
1

Network Inference from Consensus Dynamics with
Unknown Parameters

Yu Zhu, Michael T. Schaub, Ali Jadbabaie, Santiago Segarra

Abstract—We explore the problem of inferring the graph
Laplacian of a weighted, undirected network from snapshots of
a single or multiple discrete-time consensus dynamics, subject to
parameter uncertainty, taking place on the network. Specifically,
we consider three problems in which we assume different levels of
knowledge about the diffusion rates, observation times, and the
input signal power of the dynamics. To solve these underdeter-
mined problems, we propose a set of algorithms that leverage the
spectral properties of the observed data and tools from convex
optimization. Furthermore, we provide theoretical performance
guarantees associated with these algorithms. We complement our
theoretical work with numerical experiments, that demonstrate
how our proposed methods outperform current state-of-the-art
algorithms and showcase their effectiveness in recovering both
synthetic and real-world networks.

Index Terms—Network topology inference, sparse graph learn-
ing, graph Laplacian estimation, consensus dynamics, graph
signal processing.

I. INTRODUCTION

Networks have become a fundamental tool to model systems
across Science and Engineering, with applications ranging from
physical to socio-economic and biological domains [2]–[4]. In
certain cases, we may have relational data that quantifies the
couplings between the system entities directly. For example, in
transportation networks, we can measure traffic flows between
different points in space. However, in many instances, the true
couplings between the system entities are unknown and have
to be inferred from data collected from the system entities.
This task, which we refer to as network inference, is thus a
fundamental step prior to any further network analysis.

Network inference has been studied from several perspectives
in the literature, and different models have been adopted
that associate the network topology with the observed data.
Historically, there are two main lines of research, which are
based on statistical models and physically-motivated models [5],
[6], respectively. A well-known statistical model is the graphical
model [7], where the network (graph) encodes conditional
independence relations among random variables defined on the
system entities (nodes). By employing the graphical model,
the problem of inferring the network is thus converted to a

Y. Zhu and S. Segarra are with the Department of Electrical and Computer
Engineering, Rice University. M. Schaub and A. Jadbabaie are with the
Institute for Data, Systems, and Society, MIT. M. Schaub is also with the De-
partment of Engineering Science, University of Oxford, UK. Emails: {yz126,
segarra}@rice.edu, {mschaub, jadbabai}@mit.edu. Funding:
This work was supported by the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No
702410 (M. Schaub). A. Jadbabaie’s research was supported by a Vannevar
Bush Fellowship from the Office of Secretary of Defense. A preliminary
version of some of the results here appeared in [1].

particular estimation of the joint probability distribution of
these random variables [5], [6]. Associated algorithms include
the graphical LASSO [8]–[10], which incorporates a graph
sparsity prior into the maximum likelihood estimator to recover
the precision matrix of these random variables. Physically-
motivated models assume that the observed data is generated by
some physical process on the network such as diffusion [11]–
[14], and the network recovered is expected to explain the
generative process of the observations.

Graph signal processing (GSP) [15]–[17], a fast growing
research area that seeks to extend concepts and methods in
classical digital signal processing to graphs, offers a new
perspective to the problem of network inference. Works
leveraging GSP tools include: (i) Models based on signal
smoothness [18], [19], where methods to infer the network
topology from smooth signals are proposed via minimizing a
regularized graph Laplacian quadratic form; (ii) Models based
on causal dependency [20], where algorithms are put forth to
recover the network structure capturing the dependencies among
time series; and (iii) Models based on network diffusion [21]–
[24], which solve the problem of network inference from a
stationary graph process by leveraging the spectral information
contained in the observations. Extensions to non-stationary
diffusion processes have also been recently proposed [25],
[26]. For a thorough review on the topic of network inference,
see [5], [6].

In this paper, we consider the problem of network inference
from snapshot observations of consensus dynamics. Consensus
has been one of the most popular and well-studied dynamics
on networks [27]–[29] due to both its analytic tractability and
its simplicity in approximating several fundamental behaviors.
For example, in socio-economic domains, consensus provides a
model for opinion formation in social networks. For engineering
systems, it has been considered as a basic building block for an
efficient distributed computation of global functions in networks
of sensors, robots, or other agents.

We consider snapshot data since this is a common scenario
in modern observational datasets. For instance, in the study
of gene-expression via single-cell RNA sequencing [30], we
can only obtain snapshot data, as the process of obtaining
a sample destroys the cell under consideration. To obtain
multiple samples, we thus have to replicate the experiments with
similarly prepared cells. Another example is the monitoring of
ecological populations from abundance data [31]. While the
underlying process may well be continuous in time, very often
we can only access snapshot information at specific instances
of time.

ar
X

iv
:1

90
8.

01
39

3v
2

 [
cs

.S
I]

 1
 M

ay
 2

02
0

2

Contributions: We study the problem of inferring a network
topology from snapshots of discrete-time consensus dynamics
with parametric uncertainty. Our specific contributions can
be summarized as follows: (i) We formulate three problems
(Problems 1-3 in Section II) with increasing degree of un-
certainty about the parameters of the dynamics, and propose
algorithms to solve them; (ii) We provide provable bounds
on the performance of key steps within these algorithms; and
(iii) We illustrate the performance of the proposed methods
and compare it with state-of-the-art solutions for synthetic and
real-world settings.

The proposed observation model strikes a balance between
being specific and versatile. On the one hand, the advocated
model is more specific than those assuming signal smoothness
[18], [19] or generic diffusion processes [21], [22]. This
enables us to obtain better network recovery performance
when the model (approximately) holds. On the other hand, our
formulation with unknown filter parameters (i.e., Problem 3)
includes a wider range of settings compared to those assuming a
single underlying stationary graph process [21]–[23] or specific
functional forms for the dynamics [24]. For our Problems 1
and 2 which present scenarios with less parameter uncertainty
compared to the more general Problem 3, the work [23] is
closest to our work. However, the proposed solutions differ
significantly to those in [23] as discussed throughout the paper
and illustrated numerically in Section VI.
Paper outline: The remainder of this article is structured as
follows. Preliminary concepts related to GSP and consensus
are reviewed in Section II. In Section III, we give a formal
account of our problem setup and introduce three concrete
problem formulations. In Section IV we provide a detailed
analysis of the first problem along with the algorithm that
we propose for its solution. Section V builds upon insights
gained by studying the first problem, and provides solutions
to the other two problems considered. Numerical experiments
based on both synthetic and real-world data are presented in
Section VI, and closing remarks are included in Section VII.
Notation: The entries of a matrix X and a vector x are denoted
by Xij and xi, respectively; to avoid confusion, the alternative
notation [X]ij and [x]i will be used occasionally, when dealing
with indexed families of matrices and vectors. Operations (·)>,
(·)†, E(·) and P(·) represent transpose, pseudo-inverse, expected
value and probability, respectively. 0, 1 and I refer to the all-
zero vector, the all-one vector, and the identity matrix, where the
sizes are clear from context. diag(x) denotes a diagonal matrix
whose ith diagonal entry is xi. vec(X) stacks the columns of
X into a single column vector. For any set S , xS denotes the
vector formed by the entries of x indexed by S.

II. PRELIMINARIES

We briefly introduce basic GSP concepts (Section II-A) as
well as the mathematical formulation of discrete-time consensus
(Section II-B).

A. Fundamentals of graph signal processing

Graphs and graph signals. Consider a weighted and undi-
rected graph G with N nodes, whose structure is encoded by

the weighted adjacency matrix A ∈ RN×N . If nodes i and
j are connected, the edge weight Aij = Aji > 0 reflects the
strength of the connection. If there is no edge between nodes
i and j, we have Aij = Aji = 0.

A graph signal defined on G can be represented as a vector
x = [x1, · · · , xN]> ∈ RN , where xi ∈ R denotes a scalar
signal value associated with node i.
Graph shift operator and graph filters. A graph shift
operator S ∈ RN×N [15], is a matrix whose off-diagonal
sparsity pattern is identical with the adjacency matrix: Sij can
only be non-zero if Aij 6= 0 or i = j. Typical choices for S
are the adjacency matrix [15], the graph Laplacian [16] and
their respective generalizations.

A graph filter is a map between graph signals and is
defined as a matrix function h(·) of a graph shift operator
S. An important class of graph filters are linear and shift-
invariant (LSI) graph filters. An LSI filter can be expressed as
a polynomial of S, i.e. h(S) =

∑T
l=0 hlS

l, where T and {hl}
denote the filter degree and filter coefficients, respectively [15],
[32]. For a given input signal x, the output of the graph filter
is given by y = h(S)x.
The set of combinatorial graph Laplacians. In this paper,
we concentrate on the combinatorial graph Laplacian (CGL)
as our graph shift operator, defined as L = diag(A1) − A.
The set of all CGL matrices can be written as

Lc = {L |Lij = Lji ≤ 0 for i 6= j, L1 = 0}. (1)

Since L is a real and symmetric matrix, its eigendecomposition
can be written as L = VΛV>, where V is a unitary matrix
whose columns are the eigenvectors of L, and Λ = diag(λλλ)
collects the eigenvalues. Notice that (1) implies that L is
diagonally dominant, which ensures that L is positive semi-
definite.

Throughout the paper we assume the eigenvalues of L, 0 =
λ1 < λ2 < · · · < λN , are distinct. This assumption is not
fundamental from a technical viewpoint, but simplifies the
presentation of our results. In particular, it implies that G is
connected.

B. Discrete-time consensus dynamics

We consider discrete-time linear consensus dynamics [27]–
[29], evolving on a graph G with Laplacian L:

x[t] = x[t− 1]− αtLx[t− 1] = (I− αtL)x[t− 1]. (2)

Here the vector x[t] is a (time-varying) graph signal, whose
entries xi[t] correspond to the opinion of agent i in the network
at time t. We assume that 0 < αt < λ−1N for all t, such that
the dynamics is stable [28].

The above equations describe a dynamics in which agent
i updates its opinion according to a linear combination of
(i) its previous opinion and (ii) a weighted discrepancy with
its neighbors at the previous time point. The parameter αt
is called the diffusion rate and describes the weight given
to the discrepancy term in the update at time t. Under the
dynamics (2), the opinions of all agents coincide asymptotically,
i.e., lim

t→∞
x[t] = c1 where c is a real constant.

3

III. PROBLEM FORMULATION

We study the problem of inferring the topology of a network
from the observation of M consensus dynamics at a single point
in time. In contrast to other identification tasks, we assume that
only such snapshot information is available, i.e., no trajectories
of the states or detailed knowledge of the initial condition is
available.

Within this setting, we study three different identification
problems. The difference between these problems lies in the
amount of knowledge that we assume about the dynamics. In
our first problem formulation (Problem 1), we assume that the
diffusion rates and observation times are known. Subsequently,
we relax these assumptions, and allow for unknown – albeit
constant – diffusion rates and observation times (Problem 2).
Finally, in Problem 3 we tackle the most general case where
we observe multiple consensus dynamics with unknown and
possibly different diffusion rates and observation times.

From the perspective of GSP, our task can also be expressed
as learning the graph Laplacian L from the observations of a
set of filtered graph signals y. Let ξ := x[0] denote the graph
signal at time zero and y := x[T] the state of the dynamics at
a specific observation time T > 0. From (2) we know that y
and ξ are related as

y = h(L)ξ, where h(L) =

T∏
t=1

(I− αtL). (3)

Thus the dynamical description given in (2) can be equivalently
phrased in terms of (3) from a GSP perspective. In this paper
we adopt this GSP perspective and assume that we observe a
set of filtered graph signals {yk}Mk=1 of the form (3). Before
turning to the specific problem formulations we state our main
assumptions.

A. Assumptions

To ensure that there is some non-trivial information about
L contained in the observations {yk}Mk=1, we assume that
the dynamics has not reached asymptotic consensus. Also, as
discussed in Section II-B, we assume diffusion rates small
enough to ensure convergence.

Assumption 1 (Finite-time consensus dynamics) The
observation time T is finite, i.e. T < ∞, and the diffusion
rates satisfy 0 < αt < λ−1N for all t.

Second, we assume that we cannot control or observe the
initial input ξ, but have some knowledge about its distribution.
Specifically, we make the following assumption about the
unknown input signal throughout this paper.

Assumption 2 (White Gaussian input) The initial condition
ξ in (3) is a Gaussian random graph signal ξ ∼ N(0, σ2I),
where σ2 denotes the input power.

B. Formal problem statements

Consider a set of M independent, identically distributed
initial conditions {ξk}Mk=1 with unknown input power σ2. In

our most general formulation, each of these initial conditions
evolve according to a consensus dynamics such that

yk = hk(L)ξk, where hk(L) =

Tk∏
t=1

(I− α(k)
t L), (4)

for k = 1, · · · ,M . In our first problem, we focus on the
specific case where all the dynamics are identical, and the only
unknown parameter is the input power σ2.

Problem 1 (unknown input noise level) Given the set of M
outputs {yk}Mk=1 from (4) for an identical dynamics hk(L) ≡
h(L), estimate the Laplacian L for known observation time T
and diffusion rates {αt}.

The second problem formulation may be interpreted as a
relaxation of Problem 1 where we do not know the observation
time T nor the diffusion rate α, which we assume to be identical
for all time steps in the context of Problem 2.

Problem 2 (unknown graph filter) Given the set of M out-
puts {yk}Mk=1 from (4) for an identical dynamics hk(L) ≡
h(L), estimate the Laplacian L for unknown observation time
T and constant diffusion rate αt ≡ α.

Finally, we consider the more challenging and general setting
where there are M different consensus dynamics with unknown
parameters evolving on a single network with Laplacian L.

Problem 3 (unknown set of filters) Given the set of M out-
puts {yk}Mk=1 from (4) for different dynamics hk(L), estimate
the Laplacian L for unknown observation times Tk and diffusion
rates {α(k)

t }.

The three problems above may be interpreted in terms
of a hierarchy of assumptions on the knowledge of the
parameters. While Problem 1 is already challenging as we
only rely on snapshot data and have no knowledge of the
exact initial conditions, in Problems 2 and 3 we make even
weaker assumptions on the diffusion parameters Tk and {α(k)

t }.
However, in many applications we are precisely confronted
with such strongly underdetermined problems: while we may
have some (approximate) model of the functional form of the
dynamics (such as a consensus or a diffusion), the specific
parameters of such dynamics as well as their initial conditions
are often not known. Hence, ideally we would like to infer the
network together with the parameters of the dynamics.

To see the practical relevance of our problem setup, let
us consider an illustrative example for Problem 3 in the
context of social sciences. Assume that we observe, at a
specific point in time, the opinion profile of all agents in a
social network represented by L regarding M independent
topics, each of which evolved according to a consensus
dynamics as described in (4). The discussion about each of
the M topics, which we index by k ∈ {1, · · · ,M}, may
have started at a different point in time – corresponding to
unknown durations Tk. Moreover, the interactions between the
agents may have been heterogeneous across topics and time –
associated with unknown diffusion rates α(k)

t . Our goal is to

4

identify the underlying social network topology L from the
observation of M opinion profiles {yk} at a given time point.
For further illustration of these problems, including real-world
data implementations, see Section VI-D.

Note that in Problems 1 and 2, {yk}Mk=1 are independent
realizations of the output of a single, possibly unknown
(Problem 2) graph filter h(L) under a white noise input. This is
precisely the definition of a stationary graph process [33]–[35].
Hence, Problems 1 and 2 can also be expressed as inferring
L from independent samples of an identical stationary graph
process y. This has important implications for the solution of
these problems that we can exploit. In contrast, in Problem 3
each observation corresponds to a realization of a different
stationary process, and thus requires an adjusted solution
strategy.

Remark 1 (Related work [24]) In [24], the authors consider
a set of heat diffusion processes which can be modeled by
graph filters in the form of h(L) = exp(−τL) with different
nonnegative constants τ . The authors have studied the problem
of inferring the graph structure from a set of observations yk,
each of which corresponds to a different linear combination
(i.e., a mixture) of these heat diffusion processes. In contrast,
in our problem settings, each observation yk corresponds
to the output of a single, albeit parametrically uncertain,
consensus dynamics. For different observations, however, the
corresponding consensus dynamics can be identical (Problems 1
and 2) or different (Problem 3).

Comparing the graph filter for consensus dynamics in (3)
with the graph filter representing heat diffusion, it is easy
to show that they have the same asymptotic behavior, i.e.,
limT→∞

∏T
t=1(I − αtL) = limτ→∞ exp(−τL) = 11>/N .

Indeed, we have exp(−τL) = limj→∞(I− τL/j)j , and thus
when T and τ take finite values, the graph filters are markedly
different.

In the next two sections we propose different algorithms to
solve Problems 1, 2 and 3. Our algorithms are optimization-
based and can be considered as two-step procedures. First, we
extract spectral information about the CGL L from realizations
of the output signals, i.e., we collect information about the
eigenvectors and eigenvalues of L. Second, we construct a
convex optimization problem to recover the CGL, leveraging
the extracted spectral information and incorporating the CGL
constraints as well as a sparsity prior.

IV. TOPOLOGY INFERENCE FROM A SINGLE CONSENSUS
PROCESS

The focus of this section is on Problem 1, where we are
confronted with a single stationary graph process hk(L) ≡
h(L). Accordingly, it follows from (4) and Assumption 2 that

E[yky
>
k] = h(L)E[ξξ>]h(L)> = σ2h(L)2, (5)

where the last equality uses the fact that L is symmetric.
From (5), we can see that information about L is encoded

in the covariance of the output y. Specifically, as h(L) =

Vh(Λ)V>, where [h(Λ)]ii = h(λi) for all i, the covariance
of the output can be written as

Cy = E[yky
>
k] = σ2h(L)2 = σ2Vh(Λ)2V>. (6)

The following results are an immediate consequence.

Proposition 1 The output covariance matrix Cy and the graph
Laplacian L share the same set of eigenvectors. Moreover, the
eigenvalues of Cy are given by the following transformation
of the eigenvalues of L:

λi(Cy) = σ2h(λi)
2 = σ2

T∏
t=1

(1− αtλi)2. (7)

Proof: This follows directly from (6). �

Proposition 2 The input power σ2 of the initial condition ξ
and the eigenvalues of the graph Laplacian L can be directly
recovered from the spectrum of the output covariance Cy .

Proof: Since by assumption 0 = λ1 < λ2 < · · · < λN , it
follows from Proposition 1 that σ2 = λ1(Cy) > λ2(Cy) >
· · · > λN (Cy). Hence, the input power σ2 equals the largest
eigenvalue of Cy .

Furthermore, as 0 < αt < λ−1N for all t, we know that
λN < α−1max, where αmax is the maximum value of all αt. This
implies that λi < α−1max for all i. Defining the scalar function
f(λ) = σ2h(λ)2, it can be seen that f(λ) is a monotonically
decreasing function of λ for λ ≤ α−1max. Hence, the eigenvalues
of L can be uniquely recovered from those of Cy using (7). �

Having established that the output covariance Cy captures
all essential information about L, we now discuss how well
we can approximate Cy from a finite number of samples.
Given a set of M independent samples {yk}Mk=1 from an
identical distribution with zero-mean and covariance Cy, we
can compute the sample covariance matrix

SM =
1

M

M∑
k=1

yky
>
k (8)

as an estimate of the covariance Cy .
The sample covariance SM is a real symmetric and positive

semi-definite matrix, and we can write its eigendecomposition
as SM = UΣU>, where the diagonal matrix Σ collects the
eigenvalues of SM denoted by λ1(SM) ≥ λ2(SM) ≥ · · · ≥
λN (SM) ≥ 0. The input power σ2 can be estimated as

σ̂2 = λmax(SM) = λ1(SM). (9)

We estimate the eigenvectors of L as V̂ = U and the
eigenvalues of L by replacing Cy with SM in (7) to obtain√

λi(SM)

σ̂2
= h(λ̂i) =

T∏
t=1

(1− αtλ̂i), (10)

where λ̂i denotes the estimate of λi. Notice that in (10) we
leverage the fact that h(λ) is a non-negative function of λ when
λ ≤ α−1max. It follows from (9) that

√
λi(SM)/σ̂2 ∈ [0, 1],

and λ̂i is the unique real root in the range [0, α−1max] of the

5

polynomial in (10). After obtaining V̂ and λ̂λλ = [λ̂1, · · · , λ̂N]>,
we can estimate L as L̂ = V̂diag(λ̂λλ)V̂>. We refer to this
method as InverseFilter, and it is summarized in Algorithm 1.
The same idea has been used in the algorithm proposed in [23].

The theoretical performance guarantees of the InverseFilter
approach are stated in Theorems 1 and 2. Both theorems rely
on the following instrumental lemma.

Lemma 1 Consider yk generated as in (4) for 1 ≤ k ≤
M and assume that M ≥ N . Then for every δ > 0, with
probability at least 1− δ one has that

‖SM −Cy‖2 ≤ Cσ,δ
√
N/M,

where Cσ,δ is a constant which depends on σ and δ.

Proof: Define a vector z ∈ RN satisfying ‖z‖2 = 1. Since
yk is a zero-mean Gaussian random vector, we have that
E[z>yk] = 0 and E[ez

>yk] = e
1
2z
>Cyz ≤ e

σ2

2 . Hence, z>yk

is sub-Gaussian satisfying P
[
|z>yk| > t

]
< 2e−

t2

2σ2
1. The

result follows from Proposition 2.1 in [36]. �

Theorem 1 (Eigenvectors of InverseFilter) For all i, the
eigenvectors v̂i estimated by InverseFilter satisfy

‖v̂i−vi‖2≤
23/2‖SM −Cy‖2

min(λi−1(Cy)−λi(Cy), λi(Cy)−λi+1(Cy))
,

where we set λ0(Cy) =∞ and λN+1(Cy) = −∞. Moreover,
if M ≥ N we have that for every δ > 0, with probability at
least 1− δ,

‖v̂i−vi‖2≤
23/2Cσ,δ

√
N/M

min(λi−1(Cy)−λi(Cy), λi(Cy)−λi+1(Cy))
.

Proof: The first result is a restatement of the Davis-Kahan
theorem that follows from Corollary 1 in [37]. The second
result is obtained by combining the first result with the bound
in Lemma 1. �

Notice that the estimated eigenvectors v̂i and the true ones
vi are defined up to a sign inversion. Thus, for the bounds in
Theorem 1 to hold both signs have to be picked in a consistent
manner. More precisely, we set the sign of our estimated
eigenvectors such that v̂>i vi ≥ 0 for all i.

The estimation error on the eigenvalues obtained via Inverse-
Filter can also be bounded, as we show next.

Theorem 2 (Eigenvalues of InverseFilter) Assuming that σ
is known, one has that

|λ̂i − λi| < Cσ,αt,λi‖SM −Cy‖2, (11)

where 1 ≤ i ≤ N , λ̂i is obtained using (10) (σ̂ is set as the
ground truth σ here), and Cσ,αt,λi is a constant which depends
on σ, {αt}Tt=1 and λi. Moreover, if M ≥ N we have that for
every δ > 0, with probability at least 1− δ

|λ̂i − λi| < Cσ,αt,λi,δ
√
N/M. (12)

1The concepts of sub-Gaussian random variable and its tail bounds are
reviewed in Appendix A; see Definition 1 and Lemma 2.

Algorithm 1 InverseFilter
Input: Samples {yk}Mk=1, parameters T, {αt}Tt=1

Output: Laplacian L

1: Compute the sample covariance SM as in (8)
2: Compute eigendecomposition of SM = UΣU>

3: Estimate the input power as σ̂2 = max1≤i≤N Σii
4: Compute {λ̂i}Ni=1 by solving (10)
5: Set L̂ = Udiag([λ̂1, · · · , λ̂N])U>

6: return L̂

Proof: According to Theorem 6.4.3 in [38], we have that

|λi(SM)− λi(Cy)| ≤ ‖SM −Cy‖2

for 1 ≤ i ≤ N , which implies that

|
√
λi(SM)−

√
λi(Cy)| ≤ ‖SM −Cy‖2√

λi(SM) +
√
λi(Cy)

≤ ‖SM −Cy‖2√
λi(Cy)

. (13)

It follows from (7), (10) and (13) that

|h(λ̂i)− h(λi)| ≤ cσ,αt,λi‖SM −Cy‖2, (14)

where cσ,αt,λi = 1

σ
√
λi(Cy)

is a constant depending on σ,

{αt}Tt=1 and λi. The derivative of the filter function h(λ) is
h′(λ) = −

∑T
k=1 αk

∏
t 6=k(1− αtλ), and this implies that

minλ≤α−1
max
|h′(λ)| ≥

∑T
k=1 αk

∏
t 6=k(1− αtα−1max) := cα.

Since both of λi and λ̂i are no more than α−1max, we have

|h(λ̂i)− h(λi)| > min
λ≤α−1

max

|h′(λ)| · |λ̂i − λi| ≥ cα|λ̂i − λi|.

Combining this with (14), we have that

|λ̂i − λi| <
cσ,αt,λi
cα

‖SM −Cy‖2.

Set Cσ,αt,λi = cσ,αt,λi/cα, and the proof of (11) is completed.
Finally, (12) follows by combining (11) with the result in
Lemma 1. �

Theorems 1 and 2 reveal that, for the InverseFilter method,
the estimation error bounds of the eigenvalues and eigenvectors
of L are both proportional to ‖SM −Cy‖2, i.e., the estimation
error of the covariance Cy . Moreover, from Lemma 1 it follows
that ‖SM − Cy‖2 is bounded by

√
N/M up to a scalar

multiple when M ≥N . Hence, under the same assumption,
the estimation errors of the eigenvalues and eigenvectors of L
obtained by InverseFilter decrease as 1/

√
M with the number

of observations. This implies that InverseFilter is a consistent
estimator of the true Laplacian L. In addition, the estimation
errors of the eigenvectors depend on the gaps between the
eigenvalues of the covariance matrix. More precisely, if a
given eigenvalue has a large gap with the rest, its corresponding
eigenvector can be estimated with high accuracy.

6

A. Solution to Problem 1: Leverage Laplacian structure

One drawback of the InverseFilter method is that the
estimate L̂ obtained is generally not a valid CGL. This is
especially a problem when the sample size is small, significantly
deteriorating the estimation accuracy. To alleviate this problem
we enforce the constraint that our estimate should (i) be a valid
Laplacian belonging to the set Lc in (1), and (ii) correspond
to a sparse graph. To this end, we solve the following convex
optimization problem,

L∗ = argmin
L

d(L, L̂) + β‖vec(L)‖1, s.t. L ∈ Lc, (15)

where d(·, ·) is a convex function which can reflect how close
two matrices are, such as a Bregman divergence [39].

In this paper, we consider common choices for d(L, L̂) such
as ‖L−L̂‖F and ‖L−L̂‖2 as well as their squares. In practical
problems, the underlying graph is usually sparse, hence we
add a regularization term β‖vec(L)‖1 to promote the graph
sparsity, where β is a nonnegative regularization parameter.
The `1 norm is used as a convex surrogate of the non-convex `0
pseudo-norm (i.e., the number of non-zero entries in a vector).

The constraint L ∈ Lc in (15) leverages the structural
information and guarantees that the estimate L∗ is a valid
CGL. Note that for β = 0, problem (15) can be interpreted as
finding the nearest CGL to L̂. Hence, we refer to the method
recovering L∗ (for general β) as NearestCGL, and summarize
it in Algorithm 2. Finally, notice that although we discuss our
problem based on the consensus model in (4), the proposed
NearestCGL as well as InverseFilter can also be applied to other
graph filters whose corresponding functions are nonnegative
and one-to-one. Such functions guarantee that the eigenvalues
of L can be uniquely identified from the eigenvalues of the
covariance Cy [cf. (6)].

The proposed algorithm can scale to larger networks by
translating the optimization problem (15) into a well-studied
canonical formulation for which efficient solvers exist. To this
end, let us select d(L, L̂) = ‖L− L̂‖2F. For convenience, we
define the vector `̀̀ := vec(L) and similarly ˆ̀̀̀ := vec(L̂). We
further define two index sets I = {(i− 1)N + i | 1 ≤ i ≤ N}
and J = {(i − 1)N + j | 1 ≤ i < j ≤ N}. Then `̀̀I and
`̀̀J denote the vectors collecting the diagonal entries and the
entries in the lower triangular portion of L, respectively. We
also define a nonnegative vector a := −`̀̀J which contains the
weights of all possible edges as well as b := [̀`̀>I ,

√
2`̀̀>J]> and

b̂ := [̂̀`̀
>
I ,
√

2ˆ̀̀̀>
J]>. Due to the constraint L1 = 0, it is easy to

construct a (sparse) matrix P such that Pa = b. It follows that
‖L− L̂‖2F = ‖b− b̂‖22 = ‖Pa− b̂‖22 and ‖vec(L)‖1 = 4‖a‖1.
Hence, problem (15) is equivalent to

a∗ = argmin
a
‖Pa− b̂‖22 + 4β‖a‖1, s.t. a ≥ 0. (16)

Problem (16) is in the form of the `1-regularized least squares
problem with nonnegative constraints. Efficient methods to
solve such problems have been well studied. In this paper
(Section VI-E), we adopt a solver2 which uses the truncated
Newton interior-point method described in [40].

2The code can be found in https://web.stanford.edu/∼boyd/l1 ls/.

Algorithm 2 NearestCGL (Solution to Problem 1)
Input: Samples {yk}Mk=1, parameters T, {αt}Tt=1, β
Output: Laplacian L

1: Run InverseFilter as detailed in Algorithm 1
2: Find the nearest sparse CGL L∗ to L̂ by solving (15)
3: return L∗

Remark 2 (Solution to Problem 2) A potential (naive) solu-
tion to Problem 2 can be obtained by running multiple instances
of the NearestCGL method. More precisely, without loss of
generality we may absorb the unknown (but constant) α into
L, thus having only T as an explicit unknown parameter. We
may then run NearestCGL for T ∈ {1, 2, · · · , Tmax} for some
maximum possible observation time Tmax, to obtain a series
of potential Laplacians L∗(T). We can then choose the best
Laplacian among those by selecting the sparsest one or the one
that minimizes d(L∗(T), L̂(T)). For the latter case, the intuition
is that L̂(T) is expected to be far from a valid graph Laplacian
if a wrong value of T is selected.

Remark 3 (Related work [23]) A related method has been
proposed in [23] that studies a similar problem with graph
filters of the form hτ (L) = (L†)τ where τ ∈ N and τ ≥ 1, and
the goal is to jointly estimate L and τ . The authors propose
to perform a line search for τ̂ = 1, 2, 3, · · · , and execute their
algorithm (as will be explicitly stated in Section VI-A) for
each value of τ̂ to estimate the graph Laplacian. Denote by Lτ̂
the estimate associated with τ̂ . For all pairs of {τ̂ ,Lτ̂}, the
minimizer of ‖hτ̂ (Lτ̂)2−SM‖F is then chosen as the solution
(assuming unit input power).

The minimization of ‖hτ̂ (Lτ̂)2 − SM‖F behaves similar to
minimizing ‖Lτ̂ − h−1τ̂ (

√
SM)‖F. As described for the naive

solution above, Lτ/τ̂ is not a valid graph Laplacian, in general,
when τ̂ 6= τ . Hence, the distance between Lτ̂ (which is a
valid graph Laplacian guaranteed by the recovery algorithm)
and h−1τ̂ (

√
SM) (an estimate of Lτ/τ̂) is expected to be large

for τ̂ 6= τ . However, when the sample size is so small that
h−1τ̂ (

√
SM) cannot approximate Lτ/τ̂ well, h−1τ̂ (

√
SM) might

be close to some graph Laplacian, which is not necessarily
the true L. This might lead to a small ‖hτ̂ (Lτ̂)2 −SM‖F and,
thus, yield a worse solution.

Due to this issue, we propose a different approach to
Problem 2. Instead of estimating the graph Laplacian and
the filter parameter at the same time, we adopt a two-step
procedure in which we first estimate the unknown parameter
and then estimate the graph Laplacian with the parameter
estimate. The proposed method is empirically better than the
naive one previously described. Since the proposed method
relies on our solution to Problem 3, in the next section we tackle
Problem 3 and defer the solution to Problem 2 to Section V-B.

V. TOPOLOGY INFERENCE FROM MULTIPLE CONSENSUS
PROCESSES

The main focus of this section is on Problem 3, where our
goal is to infer the network topology L ∈ Lc from a set of

https://web.stanford.edu/~boyd/l1_ls/

7

observations {yk}Mk=1 each of which corresponds to a different
consensus dynamics. Different yk have different covariances
σ2hk(L)2, thus in general the sample covariance SM defined
in (8) will not converge to the covariance of any specific yk for
increasing sample size M . As a result, the method proposed in
Section IV is not applicable for this setting. However, SM still
contains spectral information about the unknown L and can be
leveraged in the estimation. We first discuss how information
about the eigenvectors of L can be inferred from SM . The
result is given in Theorem 3, which states that SM in (8) and
L are simultaneously diagonalizable, provided that the sample
size M is sufficiently large. For notational purposes, we define
the matrix B(M) = V>SMV. The proofs in this section use
some properties of random variables which are summarized in
Appendix A; see Lemmas 3-6.

Theorem 3 (Eigenvectors of the sample covariance) For
M→∞, the eigenbasis V diagonalizes SM , i.e., for all i 6= j

lim
M→∞

[V>SMV]ij = lim
M→∞

B
(M)
ij = 0. (17)

Proof: The matrix B(M) can be rewritten as

B(M) =
1

M

M∑
k=1

hk(Λ)V>ξkξ
>
k Vhk(Λ) =

1

M

M∑
k=1

wkw
>
k ,

(18)
where we set wk = hk(Λ)V>ξk. For each off-diagonal entry
in B(M) we thus have

B
(M)
ij =

1

M

M∑
k=1

[wk]i[wk]j .

Since ξk ∼ N(0, σ2I), it follows from the definition of wk

that wk ∼ N(0, σ2hk(Λ)2) and thus [wk]i ∼ N(0, σ2hk(λi)
2)

for all i are independent.
According to Lemma 4, [wk]i[wk]j is therefore

a sub-exponential random variable with parameters
(νk, bk) = (

√
2σ2hk(λi)hk(λj),

√
2σ2hk(λi)hk(λj)). Hence,

MB
(M)
ij is the sum of M independent zero-mean sub-

exponential random variables.
It follows from Lemma 6 that MB

(M)
ij is sub-exponential

with parameters (
√
Mν∗, b∗) where ν∗ =

√∑M
k=1 ν

2
k/M and

b∗ = maxk bk. Then from Lemma 3, we have

P
[
|B(M)
ij | ≥ l

]
≤ 2 exp

(
−Ml2

2ν2∗

)
for 0 ≤ l ≤ ν2∗/b∗. Recall that each hk(λi) is upper bounded
by 1, hence ν2∗ ≤ 2σ4. Consequently, for small enough l > 0:

lim
M→∞

P
[
|B(M)
ij | ≥ l

]
≤ lim
M→∞

2 exp

(
−Ml2

4σ2

)
= 0,

which completes the proof. �

Theorem 3 guarantees that the eigenbasis V can be recovered
by performing the eigendecomposition of SM for large enough
M . While in most practical instances of network inference M
will be bounded, Theorem 3 can nevertheless be used as a
basis for an inference algorithm even if only a finite number
of observations are available; see Section V-A.

We remark that the validity of (17) does not imply that
limM→∞ SM exists. Indeed, our weak assumptions on the
diffusion parameters Tk and α(k)

t – which translate into mild
conditions on hk(L) – could result in an SM that does not
converge for increasing M . However, even if SM does not
converge to a specific matrix, we may interpret (17) as stating
that SM converges to the set of matrices diagonalized by V.
As shown in Theorem 4, SM also provides insights about the
eigenvalues of the unknown L.

Theorem 4 (Eigenvalues of the sample covariance)
Assume that the eigenvalues of L = VΛV> are sorted in an
increasing order, i.e., λ1 < λ2 < · · · < λN . For every δ > 0
there exists a large enough number of observations Mδ such
that the diagonal entries of the matrix B(M) = V>SMV
follow an inverse order of the eigenvalues of L, i.e.,

B
(M)
11 > B

(M)
22 > · · · > B

(M)
NN , (19)

with probability at least 1− δ for every M ≥Mδ .

Proof: It follows from (18) that

B
(M)
ii =

1

M

M∑
k=1

([wk]i)
2,

where [wk]i ∼ N(0, σ2hk(λi)
2). According to Lemma 5,

([wk]i)
2 is sub-exponential with mean σ2hk(λi)

2 and parame-
ters (νik, b

i
k) = (2σ2hk(λi)

2, 4σ2hk(λi)
2). Thus, we have

ei = E[B
(M)
ii] =

σ2

M

M∑
k=1

hk(λi)
2, (20)

and MB
(M)
ii is the sum of M independent sub-exponential

random variables. It follows from Lemma 6 that MB
(M)
ii is

sub-exponential with parameters (
√
Mν∗i, b∗i) where ν∗i =√∑M

k=1(νik)2/M and b∗i = maxk b
i
k. Then from Lemma 3,

we have

P
[
|B(M)
ii − ei|≥ l

]
≤2 exp

(
−Ml2

2v2∗i

)
≤2 exp

(
−Ml2

8σ4

)
,

(21)
for 0 ≤ l ≤ ν2∗i/b∗i. The last inequality follows from the fact
that each hk(λi) is upper bounded by 1, which results that
ν2∗i ≤ 4σ4. A direct application of the union bound on (21)
yields

P

[
N⋃
i=1

∣∣∣B(M)
ii − ei

∣∣∣ ≥ l] ≤ 2N exp

(
−Ml2

8σ4

)
,

for 0 ≤ l ≤ ν2∗/b∗ := mini(ν
2
∗i/b∗i), from which it

immediately follows that

P

[
N⋂
i=1

∣∣∣B(M)
ii − ei

∣∣∣ < l

]
≥ 1− 2N exp

(
−Ml2

8σ4

)
≥ 1− δ,

(22)
where we fixed a desired probability level at 1−δ. Our goal now
is to choose l small enough to ensure that (19) is satisfied and
then solve for the corresponding number of observations Mδ in
(22) using such an l. To do this, first recall that 1 = hk(λ1) >

8

· · · > hk(λN). We further assume that hk(λi) > hk(λj) + τ
when i < j for some τ > 0, where τ does not depend on M . It
then follows from (20) that ei > ej +σ2τ2 for i < j. Consider
a deviation from the mean l∗ := σ2τ2/γ where γ ≥ 2 is large
enough to ensure that l∗ ≤ ν2∗/b∗. By specializing (22) to
l = l∗ and solving for M as a function of δ, we have that for
all M such that

M ≥Mδ :=
8γ2

τ4
log

(
2N

δ

)
,

every random variable B
(M)
ii is at most a distance l∗ from

its mean with probability at least 1 − δ. Since by definition
l∗ < (ei − ej)/2 for i < j, the variables B(M)

ii are sorted in
the same order as their means with high probability, and the
proof is completed. �

Theorem 4 reveals that, no matter whether SM converges
to a specific matrix or not, the diagonal entries of V>SMV
follow a specific order, i.e., the inverse order of the eigenvalues
of the true CGL L with high probability. This observation, in
combination with Theorem 3, is leveraged in Section V-A to
develop a network topology inference algorithm for finite M .

A. Solution to Problem 3: Leverage spectral ordering

The recovery of the CGL L under the setting of Problem 3
is generally an underdetermined problem. Even when we fix
the true eigenbasis V and the ordering of the eigenvalues, there
still exists freedom in choosing the exact eigenvalues as long
as the order is preserved. To sort out this ambiguity, which
amounts to selecting the eigenvalues following a specific order,
we assume that the network topology of interest is optimal in
some sense. Following the criterion considered in NearestCGL
to solve Problem 1 [cf. (15)], in this paper we focus on the
optimality based on sparsity. Notice that alternative criteria
can be introduced in the form of a generic convex function by
replacing the objective in (23a).

Recall that we denote by SM = UΣU> the eigende-
composition of the sample covariance defined in (8) where
the eigenvalues in Σ are sorted in decreasing order. Our
inferred CGL L∗ can be found by solving the following convex
optimization problem.

{L∗, γγγ∗} = argmin
{L, γγγ}

‖vec(L)‖1 (23a)

s.t. L ∈ Lc, (23b)

d(L,Udiag(γγγ)U>) ≤ ε, (23c)
γN = 1, γi ≤ γi+η for i = 1, · · · , N − η. (23d)

Analogously, to the discussion after (15), the `1 norm is a con-
vex relaxation of the `0 pseudo-norm, thus the objective (23a)
promotes sparsity in the estimate L∗. Alternatively, ‖vec(L)‖1
can be replaced by its iterative reweighted counterpart [41],
which has shown to perform better in practice.

The constraint in (23b) forces L∗ to be a valid CGL. The
constraints in (23c) impose that L∗ must be close to being
diagonalized by U, i.e. the eigenbasis of the sample covariance
SM . It has been shown in Theorem 3 that U coincides with
V, i.e. the eigenbasis of L, for arbitrarily large sample size M .

Algorithm 3 OrderedSpecTemp (Solution to Problem 3)
Input: Samples {yk}Mk=1, ε, η
Output: Laplacian L

1: Compute the sample covariance as in (8)
2: Obtain U by eigendecomposition SM = UΣU> where

the eigenvalues in Σ are sorted in decreasing order
3: Solve problem (23)
4: return L∗

However, for all practical implementations, M is finite and
thus, we do not require L∗ to be diagonalized by U directly.
Rather, we require L∗ to be close to another matrix which is
diagonalized by U. The matrix distance is measured by the
convex function d(·, ·). The problem can be reduced to a linear
program if we choose d(·, ·) as the maximum norm. Lastly,
the constraints in (23d) leverage Theorem 4 and incorporate
the fact that the eigenvalues of SM and the true CGL L are
inversely ordered by forcing the entries in γγγ to follow an
approximately increasing order. The parameter η is a positive
integer which can be adjusted according to the sample size M .
When η = 1 we impose a strict order on the eigenvalues for the
cases in which M is sufficiently large whereas for η > 1 we
impose a laxer order for the cases where M is not large enough.
We set γN = 1 to avoid the trivial solution L∗ = 0. We can
also set γN to other positive values since it will only vary the
scale of the estimate L∗. Notice that this scale ambiguity is
insurmountable given that a common factor across all unknown
diffusion rates α(k)

t can be absorbed into the unknown L. We
denote the proposed method as OrderedSpecTemp given that it
uses sorted eigenvectors (spectral templates) in the recovery
of L∗, and we summarize it in Algorithm 3.

Notice that in (23) we may move the constraint (23c)
to the objective function and utilize the `1 norm as the
regularization term. The objective function then becomes
d(L,Udiag(γγγ)U>) + β‖vec(L)‖1, where the graph sparsity
can be tuned with the regularization parameter β in addition
to the spectral fitting term. As is the case for existing
work [18], [19], [23], [24], the accuracy of prior knowledge,
i.e., the graph sparsity level, will influence the quality of the
selected regularization parameter and thus affect the algorithm
performance.

It should also be noticed that in Algorithm 3 we are able to
recover L without the need of recovering the set of parameters
α
(k)
t . Indeed, under the setting of Problem 3, α(k)

t can be
different over k and different over t. This weak assumption
makes it challenging (if not impossible) to identify {α(k)

t }.
Even for the simplified case in which α

(k)
t is identical for

every k but potentially varying with t (i.e., we consider multiple
snapshots of an identical linear time-varying dynamics), jointly
estimating L and {αt} is challenging. We leave this research
direction for future work.

We want to highlight that, while Algorithm 3 is proposed
under the setting of Problem 3, it can also be applied to un-
known filters of the form hk(L) ≡ h(L). The only requirement
is that the filter h(λ) is a nonnegative and decreasing function
of λ, which corresponds to a certain type of low-pass graph

9

filter. Under this condition, the eigenvalues of the covariance
Cy follow the inverse order of the eigenvalues of L (if we
fix the order of the eigenvectors). In this case, the constraint
incorporating the eigenvalue order information is still valid.
This constraint is not as restrictive as it might look at first
sight. For example, heat diffusion processes [24], [42] satisfy
this condition.

Finally, let us outline a way of solving problem (23) effi-
ciently. We select d(·, ·) as the squared Frobenius norm. Note
that we have ‖L−Udiag(γγγ)U>‖2F = ‖vec(L)− (U�U)γγγ‖22
where � denotes the Khatri-Rao product. Hence problem (23)
can also be formulated as

{L∗,γγγ∗} = argmin
{L,γγγ}

‖vec(L)− (U�U)γγγ‖22 + β‖vec(L)‖1

(24a)
s.t. L ∈ Lc, (24b)

γN = 1, γi ≤ γi+η for i = 1, · · · , N − η, (24c)

where we have moved the constraint (23c) to the objective
function and used the `1 norm as the regularizer. We can
solve the convex problem (24) via block coordinate descent
by alternately optimizing L and γγγ. If we fix γγγ and optimize
L, the problem will be the same as (16). If we fix L and
optimize γγγ, the problem is in fact in the form of a least-
squares minimization with linear inequality constraints and,
again, standard solver packages can be used.

Remark 4 (Related work [21]) Leveraging the ordering in-
formation of the eigenvectors – in terms of the associated
eigenvalues – is essential to the performance of Ordered-
SpecTemp. Indeed, in [21], a method is proposed based on
the spectral templates without the order information to recover
adjacency and normalized Laplacian matrices from diffused
signals. Such a method cannot be directly extended to our case
in order to recover CGL matrices. Notice that we consider
a different graph shift operator compared to [21]. If we do
not leverage the order information, i.e. ignoring (23d), and
add one more constraint such as tr(L) ≥ 1 to problem (23) to
avoid the solution L∗ = 0, and consider the infinite sample
size case in which we have exact spectral templates, then the
solution to (23) will be uninformative. More precisely, we
would recover L∗ii = 1

N and L∗ij = − 1
N(N−1) for i 6= j. In

addition, [21] considers a stationary graph process in which
multiple observations are obtained from an identical dynamics,
but in Problem 3 we consider a more practical and challenging
case where observations are sampled from different dynamics.

B. Solution to Problem 2: Combine NearestCGL and Ordered-
SpecTemp

Thus far we have proposed solutions to Problem 1 (namely,
NearestCGL) and Problem 3 (namely, OrderedSpecTemp).
Based on these, we now propose a solution to Problem 2
that empirically outperforms the one delineated in Remark 2.

First notice that for Problem 2, L can only be recovered up
to a scalar multiple since α is unknown and αL = α

α0
(α0L)

for any non-zero scalar α0. Since T is unknown, NearestCGL
as stated in Algorithm 2 cannot be applied. More precisely,

Algorithm 4 Hybrid (Solution to Problem 2)
Input: Samples {yk}Mk=1, ε, η, β
Output: Laplacian L

1: Run OrderedSpecTemp (Algorithm 3) to obtain L∗ord
2: Solve (25) to obtain T̂
3: Run NearestCGL (Algorithm 2) with T̂ to obtain L∗

4: return L∗

(10) cannot be solved to find the estimated eigenvalues in
InverseFilter. However, we may still apply OrderedSpecTemp
as explained in Algorithm 3, and we denote its solution as L∗ord.
To estimate the unknown observation time T , we leverage the
fact that T is an integer and perform a line search to optimize

T̂ = argmin
t∈{1,··· ,Tmax}

‖L∗ord − L̂t tr(L∗ord)/tr(L̂t)‖F, (25)

where L̂t is obtained via InverseFilter (cf. Algorithm 1) by
assuming that T = t. The ratio of traces in (25) ensures that
the scales of L∗ord and L̂t are comparable. Notice that for this
problem setting where the diffusion rates αt ≡ α are constant,
InverseFilter can be simplified as

L̂t = I− (SM/σ̂
2)

1
2t ,

where σ̂2 is obtained via (9). Intuitively, if L∗ord were to
coincide with the true Laplacian L, then we would expect
T̂ in (25) to return the true observation time T . In the absence
of such ground truth, OrderedSpecTemp provides an estimate of
the Laplacian that relies on the available observation. However,
Algorithm 3 does not leverage the fact that all the observations
come from a single consensus dynamics with a constant
diffusion rate (cf. Problem 2). Hence, once we have estimated
T , we take advantage of this fact by implementing NearestCGL
(cf. Algorithm 2) for T = T̂ , to obtain our estimated Laplacian
L∗. This hybrid algorithm is summarized in Algorithm 4.

Remark 5 It should be noted that the assumption αt ≡ α is
made only in the context of Problem 2. For such dynamics
whose diffusion rates do not change over time, we can assume
that αt is constant and adopt Algorithm 4. When we do not
have such prior information, we can leverage Algorithm 3
which imposes less assumptions on the diffusion parameters.
Intuitively, in Problems 1-3, we assume different levels of
knowledge about {α(k)

t } to find a trade-off between model
flexibility and algorithm performance. In fact, we can use
Algorithm 3 to solve all of the three problems. However, if we
do have additional prior information about the model (like in
Problems 1 and 2), we can incorporate it into our algorithm to
further improve the estimation accuracy. This point is validated
in our experiments; see Fig. 2(b).

VI. NUMERICAL EXPERIMENTS

We illustrate the performance of the methods described and
compare them with state-of-the-art solutions through a series
of numerical experiments. The experiments based on synthetic
data are divided by the problem type that is being studied
(Sections VI-A-VI-C) whereas in Section VI-D we implement

10

our methods to real-world data. In addition, we discuss the
scalability of the proposed algorithms and infer a larger real-
world network in Section VI-E.

A. Experiments on Problem 1

We compare the performance of InverseFilter (Algorithm 1),
NearestCGL (Algorithm 2), and the approach proposed in [23]
for estimating the network topology from a single consensus
dynamics. The method in [23] assumes that the graph filter
is a one-to-one and non-negative function of the CGL L with
one unknown parameter, and proposes an approach to jointly
estimate L and the unknown parameter from filtered signals.
We refer to this approach as StructGLasso in this paper3, and
it can be directly adopted for our problem setting where the
parameters in the graph filter are given. The StructGLasso
method solves the following problem to estimate L,

L∗sgl = argmin
L

tr(LL̂†)− log |L|+ β‖vec(L)‖1, s.t. L ∈ Lc,
(26)

where L̂ is the estimate obtained via InverseFilter, and |L|
denotes the pseudo-determinant of L. Notice that the idea
behind (26) is to incorporate structural information into
graphical LASSO [8], [43].

We generate synthetic datasets based on the signal model
in Problem 1. We consider random Erdős-Rényi (ER) graphs
[44] of size N = 36 and edge-formation probability p = 0.1.
The edge weights are randomly selected from a uniform
distribution in the interval (0.1, 3). We consider white Gaussian
input, i.e. ξ ∼ N(0, σ2I), and we set σ = 1. Therefore,
the dataset entries {yk}Mk=1 are randomly drawn from the
distribution N(0, h(L)2) where h(L) =

∏T
t=1(I − αtL). We

set T = 3 and {α1, α2, α3} = {0.7, 0.8, 0.9}/λmax(L). To
measure the performance, we compute the recovery error as
‖L∗ − L‖F/‖L‖F where L is the ground truth and L∗ is
the estimate. For NearestCGL and StructGLasso, we consider
two cases where (i) there is no regularization (β = 0), and
(ii) the regularization parameter β is carefully selected. For
StructGLasso, β is chosen from the following set

{0} ∪ {0.75rsmax

√
log(N)/M | r = 1, 2, · · · , 14}

as suggested in [23], [43] where smax = maxi 6=j |[L̂†]ij | is
the maximum off-diagonal entry of L̂† in absolute value. For
NearestCGL, we consider two choices for d(L, L̂) in (15),
namely ‖L− L̂‖F and ‖L− L̂‖2. For NearestCGL with ‖ · ‖F,
β is selected from {0, 0.055:0.0025:0.085} for M/N ≤ 3 and
from {0 :0.01 :0.08} otherwise. For NearestCGL with ‖ · ‖2,
β is selected from {0, 0.008:0.001:0.02} for M/N ≤ 3 and
from {0 : 0.002 : 0.016} otherwise. We perform Monte-Carlo
simulations and compute the average recovery error over 20
realizations. The methods are all implemented using CVX [45]
and the results are shown in Fig. 1(a).

It can be observed that, for small sample size, the regular-
ization improves the estimation performance significantly. For
NearestCGL, the matrix distance based on the Frobenius norm
outperforms the one based on the spectral norm. Moreover, the

3We thank the authors of [23] for kindly sharing their code with us.

proposed NearestCGL with Frobenius norm and a fine tuned
regularization parameter outperforms all of the other methods
for every sample size considered.

Remark 6 (Related work [23]) Both our proposed Near-
estCGL and the algorithm in [23] can be applied to the class
of graph filters whose corresponding functions are nonnegative
and one-to-one if the type and parameters of the graph filter are
known. The first step of these two algorithms are similar (i.e.,
InverseFilter) while their second steps differ significantly. It can
be observed from (15) and (26) that our second step directly
relies on L̂ while (26) is based on the pseudo-inverse L̂†.
Compared to [23], we use different functions d(·, ·) to measure
the difference between two matrices. We adopt matrix norms,
whereas [23] uses a log-determinant Bregman divergence [39].
The specific graph filter type will influence the estimation
accuracies of L and L† obtained in the first step, which causes
the performance differences between our algorithm and the
one in [23]. Roughly speaking, [23] shows the advantage of
its proposed algorithm for a few types of graph filters which
explicitly involve the pseudo-inverse of L. This is because,
for such graph filters, the estimation accuracy of L† obtained
by InverseFilter is generally higher than that of L. One the
other hand, our model can be extended beyond consensus to
a wider range of graph filters that are explicit functions of L
including heat diffusion h(L) = exp(−τL). In this respect,
both approaches seem to complement each other since they
work better for different classes of filters.

For conciseness we only present the results for white
Gaussian input and ER graphs, while the observed results are
preserved when considering white uniform input – i.e., each
entry in the input ξ is randomly generated from a uniform
distribution in the interval [−

√
3σ,
√

3σ] – and other graph
models including grid graphs, stochastic block model (SBM),
small-world, and Barabási-Albert model [44].

To study the influence in the performance of a deviation
from the independent, white Gaussian input assumption (As-
sumption 2), we consider two types of inputs: (i) we generate
the input as a time series of the form ξt = aξt−1 + (1− a)wt

where ξ1 and {wt} are randomly drawn from N(0, I); and
(ii) we generate the input following the distribution N(0,Cξξξ)
where Cξξξ is drawn from the Wishart distribution WN (I, d)
and normalized by d. The other simulation parameters are the
same as those used in generating Fig. 1(a). The results are
shown in Figs. 1(b) and 1(c), respectively.

It can be observed that, for case (i), the performance of
NearestCGL decreases as the parameter a increases. This is as
expected since larger values of a introduce more correlation
between successive inputs, thus deviating from the independent
input assumption (a = 0). However, regardless of the value of
a, the recovery error decreases as the sample size M increases.
Intuitively, this can be attributed to the fact that ξt1 and ξt2
are close to independent if they are separated by a long time
period. Hence, NearestCGL can be seen to output a consistent
estimator under this setting.

For case (ii), the recovery error of NearestCGL decreases
as the parameter d increases. This is also natural since the

11

0.75 1 3 10 30 100 300

0

0.2

0.4

0.6

0.8

1

(a)

0.75 1 3 10 30 100 300

0

0.2

0.4

0.6

0.8

1

1.2

(b)

0.75 1 3 10 30 100 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

Fig. 1. Average recovery error as a function of the number of observations under the setting of Problem 1 for ER graphs. Solid (dashed)
lines correspond to methods with (without) regularization. (a) Performance comparison between InverseFilter (Algorithm 1), NearestCGL
(Algorithm 2) for two types of distances, and StructGLasso (26) when white Gaussian inputs are considered. (b) Performance of NearestCGL
with Frobenius norm when the input is generated as time series with different correlation parameters a. (c) Performance of NearestCGL with
Frobenius norm when the input covariance follows the normalized Wishart distribution with different degrees of freedom d.

resulting Cξξξ is closer to the identity matrix for larger d, and
the white case Cξξξ = I can be considered as the extreme
setting when d =∞. For finite d, the recovery error does not
converge to zero for large M . This follows from (5), where
a colored input implies that Cy does not share the same set
of eigenvectors as L. Hence, NearestCGL does not output a
consistent estimator in this setting.

B. Experiments on Problem 2
In evaluating the performance of the method proposed in

Section V-B, we first analyze the accuracy of the estimator T̂
of the observation time [cf. (25)]. We consider three parameter
settings: (i) T = 5 and ER graphs of size N = 36 and
edge-formation probability p = 0.2; (ii) T = 4 and SBM
graphs with N = 36 nodes and two blocks where the vertex
attachment probabilities across blocks and within blocks are
p1 = 0.1 and p2 = 0.3, respectively; and (iii) T = 3
and small-world graphs generated via Watts-Strogatz model
with N = 36 nodes, mean node degree 4 and rewiring
probability 0.2. For all settings, we adopt unweighted graphs
and the diffusion rate is chosen as α = 0.8/λmax(L). We set
Tmax = 10 in (25). In solving (25), we must first obtain L∗ord
via OrderedSpecTemp. Consequently, in (23) we set η = 1,
d(L,K) = ‖L−K‖2, and ε equal to the smallest possible value
in the set {0.002:0.002:0.03}∪{0.03+0.005 r | r = 1, 2, · · · }
that guarantees feasibility of (23). One iteration of a reweighted
`1 minimization scheme [41] is adopted. For each setting, we
implement 100 realizations and compute the ratio of successful
recovery of T . The results are shown in Fig. 2(a). We can see
a sharp increase on the probability of successful identification
with increasing the sample size, eventually converging to 1.

Furthermore, for setting (i), we compare the recovery
performance of three methods, namely, OrderedSpecTemp
(Algorithm 3), the proposed hybrid algorithm (Algorithm 4),
and NearestCGL (Algorithm 2) with the true T . Notice that this
latter method is not applicable in practice (since T is unknown)
but rather serves as a benchmark for ideal performance. In
NearestCGL as well as the hybrid method, we simply set
β = 0. The results (averaged across 30 realizations) are shown
in Fig. 2(b). We can see that the performance of the proposed

10
0

10
1

10
2

10
3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti

o
 o

f
su

c
c
e
ss

fu
l

id
e
n

ti
fi

c
a
ti

o
n

ER, T=5

SBM, T=4

Small world, T=3

(a)

10
0

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
v

er
ag

e
re

co
v

er
y

 e
rr

o
r

OrderedSpecTemp

Hybrid method

NearestCGL with true T

(b)

Fig. 2. (a) Ratio of successful identification of the observation time
T for three types of graphs. (b) Average recovery error from a
single consensus dynamics with time-invariant diffusion rate and
unknown observation time T . The proposed hybrid method achieves
performance close to the benchmark where T is assumed to be known.

12

hybrid approach is better than that of OrderedSpecTemp,
effectively corroborating that L∗ is a better estimate than L∗ord
in Algorithm 4. Moreover, the hybrid approach is very close
to the benchmark of NearestCGL with perfect knowledge,
especially in the large sample size regime.

C. Experiments on Problem 3

We first test the proposed OrderedSpecTemp method (Algo-
rithm 3) when the eigenbasis V is perfectly known, i.e., when
U = V in (23c). This situation corresponds to the infinite
sample size regime (cf. Theorem 3). A high recovery rate
under this setting is important since it is a necessary condition
for acceptable recovery in the finite sample size regime.
We compare OrderedSpecTemp with two other methods: (i)
SpecTemp+LEigVec: in this method, we assume that the full
order information is unavailable and only the index of the
leading eigenvector is known, so we construct the problem
similar to (23) while in (23d) we only keep the constraint
γN = 1; (ii) The method proposed in [1], where the constraint
(23d) is replaced by γi ≤ γi+η− ε2 for i = 1, · · · , N −η, and
ε2 > 0 can be chosen freely since it only affects the scale
of the recovered Laplacian. One advantage of (23d) over the
method in [1] is that (23d) can be directly adopted in the case
when the CGL L has repeated eigenvalues while [1] requires
the assumption that L has distinct eigenvalues.

We consider random unweighted ER graphs of varying sizes
N ∈ {10, 20, · · · , 50} and edge-formation probabilities p ∈
{0.1, 0.2, · · · , 0.5}. Since the method in [1] is proposed under
the assumption that the CGL has distinct eigenvalues, we
generate graphs satisfying mini 6=j |λi − λj | ≥ 10−4. We set
parameters in (23) as U = V, ε = 0 and η = 1. For the
method in [1], we set ε2 = 1. For all three methods, three
iterations of a reweighted `1 minimization scheme [41] are
adopted. For each graph generated, we consider the recovery
to be successful if ‖L∗ − L‖F/‖L‖F < 0.02. Note that the
estimate L∗ here is scaled to have the same trace as the true L
in order to compute the recovery error. The results (averaged
across 50 realizations) are shown in Fig. 3. We can see that the
proposed OrderedSpecTemp method outperforms the other two
methods, and its recovery rate is equal to or near 1 for all graph
settings. Notice that the SpecTemp+LEigVec method works
better for sparser graphs. This indicates that the eigenvector
order information (ignored by SpecTemp+LEigVec) becomes
more important for denser graphs.

We now test OrderedSpecTemp in the finite sample size
regime, and compare it with SpecTemp+LEigVec to further
study the value of incorporating the eigenvector ordering infor-
mation. We consider unweighted ER graphs of size N = 36
and varying edge-formation probabilities p = {0.1, 0.3, 0.5}.
For each graph, our goal is to recover the CGL L from
the observation of M synthetic consensus dynamics, where
we vary M from N to 103N . For each dynamics, we draw
the input from a standard multivariate Gaussian distribution,
selecting Tk uniformly at random in {3, 4, 5} and each diffusion
rate α

(k)
t uniformly at random in (0, 1/λmax(L)). We set

η = 1 for OrderedSpecTemp, use the spectral norm as the
matrix distance, and set ε as the smallest possible value in the

set {0.005 r | r = 1, 2, · · · } that guarantees feasibility of the
optimization problem for both two methods [cf. (23)]. Apart
from the recovery error, we also consider the F-score metric,
which is commonly used to evaluate binary classification
performance and computed as

F-score(L∗,L) =
2tp

2tp + fn + fp
,

where tp, fp and fn respectively represent true-positive, false-
positive and false-negative detection of edges in the estimate
L∗ with respect to edges in the true L. F-score takes values
between 0 and 1, and 1 represents perfect classification. The
results (averaged across 20 realizations) are shown in Fig. 4.

As displayed in Fig. 4, for both methods and all graph
density settings, we observe a monotonous decrease of the
recovery error and a monotonous increase of the F-score with
increasing number of samples M . This is not surprising since
we know that for larger sample size, the eigenbasis of the
sample covariance becomes closer to the eigenbasis of the
CGL and thereby facilitates recovery. We can also see that,
OrderedSpecTemp outperforms SpecTemp+LEigVec and the
performance gap increases when the graph becomes dense. This
is consistent with the results in Fig. 3, i.e. SpecTemp+LEigVec
works well for very sparse graphs, while when the graph density
increases, the full order information becomes more valuable
in aiding recovery.

D. Topology inference from real-world data

We present two different real-world case studies where we
recover connections between the states of the U.S. in both
cases but based on very different information sources, namely,
temperature measurements and congressional roll-call votes.

Temperature network. We apply the proposed Ordered-
SpecTemp method on a real-world dataset consisting of
M = 5844 average daily temperature measurements collected
from N = 45 states in the U.S. over the years 2000-2015
[46]. This same dataset was analyzed in [23]. The temperature
signals are spatially smooth across different states, and the
Rocky Mountains region (which is mainly located in the states
of Montana, Wyoming, Colorado, and Idaho) has lower average
temperature values than its geographical neighborhood (cf.
Fig. 7 in [23]).

In solving (23), we set η = 1, d(L,K) = ‖L−K‖2, and ε
equal to the smallest possible value (found via five iterations
of binary search between 0 and 1) that guarantees feasibility
of (23). The result shown in Fig. 5(a) is obtained after three
iterations of a reweighted `1 minimization scheme [41].

As shown in Fig. 5(a), the edges connecting neighboring
states generally have larger weights since temperature values
are similar between regions located near to each other. In
this sense, temperature values are accurately described by a
consensus dynamics where discrepancies between neighbors
tend to be reduced. However, there are other factors – besides
the geographical distance – that can also influence the similarity
of temperature values, such as landform and altitude. It can be
observed that the edges between the Rocky Mountain states
and their neighbors to the east have relatively small weights.

13

0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

(a) SpecTemp+LEigVec

0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

(b) OrderedSpecTemp

0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

(c) The method in [1]

Fig. 3. Comparison of recovery rate between three methods for ER graphs as a function of graph size N and edge-formation probability p.
The proposed OrderedSpecTemp method outperforms both a variant ignoring the order of the eigenvectors and the method proposed in [1].

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 re
co

ve
ry

 e
rr

or

p=0.1
p=0.1
p=0.3
p=0.3
p=0.5
p=0.5

(a)

100 101 102 103
0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 F
-s

co
re

p=0.1
p=0.1
p=0.3
p=0.3
p=0.5
p=0.5

(b)

Fig. 4. Network inference performance under the setting of Prob-
lem 3 as a function of the number of samples for different graph
densities p. Solid (dashed) lines correspond to the OrderedSpecTemp
(SpecTemp+LEigVec) method. The performance is measured in terms
of (a) the average recovery error, and (b) the average F-score.

In this way, the recovered network captures the natural barrier
for temperature similarity imposed by the mountain formation.

As mentioned, in [23] the authors apply their proposed
method – referred to as StructGLasso in this paper – to this
same dataset by assuming different graph filter functions and
parameters. The network recovered here is comparable to the
one inferred in [23] for an exponential decay filter, which
was deemed as better revealing the structure of the signal (cf.
Fig. 8 (d)-(f) in [23]). This implies that, in the absence of

prior knowledge about the specific filter h(L) that is driving
the underlying network process, adopting a more versatile
model where only a decaying frequency response is assumed
[cf. (23d)] can be beneficial. On the contrary, if the filter type
is known in advance, then it is reasonable to incorporate it in
the recovery method, as advocated in [23].

Senate network. We now apply OrderedSpecTemp on a real-
world dataset from congressional roll-call votes in the U.S. [47].
We use the roll-call data of 100 senators (2 per state) in the
114th congress (2015-2017), consisting of M = 502 roll-calls.
We quantify yea, nay and other cases (e.g. abstention) as 1,
−1 and 0, respectively, to represent each senator’s opinion.
Since each state has two senators, we use the sum of their
opinions as the graph signal value of their state, resulting in
a graph with N = 50 nodes. We choose the parameters in
(23) following the same process explained for the temperature
network.

We divide the states into three categories: (i) labeled as D
if both senators in this state are from the Democratic Party,
(ii) labeled as R if both senators in this state are from the
Republican Party, (iii) labeled as M if the senators are from
different (mixed) parties. The recovered network contains 391
edges, and we count the number of edges inside each category
and between different categories in the top-K edges sorted
by weight for different K, as shown in Fig. 5(b). It can be
observed that there are more edges inside the categories D
and R, while less edges between them. In Fig. 5(c), we plot
the recovered network with the top-150 edges in spring layout
using NetworkX [48]. It can be observed that two tight clusters
of states emerge (D and R) with a looser cluster of mixed
states M connecting these two.

E. Scalability of the proposed algorithms

To illustrate the scalability of the proposed algorithms, we
infer a large-scale real-world network under the setting of
Problem 1 [cf. (16)]. In particular, we consider the U.S. political
blogs network4 which is a directed network of hyperlinks
between weblogs on US politics [49]. We preprocessed the
graph by: (i) converting the directed graph to an undirected one,
(ii) removing self-loops and multi-edges, and (iii) keeping the

4The data can be found in http://www-personal.umich.edu/∼mejn/netdata/.

http://www-personal.umich.edu/~mejn/netdata/

14

(a)

0 30 70 110 150 190 230 270 310 350 390
0

20

40

60

80

100

F
re

q
u

en
ce

D-D

R-R

D-R

M-M

D-M

R-M

(b)

CT

ME

MA

NH

RI

VT

DE
NJ

NY

PA

IL

IN

MI

OH

WI

IA

KS

MN

MO

NE ND

SD

VA

ALAR

FL

GA

LA

MS
NC

SC
TX

KY

MD

OK

TN WV

AZ

CO

ID

MT
NV

NM

UT
WY

CA

OR
WA

AK

HI

(c)

Fig. 5. (a) Network topology inference from temperature data using the OrderedSpecTemp method. The edges are colored so that darker
colors represent larger edge weights. The east-west split by the Rocky Mountains is captured by the low weights of the recovered edges in
the region. (b) Frequency of edges in the senate network that are within and across party classes. As expected, ties within the Democratic
and Republican Parties are stronger and more numerous. (c) Senate network recovered with top-150 edges sorted by weight. Red/blue
nodes denote states whose two senators are both republican/democratic; yellow nodes denote states having one republican senator and one
democratic senator; the orange/cyan node denotes the state having one republican/democratic senator and one independent senator.

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Fig. 6. Average recovery error and F-score as a function of the number
of samples under the setting of Problem 1 for the U.S. political blogs
network of 1,222 nodes.

largest connected component. After these changes, we obtain an
undirected and unweighted graph with 1,222 nodes and 16,714
edges. We adopt a graph filter of the form h(L) = (I−αL)T ,
where we set α = 0.9/λmax(L) and T = 15. We consider
different values for the ratio of sample size and graph size,
i.e., M/N = 1, 2, 3, 4, 5. The corresponding values for the
regularization parameter are selected as β = 40, 30, 25, 20, 5,
respectively. The results, averaged across 20 realizations, are
shown in Fig. 6. We observe that the proposed NearestCGL
outperforms the InverseFilter algorithm both in terms of
recovery error and F-score. As an indication of scalability,
we remark that solving the problem (16) once for this specific
graph requires around 17 seconds of computation in a standard
laptop computer.

VII. CONCLUSIONS

We proposed a set of algorithms for the identification of a
network based on observing snapshots of consensus processes
considering different levels of parameter uncertainty. To achieve
this, we constructed convex optimization problems that output
a sparse, valid graph Laplacian which is provably consistent
with the spectral information obtained from the observed

data. Finally, we showcased the effectiveness of the proposed
methods in synthetic and real-world scenarios.

Potential future research avenues include: (i) investigation
of different types of restrictions on the available data, such as
observation models with snapshot data sampled from partial
nodes of the graph; (ii) study of the trade-off between specific
network topologies and the required sample size to achieve a
desired level of estimation accuracy; (iii) consideration of a
richer class of dynamical models, including non-deterministic
processes such as switched systems; (iv) joint estimation of
several related networks from the concurrent observation of
consensus dynamics [50], [51]; and (v) topology inference of
directed graphs.

APPENDIX A
RANDOM VARIABLES AND PROPERTIES

In this appendix, we review concepts and properties of
random variables that we used throughout the paper; for a
thorough review, see [52].

Definition 1 (Sub-Gaussian random variable) A random
variable x with mean µ = E[x] is sub-Gaussian if there is a
positive parameter σ such that

E[eγ(x−µ)] ≤ e
σ2γ2

2 for all γ ∈ R. (27)

Lemma 2 (Sub-Gaussian tail bound [52]) Suppose that x
is sub-Gaussian with mean µ and parameter σ, then

P[|x− µ| ≥ l] ≤ 2e−
l2

2σ2 for all l ∈ R. (28)

Definition 2 (Sub-exponential random variable) A random
variable x with mean µ = E[x] is sub-exponential if there are
positive parameters (ν, b) such that

E[eγ(x−µ)] ≤ e
ν2γ2

2 for all |γ| < 1/b. (29)

Lemma 3 (Sub-exponential tail bound [52]) Suppose that
x is sub-exponential with mean µ and parameters (ν, b), then

P[|x− µ| ≥ l] ≤

{
2e−

l2

2ν2 if 0 ≤ l ≤ ν2

b ,

2e−
l
2b if l > ν2

b .
(30)

15

Lemma 4 ([1]) Let x ∼ N(0, σ2
1) and y ∼ N(0, σ2

2) be
independent random variables. Then their product z = xy
is sub-exponential with parameters (

√
2σ1σ2,

√
2σ1σ2).

Lemma 5 ([1]) Let x ∼ N(0, σ2), then its square z = x2

is sub-exponential with mean E(z) = σ2 and parameters
(2σ2, 4σ2).

Lemma 6 ([52]) Let {xk}Mk=1 be independent sub-exponential
random variables with mean µk and parameters (νk, bk) re-
spectively. Then the variable

∑M
k=1(xk−µk) is sub-exponential

with parameters (
√∑M

k=1 ν
2
k , max

k
bk).

REFERENCES

[1] S. Segarra, M. T. Schaub, and A. Jadbabaie, “Network inference from
consensus dynamics,” in IEEE 56th Annual Conference on Decision and
Control (CDC), 2017, pp. 3212–3217.

[2] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,”
Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

[3] M. O. Jackson, Social and economic networks. Princeton university
press, 2010.

[4] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no.
6825, p. 268, 2001.

[5] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 16–43, 2019.

[6] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from
data: A signal representation perspective,” IEEE Signal Process. Mag.,
vol. 36, no. 3, pp. 44–63, 2019.

[7] D. Koller and N. Friedman, Probabilistic graphical models: Principles
and techniques. MIT Press, 2009.

[8] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp.
432–441, Jul. 2008.

[9] P. Ravikumar, M. J. Wainwright, G. Baskutti, and B. Yu, “High-
dimensional covariance estimation by minimizing `1-penalized log-
determinant divergence,” Electronic Journal of Statistics, vol. 5, pp.
935–980, 2011.

[10] S. Zhou, P. Rutimann, M. Xu, and P. Buhlmann, “High-dimensional
covariance estimation based on gaussian graphical models,” Journal of
Machine Learning Research, vol. 12, pp. 2975–3026, 2011.

[11] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” ACM Transactions on Knowledge Discovery
from Data, vol. 5, no. 4, 2012.

[12] M. Gomez-Rodriguez, J. Leskovec, D. Balduzzi, and B. Schölkopf, “Un-
covering the structure and temporal dynamics of information propagation,”
Network Science, vol. 2, no. 1, pp. 26–55, 2014.

[13] M. Timme and J. Casadiego, “Revealing networks from dynamics: an
introduction,” Journal of Physics A: Mathematical and Theoretical,
vol. 47, no. 34, p. 343001, 2014.

[14] S. Shahrampour and V. M. Preciado, “Topology identification of directed
dynamical networks via power spectral analysis,” IEEE Transactions on
Automatic Control, vol. 60, no. 8, pp. 2260–2265, 2015.

[15] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
Apr. 2013.

[16] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[17] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[18] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
laplacian matrix in smooth graph signal representations,” IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160–6173, 2016.

[19] V. Kalofolias, “How to learn a graph from smooth signals,” in Proceedings
of the International Conference on Artificial Intelligence and Statistics,
2016, pp. 920–929.

[20] J. Mei and J. M. F. Moura, “Signal processing on graphs: Causal modeling
of unstructured data,” IEEE Trans. Signal Process., vol. 65, no. 8, p.
20772092, 2017.

[21] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network topology
inference from spectral templates,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 3, no. 3, pp. 467–483, 2017.

[22] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat,
“Characterization and inference of graph diffusion processes from
observations of stationary signals,” IEEE Trans. Signal Inf. Process.
Netw., vol. 4, no. 3, pp. 481–496, 2018.

[23] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from filtered
signals: Graph system and diffusion kernel identification,” IEEE Trans.
Signal Inf. Process. Netw., 2018.

[24] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat
diffusion graphs,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3,
pp. 484–499, 2017.

[25] R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, “Network
topology inference from non-stationary graph signals,” in IEEE Int. Conf.
on Acoustics, Speech and Signal Process., March 2017, pp. 5870–5874.

[26] R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, “Identifying
the topology of undirected networks from diffused non-stationary graph
signals,” arXiv preprint arXiv:1801.03862, 2018.

[27] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Auto. Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[28] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–
233, Jan. 2007.

[29] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Trans. Auto.
Control, vol. 50, no. 5, pp. 655–661, May 2005.

[30] A.-E. Saliba, A. J. Westermann, S. A. Gorski, and J. Vogel, “Single-cell
rna-seq: advances and future challenges,” Nucleic acids research, vol. 42,
no. 14, pp. 8845–8860, 2014.

[31] C. Gray, D. J. Baird, S. Baumgartner, U. Jacob, G. B. Jenkins, E. J.
O’Gorman, X. Lu, A. Ma, M. J. Pocock, N. Schuwirth et al., “Ecological
networks: the missing links in biomonitoring science,” Journal of Applied
Ecology, vol. 51, no. 5, pp. 1444–1449, 2014.

[32] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.

[33] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” IEEE Trans. Signal Process., vol. 65,
no. 22, pp. 5911–5926, 2017.

[34] N. Perraudin and P. Vandergheynst, “Stationary signal processing on
graphs,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477,
Jul. 2017.

[35] B. Girault, “Stationary graph signals using an isometric graph translation,”
in European Signal Process. Conf. (EUSIPCO), Nice, France, Aug. 31-
Sep. 4, 2015, pp. 1516–1520.

[36] R. Vershynin, “How close is the sample covariance matrix to the actual
covariance matrix?” Journal of Theoretical Probability, vol. 25, no. 3,
pp. 655–686, 2012.

[37] Y. Yu, T. Wang, and R. J. Samworth, “A useful variant of the Davis-Kahan
theorem for statisticians,” Biometrika, vol. 102, no. 2, pp. 315–323, 2014.

[38] J. V. Lambers and A. C. Sumner, Explorations in Numerical Analysis.
World Scientific Publishing Company, 2018.

[39] I. S. Dhillon and J. A. Tropp, “Matrix nearness problems with Bregman
divergences,” SIAM J. Matrix Anal. Appl., vol. 29, no. 4, pp. 1120–1146,
2007.

[40] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-
point method for large-scale l1-regularized least squares,” IEEE J. Sel.
Topics Signal Process., vol. 4, no. 1, p. 606617, 2007.

[41] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity
by reweighted `1 minimization,” Journal of Fourier analysis and
applications, vol. 14, no. 5-6, pp. 877–905, 2008.

[42] A. Smola and R. Kondor, “Kernels and regularization on graphs,” in
16th Annual Conference on Computational Learning Theory, 2003.

[43] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data
under laplacian and structural constraints,” IEEE J. Sel. Topics Signal
Process., vol. 11, no. 6, pp. 825–841, Jul. 2017.

[44] B. Bollobás, Random graphs. Cambridge University Press, 2001.
[45] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex

programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
[46] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin,

M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa,
R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C.
Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, “The NCEP/NCAR
40-year reanalysis project,” Bulletin of the American Meteorological
Society, vol. 77, no. 3, pp. 437–471, 1996.

http://cvxr.com/cvx

16

[47] J. B. Lewis, K. Poole, H. Rosenthal, A. Boche, A. Rudkin, and L. Sonnet,
“Voteview: Congressional roll-call votes database,” https://voteview.com/,
2019.

[48] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference (SciPy2008), Aug. 2008, pp. 11–15.

[49] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 US
election,” in Proceedings of the WWW-2005 Workshop on the Weblogging
Ecosystem, 2005.

[50] S. Segarra, Y. Wang, C. Uhler, and A. G. Marques, “Joint inference of
networks from stationary graph signals,” in Asilomar Conf. Signals, Syst.
Comp., Oct 2017, pp. 975–979.

[51] Y. Zhu, F. J. Iglesias, A. G. Marques, and S. Segarra, “Estimation of
network processes via blind graph multi-filter identification,” in IEEE
Int. Conf. on Acoustics, Speech and Signal Process., May 2019, pp.
5451–5455.

[52] M. J. Wainwright, High-dimensional statistics: A non-asymptotic view-
point. Cambridge University Press, 2019.

https://voteview.com/

	I Introduction
	II Preliminaries
	II-A Fundamentals of graph signal processing
	II-B Discrete-time consensus dynamics

	III Problem formulation
	III-A Assumptions
	III-B Formal problem statements

	IV Topology inference from a single consensus process
	IV-A Solution to Problem 1: Leverage Laplacian structure

	V Topology inference from multiple consensus processes
	V-A Solution to Problem 3: Leverage spectral ordering
	V-B Solution to Problem 2: Combine NearestCGL and OrderedSpecTemp

	VI Numerical experiments
	VI-A Experiments on Problem ??
	VI-B Experiments on Problem ??
	VI-C Experiments on Problem ??
	VI-D Topology inference from real-world data
	VI-E Scalability of the proposed algorithms

	VII Conclusions
	Appendix A: Random variables and properties
	References

