (1)

where ¢(x,,) € R is a known function of x,, and W €
REXM denotes the regression coefficient matrix. Equation (1)
is referred to as the linear basis model for regression, often
shortened to linear regression in the machine learning parlance
(cf. Chapters 3 and 6 in [90]]). For brevity, we hereafter follow
this shortened nomenclature and refer to the outcome of using
(1) as linear regression. Our central assumption is that the
target y, is a smooth signal over an underlying graph G
with M nodes. We learn the optimal parameter matrix W
by minimizing the following cost function with respect to W:

N N
C(W) = l[tn—ynll3+atr(WTW)+58> "y, Ly,, (3)
n=1 n=1

where the regularization coefficients a, 3 > 0, tr(-) denotes
the trace operator, and ||x||2 denotes the ¢ norm of x, and
we emphasize that y,, is a function of W. The cost in (3)
is convex in W, since L is positive semidefinite on the
virtue of it being the graph-Laplacian matrix. The choice
of «, depends on the problem, and in our analysis we
compute these parameters through crossvalidation. The penalty
tr(WTW) = |[W]||2 ensures that W remains bounded. The
penalty or regularization y,! Ly, enforces y, to be smooth
over G. We note that the smoothness over a graph could be
quantified in a number of alternative ways, specially if domain-
specific knowledge is available. However, since the graph-
Laplacian based regularization has been the most popular
metric in the graph signal processing literature with respect to
undirected graphs, we employ the same in our work. Another
aspect is that y,! Ly,, being quadratic in y,, helps us arrive at
a unique and closed-form solution for the regression model,
as we show next. We define matrices T, Y and ® as follows:

T = [1;11;2...tN]TERNxM7
Y = [ylyQ...yN]TeRNxM7 (4)
® = [p(x1) p(x2) - p(xn)]"T € RVK.

Using (I) and (@), the cost function (3) is expressible as (2))
where we use the properties of the matrix trace operation.
Since the cost function is quadratic and convex in W, we get
the optimal and unique solution by setting the gradient of C
with respect to W equal to zero. Using the following matrix
derivative relations
0
—tr(M;W) =
5 W (M W)
——=tr (W' M;WM
Fw 1WM,)
where M; and M, are matrices, and setting g—v% =0 we get
that

~®'T+ & "®W + aW + & WL =0, 5)
or, (2'®+olx)W+3P @WL=0'T.

On vectorizing both sides of (3), we get that
vec(®'T)= Iy @@ ®+alk)+(BLOP &) vec(W),

-
M/,

M; WM + M; WM.,

where vec(-) denotes the standard vectorization operator and
® denotes the Kronecker product operation [91]. Then, the
*

optimal W, denoted by W, follows the relation:

Vec(\i/') =[Iy®@ ®+alx)+(FLed® @) - vec(® ' T).

The predicted target for a new input x is then given by

* * T
t=W ¢(x). (6)

From (6)), it appears that the proposed target prediction ap-
proach requires the explicit knowledge of the function ¢(-). We
next show that using the ‘kernel trick’ or ‘kernel substitution’
this explicit requirement of ¢(-) is circumvented and that the
target prediction may be done using only the knowledge of
the inner products @(x,,) " ¢(x,), ¥m,n. Towards this end,
we next discuss a dual representation of the cost in (3). We
hereafter refer to (6) as the output of the linear regression over
graphs (LRG).

B. Dual representation of cost using kernel trick

We now use the substitution W = & "W and express the
cost function in terms of the parameter ¥ € RM*M  This
substitution is motivated by observing that on rearranging the
terms in (B), we get that

W=3"¥,
where ¥ = [1 (T — B@WL — ®)]. On substituting W =
®TW in @) where ¥ becomes the dual parameter matrix
that we wish to learn, and omitting terms that do not depend
on W, we get that

C(¥)=-20 (T2 ¥) +1r (¥ 22 0P T)
+ar(TT®STW) + B (¥ 2D $D " WL)
=—2tr (TTK®) + r (T TKKW)
+atr(PTKY) + Bt (TTKKPL), (7)
where K = ®® T € RV*YN denotes the kernel matrix for the

training samples such that its (m,n)th entry is given by

km,n = ¢(Xm)T¢(Xn)



Z [

~WTo(x,)|3 +atrt(WTW) + 3 qu x,) WLW T(x,,)

= S all3 -2t (Z ¢<xn>Tth> +ir (Z ¢<xn>Twa¢<xn>> +at(WTW)

n

+81r <Z ¢(xn)TWLwT¢(xn)>

= > [ltnll3 —2tr (Ztnqﬁ(xn)TW) +tr (WWT ZqS(X,L)(b(xn)T) +atr(W'W)

+B1tr <WLWT Z¢(xn)¢(xn>T>

n

2

= D [ltall3 = 2tr (TT@W) + x(W' @ ®W) + atr(W W) + gtr (W' & @WL) .

Equation (7)) is referred to as a dual representation of (2)) in the
kernel regression literature (cf. Chapter 6 of [90]]). Taking the
derivative of C () with respect to ¥ and setting it to zero,
we get that

(Ins @ (K + aly))vec(®) + (L @ K)vec(¥) = vec(T), or
[Ty ® (K4 olIy)) + (BL ® K)] vec(®) = vec(T), or

vee(®) = [(In @ (K + oly)) + (BL ® K)] " vec(T).
We define the matrices
B = Iy ® K+ ady)), ®
C = (BL®K).
Then, we have that
vec(®) = (B + C) ' vec(T). )

Once ¥ is computed, the predicted output of the kernel
regression for a new test input x is given by

y = Wigx) =0T ®p(x)
= ¥k(x) . (10)
- (mat ((B +0)7! vec(T))) k(x),
where k(x) = [k1(x),ka(x), -, kn(x)]" and k,(x) =

&(x,) " ¢(x). Here mat(-) denotes the reshaping operation of
an argument vector into an appropriate matrix of size N x M
by concatenating the subsequent N length sections as the
columns. We refer to (I0) as the output of the method named
kernel regression over graphs (KRG). The kernel regression is
arrived at by noting that the entire formulation remains valid if
the inner products ¢(x,,) ' @(x,,) are replaced with a general
kernel function associating pairs of the inputs x,, and x,,.

In general, a variety of valid kernel functions may be em-
ployed. Any kernel function k(x,x’) is a valid kernel as long
as it can be expressed in the form k(x,x’) = ¢(x) "¢(x’), and
the associated kernel matrix K is positive semi-definite for
all observation sizes [90]. The Gaussian kernel is a popularly
employed kernel and we use the same in our experiments
later. We note that KRG is a generalization over the conven-
tional kernel regression (KR), where the latter does not use
any knowledge of the underlying graph structure. On setting

£ =0, the KRG output (I0) reduces to the conventional KR
output as follows

y:

(
- (o (i
et

( at (B+C)~ Vec(T)))Tk(x)

~!yec(T ))T k(x)

= (mat (T @ (K + ody))” " vec(T ))Tk

= (mat ((I/ ® K+aIN) 1)vec(T)))Tk(x)

= (K+aIy)™! ) k(x)

= T'(K+aly) 'k(x), (11)

where we have used the Kronecker product equality: vec((K+
oIy)7IT) = (I} ® (K + aly)~')vec(T). Further, we note
that KRG reduces to LRG on setting K = ®® .

C. Interpretation of KRG — a smoothing effect

We next discuss how the output of KRG is smooth across
the training samples {1,---, N} and over the M nodes of
the graph. Before proceeding with KRG, we review a similar
property exhibited by the KR output [92]. Using (TI) and
concatenating the KR outputs for the IV training samples, we
get that

=T (K + oly) H[k(xy) k(x2) ... k(xy)]
or, Y=KK+aly)™'T,

where we use K = [k(x1) k(x2) ...k(xy)]. Assuming K
is diagonalizable, let K = UJ xUT, where Jx and U
denote the eigenvalue and the eigenvector matrices of K,
respectively. Let §(m) = [y1(m), ys(m), - -+ ,yn(m)]T (m €
{1,---, M}) denote the mth column of Y. We note that y(m)
consists of values of the mth component of y collected over
all the time instances. Then, we have that

N
ei Tz
= Zzzl . +0z[ui t(

where 6; and u; denote the ith eigenvalue and eigenvector
of K, respectively, and t(m) denotes the vector containing
the mth component of the target vector for all the training

[Y1 y2 ... YN}

m)}ui’



samples (mth column of T). Thus, we observe that the KR
output performs a shrinkage of t(m) along the various eigen-
vector directions u; for each m. The contribution from the
eigenvectors corresponding to the smaller eigenvalues 6; < «
are effectively eliminated, and only those corresponding to the
larger eigenvalues 6; > « are retained. Since the eigenvectors
corresponding to the larger eigenvalues of K represent smooth
variations across the observations {1, --- , N}, we observe that
KR performs a smoothing of t,,. We next show that such is
also the case with KRG: KRG acts as a smoothing filter across
both the observations and the graph nodes. Using (I0) and
concatenating the KRG outputs, we have that

‘I’T[k(Xl) k(Xg) “e
Kv.

yiy2...yn] = k(xy)] (12)

or, Y =
On vectorizing both sides of (I2), we get that
vec(Y) = (Iny ® K)vec(¥)
@ (L @ K) (B + C) " vec(T),

where we have used (9) in (a). Let L be diagonalizable with
the eigendecomposition:

L=VJ. V',

13)

where J; and V denote the eigenvalue and the eigenvector
matrices of L, respectively. We also assume that K is diago-
nalizable as earlier. Let \; and v; denote the ith eigenvalue
and the ith eigenvector of L, respectively. Then, we have that

V = |vive---vy]and Jp = diag(A1, A2, -+, AN),
U = [uiuy---uyland Jx = diag(6y,62,--- ,0n).
Now, using (8), we have
B+C = (Iy®(K+oay)) + (FLO®K)
= [(VINV) @ (UJg +aly)UT))
+[B(VILVT) @ (UIkUT))

W (Ve U) Iy ® Tk +aly) (VI @ UT)]

+BVeU)ILeldk) (VI eUT)]

= ZJZT, (14)

where Z = V ® U is the eigenvector matrix and J is the
diagonal eigenvalue matrix given by

JZ(IM®(JK+041N))+5(JL®JK).

In (T4)(a), we have used the distributivity property of the Kro-
necker product: (Ml & Mg)(Mg & M4) M M3 ® MMy
where {M; }}_, are four matrices. We note that J is a diagonal
matrix of size M N. Let J = diag(n1, 72, ...,nm N ). Then, n;
is a function of {A;},{6;},«, 8. On dropping the subscripts
for simplicity, we observe that any eigenvalue 7; has the form

n=(0+a)+ B(N).
where 6 and )\ are the appropriate eigenvalues of K and L,
respectively. Similarly, we have that

Iy ® K) (VI V) ® (UJEUT)
= (VoU)(IyeJk)(V eUT)
= ZAy®JIK)ZT,

(15)

(16)

and note that (In; ® Jx) is also a diagonal matrix of size
M N. Then, on substituting and in (13)), we get that

vee(Y) = (Iy @ K)(B+C) ™" vee(T)
= (Z(Ipy @ I)ZT)(ZI'Z T )vec(T)
= (Z(Iy @ Ig)I ' Z 7 )vec(T).

a7

We note again that (In; ® Jx)J ! is a diagonal matrix with
size MN. Let (I ®Jx)J 1 = diag({1, o, - - ., Carn). Then,
on dropping the subscripts, any 7; is of the form

0 0

N (0+a)+B00)

From (17), we have that

(=

MN
vec (Y) = Z Ciziz; vec (T
i=1

where z; are the column vectors of Z. In the case when
¢; < 1, the component in vec(T) along z; is effectively
eliminated. For most covariance or kernel functions k(-,-)
used in practice, the eigenvectors corresponding to the largest
eigenvalues of K are the low-frequency components across
time or observations. Similarly, the eigenvectors corresponding
to the smaller eigenvalues of L are smooth over the graph [1].
We observe that the condition { < 1 is achieved when @ is
small and/or A is large. This condition in turn corresponds
to effectively retaining only the components of vec(T) which
vary smoothly across the samples {1,---, N} as well as over
the M nodes of the graph.

D. Learning an underlying graph

In developing KRG, we have so far assumed that the
underlying graph is known apriori in terms of the graph-
Laplacian matrix L. Such an assumption may not hold true
in many practical applications, since there is not necessarily
one best graph to describe the given networked data. This
motivates us to develop a joint learning approach where we
learn both the graph-Laplacian L and the KRG parameter
matrix W (or its dual representation parameter ). Our goal
in this section is to provide a simple means of estimating a
graph that helps enhance the prediction performance, if a graph
is not known apriori. We note that a vast and expanding body
of literature exists in the domain of estimating graphs from
graph signals [48]-[54], [93]-[95]], and that many of these
techniques may be used in the learning approach proposed in
this section. Nevertheless, we pursue the particular approach
taken in this section due to the ease of implementation and
the minimal assumptions involved.

We propose the minimization of the following cost function
to achieve our goal:

C(W,L) = Z [tn

+5 Z Y Ly, +vtr(LTL),

— vl + atr(WTW)

where v > 0. Since our goal is to recover an undirected
graph, we impose the appropriate constraints [96]]. Firstly, any
non-trivial graph has a graph-Laplacian matrix L which is



symmetric and positive semi-definite [96]]. Secondly, the vector
of all ones 1 forms the eigenvector of the graph-Laplacian
corresponding to the zero eigenvalue. Since L =D — A, we
have that L being positive semi-definite is equivalent to the
constraint that all the off-diagonal elements of L are non-
positive. This is a simpler constraint than the direct positive
semi-definiteness constraint. Then, the solution to the joint
estimation of W and L is obtained by solving the following:

{)nvirﬁ C(W,L) suchthat L(i,j) <0 Vi#j,

L=L",L1=0. (18)

The optimization problem is jointly non-convex over W
and L, but convex on W given L and vice-versa. Hence, we
adopt an alternating minimization approach and solve (I8) in
two steps alternatingly as follows:

« For a given L, solve rrxl)%’n C(W) using the KRG approach

of Section
o Given  the W, min C(L)

L
such that L(i,j) <0Vi#j,L = LT, and L1 = 0.
Here C(L) =Y., vy, Ly, + vir(LTL).

We start the alternating optimization using a suitable initial-

ization; initializing L. = O yields the KR. In order to keep the

successive L estimates comparable, we scale L such that the
largest eigenvalue modulus is unity at every iteration.

matrix solve

III. EXPERIMENTAL RESULTS

We evaluate the performance of the relevant methods under
adverse conditions where we use limited training data and
noisy training data. Our hypothesis is that KRG and LRG
provide better prediction performance than KR and LR, re-
spectively. A state-of-the-art method is also compared with in
the experiments of graph signal reconstruction. We experiment
with both synthesized and real-world signal examples. The
experiment with the synthesized data is carried out using
small-world graphs; this being a standard practice in several
existing works to demonstrate the efficiency of a model. For
real applications, we consider three different real-world data
experiments:

(D1) Prediction of the temperature as the output, using the
air-pressure observations as the input, for the cities in
Sweden.

(D2) Temperature prediction for the cities in Sweden from the
current day to the next day.

(D3) Prediction for the fMRI voxel intensities of the cerebel-
lum region.

Among these three experiments, D1 is the experiment where
the input observation and the output to be predicted are two
different physical quantities. To the best of our knowledge,
none of the existing graph-signal processing approaches ad-
dress such a dataset and we therefore, make comparisons
only with conventional linear/kernel regression. The other two
experiments D2 and D3 are performed for two reasons. The
first reason is to compare our method against the kernel-ridge
regression (KRR) method of [82], [85]]. In these experiments,
the input and the output both lie on the same graph and

are the same physical quantities, making it applicable to the
KRR method. We choose KRR as the competing method
in these two experiments because it has been claimed to
provide a state-of-the-art performance [[82]]. The second reason
is to investigate the performance of our method when we
simultaneously learn an underlying graph from the available
data.

We use the normalized-mean-square-error (NMSE) as the
measure of the prediction performance:

E|Y - T0||%)

NMSE = 10log,, ( BTl

where Y denotes the regression output matrix and T the
true value of target matrix, meaning that Ty does not contain
any noise. The expectation operation E(-) is realized as the
sample average over multiple experiment trials. In the case
of real-world examples, we compare the performance of the
following four regression approaches:

1) linear regression (LR): Ky, = @(xm)' ¢(x,), where

¢(x) =x and § =0,

2) linear regression over graphs (LRG):
Emn = ¢(xm) @(x,) and B # 0, where ¢(x) = x,

3) kernel regression (KR): Using f = 0
and the radial basis function (RBF) kernel
kmn =exp | — [3m — I3 and

7 0—2 Zm’m/ me’ _Xn/”%/N ’

4) kernel regression over graphs (KRG): Using

I3 #* 0 and the RBF kernel &k, , =

exp [ — [%m — Xall3 )
02 s oo 1% = X [|3/N

The regularization parameters «, 3, o2 and v for different
training data sizes are found through a five-fold crossvalidation
on the training set. While performing the crossvalidation, we
assume that clean target vectors are available. We wish to
emphasize that our goal here is to illustrate that LRG and
KRG are better than LR and KR, respectively. Depending
on the choice of the kernel used, one kernel may perform
better than the other and that there is generally no guarantee
that a Gaussian kernel always outperforms the linear kernel in
practice. As regards determining which kernel is best suited
to an application, there is often no direct answer than a trial-
and-error approach of using different kernels and comparing
their performance. An alternative is to use a kernel selection
approach in the form of multi-kernel regression [83]], [97], [98]]
which ‘selects’ the best kernels from a bag of kernels.

A. Regression for synthesized data

We perform regression for the synthesized dataset where
the target vectors to be predicted are smooth over a specified
graph. We generate synthesized data where we know the
ground truth. A part of the data is used for the training in
presence of additive noise, and our task is to predict for
the remaining part of the data, given the information about
correlations in form of kernels. In order to generate the
synthesized data, we use random small-world graphs from
the Erd6s-Rényi and the Barabasi-Albert models [99] with



the number of nodes equal to M = 50. We generate a
total of .S target vector realizations. We adopt the following
data generation strategy: We first pick M independent vector
realizations from an S-dimensional Gaussian vector source
N(0,Cg), where Cg is an S-dimensional covariance matrix
drawn from the inverse Wishart distribution with an identity
hyperparameter matrix. We use a highly correlated covariance
matrix Cg such that each S-dimensional vector has strongly
correlated components. Thus, we create a data matrix with M
columns such that each column is an S-dimensional Gaussian
vector. Each row vector of the data matrix has a size M and
the row vectors of the data matrix are correlated to each other.
We denote a row vector by r. We then select the row vectors
{r} one-by-one and project them onto the specified graph to
generate target vectors {t} that are smooth over the graph
while maintaining the correlation between observations, by
solving the following optimization problem:

t = argmin {||r — z||3 + z Lz} .
z

We randomly divide the S data samples into training and test
sets of equal size Ny = N;s = S/2. We define the kernel
function between the ith and jth data samples z; and z; to be

ki,j = CS(iaj)a

considering the same kernel for all the graph nodes. The choice
of the kernel is motivated by the assumed generating model.
Given the training set of size N, we choose a subset of [NV
data samples to make predictions for the N;, test data samples
using the kernel regression over graphs. The training target
vectors are corrupted with additive white Gaussian noise at
varying levels of signal-to-noise ratio (SNR). We repeat our
experiments over 100 realizations of the graphs and noise
realizations. We compare the performance of KRG with KR.
We observe from Figure |I] that for a fixed training data size
of N = 50, KRG outperforms KR by a significant margin at
low SNR levels (below 10dB). As the SNR-level increases,
the NMSE of KRG and KR almost coincide. A similar trend
is also observed in the case of Barabdsi-Albert graphs, which
is not reported for brevity. In Figure [2| we show the NMSE
obtained with KRG and KR on both the graph models, as a
function of the training data size at an SNR-level of 5 dB.
We observe that KRG consistently outperforms KR and that
the gap between the NMSE of KRG and KR reduces as the
training data size increases. The results shown in Figure |1|and
verify our hypothesis.

B. Experiment D1: Prediction of the temperature of the cities
using air-pressure observations

We now consider the experiment where the input and the
output of the kernel regression are two different physical
quantities. The task is to predict the temperature of the cities
in Sweden from the air pressure observations at those cities.
We predict the temperature as the average daily temperature
for 24 hours of a day; the input consists of the air pressure
observations collected on an hourly basis for the same day.

For the experiment, we collected the temperature and air-
pressure measurements from the 25 most populated cities in
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Fig. 1. Performance for the synthesized dataset using Erdds-Rényi graphs.

We plot the NMSE against SNR for the training data size N = 50. (a) NMSE
for training data, and (b) NMSE for test data.
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Fig. 2. Performance for the synthesized dataset at a 5 dB SNR level. We use
Erd&s-Rényi graphs for subfigures (a) and (b). (a) NMSE for training data, and
(b) NMSE for test data. Then we use Barabdsi-Albert graphs for subfigures
(c) and (d). (c) Training data performance and (d) Test data performance.

Sweden. The data was collected for a period of two months
from February to March of 2018. In Figure a), we indicate
the 45 most populated cities in Sweden. We consider 25 of
these 45 cities in this experiment since the relevant data was
not available at the remaining cities. The data is available
publicly from the Swedish Meteorological and Hydrological
Institute [100]. We predict the temperature of the 25 cities as
the output vector or the target. The input is taken to be the air
pressure measurement at all those 25 cities collected on hourly
basis. This results in an input vector with 24 x 25 = 600
components, which means that we have t, € R2% and
x, € RO The data from the first 48 days is taken as the
training set, and the data from the remaining 12 days is used
for testing. Let d;; denote the geodesic distance between the
ith and jth cities in kilometres, Vi, j € {1,---,25}. Then, we
construct the adjacency matrix A for the graph by setting

d2.
SN _ (%)
A<>( e )

In our experiments, we randomly sample for the training ob-
servations from the full training set for various N < Ny, = 48.
We consider the case when the training targets are corrupted
with additive white Gaussian noise at a 10 dB SNR level. We
compare the performances of LR, LRG, KR, and KRG. For
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Fig. 3. Results for the experiment (D1). (a) The map of Sweden with the major
45 cities indicated, (b) True temperature measurement signal for a particular
day in the dataset shown in units of degree celsius (The graph is the same as
that in subfigure (a) but without the underlying map.). (c) NMSE as a function
of the training sample size, with additive white Gaussian noise at a 10 dB
SNR-level.

the test data, the NMSE as a function of the training sample
size N is shown in Figure 3] We observe that LRG and KRG
outperform LR and KR, respectively, by a significant margin,
particularly at smaller training sample sizes. In addition to
this, we find that KRG outperforms LRG for this experiment,
though this is not necessarily guaranteed for all the datasets
and under all experimental conditions.

C. Experiment D2: Temperature prediction from the current
day to the next day

In this experiment, the task is to predict the temperature
of several Swedish cities for the next day from the temper-
ature observations of the current day. For the experiment,
we consider the temperature measurements from the 45 most
populated cities in Sweden taken for a period of three months
from September to November 2017. Since both the input
and the output are temperatures, this experiment represents
a graph signal reconstruction/recovery problem and hence, we
compare our method with the KRR method. We have already
mentioned that KRR is a state-of-the-art method in graph
signal recovery [82]], [85]. Further, we also consider the case
when the underlying graph is not known a-priori. In this case,
we learn an underlying graph and compare the performance
of our approach against the case where the graph is known
a-priori. The data is available publicly from the Swedish
Meteorological and Hydrological Institute [[100]]. The cities are
indicated in the map of Sweden in Figure [3(a). We consider
the target vector t,, to be the temperature measurement of a
particular day, and x,, to be the temperature measurements
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Fig. 4. Results for experiment (D2). (a) NMSE for test data with additive
white Gaussian noise at a 5dB SNR level, (b) NMSE for test data with additive
white Gaussian noise at a 0dB SNR level.
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Fig. 5. Results for experiment (D2) with graph learning, for training data
samples at a 5dB SNR-level for N = 45.

(in degree celsius units) from the previous day. We have 90
input-target data pairs in total, divided into the training set
and the test set of sizes Ny, = 60 and N;s = 30, respectively.
Once again, we consider the geodesic distance based graph.
For each training dataset size /N, we compute the NMSE by
averaging over 50 different random training subsets of size
N drawn from the full training set of size Ny,. In Figure [4]
we show the NMSE for the test set at SNR-levels of 5 dB
and 0 dB. We observe that KRG outperforms other regression
methods by a significant margin, particularly at low sample
sizes N. Next, we compare our methods with KRR.

1) Comparison with KRR: KRR deals with a sub-sampling
problem where the signal values are predicted at a set of nodes
from the signal values given at the remaining set of nodes.



TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED METHODS AND KRR FOR THE EXPERIMENT D2 (USING NMSE IN dB)

Kernel Ridge Regression (KRR) Proposed Methods

Training sample Diffusion Covariance kernel | Covariance kernel LRG at KRG at LRG at KRG at
size N kernel at 5dB SNR at 0dB SNR 5dB SNR | 5dB SNR | 0dB SNR | 0dB SNR

5 2.8x10~% -6.5 -3.5 -12.3 -11.9 -12.1 -11.6

15 ” 212 -4.9 -14.0 -13.4 -13.1 -12.7

30 ” -9.8 -6.7 -14.8 -14.2 -14.4 -13.8

45 ” -10.5 -7.8 -154 -14.9 -15.0 -14.6

60 ” -12.2 -9.5 -15.5 -15.1 -15.2 -14.8

Therefore, we formulate the one-day temperature prediction
problem in a suitable sub-sampling setup where KRR can be
used. In the sub-sampling setup, KRR minimizes the following
convex cost:

arg min ||x — SI_{SaHz + pa Ka, st Ka = PA’} (19)
o X

where x € R? is the input observation signal corresponding to
a subset 2 with s nodes, from the total set of M nodes. Here,
S denotes the sampling matrix obtained by concatenating the
zero matrix and the s-dimensional identity matrix; K is the
kernel matrix across all nodes of the graph, and « is the vector
of KRR coefficients, and X is the estimate of the graph signal
produced by KRR at Q2. The estimate of the entire graph signal
is then given by:

m = KST(SKS' + usI,) 'x. (20)
Thus, KRR achieves an extrapolation of the graph signal from
the nodes in (2 to those outside it using the graph topoplogy
employed in the extrapolation kernel. The parameters related
to the above prediction and kernels are found by cross-
validation. In all the experiments employing KRR [_82], [84],
we have used the same diffusion kernels and the covariance
kernels used by the authors in the corresponding articles [82],
[84]l.

Since we consider the one-day temperature prediction prob-
lem, we use the space-time variant of the KRR proposed in
[84]], by taking the adjacency matrix given by the Cartesian
product of the geodesic graph A and the temporal dynamics

graph for one time step B = meaning that each

1 0y
node at time n is connected to the corresponding node at
time n + 1 by an edge with unity weight. The composite

or augmented graph [84] for the two days is then given by
? ji . We observe from
Table [l that our approach significantly outperforms KRR for
both the covariance and the diffusion kernels. We note that
the performance of the covariance kernel is better than that of
the diffusion kernel, and this trend is in agreement with the
results reported in [84]. We also observe that the performance
of KRR and our approaches improve as more training data
becomes available.

The performance of our approach is significantly better than
that of KRR. This can be attributed to two factors. The first
factor is that KRR deals with an under-determined setup where
the subsampling matrix has a special structure. The special

the Cartesian product A & B =

structure is formed by concatenating the identity matrix and
the zero matrix. This sampling matrix structure may not be
well suited for sub-sampling. The second aspect or factor
pertains to our approach: we use the advantage of explicit
training and testing. This assumes the availability of a training
dataset for our approach, whereas KRR does not have that as
a requirement.

2) Learning an underlying graph: We next consider the
performance of our approach when the graph is also simulta-
neously learnt from the training data. This experiment serves
the purpose of illustrating the effectiveness of our approach
in inferring a graph suited to the prediction task even in the
absence of a prior graph. We use the alternating optimization
strategy of Section initialized with L = 0. We consider
the training data at an SNR level of 5 dB at different sample
sizes. We find experimentally that the algorithm converges
typically after five to ten iterations. In Figure 5] we plot
the NMSE values obtained for the test data using both the
fixed L based on the geodesic distances, and with the learnt
graph. We observe that our approach learns a graph which
provides agreeable performance even when initialized with the
zero graph. This validates our intuition that the graph signal
holds sufficient information to both infer both a meaningful
underlying graph structure and perform target predictions.

D. Experiment D3: Prediction for the fMRI voxel intensities
of the cerebellum region

Finally, we consider the prediction of voxel intensities in the
functional magnetic resonance imaging (fMRI) data obtained
for the cerebellum region of the brain. We apply our approach
to predict the intensities at some of the voxels of the MRI,
given the intensities at the other voxels. As before, we consider
the training samples to be corrupted with additive white
Gaussian noise. In the beginning, the graph is constructed from
the voxels at the different slices of the MRI scans connected
together to form a composite graph as shown in Figure [6(a).
The details of the image acquisition and the dataset may
be found publicly at https://openfmri.org/dataset/ds000102.
Each voxel is considered as a node of the graph and the
voxel intensity to be the signal. The full data graph is of
dimension 4000 obtained by mapping the 4000 cerebellum
voxels anatomically following the atlas template [102]. We
refer the reader to [[103] for further details on the construction
of the voxel graph. In our analysis, we consider only the first
100 voxels from the 4000 voxels to construct the dataset in our
experiments. This is to reduce the computational complexity
in performing the experiments. We use the intensity values at
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Fig. 6. Results for the cerebellum data (D3). (a) Representation of how the graph is constructed from the voxels at the different slices (b) The entire graph
with an instance of the graph signal, and the corresponding intensities (c) at only the voxels used as the input (d) at only the voxels used as the output (the
edges are omitted for clarity), (¢) NMSE for test data at a 10dB SNR-level, (f) NMSE for test data at a 0dB SNR-level.

TABLE 11
COMPARISON OF THE PROPOSED METHODS AND KRR FOR THE EXPERIMENT D3

Kernel Ridge Regression (KRR) Proposed Methods
Training sample | Diffusion | Covariance kernel | Covariance kernel LRG at KRG at LRG at KRG at
size N kernel at 10dB SNR at 0dB SNR 10dB SNR | 10dB SNR | 0dB SNR | 0dB SNR
145 0.01 -1.0 -0.7 -25.3 -25.7 -22.2 -23.5

10 of the voxels from the first slice as the input x € R19 to
make predictions for the output t € R?® comprising the voxel
instensities at 90 voxels present in the first and second slice.
In Figure [6[b), we show an instance of the voxel intensity
signal over the full 4000 voxel graph. In Figures [{(c) and
(d), we show the corresponding input and output signals used
in our experiments. The dataset consists of 290 input-target
data points or observation pairs. We use one half of the data
for training and the other half for testing. We construct noisy
training data at SNR levels of 10 dB and 0 dB. The NMSE is
obtained by computing the average over 100 different random
partitions of the entire data into the training and test sets. The
results are shown in Figure @e)—(f). We observe that LRG
and KRG have a superior performance over their conventional
counterparts, particularly for small N and at low SNR-levels.

The performance of our methods and that of KRR with the
maximum number of training samples is reported in Table
We observe that KRR performs poorly in comparison
with our approaches. The poor performance of KRR may be
attributed to the relatively small number of samples available
for reconstruction: only 10% of the total number of nodes
are observed. Further, we note that KRR does not explicitly

employ training data other than that used in the construction
of the covariance kernel. The covariance kernel approach in
turn also requires sufficient number of samples for a reliable
reconstruction, which is not the case in our experiments owing
to the adverse training data. All these factors explain why KRR
performs rather poorly in this experiment.

We now consider the experiment with the learning of an
underlying graph. We observe from Figure [7[a) that when
initialized with the zero graph, the prediction performance of
our method is comparable to that obtained using the fixed
atlas-template graph (given graph). We further consider the
case when the graph learning iterations are initalized with
L corresponding to the atlas-template. This is motivated by
the observation that in many applications such as biomedical
data, there is no single graph which is guaranteed to work
the best for prediction. The goal of this experiment is then
to investigate if a graph better suited to the regression task
could be learnt starting from an existing non-trivial graph.
The prediction NMSE obtained for the test data in this case
is shown in Figure [7(b). We observe that our method learns
a graph better suited to the prediction in terms of the NMSE.
This in turn shows that for this dataset, it is more suitable to
jointly learn an underlying graph.
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Fig. 7. Results for (D3) with graph learning for the fMRI data, when the
training data samples are corrupted with additive white Gaussian noise at
10dB SNR-level for N = 45. (a) NMSE for the test data when initialized
with L = 0, and (b) when initialized with L corresponding to the graph
based on atlas template [[101].

IV. CONCLUSIONS

We proposed a kernel regression method for predicting
graph signal outputs from inputs that are not necessarily lying
over a graph or for inputs agnostic to a graph. The resulting
problem was shown to be a convex one resulting in an analyti-
cally tractable solution. Our approach presents a generalization
of the standard kernel regression for graph signals. Experi-
ments with synthesized and real-world graph signal datasets
demonstrated the merit of our approach, particularly in the
adverse scenarios of training with noise and limited datasizes.
Our approach was shown to outperform a state-of-the-art
method in real-world graph signal reconstruction problems.
We further showed that our approach is also applicable in
cases where an underlying graph is simultaneously estimated
from the training data.

V. REPRODUCIBLE RESEARCH

In the spirit of reproducible research, all the codes
relevant to the experiments in this article are made available
at  https://www.researchgate.net/profile/Arun_Venkitaraman
and https://www.kth.se/ise/research/reproducibleresearch-
1.433797.
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