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Abstract—We consider distributed estimation of a random
source in a hierarchical power constrained wireless sensor
network. Sensors within each cluster send their measurements
to a cluster head (CH). CHs optimally fuse the received signals
and transmit to the fusion center (FC) over orthogonal fading
channels. To enable channel estimation at the FC, CHs send
pilots, prior to data transmission. We derive the mean square
error (MSE) corresponding to the linear minimum mean square
error (LMMSE) estimator of the source at the FC, and obtain
the Bayesian Cramér-Rao bound (CRB). Our goal is to find (i)
the optimal training power, (ii) the optimal power that sensors in
a cluster spend to transmit their amplified measurements to their
CH, and (iii) the optimal weight vector employed by each CH for
its linear signal fusion, such that the MSE is minimized, subject
to a network power constraint. To untangle the performance
gain that optimizing each set of these variables provide, we
also analyze three special cases of the original problem, where
in each special case, only two sets of variables are optimized
across clusters. We define three factors that allow us to quantify
the effectiveness of each power allocation scheme in achieving
an MSE-power tradeoff that is close to that of the Bayesian
CRB. Combining the information gained from the factors and
Bayesian CRB with our computational complexity analysis pro-
vides the system designer with quantitative complexity-versus-
MSE improvement tradeoffs offered by different power allocation
schemes.

I. INTRODUCTION

The plethora of wireless sensor network (WSN) appli-
cations, with stringent power constraints, raises challenging
technical problems for system-level engineers, one of which
is distributed estimation (DES) in a power constrained WSN
[1]–[5]. In this work, we address DES of a random signal
θ in a WSN, where sensors are deployed in a large field and
make noisy measurements of θ. Due to limited communication
range, however, the battery-powered sensors cannot directly
communicate with the fusion center (FC). Hence, the field
is divided into L geographically disjoint zones (clusters) and
hierarchically into three tiers: sensors, cluster-heads (CHs) one
per cluster, and the FC [6]–[9]. The implicit assumption is
that the communication ranges of CHs are larger, and their
energy and computational resources are higher (compared with
sensors). After local signal processing, CHs transmit signals
received from sensors over orthogonal fading channels to the
FC, whose task is to find an estimate of θ, based on the
received signals from CHs [10], [11].

There is a rich body of literature on DES and dis-
tributed detection in a power constrained WSN, where the
researchers study and optimize an estimation-theoretic-based
or a detection-theoretic-based performance metric, subject to
power constraints. Examples in the context of distributed
detection are [12]–[16]. An alternative direction is to study

the outlier contamination of the data in WSNs by outlier
detection methods such as [17]–[19] caused by imperfect
sensors and power deteriorations [20], [21]. We focus on
power optimization and to conserve space, we elaborate only
the most related ones to our current work in the following. The
authors in [6]–[8] studied DES in a three-layered hierarchical
power constrained WSN, assuming that the FC forms the linear
minimum mean square error (LMMSE) estimate of random θ,
and the objective is to minimize the MSE of this estimator.
The authors in [22] considered DES in a WSN, where sensors
transmit to the FC over orthogonal fading channels and the
FC finds the LMMSE estimate of θ. The authors studied
how partial channel state information (CSI) at the sensors
affects the MSE performance and the optimal power allocation
among the sensors. The authors in [23] considered DES in a
hierarchical WSN, where the CHs amplify and forward their
received signals over orthogonal Nakagami fading channels
to the FC. Assuming the FC finds the LMMSE estimate of
θ, the authors studied how partial CSI at the CHs impacts the
outage probability of the MSE. None of the works in [22], [23]
consider the cost of channel estimation at the FC. To enable
channel estimation at the FC, each CH needs to transmit a
training (pilot) symbol, prior to data symbol. In a hierarchical
WSN, where there is a cap on the network transmit power,
the cost of channel estimation cannot be overlooked. Note
that training symbol transmission consumes the power that
could have been used otherwise for data symbol transmission.
Hence, training and data transmit power should be optimized
judiciously, such that the estimation accuracy of θ at the FC
is maximized.

Assuming the FC employs the LMMSE estimator of θ,
we address this problem, by formulating and solving a new
optimization problem that allows us to analyze the effect of
channel estimation on the MSE performance and transmit
power allocation. The optimization problem is novel, since
considering training transmit power introduces a new dimen-
sion to the network performance analysis and power allocation
optimization. In this regard, the most relevant works are [24],
[25], where the authors considered channel estimation for
DES in a WSN with one FC only. Our work is different
from [24], [25], since in the hierarchical WSN, our prob-
lem formulation considers power distribution among different
clusters for sensor-CH data transmission as well as power
allocation among different CHs for CH-FC data and training
transmissions. Moreover, we obtain the optimal linear fusion
rules at CHs as the by-product of solving the network power
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allocation problem1.
Contribution: We derive the MSE corresponding to the

LMMSE estimator of θ at the FC, denoted as D, and establish
lower bounds on D, including the Bayesian Cramér-Rao bound
(CRB). We then formulate a new constrained optimization
problem that minimizes D, subject to network transmit power
constraint Ptot, where the optimization variables are: i) train-
ing power for CHl, ii) total power that sensors in cluster
l spend to transmit their amplified measurements to CHl
(which we refer to as intra-cluster power), iii) power that CHl
spends to send its fused signal to the FC. We demonstrate
the superior performance of our proposed power allocation
scheme with respect to the following spacial case schemes:
scheme (i) allots a fixed percentage of Ptot for training power
and distributes this power equally among CHs, however, it
optimally allocates intra-cluster power among clusters, and
optimally allocates power among CHs for data transmission,
scheme (ii) optimally allocates power among CHs for train-
ing, equally allocates intra-cluster power among clusters, and
optimally allocates power among CHs for data transmission,
scheme (iii) optimally allocates power among CHs for training,
optimally allocates intra-cluster power among clusters, and
equally allocates power among CHs for data transmission.
We analytically and numerically compare the power allocation
scheme obtained from solving the original problem with the
special case schemes, and show their effectiveness in providing
an MSE-power tradeoff that is close to that of the Bayesian
CRB. Our numerical results demonstrate that power alloca-
tions among CHs for training and CH-FC data transmission are
always beneficial for low-region of Ptot, and power allocation
among clusters for sensor-CH data transmission is beneficial
for low-region to moderate-region of Ptot.

Organization: The rest of the paper is organized as follows.
Section II describes our system model and power constraints
and states the problem we aim to solve (i.e., the constrained
minimization of MSE D at the FC, with respect to three sets
of optimization variables). Section III characterizes D and its
lower bounds. We also derive the Bayesian CRB. In Section
IV we solve our proposed constrained MSE minimization
problem. We also briefly discuss the constrained minimization
of MSE lower bounds. In Section V we solve three special
cases of the original problem, where in each special case, only
two (of three) sets of variables are optimized across clusters.
This analysis allows us to entangle the performance gain
that optimizing each set of these variables provide. Section
VI compares the computational complexity of the proposed
algorithms for solving the original problem as well as its
three special cases. In Section VII we discuss the convergence
analysis of our proposed algorithms. Section VIII presents our
numerical and simulation results. Section IX concludes the
work and outlines our future research directions.

Notations: Matrices are denoted by bold uppercase letters,
vectors by bold lowercase letters, and scalars by normal

1We note that there is a rich body of literature on clustering algorithms
and energy efficient routing protocols [26]. Similar to [6]–[9], we assume
that clusters and their CHs are given. Given this network structure, our goal
is designing (sub-)optimal distributed signal processing such that the MSE
distortion at the FC is minimized, under a network power constraint.

letters. E denotes the mathematical expectation operator, [.]T

represents the matrix-vector transpose operation, and |A| is
the cardinality of set A. The real and imaginary parts of a
complex random variable x are represented by xr =Re{x}
and xi = Im{x}. The probability distribution function (pdf)
of x, denoted as f(x), is defined as the joint pdf of xr and
xi, i.e., we have f(x)=f(xr, xi) [27].

TABLE I: Notations and their corresponding definitions.

Notation Vector and Matrix Definitions
xl, tl xl=[xl,1, ..., xl,Kl ]

T , tl=[tl,1, ..., tl,Kl ]
T

nl, ql nl=[nl,1, ..., nl,Kl ]
T , ql=[ql,1, ..., ql,Kl ]

T
√
Al

√
Al=diag(√αl,1, ...,

√
αl,Kl )

x, t x=[x1
T , ...,xL

T ]T , t=[t1T , ..., tL
T ]T

y,z y=[y1, ..., yL]
T , z=[z1, ..., zL]

T

n, q n=[n1
T , ...,nL

T ]T , q=[q1
T , ..., qL

T ]T

v,H v=[v1, ..., vL]
T , H=diag([h1, ..., hL])

M ,W M=diag(
√
A1, ...,

√
AL), W =diag(w1

T , ...,wL
T )

Σn,Σnl Σn=diag(Σn1 , ...,ΣnL ), Σnl is arbitrary
Σq ,Σql Σq=diag(Σq1 , ...,ΣqL ), Σql=diag(σ2

ql,1
, ..., σ2

ql,Kl
)

Σv Σv=diag([2σ2
v1
, ..., 2σ2

vL
])

Ĥ, H̃ Ĥ=diag([ĥ1, ..., ĥL]), H̃=diag([h̃1, ..., h̃L])
Γ,Σ Γ=diag([ζ1, ..., ζL]), Σ=diag(Σ1, ...,ΣL)
µ,Λ1 µ=[µ1

H , ...,µL
H ]H , Λ1=diag(Λ11 , ...,Λ1L )

Dl Dl=diag([
√
dl,1, ...,

√
dl,Kl ])

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model Description
We consider a DES problem in a hierarchical power

constrained WSN (see Fig. 1), consisting of K spatially-
distributed sensors deployed in L disjoint clusters, L cluster
heads (CHs), and a FC. Each sensor makes a noisy mea-
surement of an unknown random variable θ, that we wish
to estimate at the FC. Cluster l includes Kl sensors and its
associated CH, denoted as CHl, and we have

∑L
l=1Kl = K.

We assume θ is zero-mean with variance σ2
θ . Let xl,k denote

the measurement of sensor k in cluster l. We have:
xl,k = θ + nl,k, l = 1, ..., L, k = 1, ...,Kl, (1)

where nl,kdenotes zero-mean additive measurement noise with
variance σ2

nl,k
. We assume that nl,k’s are correlated across

sensors, due to their proximity within cluster l. Sensors within
a cluster amplify and forward their measurements to their
respective CH over orthogonal AWGN channels2, such that
the received signal at CHl from sensor k within cluster l is:
tl,k =

√
αl,kxl,k + ql,k, l = 1, ..., L, k = 1, ...,Kl, (2)

where αl,k ≥ 0 is an amplifying factor (to be determined) used
by sensor k, and ql,k ∼ N (0, σ2

ql,k
) is the additive communi-

cation channel noise. We assume that ql,k’s are uncorrelated
across the sensors. For a compact representation, we define the
column vectors xl and tl in Table I corresponding to cluster
l and rewrite (1) and (2) as:

xl = θ1l + nl, tl =
√
Alxl + ql, l = 1, ..., L. (3)

2The AWGN channel model is equivalent to the channel model with a
static and known channel gain. Given the channel gain, CHl can equalize
it, which is equivalent to scaling the communication noise variance σ2

ql,k
.

The AWGN channel model for communication channels within a cluster is
reasonable, since sensors are closely located and typically there are direct
line of sight transmissions between sensors and their CH [9], [28]. On the
other hand, we model the communication channels between CHs and the
FC as randomly-varying fading channels that require channel estimation. The
reason is that the transmission distances between CHs and the FC are large
and hence communication becomes subject to multipath fading effect.
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Fig. 1: Our system model consists of L clusters, each with a CH, and a FC that is tasked with estimating a random scalar θ.

where 1l is a column vector of Kl ones, column vectors nl,
ql, with covarinace matrices Σnl ,Σql , matrix

√
Al defined

in Table I. We assume nl, ql, θ are uncorrelated, i.e.,
E{nlqlT } = 0, E{nlθ}=0, E{qlθ}=0, ∀l, and the noise
vectors across different clusters are mutually uncorrelated, i.e.,
E{ninjT }=0 and E{qiqjT }=0, ∀i 6=j.

Each CH linearly fuses the signals received from the sensors
within its cluster. Let yl=wl

T tl, where yl is the scalar fused
signal at CHl and wl is the linear weight vector employed
by CHl for linear fusion3 (to be optimized). CHs transmit
these fused signals to the FC over orthogonal Rayleigh fading
channels, such that the received signal at the FC from CHl is:

zl = hlyl + vl, l = 1, ..., L, (4)

where hl ∼ CN
(
0, 2σ2

hl

)
is fading channel coefficient cor-

responding to the link between CHl and the FC and vl ∼
CN

(
0, 2σ2

vl

)
is the additive communication channel noise. We

assume vl is uncorrelated with θ,nl, ql, ∀l.
To enable estimating hl at the FC, CHl transmits a pilot

symbol [14] with power ψl to the FC, prior to sending its
signal yl. Without loss of generality, we assume training
symbols are all ones. Assuming hl does not change during
transmission of yl and the training symbol4, the received signal
at the FC from CHl corresponding to the training symbol is:

ẑl = hl
√
ψl + νl, l = 1, ..., L, (5)

where νl in (5) is independent of vl in (4) and is identically
distributed. The FC adopts the following two-stage strategy
to process the received signals from the CHs and reconstruct
θ: stage 1) the FC uses the received signals {ẑl}Ll=1 corre-
sponding to training symbol transmissions to estimate {hl}Ll=1

and obtain the channel estimates {ĥl}Ll=1, stage 2) the FC
uses these channel estimates and the received signals {zl}Ll=1

corresponding to {yl}Ll=1 transmissions and find the LMMSE
estimate of θ, denoted as θ̂. Finding the LMMSE estimator has
a lower computational complexity, compared with the optimal
MMSE estimator, and it requires only the knowledge of first
and second order statistics. Let D=E{(θ − θ̂)2} denote the
MSE corresponding to the LMMSE estimator θ̂. Our main

3When the pdf of θ is unknown, it is reasonable to assume that CHl
applies a linear fusion rule wl and we seek the best wl. In Section IV-A1 we
show that woptl is equal to the linear operator corresponding to the LMMSE
estimation of θ based on tl, multiplied by an optimized scalar χl. When
θ ∼ N(0, σ2

θ) the MMSE and LMMSE estimates of θ based on tl coincide.
4We assume time-division-duplex transmission and channel reciprocity. We

also assume that the channel coherence time is larger than the overall duration
of pilot transmission, channel estimation, power optimization, information
feedback, and data transmission.

objective is to study power allocation among different clusters,
subject to a network transmit power constraint (including
power for training and data transmissions), such that D is
minimized. Section II-B provides a formal description of
our constrained optimization problem, including the power
constraints and the set of our optimization variables5.

B. Power Constraints
We describe our power constraints. Let Pl,k denote the

average power that sensor k consumes to send its amplified
measurement to CHl and Pl =

∑Kl
k=1 Pl,k be the total power

that sensors in cluster l spend to send their amplified measure-
ments to CHl. From (2) we have:

Pl,k=αl,kE{x2l,k}=αl,k(σ2
θ + σ2

nl,k
), k = 1, ...,Kl. (6)

For tractability, similar to [9], [29] we assume Pl is equally
divided between sensors within cluster l, i.e., Pl,k = Pl/Kl.
Under this assumption from (6) we obtain αl,k = Pldl,k where
dl,k = 1

Kl(σ2
θ+σ

2
nl,k

)
, or equivalently in matrix form, we find

√
Al=

√
PlDl, where Dl is given in Table I. Let Pl represent

the average power that CHl spends to send its fused signal yl
to the FC. We have:

Pl=E{y2l }=wl
T E{tltlT }︸ ︷︷ ︸

=Rtl

wl. (7)

Applying (3) and noting that xl, ql in (3) are zero mean and
uncorrelated, it is easy to verify that:

Rtl = PlΩl+Σql , (8)

where
Ωl=∆l + σ2

θΠl, ∆l=DlΣnlDl, Πl=ρlρl
T , ρl=Dl1l.

Combining (7) and (8) we obtain:

Pl = wl
T (PlΩl + Σql)wl. (9)

Let Ptrn =
∑L
l=1 ψl be the total power that CHs spend to

transmit their pilot symbols to the FC for channel estimation.
We assume there is a constraint on the network transmit power,
such that:

5Comparing orthogonal channel model and multiple-access channel (MAC)
model adopted in [7], [13], [25], the former consumes more time or bandwidth
for transmission, however, it does not require symbol-level synchronization
for compensating complex channel phase at transmitter. We note that the com-
plexity of the sequence of operation in our work (pilot transmission, channel
estimation, power optimization, information feedback, and data transmission)
is comparable with that of those works that rely upon perfect CSI, since
implementing power allocation solutions obtained based on perfect CSI [6]–
[8], [11], [13] requires pilot transmission and channel estimation, prior to data
transmission.
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Ptrn +

L∑
l=1

Pl + Pl ≤ Ptot. (10)

Substituting Pl in (9) into the constraint in (10) we reach:

Ptrn +

L∑
l=1

wl
TΣqlwl + Pl(1+wl

TΩlwl) ≤ Ptot. (11)

C. Problem Statement
Under the network power constraint in (10), our goal is

to find the optimal Ptrn, {Pl,Pl}Ll=1 such that D is mini-
mized. The constraint in (11) shows that finding the optimal
{Pl,Pl}Ll=1 in our problem is equivalent to finding the optimal
{Pl,wl}Ll=1, since given {Pl,wl}Ll=1 one can find {Pl}Ll=1

using (9). Therefore, our goal is to find the optimal total
training power Ptrn, the optimal total power that sensors in
cluster l spend to transmit their measurements to their CH Pl,
and the optimal wl employed by CHl for its linear fusion,
such that D is minimized. In other words, we are interested
in solving the following constrained optimization problem:

min
Ptrn,{Pl,wl}Ll=1

D(Ptrn, {Pl,wl}Ll=1) (12)

s.t. Ptrn+

L∑
l=1

wl
TΣqlwl+Pl(1+wl

TΩlwl)≤Ptot,

Ptrn ∈ R+, Pl ∈ R+,wl ∈ RKl , ∀l.

We note that Σql and Ωl in the network transmit power
constraint do not depend on our optimization variables.

III. CHARACTERIZING D AND ITS LOWER BOUNDS

A. Characterization of D in terms of Channel Estimates
We characterize the objective function D in (12), in terms of

our optimization variables. Before delving into the derivations
of D, we introduce the following notations. Considering our
signal model in Section II, we define column vectors x, t,
y, z in Table I, which are obtained from stacking the signals
corresponding to all clusters. We have:

x = θ1 + n, t = Mx+ q, y = Wt, (13a)
z = Hy + v, (13b)

where 1 is a column vector of K ones, column vectors n, q,
v, and matrices M , W , H are defined in Table I. The noise
vectors n, q, v are zero-mean with covariance matrices Σn,
Σq , Σv , respectively, given in Table I. We model the fading
coefficient as hl = ĥl + h̃l, where ĥl is the MMSE channel
estimate and h̃l is the corresponding zero-mean estimation
error with the variance ζ2l . The expressions for ĥl and ζ2l in
terms of training power ψl are [30]:

ĥl =
σ2
hl

√
ψlẑl

σ2
vl

+ ψlσ2
hl

, ζ2l =
2σ2

hl
σ2
vl

σ2
vl

+ ψlσ2
hl

. (14)

We define matrices Ĥ, H̃ in Table I and thus we have H=
Ĥ+H̃ . Substituting this channel model into (13b), we can
rewrite the received signal z as the following:

z=[ĤWM1]θ︸ ︷︷ ︸
=z1

+(H̃WM1)θ︸ ︷︷ ︸
=z2

+(Ĥ+H̃)W (q+Mn)+v︸ ︷︷ ︸
=z3

.

(15)
We proceed with characterizing D in terms of the channel
estimates. From optimal linear estimation theory, we have:

θ̂ = gHz, where g=(E{zzH})−1E{θz},
D = σ2

θ − E{θz}H(E{zzH})−1E{θz}. (16)

where θ̂ and D depend on the channel estimates {ĥl}Ll=1.
In the following, we find E{zzH} and E{θz} in (16) by
examining the statistics of channel estimation error. By the
orthogonality principle of LMMSE estimation [31], h̃l is
orthogonal to ĥl, that is E{h̃lĥl} = 0, ∀l, and therefore,
E{z1z2H}= 0. Using the fact that θ, n, q, v are mutually
uncorrelated, we have E{z1z3H} = 0, E{z2z3H} = 0.
Combined these with the fact that E{z}= 0, the covariance
matrix Cz=E{zzH} given Ĥ can be expressed as:

Cz = σ2
θĤWM11TMW T Ĥ

H
+ σ2

θ(ΓWMΣMW TΓ)

+ ĤW (Σq +MΣnM)W T Ĥ
H

+ ΓW (Σq +MΣnM)W TΓ + Σv, (17)

where Γ and Σ are defined in Table I and Σl is a Kl ×Kl

matrix of all ones. We define Λ1l and Λ2 as bellow:

Λ1l = σ2
θζ

2
l PlΠl + (|ĥl|

2
+ ζ2l )(Σql + Pl∆l), (18)

Λ2 = |µ||µ|T , µl=
√
Plĥlρl, ∀l.

where µ is defined in Table I. It is straightforward to simplify
(17) and write it as the following:

Cz = W (Λ1 + σ2
θΛ2)W T + Σv. (19)

where Λ1 is defined in Table I. To find E{θz} we consider
(15) and we realize that E{θz3}=0. Therefore:

E{θz}=E{θz1}+E{θz2}
(a)
= σ2

θĤWM1=σ2
θWµ, (20)

where (a) in (20) is obtained from the fact that E{H̃}= 0.
Based on (19), (20), the LMMSE estimator θ̂ and its corre-
sponding MSE in (16) can be written as:

θ̂ = σ2
θµ

HW TC−1z z,

D = σ2
θ − σ4

θµ
HW TC−1z Wµ. (21)

in which µ and Cz depend on the channel estimates. Substi-
tuting (19) in (21) and applying the Woodbury identity6 yields:

D = (σ−2θ + µHW T (WΛ1W
T + Σv)

−1Wµ)−1

= (σ−2θ +

L∑
l=1

Pl|ĥl|
2
wl

TΠlwl

σ2
vl

+wl
TΛ1lwl

)−1, (22)

Examining D in (22) we notice that Πl does not depend on our
optimization variables. However, Λ1l depends on Pl and ψl

(through the channel estimate |ĥl|
2

and the channel estimation
error variance ζ2l ). Clearly, D depends on wl.

B. Three Lower Bounds on D

We provide three lower bounds on D, denoted as
D1, D2, D3. To obtain D1 we consider the scenario when
{hl}Ll=1 are available at the FC (perfect CSI). This implies
ĥl=hl and ζ2l =0,∀l, in (22), and the MSE becomes:

D1 =(σ−2θ +

L∑
l=1

Pl|hl|2wl
TΠlwl

σ2
vl

+ |hl|2wl
T (Σql+Pl∆l)wl

)−1. (23)

6For matrices A,B,C, D the Woodbury identity states that
(A+BCD)−1=A−1 −A−1B(C−1 +DA−1B)

−1
DA−1 [32].
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To obtain D2 we consider the scenario when in addition to
perfect CSI, sensors’ noisy measurement vector xl is available
at CHl (i.e., error-free channels between sensors and their
CHs). Therefore, Al = I l, where I l denotes the identity
matrix, and Σql = 0,∀l. In this scenario (23) simplifies to:

D2 = (σ−2θ +

L∑
l=1

|hl|2wl
TΣlwl

σ2
vl

+ |hl|2wl
TΣnlwl

)−1. (24)

To obtain D3 we consider the scenario when xl is available at
CHl and yl is available at the FC. This is equivalent to having
all measurements {xl}Ll=1 available at the FC (i.e., error-free
channels between sensors and their CHs, and between CHs
and the FC). Therefore, the MSE becomes:

D3 = (σ−2θ +

L∑
l=1

1l
TΣ−1nl 1l)

−1. (25)

Clearly, we have D3 < D2 < D1 < D.

C. Bayesian CRB

Let G denote the Bayesian Fisher information correspond-
ing to estimating θ, given z and the vector of channel
estimates ĥ = [ĥ1, ..., ĥL] at the FC. The inverse of G is
the Bayesian CRB and it sets an estimation-theoretic lower
bound on the MSE of any Bayesian estimation of θ, given z, ĥ
[33]–[35]. Using the definition in [33]–[35] in our problem

G=E{(∂ ln f(z,ĥ,θ)
∂θ )

2

}, where f(z, ĥ, θ) denotes the joint pdf
of z, ĥ, θ and and the expectation is taken over f(z, ĥ, θ).

Lemma 1. The Bayesian Fisher information corresponding
to estimating θ, given z, ĥ is:

G=E{G1(θ)}+E{G2(θ)}, (26)

where G1(θ) = −∂
2 ln f(θ)
∂θ2 and G2(θ) is given below. For

θ ∼ N(0, σ2
θ) we have E{G1(θ)} = σ−2θ . Both expectations

in (26) are taken over f(θ), which represents the pdf of θ.

G2(θ) =

L∑
l=1

∫
ĥl

∫
zl

f(ĥl)

f(zl|ĥl, θ)
(
∂f(zl|ĥl, θ)

∂θ
)

2

dzldĥl, (27)

where f(zl|ĥl, θ) and its derivative with respect to θ are:

f(zl|ĥl, θ)=a1e
−a2θ2

∞∑
m=0

m∑
n=0

m−n∑
p=0

cm,n,p(θ)

×
∫ ∞
−∞

∫ ∞
−∞

sm,n,p,b(θ) exp(−|zl − b|
2

2σ2
vl

)db, (28)

∂f(zl|ĥl, θ)
∂θ

=a1e
−a2θ2

∞∑
m=0

m∑
n=0

m−n∑
p=0

[(
m−n+p

θ
− 2a2θ)

× cm,n,p(θ)
∫ ∞
−∞

∫ ∞
−∞

sm,n,p,b(θ) exp(−|zl − b|
2

2σ2
vl

)db], (29)

and the parameters a1, a2, a3, cm,n,p(θ), sm,n,p,b(θ), φ̄ are:

a1 =
exp(−|ĥl|

2
/ζ2l )

π2ζ2l σ̄
2
l σ

2
vl

, a2 =
a3

2

σ̄2
l

, a3 =wl
T
√
Al1l, (30)

cm,n,p(θ)=
|ĥl|

m+n−p
|a3θ|m−n+p

m!n!p!(m− n− p)!ζl2m+n−pσ̄2m−n+p
l

,

sm,n,p,b(θ)= |b|mKn−p(
2|b|
σ̄lζl

)(2 cos(φ̄− π
2

(1−sgn(a3θ))))
m−n−p

,

φ̄=∠b− ∠ĥl, σ̄
2
l =wl

T (
√
AlΣnl

√
Al + Σql)wl.

Proof. See Appendix A.

IV. SOLVING THE CONSTRAINED MINIMIZATION OF D

We consider the constrained optimization problem in (12),
where D is provided in (22). We define:

Jl(Ptrn, Pl,wl) =
Pl|ĥl|

2
wl

TΠlwl

σ2
vl

+wl
TΛ1lwl

, (31)

Cl(Pl,wl) = wl
TΣqlwl + Pl(1 +wl

TΩlwl).

Using the two definitions in (31) we can replace the problem
in (12) with its equivalent, problem (P1), that has a simpler
presentation. In particular, we can write D−1 = σ−2θ +∑L
l=1 Jl(Ptrn, Pl,wl). Hence, problem (P1) becomes:

max
Ptrn,{Pl,wl}Ll=1

L∑
l=1

Jl(Ptrn, Pl,wl)(P1)

s.t. Ptrn+

L∑
l=1

Cl(Pl,wl)≤Ptot, Ptrn, Pl∈R+,wl∈RKl,∀l.

It is easy to show that the solution of (P1) holds with active
constraint Ptrn +

∑L
l=1 Cl(Pl,wl) = Ptot. We further note

that due to the cap on the network transmit power, only a
subset of the clusters may become active at each observation
period. We refer to this active subset as A= {l :Pl> 0, l=
1, . . . , L}, where |A| ≤ L. Regarding the objective function
Jl in (P1) we note that it depends on ĥl (through |ĥl|

2
in the

numerator and Λ1l in the denominator of (31)). Regarding
the optimization variables in (P1) we notice that, since pilot
transmission proceeds data transmission, Ptrn cannot depend
on the channel estimates {ĥl}Ll=1 and can only depend on
the statistical information of communication channels and the
observation model. Examining (P1), we note however, that
solving it for Ptrn provides an answer that depends on ĥl
(which is unrealizable). On the other hand, the variables Pl,wl

should be chosen according to the available CSI ĥl. Based on
these observations, we propose to consider two problems (PA)
and (PB) stemming from (P1). problem (PA) finds the optimal
{Pl,wl}Ll=1 that minimizes D, given Ptrn. Let σ ∈ (0, 1) such
that Ptrn = (1 − σ)Ptot. Given Ptrn (and thus σ), we define
Fl(Pl,wl)=Jl(Ptrn, Pl,wl). Problem (PA) becomes:

given Ptrn, max
{Pl,wl}Ll=1

L∑
l=1

Fl(Pl,wl)(PA)

s.t.
L∑
l=1

Cl(Pl,wl)≤σPtot, Pl∈R+,wl∈RKl ,∀l.

Section IV-A is devoted to solving (PA). Problem (PB) finds
the optimal Ptrn that, instead of minimizing D, it minimizes a
modified objective function E{D}, where an average is taken
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over the channel estimates. In Section IV-B we address (PB)
and find Ptrn as well as training power distribution {ψl}Ll=1

among the CHs such that
∑L
l=1 ψl=Ptrn.

A. Finding Optimal {Pl,wl}Ll=1 Given Total Training Power
We start with (PA). By taking the second derivative of∑L
l=1 Fl(Pl,wl) w.r.t {Pl,wl}, it is straightforward to show

that (PA) is not jointly concave over the optimization variables.
Alternatively, we propose a solution approach that converges
to a stationary point of (PA). Problem (PA) contains the
constraint

∑L
l=1 Cl(Pl,wl) ≤ σPtot, which is referred to as

coupling or complicating constraint in the literature [36]. By
introducing additional auxiliary variables {Vl}Ll=1, problem
(PA) becomes:

given Ptrn, max
{Vl,Pl,wl}Ll=1

L∑
l=1

Fl(Pl,wl)(P2)

s.t. Cl(Pl,wl)≤Vl,
L∑
l=1

Vl≤σPtot,Vl, Pl∈R+,wl∈RKl ,∀l.

Note that the auxiliary variable Vl represents the total amount
of power allocated to cluster l (for sensors within cluster l
to transmit their observations to CHl and for CHl to transmit
yl to the FC). According to the primal decomposition [36],
problem (P2) can be decomposed as the following:

given Ptrn,Vl, max
Pl,wl

Fl(Pl,wl)(SP2-1)

s.t. Cl(Pl,wl)≤Vl, Pl ∈ R+, wl ∈ RKl ,

given Ptrn, {Pl,wl}Ll=1, max
{Vl}Ll=1

L∑
l=1

Foptl(SP2-2)

s.t.
L∑
l=1

Vl≤σPtot,Vl ∈ R+,∀l,

where Foptl denotes the maximum of Fl(Pl,wl), which
depends on Vl. The solution can be reached by iteratively
solving sub-problems (SP2-1) and (SP2-2). In the following,
we provide the detailed solutions for (SP2-1) and (SP2-2).

1) Solving Optimization Problem (SP2-1): We start with
a brief overview of this section. Let wopt

l , P optl denote the
solution of (SP2-1). We will show how to compute wopt

l in
terms of Pl using (42) and how to compute P optl in terms of
wl using (47). Having two equations (42), (47), we substitute
wl from (42) into (47) to reach (48), which is a function
of P optl only. Employing a numerical line search method we
obtain P optl from (48). Having P optl , we find wopt

l using (42).
The detailed explanations follow.

Examining Fl(Pl,wl) and Cl(Pl,wl) expressions given in
(31), it is evident that scaling up equally Pl,wl increases both
Fl(Pl,wl) and Cl(Pl,wl). Therefore, (SP2-1) is equivalent
to its converse formulation, where Cl(Pl,wl) is minimized
subject to a constraint on Fl(Pl,wl):

given Ptrn,Ul, min
Pl,wl

Cl(Pl,wl)(CSP2-1)

s.t. Fl(Pl,wl)≥Ul, Pl∈R+,wl∈RKl.

Let Coptl be the minimum of Cl(Pl,wl), which depends on Ul.
To solve (CSP2-1) we simplify its constraint by substituting

Λ1l from (18) into Fl(Pl,wl) in (31). Let Bl = σ2
θζ

2
l Πl +

(|ĥl|
2

+ ζ2l )∆l. The constraint in (CSP2-1) becomes:

Plwl
T(|ĥl|

2
Πl−UlBl)wl−(|ĥl|

2
+ζ2l )UlwT

lΣqlwl−σ2
vl
Ul≥0.

(32)
Consider (CSP2-1) where its constraint is now replaced with

the inequality in (32). To solve (CSP2-1) we use the Lagrange
multiplier method. Let L(γ, η, Pl,wl) be the Lagrangian for
this problem and γ and η be the lagrange multipliers for the
constraint in (32) and the constraint Pl≥0, respectively. Equa-
tion (33) shows L(γ, η, Pl,wl). The corresponding Karush-
Kuhn-Tucker (KKT) optimality conditions are [37, pp. 243-
244]:
∂L
∂wl

=[Rtl+γ((|ĥl|
2
+ζ2l )UlΣql−Pl(|ĥl|

2
Πl−UlBl))]wl=0;

(34a)

γ(Plw
T
l (|ĥl|

2
Πl−UlBl)wl−(|ĥl|

2
+ζ2l )UlwT

l Σqlwl−σ2
vl
Ul)=0;
(34b)

∂L
∂Pl

=1+wT
l Ωlwl−γwT

l (|ĥl|
2
Πl−UlBl)wl−η=0; (34c)

ηPl=0, (34d)

where Rtl , defined in (8), depends on Pl. Similar to the
solution of (P1), one can show that the solutions of (SP2-1) and
(CSP2-1) must satisfy the equality constraints Cl(Pl,wl)=Vl
and Fl(Pl,wl)=Ul (or equivalently (34b)), respectively. Thus
we find:
wl

TRtlwl=Vl − Pl, (35a)

wl
T [Pl(|ĥl|

2
Πl−UlBl)−(|ĥl|

2
+ζ2l )UlΣql ]wl=σ2

vl
Ul. (35b)

Combining (35a) and (35b) we reach:

wl
T[Rtl+

Vl−Pl
σ2
vl
Ul

((|ĥl|
2
+ζ2l )UlΣql−Pl(|ĥl|

2
Πl−UlBl))]wl=0.

(36)
From (34a) and (36) we find the lagrange multiplier γ:

γ =
Vl−Pl
σ2
vl
Ul

. (37)

• Computing wopt
l given Pl: Substituting (37) into (34a) and

conducting some mathematical manipulations result in:

Ul[
σ2
vl
Rtl

Vl−Pl
+(|ĥl|

2
+ζ2l )Σql+PlBl︸ ︷︷ ︸

=B1

]wl= |µl||µl|
T
wl, (38)

where µl is defined in (18). Since Rtl � 0,Σql � 0,Bl� 0,
the matrix B1 is positive definite and full rank and hence
invertible. Multiplying both sides of (38) with B1

−1, we find:

Ulwl=B1
−1|µl||µl|

T
wl. (39)

Also, multiplying both sides of (38) with 1
UlRtl

−1 we reach:
σ2
vl

Vl−Pl
wl=Rtl

−1[
|µl||µl|

T

Ul
−(|ĥl|

2
+ζ2l )Σql−PlBl]︸ ︷︷ ︸

=B2

wl.

(40)
Inspecting (39) and (40), and aiming at finding vector wl,
we realize that (39) and (40) are ordinary eigenvalue prob-
lems. Since the solutions to (SP2-1) and (CSP2-1) satisfy
the equality constraints Cl(Pl,wl) = Vl and Fl(Pl,wl) = Ul,
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respectively, from (39) and (40) we find:

Foptl =λmax(B1
−1|µl||µl|

T
), Coptl =

σ2
vl

λmax(B2)
+Pl. (41)

Let soptl be the eigenvector corresponding to
λmax(B1

−1|µl||µl|
T

). We note that Foptl is achieved
when wl is an appropriately scaled version of soptl , i.e.,
wopt
l = rls

opt
l , where scalar rl is such that (35a) is satisfied.

Also recall Πl = ρlρl
T is rank-1. Thus Foptl is the only

non-zero eigenvalue of B1
−1|µl||µl|

T and soptl is the
corresponding eigenvector. Proposition 1 gives expressions
for wopt

l and Foptl in terms of Pl.
Proposition 1. Considering problem (SP2-1), the optimal
fusion vector wopt

l and the maximum value of the objective
function Foptl in terms of Pl are:

wopt
l =

√
Vl−Pl
τl

Rtl
−1ρl, F

opt
l =

|ĥl|
2
βlPlτl

σ2
vl

(1 + βl
Vl−Pl )

, (42)

where τl=ρl
TRtl

−1ρl, βl=
σ2
vl

|ĥl|
2
(1−σ2

θPlτl)+ζ
2
l

.

Proof. See Appendix B.

For our system model Rtlθ = E{θtl} = σ2
θ

√
Plρl. Hence,

we can rewrite wopt
l in (42) as:

wopt
l = σ−2θ

√
Vl − Pl
Plτl︸ ︷︷ ︸

=χl

(R−1tl Rtlθ). (43)

Since R−1tl Rtlθ is the linear operator corresponding to the
LMMSE estimator, (43) implies that the optimal linear fusion
rule at CHl is equal to the linear operator corresponding to
the LMMSE estimation of θ based on tl, multiplied by the
amplification factor χl.
• Computing P optl given wl: Note that (34d) results in η=0

for active clusters with Pl > 0. Letting η = 0 in (34c) and
solving for γ we find:

γ =
1 +wT

l Ωlwl

wT
l (|ĥl|

2
Πl−UlBl)wl

. (44)

Equating (44) with (37) and solving for Ul we get:

Ul =
(Vl − Pl)|ĥl|

2
wT
l Πlwl

σ2
vl

(1 +wT
l Ωlwl) + (Vl − Pl)wT

l Blwl
. (45)

On the other hand, solving (35b) for Ul results in:

Ul =
Pl|ĥl|

2
wT
l Πlwl

σ2
vl

+ (|ĥl|
2
+ζ2l )wT

l Σqlwl + PlwT
l Blwl

. (46)

Combining (45) and (46), we obtain P optl in terms of wl as
the following:

P optl =
Vl(σ2

vl
+ (|ĥl|

2
+ ζ2l )wl

TΣqlwl)

σ2
vl

(2 +wT
l Ωlwl) + (|ĥl|

2
+ ζ2l )wl

TΣqlwl

. (47)

At this point, we have obtained two equations: (42) provides
wopt
l in terms of Pl, and (47) provides P optl in terms of wl.

Substituting wopt
l from (42) in (47) yields in:

σ2
vl(Vl−2P

opt
l )τl+(|ĥl|

2
+ζ2l )(Vl−P optl )2ρl

TRtl
−1ΣqlRtl

−1ρl

−P optl σ2
vl(Vl−P

opt
l )ρl

TRtl
−1ΩlRtl

−1ρl=0. (48)

Note that τl,Rtl in (48) depend on P optl , and thus, a closed-
form solution for P optl remains elusive.One can employ a line
search method (e.g., the Golden section method [38, p. 216])
to solve (48) in the interval (0,Vl). Having P optl we find wopt

l

using (42).
2) Solving Optimization Problem (SP2-2): By substituting
Foptl from (42) in the objective function, problem (SP2-2)
becomes:

given Ptrn, {Pl,wl}Ll=1, max
{Vl}Ll=1

L∑
l=1

|ĥl|
2
βlPlτl

σ2
vl(1 +

βl
Vl−Pl

)

s.t.
L∑
l=1

Vl≤σPtot,Vl ∈ R+, ∀l. (49)

The maximization problem in (49) is concave and its solution
can be found via solving the KKT conditions. In particular,
we find (see Appendix C for derivations):

Voptl =
[
βl(
|ĥl|
σvl

√
Plτl
λ
− 1)

]+
+ Pl, (50a)

λ = (

∑
l∈A

|ĥl|βl
√
Plτl

σvl

σPtot−
∑
l∈A Pl+

∑
l∈A βl

)2. (50b)

Note that the first term of the right side of the equality in (50a)
is Pl introduced in Section II-B. Given λ, |ĥl|, σvl in (50a) and
the easy-to-prove fact that τl+Pl ∂τl∂Pl

>0, it is straightforward
to show that ∂Pl

∂Pl
> 0 for active clusters, i.e., increasing Pl

increases Pl. Having the solutions to problems (SP2-1) and
(SP2-2), Algorithm 1 summarizes our proposed solution to
problem (PA). Essentially, this algorithm iteratively solves
(SP2-1) and (SP2-2) in a block-coordinate ascent manner until
the convergence is reached. In Section VII, we argue that the
algorithm output converges to a stationary point of (PA).
B. Finding Optimal Total Training Power and its Distribution
Among CHs

In this section, we focus on (PB) and find Ptrn as well
as training power distribution {ψl}Ll=1 among the CHs such
that

∑L
l=1 ψl=Ptrn. As we mentioned earlier, to find Ptrn we

consider a modified objective function, i.e., instead of
∑L
l=1 Jl

in (P1) we consider
∑L
l=1 E{Jl}, where the expectation is

taken over the channel estimates |ĥl|
2
. Since solving this

problem analytically is still intractable, we use the Jensen’s
inequality for concave functions [37, pp. 77-78], to establish
a lower bound on E{Jl(Ptrn, Pl,wl)}:

E{Jl(Ptrn, Pl,wl)}≤Gl(Ptrn, Pl,wl),

where Gl(Ptrn, Pl,wl) is obtained from Jl(Ptrn, Pl,wl), after
replacing |ĥl|

2
with E{|ĥl|

2
}. To find E{|ĥl|

2
} needed for

Gl(Ptrn, Pl,wl) we revisit the error corresponding to the
LMMSE channel estimation in (14). Note that ĥl is a zero-
mean complex Gaussian. Let 2σ2

ĥl
denote the variance of ĥl.

For the model hl = ĥl + h̃l, we invoke the orthogonality
principle from the linear estimation theory [30], that states

L(γ, η, Pl,wl)=wl
TΣqlwl+Pl(1+wl

TΩlwl)+γ((|ĥl|
2
+ζ2l )UlwT

lΣqlwl+σ
2
vl
Ul−Plwl

T(|ĥl|
2
Πl−UlBl)wl)−ηPl, (33)
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Algorithm 1: proposed solution of (PA)

Input: Ptot, Ptrn, {ĥl}Ll=1, ε, and system parameters
defined in Section II
Output: optimal optimization variables {P optl ,wopt

l }Ll=1

- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
Let i indicate the iteration index, V(i)

l , P
(i)
l ,w

(i)
l ,A(i)

denote Vl, Pl,wl,A values and
F (i) =

∑
l∈A(i) Fl(P (i)

l ,w
(i)
l ) at iteration i.

- Given the channel estimates, sort the clusters as
described in Appendix C.

- Initialization: i=1, A(0) = {1, ..., L}, randomly choose
{P (0)

l ,w
(0)
l }Ll=1 such that 0<P

(0)
l <V(0)

l = Ptot−Ptrn
L

and (P2) holds with active constraints, and compute
F (0).

- Iterate between solving (SP2-1) and (SP2-2) until
convergence. At iteration i do below:
1: Obtain P (i)

l ∈(0,V(i−1)
l ) via solving (48), substitute

P
(i)
l into (42) to obtain w(i)

l , compute F (i).
2: If |F

(i)−F(i−1)

F(i−1) |≤ε, terminate the iteration and return
the optimal solution {P optl =P

(i)
l ,wopt

l =w
(i)
l }∀l∈A(i)

and {P optl =0,wopt
l =0}∀l/∈A(i) .

3: Increase i, update A(i), and find {V(i+1)
l }∀l∈A(i)

using (50a), (50b).
- Continue the iteration until the stopping criteria in step
2 is met.

var(ĥl) = var(hl) − var(h̃l) = 2σ2
hl
− ζ2l , where ζ2l in (14)

depends on ψl. Since ĥl is zero-mean, we have E{|ĥl|
2
} =

var(ĥl). Thus, Gl(Ptrn, Pl,wl)=
(2σ2

hl
−ζ2l )Plwl

TΠlwl

σ2
vl

+wlTΛ1l
wl

, where

Λ1l =σ2
θζ

2
l PlΠl + 2σ2

hl
(Σql +Pl∆l). Notice that Gl depends

on the optimization variable Ptrn through ζ2l in the numerator
and Λ1l in the denominator. We reconsider (P1) in which Jl
is now replaced with Gl:

max
Ptrn,{Pl,wl}Ll=1

L∑
l=1

Gl(Ptrn, Pl,wl)(PB′ )

s.t. Ptrn+

L∑
l=1

Cl(Pl,wl)≤Ptot, Ptrn, Pl∈R+,wl∈RKl,∀l.

Examining (PB′ ), we realize that solving it for Ptrn provides
an answer that depends on Pl,wl (which is undesirable).
To circumvent this problem we propose a method to find
Ptrn based on the following observation. We observe that,
although (PB′ ) is a non-concave maximization problem, given
{Pl,wl}Ll=1 and letting σ = 1 − Ptrn

Ptot
, the problem (PB′ )

under these conditions becomes strictly concave with respect
to the variable σ over the interval (0, 1), and hence, the
objective function has a unique global maximum in this
interval. Let σopt denote the solution to this problem, which
can be efficiently found using numerical line search methods

(e.g., the Golden section7 method [38, p. 216]). Since this
problem is concave over (0, 1), the convergence of Golden
section method to σopt is guaranteed.

Based on the above observation, we propose the method
described in Algorithm 2 to solve (PB′ ) and find P opttrn . The
proposed method is basically Golden section method, where in
each iteration we apply Algorithm 1 to find {Pl,wl}Ll=1, only
for the purpose of successively narrowing the search interval
for σ. The output of Algorithm 2 converges to σopt and thus
P opttrn = (1− σopt)Ptot.

Algorithm 2: proposed solution of (PB′ )
Input: Ptot, ε, system parameters defined in Section II
Output: optimal optimization variable σopt

- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
Apply the iterative Golden section method to find
σopt∈(0, 1)

- Initialization: i=0, σ
(0)
b =0, σ

(0)
e =1.

- At iteration i of Golden section method, do below:
1: Compute two evaluating points α(i)

b and α(i)
e using

the starting and the ending points of the search interval
(σ

(i)
b , σ

(i)
e ).

2: For each evaluating point, use Algorithm 1 to obtain
{Pl,wl}Ll=1 and compute the objective function∑L
l=1 Gl. Suppose G(i)b ,G(i)e denote the values of∑L
l=1 Gl when it is evaluated at α(i)

b and α(i)
e ,

respectively.
- Depending on the values of G(i)b ,G(i)e update the search

interval (σ
(i)
b , σ

(i)
e ).

- Continue the iteration until σ(i)
e − σ(i)

b ≤ ε.

Given P opttrn , we find {ψl}Ll=1, via minimizing the MSE of
the LMMSE channel estimates for all clusters:

given P opttrn min
{ψl}Ll=1

L∑
l=1

ζ2l (51)

s.t.
L∑
l=1

ψl ≤ P opttrn , ψl ∈ R+, ∀l.

The above is a convex minimization problem. Solving the
associated KKT conditions, we obtain:

7Let xopt denote the maximum value that a concave function f(x) attains
over a search interval x ∈ (xb, xe). This numerical method finds xopt via
successively narrowing the range of the search interval. Let i be the iteration
index, (I(i)b , I(i)e ) be the starting and ending points of the search interval
at iteration i, α(i)

b = 0.382(I(i)e − I
(i)
b ) + I(i)b and α(i)

e = 0.618(I(i)e −
I(i)b ) + I(i)b be the evaluating points. Also let f (i)b , f

(i)
e , denote the values

of the function f(x) when it is evaluated at the evaluating points α(i)
b , α

(i)
e ,

respectively. For initialization, we let i=0, I(0)b =xb, I
(0)
e =xe. At iteration

i, we compute f
(i)
b and f

(i)
e and then update the search interval to find

xopt as the following: if f (i)b > f
(i)
e , then I(i+1)

b = I(i)b , I(i+1)
e = α

(i)
e ,

if f (i)b = f
(i)
e , then I(i+1)

b = α
(i)
b , I(i+1)

e = α
(i)
e , and if f (i)b < f

(i)
e , then

I(i+1)
b =α

(i)
b , I(i+1)

e = I(i)e . As the stopping criterion, we check whether
the length of the search interval exceeds a pre-determined threshold ε. If
the stopping criterion is met at iteration j, the algorithm returns the optimal
solution xopt=I(j)b . Otherwise, we update the search interval and continue
the iterations until the stopping criterion is met.
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(P1)       Max     𝑙=1
𝐿 𝐽𝑙

- variables: 𝑃𝑡𝑟𝑛, 𝑃𝑙 , 𝒘𝑙 𝑙=1
𝐿

- non-concave maximization

- 𝐽𝑙 depends on channel estimates

(P𝐵)       Max     𝑙=1
𝐿 𝔼{𝐽𝑙}

- variables: 𝑃𝑡𝑟𝑛, 𝑃𝑙 , 𝒘𝑙 𝑙=1
𝐿

- 𝔼 . is over channel estimates

- non-concave maximization

given 

channel 

estimates
equivalent

Primal decomposition of (P2)

(P𝐴)    given 𝑃𝑡𝑟𝑛,  Max     𝑙=1
𝐿 𝐹𝑙

- variables: 𝑃𝑙 , 𝒘𝑙 𝑙=1
𝐿

- non-concave maximization

(P2)    given 𝑃𝑡𝑟𝑛,  Max     𝑙=1
𝐿 𝐹𝑙

- variables: 𝑉𝑙 , 𝑃𝑙 , 𝒘𝑙 𝑙=1
𝐿

- 𝑉𝑙 𝑙=1
𝐿 are additional auxiliary 

variables

- non-concave maximization

(SP2-1)    given 𝑃𝑡𝑟𝑛, 𝑉𝑙,  Max 𝐹𝑙
- variables: 𝑃𝑙 , 𝒘𝑙
- solve (SP2-1) for all clusters

- non-concave maximization, thus we cannot claim 

its solution is globally optimal and unique

- numerical solution for 𝑃𝑙 using Golden Section 

method

- closed-form solution for 𝒘𝑙

(SP2-2)    given 𝑃𝑡𝑟𝑛, 𝑃𝑙 , 𝒘𝑙 𝑙=1
𝐿 ,  Max    𝑙=1

𝐿 𝐹𝑙
𝑜𝑝𝑡

- variables: 𝑉𝑙 𝑙=1
𝐿

- concave maximization

- closed-form solution for 𝑉𝑙 𝑙=1
𝐿

(P𝐵′)       Max     𝑙=1
𝐿 𝑔𝑙

- variables: 𝑃𝑡𝑟𝑛, 𝑃𝑙 , 𝒘𝑙 𝑙=1
𝐿

- given 𝑃𝑙 , 𝒘𝑙 𝑙=1
𝐿 , 𝜎 = 1 −

𝑃𝑡𝑟𝑛

𝑃𝑡𝑜𝑡
, (P𝐵′) 

becomes concave in (0,1) w.r.t. 𝜎

given σ/𝑃𝑡𝑟𝑛,  Min     𝑙=1
𝐿 𝜁𝑙

2 (52)

- variables: 𝜓𝑙 𝑙=1
𝐿

- convex minimization

- closed-form solution for 𝜓𝑙 𝑙=1
𝐿

Algorithm 1: the output of this algorithm is 𝑃𝑙
𝑜𝑝𝑡
, 𝒘𝑙

𝑜𝑝𝑡

𝑙=1

𝐿

Algorithm 2: the output of this algorithm is 𝜎𝑜𝑝𝑡

Fig. 2: This block diagram is the pictorial narrative of our approach to solve the original constrained optimization problem (P1).

ψl =
[σ2

vl

σ2
hl

(
σ2
hl

κσvl
− 1)

]+
, κ =

∑L
l=1 σvl

P opttrn +
∑L
l=1

σ2
vl

σ2
hl

. (52)

The solution in (52) is based on the assumption that all
CHs participate in pilot transmission and P opttrn satisfies the

inequality P opttrn ≥
σvL
σ2
hL

∑L
l=1 σvl−

∑L
l=1

σ2
vl

σ2
hl

= Υ. However,

when P opttrn < Υ, the solutions in (52) imply that ψl = 0 for

some clusters. In this case, we propose to choose ψl =a
σ2
hl

σvl
,

in which a is a common factor. Imposing the constraint∑L
l=1 ψl=P opttrn results in:

ψl=
σ2
hl
P opttrn

σvl
∑L
l=1

σ2
hl

σvl

, l = 1, ..., L,when P opttrn < Υ. (53)

Fig. 2 shows a block diagram that summarizes our approach
to solve the original constrained optimization problem (P1).
Overall, the sequence of algorithm implementations and net-
work operation follow. The FC implements Algorithm 2 to
obtain P opttrn , and consequently to find {ψl}Ll=1 given in (52).
The FC feeds back this information to CHs (all the obtained
{Pl,wl}Ll=1 values during the execution of Algorithm 2 are
discarded at this point). CHs send their pilot symbols to
the FC and the FC estimates the channels {ĥl}Ll=1. Now,
given P opttrn , {ĥl}Ll=1, the FC implements Algorithm 1, finds
{P optl ,wopt

l }Ll=1, feeds back8 this new information to CHs,
and feeds back Pl,k =

P optl

Kl
to sensors. Sensors send their

amplified measurements to their CHs. CHs send their fused
signals to the FC. Finally, the FC estimates θ.

C. Minimizing Lower Bounds on MSE D

This section discusses constrained minimization of the lower
bounds D1, D2 we derived in Section III-B. The lower bound
D1 depends on {Pl,wl}Ll=1 and hence its constrained mini-
mization becomes:

8Similar to [24], [25] we assume that the FC energy resource is much larger
than those of the sensors/CHs. Therefore, the overhead required for feeding
back the necessary information from the FC to the sensors/CHs is neglected.

max
{Pl,wl}Ll=1

L∑
l=1

Pl|hl|2wl
TΠlwl

σ2
vl + |hl|

2wl
T (Σql+Pl∆l)wl

(P3)

s.t.
L∑
l=1

wl
TΣqlwl+Pl(1+wl

TΩlwl)≤Ptot, Pl∈R+,wl∈RKl, ∀l.

This is similar to (P2), with the difference that Ptrn=0, and
hence in (50a) and (50b) expressions we let ζ2l = 0, |ĥl|

2
=

|hl|2, σ=1. Algorithm 1 can be followed to find the solution
to (P3), using wopt

l in (42). The lower bound D2 depends on
{wl}Ll=1 and hence its constrained minimization becomes:

max
{wl}Ll=1

L∑
l=1

|hl|2wl
TΣlwl

σ2
vl + |hl|

2wl
TΣnlwl

(P4)

s.t.
L∑
l=1

wl
T (σ2

θΣl+Σnl)wl≤Ptot,wl∈RKl,∀l.

This is similar to (P2), with the differences that Ptrn=0 and
Pl=0,∀l. Following similar steps we took in Section IV-A to
solve (P2), we find that (50a) and (50b) become:

Voptl =
[
β
′′

l (
|hl|
σvl

√
τ
′
l

λ
−1)

]+
, β

′′

l =
σ2
vl

|hl|2(1−σ2
θτ
′
l )
,

λ=(

∑
l∈A

|hl|β
′′
l

√
τ
′
l

σvl

Ptot+
∑
l∈A β

′′
l

)2, τ
′

l =1l
T (σ2

θΣl+Σnl)
−1

1l.

The optimal weight vector wopt
l corresponding to the solution

of (P4) is computed as wopt
l =

√
Vl
τ
′
l

(σ2
θΣl+Σnl)

−1
1l.

V. SOLVING THE SPECIAL CASES OF THE ORIGINAL
PROBLEM

The original problem (P1) aims at constrained minimization
of D, with respect to three sets of optimization variables:
Ptrn total training power, Pl power allocated to sensors in
cluster l to send their measurements to CHl, and Pl power
allocated to CHl to transmit its signal to the FC. To untan-
gle the performance gain that optimizing each set of these
optimization variables provides, we consider the following
three special cases of (P1). In problem (P1-SC1) assuming
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Ptrn is given and ψl = Ptrn/L, we optimize {Pl,Pl}Ll=1.
In problem (P1-SC2) assuming Pl = P,∀l, we optimize
Ptrn, P, {Pl}Ll=1. In problem (P1-SC3) assuming Pl = P,∀l,
we optimize Ptrn,P, {Pl}Ll=1. Note that problem (P1-SC1) is
the same as problem (PA) addressed in Section IV-A. In the
following we address problems (P1-SC2) and (P1-SC3).
A. Solving Special Case (P1-SC2): When Intra-Cluster Pow-
ers of all Clusters are Equal

Problem (P1-SC2) becomes:

max
Ptrn,P,{wl}Ll=1

L∑
l=1

P |ĥl|
2
wl

TΠlwl

σ2
vl

+wl
TΛ1lwl

(P1-SC2)

s.t. Ptrn+

L∑
l=1

wl
TΣqlwl+P (1+wl

TΩlwl)≤Ptot,Ptrn, P ∈R+,

where Λ1l =σ2
θζ

2
l PΠl+(|ĥl|

2
+ζ2l )(Σql +P∆l). To address

(P1-SC2) we consider the following two sub-problems: (a)
finding P ∗, {w∗l }Ll=1 given Ptrn, (b) finding P ∗trn as well as
{ψ∗l }Ll=1 such that

∑L
l=1 ψ

∗
l = P ∗trn. Sub-problem (a) is a

special case of (PA) in which, for finding P ∗, we use Golden
section method, and sub-problem (b) is similar to (PB). Recall
that Ptrn = (1 − σ)Ptot and thus

∑L
l=1(P+Pl) =σPtot. We

let σc ∈ (0, 1) such that P = (1 − σc)σPtot. It is simple to
show that sub-problems (a) and (b) are both concave and hence
P ∗ and P ∗trn are unique. Next, we summarize our proposed
solutions for solving sub-problems (a) and (b) in Algorithms
3-a and 3-b, respectively.

Description of Algorithm 3-a: Let P ∗ = (1 − σ∗c )σPtot
denote the optimal P . We apply Golden section method to
find σ∗c ∈ (0, 1) and thus P ∗ that maximizes the objective
function in (P1-SC2), denoted as F(σc). At iteration i, for each
evaluating point we first compute the optimal V(i)

l , denoted as
{V̄(i)

l }Ll=1 using (50a), and substitute V̄(i)
l into (42) to obtain

{w̄(i)
l }Ll=1. Next we compute F (i)

b and F (i)
e . The stopping

criterion is similar to Algorithm 2. Algorithm 3-a returns the
optimal σ∗c , {w∗l }Ll=1.

Description of Algorithm 3-b: We address sub-problem (b)
similar to problem (PB) in Section IV-B. More specifically,
we consider problem (PB′ ), where Pl is substituted by P ,
and apply a modified version of Algorithm 2 to solve it. In
particular, at iteration i of Algorithm 2, we use Algorithm
3-a to obtain the optimal variables P̄ (i), {w̄(i)

l }Ll=1, and then
compute R(i)

b and R(i)
e . The rest is similar to Algorithm 2.

Algorithm 3-b returns the optimal P ∗trn, {ψ∗l }Ll=1.

B. Solving Special Case (P1-SC3): When Powers of all CHs
for Their Data Transmission to the FC are Equal

To incorporate the constraint Pl=P in the cost function of
problem (P1-SC3), from Section IV-A1 we recall that wopt

l =
χl(Rtl

−1σ2
θ

√
Plρl). Therefore from Pl = wl

TRtlwl in (9)
and Pl=P , we conclude χ2

l =P/σ4
θPlτl. Substituting for wl

in (P1), problem (P1-SC3) becomes:

max
Ptrn,P,{Pl}Ll=1

L∑
l=1

Pl|ĥl|
2
τl

σ2
vl
P +ζ2l +

|ĥl|
2

τl
ρl
TR−1

tl
ΣqlR

−1
tl
ρl

(P1-SC3)

s.t. Ptrn+

L∑
l=1

(Pl+P) ≤ Ptot, Ptrn,P ∈ R+, Pl ∈ R+, ∀l.

To address (P1-SC3) we consider the following two sub-
problems: (a) finding P∗, {P ∗l }Ll=1 given Ptrn, (b) finding
P ∗trn as well as {ψ∗l }Ll=1 such that

∑L
l=1 ψ

∗
l = P ∗trn. Sub-

problem (a) is a special case of (PA) in which, for finding P∗,
we use Golden section method, and sub-problem (b) is similar
to (PB). We let σd ∈ (0, 1) such that P = (1 − σd)σPtot.
It is easy to show that finding P∗, P ∗trn in sub-problems (a)
and (b), respectively, are concave problems, and hence P∗
and P ∗trn are unique. In Appendix D, we prove that finding
{P ∗l }Ll=1 in sub-problem (a) is jointly concave over Pl’s and
therefore its solution is unique. In the absence of a closed
form expression we use gradient-ascent algorithm to find the
solution. Algorithms 4-a and 4-b summarize how we solve
sub-problems (a) and (b), respectively.

Description of Algorithm 4-a: Let P∗ = (1 − σ∗d)σPtot
denote the optimal P . We apply Golden section method to
find σ∗d ∈ (0, 1) and thus P∗ that maximizes the objective
function in (P1-SC3), denoted as F(σd). At iteration i, for
each evaluating point we compute the optimal P (i)

l , denoted
as {P̄ (i)

l }Ll=1 using gradient-ascent algorithm, and substitute
them in (P1-SC3) to compute F (i)

b and F (i)
e . The stopping

criterion is similar to Algorithm 2. Algorithm 4-a returns the
optimal σ∗d, {P ∗l }Ll=1.

Description of Algorithm 4-b: We address sub-problem
(b) similar to problem (PB) in Section IV-B. Specifically,
we consider problem (PB′ ), where Pl is substituted by P
and apply a modified version of Algorithm 2 to solve it. In
particular, at iteration i of Algorithm 2, we use Algorithm
4-a to obtain the optimal variables P̄(i), {P̄ (i)

l }Ll=1, and then
compute R(i)

b and R(i)
e . The rest is similar to Algorithm 2.

Algorithm 4-b returns the optimal P ∗trn, {ψ∗l }Ll=1.

VI. COMPLEXITY OF ALGORITHMS

We discuss the computational complexity of Golden section
method as well as Algorithms 1, 2, 3-a, 3-b, 4-a, 4-b, which
allows us to compare the computational complexity of solving
(P1) versus those of (P1-SC1), (P1-SC2), (P1-SC3).
• Golden section method: This method includes a one-
dimensional search to find the optimal point. If no matrix
inversion is required, its complexity order for convergence to
an ε-accurate solution is ε̄, where ε̄= log(1/ε) [38, p. 217].
We use this method for solving (48). In each iteration, to
compute the left side of (48) we employ the matrix inversion
algorithm in [39] to calculate Rtl

−1 with complexity order of
O(K2.37

l ). Therefore, the overall complexity order of finding
P optl ∈(0,Vl) becomes O(ε̄K2.37

l ).
• Algorithm 1 for solving (PA): We switch between solving
(SP2-1) and (SP2-2) until the stopping criteria is met. In each
iteration, we need to (i) find {Pl}Ll=1 using Golden section
method, with the overall complexity order of O(ε̄K̄), where
K̄=

∑L
l=1K

2.37
l , and (ii) calculate {Vl}Ll=1 using (50), which

needs τl, βl that are found in (i) and hence, the complexity
order of finding {Vl}Ll=1 isO(L). The overall complexity order
of Algorithm 1 becomes O(ε̄(L+ε̄K̄)).
• Algorithm 2 for solving (PB′): In each iteration, for each
evaluating point we use Algorithm 1 to obtain {Pl,wl}Ll=1.
Therefore, the overall complexity order of Algorithm 2 be-
comes O(ε̄2(L+ε̄K̄)).
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• Algorithm 3-a for solving sub-problem (a) of (P1-SC2):
In each iteration, for each evaluating point computing τl in
(50), (42) involves the matrix inversion Rtl

−1, and thus, the
complexity order of finding {Vl}Ll=1 and then {wl}Ll=1 is
O(K̄). Therefore, the overall complexity order of Algorithm
3-a is O(ε̄K̄).
• Algorithm 3-b for solving sub-problem (b) of (P1-SC2): In
each iteration, for each evaluating point we use Algorithm 3-a
to obtain P, {wl}Ll=1. Therefore, the overall complexity order
of Algorithm 3-b is O(ε̄2K̄).
• Algorithm 4-a for solving sub-problem (a) of (P1-SC3): Note
that the complexity order of the gradient-ascent algorithm to
maximize a general non-smooth convex function f(x) and
converge to an ε-accurate solution is O(1/ε), if no matrix in-
version is required for finding f(x) and its gradient Of(x) [38,
p. 232]. In each iteration of Algorithm 4-a, for each evaluating
point, since computing the objective function in (P1-SC3) and
its derivative with respect to Pl involves the matrix inversion
Rtl
−1, the complexity order of finding {Pl}Ll=1 using the

gradient-ascent algorithm is O(K̄/ε). Therefore, the overall
complexity order of Algorithm 4-a becomes O(ε̄K̄/ε).
• Algorithm 4-b for solving sub-problem (b) of (P1-SC3): In
each iteration, for each evaluating point we use Algorithm 4-a
to obtain P, {Pl}Ll=1. Therefore, the overall complexity order
of Algorithm 4-b is O(ε̄2K̄/ε).

To solve (P1) we need to solve (PA), (PB′ ). Therefore, the
complexity order of solving (P1) is e0 =O(ε̄(1+ε̄)(L+ε̄K̄)).
To solve (P1-SC1) we need to solve (PA). Therefore, the
complexity order of solving (P1-SC1) is e1 =O(ε̄(L+ ε̄K̄)).
To solve (P1-SC2) we need to solve sub-problems (a) and
(b) of (P1-SC2). Therefore, the complexity order of solving
(P1-SC2) is e2 = O(ε̄(1+ ε̄)K̄). To solve (P1-SC3) we need
to solve sub-problems (a) and (b) of (P1-SC3). Therefore, the
complexity order of solving (P1-SC3) is e3 =O(ε̄(1+ε̄)K̄/ε)
It is clear that e1<e2<e0<e3.

VII. CONVERGENCE ANALYSIS
We discuss the convergence analysis of Algorithms 1 and 2

which solve problems (PA) and (PB′ ), respectively.
• Convergence of Algorithm 1: Problems (PA) and (P2)

are equivalent. In (P2), the cost function is non-concave and
the constraint is a closed convex set w.r.t. the optimization
variables {Vl, Pl,wl}Ll=1. Algorithm 1 is indeed a block-
coordinate ascent type algorithm with two blocks. The first
block solves (SP2-1) for all clusters to obtain {Pl,wl}Ll=1.
(SP2-1) is a non-concave maximization problem for which
we have a numerical solution for Pl using Golden Section
method and a closed-form solution for wl. Since (SP2-1) is a
non-concave maximization problem, we cannot claim that our
proposed solution for Pl,wl is globally optimal and unique.
The second block solves (SP2-2) to obtain {Vl}Ll=1. (SP2-2) is
a concave maximization problem for which we have a closed-
form solution for Vl. Since (SP2-2) is a concave maximization
problem, its solution is globally optimal and unique.

The authors in [40] proved that in a block-coordinate
descent algorithm with only two blocks, which solves the
unconstrained minimization problem

min
(x1,x2)∈Rn1×Rn2

f(x1,x2), (54)

given we have the global minimizer x
(k+1)
1 =

argmin
x1

f(x1,x
(k)
2 ),∀k, the algorithm converges to

a stationary point if we can find a point x
(k+1)
2

such that f(x
(k+1)
1 ,x

(k+1)
2 ) ≤ f(x

(k+1)
1 ,x

(k)
2 ) and

∇2f(x
(k+1)
1 ,x

(k+1)
2 ) = 0,∀k. The authors also proved

the convergence when f in (54) is minimized subject to a
convex constraint set (see Corollary 1 and Section 4 in [41]).
Equipped with this result from [40], [41], we return to our own
problem. Let f=−

∑L
l=1 Fl, x1 ={Vl}Ll=1, x2 ={Pl,wl}Ll=1

in problem (P2). When solving problem (P2) using the block-
coordinate method with two blocks, we note that (SP2-2) has a
globally optimal solution and thus x(k+1)

1 =argmin
x1

f(x1,x
(k)
2 )

is completely known. Also, our proposed solution for (SP2-1)
satisfies the condition ∇2 f(x

(k+1)
1 ,x

(k+1)
2 ) = 0 (because it

is the solution of KKT conditions for (SP2-1)). Furthermore,
our extensive simulations indicate that the condition
f(x

(k+1)
1 ,x

(k+1)
2 ) ≤ f(x

(k+1)
1 ,x

(k)
2 ) is always satisfied ∀k.

Hence, we conclude that the output of the block-coordinate
ascent method between (SP2-1) and (SP2-2) converges to a
stationary point.

Regarding the convergence speed of the block-coordinate
descent method, few works have obtained a convergence rate
under special conditions on f in (54). However, for the general
case of non-convex f , even under convex constraints, no
convergence rate is established in the literature. Our extensive
simulations indicate that the average number of iterations
needed for Algorithm 1 to converge to an ε-accurate solution
for {P optl ,wopt

l }Ll=1 is 30.

• Convergence of Algorithm 2: In this algorithm, we
employ Golden section method to obtain P opttrn , where in each
iteration we apply Algorithm 1 to find {Pl,wl}Ll=1, only for
the purpose of successively narrowing the search interval of
Golden section method. Consider solving the following non-
convex minimization problem under convex constraints:

min
x,y

f(x,y)

s.t. x ∈ Ω1 ⊆ R, y ∈ Ω2 ⊆ Rn2 , (55)

where Golden section method is used to obtain xopt. If y(k) =
argmin
y

f(x(k),y) given x(k), k = 0, 1, ... is known instantly,

Golden section method converges linearly, and the rate of
convergence is approximately 0.62 [38, p. 217]. Equipped
with this result from [38], we return to our own problem. Let
f=−

∑L
l=1 Gl, x = Ptrn, y={Pl,wl}Ll=1 in problem (PB′ ).

We obtain xopt using Golden section method, where in each
iteration Algorithm 1 is applied to obtain yopt. Note that in
Section IV-B, we proved that f is strictly convex w.r.t. x and
thus, the convergence of Algorithm 2 to xopt is guaranteed.
Since Algorithm 1 is an iterative algorithm with an unknown
convergence rate, the exact convergence rate of Algorithm 2 is
unknown. We only know that convergence rate of Algorithm
2 is less than 0.62. Our extensive simulations indicate that
the average number of iterations needed for Algorithm 2 to
converge to an ε-accurate solution for xopt is 15.
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Fig. 3: D,D1, D2, and D3 versus Ptot (dB).

VIII. NUMERICAL AND SIMULATION RESULTS

In this section, we corroborate our analytical results with
numerical simulations, compare the effectiveness of different
proposed power optimization schemes in acheiveing an MSE
distorion-power tradeoff which is close to the Bayesian CRB,
and investigate how the allocated power across clusters vary
as signal-to-noise ratio (SNR) changes.

A. Comparing D and its Lower Bounds
Suppose θ is zero-mean with σ2

θ =1 and L=10 clusters. To
enforce the heterogeneity in the network, we randomly choose
σhl , σvl , σnl,k , σql,k ∈ (0, 1), and Kl ∈ {1, 2, ..., 10}, l =
1, ..., L, k = 1, ...,Kl. To capture the effect of randomness
in flat fading channel coefficients and communication noise,
the numerical results are computed based on 106 Monte-Carlo
trials, where in each trial, one realization of |hl|, νl,∀l are
generated. We also assume ε = 10−3. In Section III-B we
derived three lower bounds on D, of which we optimized
D1, D2 in problems (P3), (P4), respectively. Fig. 3 plots
optimized D, optimized D1, optimized D2 versus Ptot. Note
that D3 =0.0043 is constant. Clearly, D3<D2<D1<D<σ

2
θ .

Also, D2, D1, D decrease as Ptot increases.

B. Comparing Different Power Allocation Schemes
We compare the effectiveness of power optimization

schemes, obtained from solving (P1) and its special cases
(P1-SC1), (P1-SC2), (P1-SC3), in decreasing the MSE of the
LMMSE estimator. We also compare the optimized MSE
with the Bayesian CRB G−1 derived in Section III-C. Let
Dt, Dc, Dd denote the MSE corresponding to the optimal
solutions of (P1-SC1), (P1-SC2), (P1-SC3), respectively. We
know D3 < G−1 < D < Dt, Dc, Dd < σ2

θ . To quantify
the efficacy of different power allocation (w.r.t three sets of
optimization variables Ptrn, Pl’s, Pl’s) in closing the MSE
performance gap σ2

θ − G−1, we define three factors as the
following:

gt =
Dt −D
σ2
θ −G−1

, gc =
Dc −D
σ2
θ −G−1

, gd =
Dd −D
σ2
θ −G−1

, (56)

where 0 ≤ gt, gc, gd ≤ 1. A larger factor g means that the
particular power allocation is more effective in reducing the
MSE performance gap (closing the MSE performance gap).
Fig. 4 and Fig. 5 plot gt, gc, gd versus Ptot for two sets of
noise variances (in Fig. 5 σhl , σql,k are chosen from a smaller
interval (0, 0.5)). For gt we plot three curves corresponding
to Ptrn = 5%, 25%, 60%Ptot. Fig. 4 shows gc > gt(Ptrn =
5%Ptot) > gt(Ptrn = 60%Ptot) > gd > gt(Ptrn = 25%Ptot).
Whereas Fig. 5 shows gt(Ptrn = 5%Ptot) > gc > gt(Ptrn =
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Fig. 4: gt, gc, gd versus Ptot (dB) for the first set of system parameters.
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Fig. 5: gt, gc, gd versus Ptot (dB) for the second set of system parameters.

25%Ptot) > gd > gt(Ptrn = 60%Ptot). Evidently, a more
accurate channel estimation does not necessarily lead into a
smaller Dt. Two takeaway messages are: (1) gt, gc, gd > 0,
i.e., the solution obtained from solving (P1) always leads
into an MSE improvement, (2) the actual values of gt, gc, gd
depend on the system parameters and Ptot. Note that in
Fig. 4 at Ptot = 0dB, gt = 0.15 (for Ptrn = 25%Ptot),
gd = 0.17, gc = 0.48, meaning that power allocation among
CHs for training and Pl, and among clusters for obtaining Pl
reduce the MSE performance gap to 15%, 17%, 48%, respec-
tively. Combining the information given by gt, gc, gd, G with
the computational complexity analysis in Section VI provides
the system designer with quantitative complexity-versus-MSE
improvement tradeoffs offered by different power optimization
schemes.

C. Behavior of Power Allocation Across Clusters
We study the effect of heterogeneous clusters on the be-

havior of our proposed power allocation scheme to solve
(P1) as Ptot increases. Consider a network consisting L= 3
clusters with Kl = 6, σnl,k = σnl , σql,k = σql ,∀l, k. We
define γol =

σ2
θ

σ2
nl

as observation SNR of sensors within cluster

l, γcl = 1
σ2
ql

as channel-to-noise ratio (CNR) corresponding

to sensors-CHl links, and γdl =
σ2
hl

σ2
vl

as CNR corresponding
to CHl-FC link. Let ψl (dB) = 10log10(ψl), Pl (dB) =
10log10(Pl),Pl (dB) = 10log10(Pl),Vl (dB) = 10log10(Vl),
where Vl=Pl+Pl represents the allocated power to cluster l,
excluding its training power ψl. In the following we consider
three scenarios: (i) when observation SNR γol and CNR γcl
are equal and CNR γdl are different across clusters, (ii) when
observation SNR γol and CNR γdl are equal and CNR γcl are
different across clusters, (iii) when CNRs γcl and γdl are equal
and observation SNR γol are different across clusters.

Figs. 6a, 6b, 6c, 6d, respectively, depict ψl (dB),Vl (dB),Pl
(dB),Pl (dB),∀l, versus Ptot for γol = 5 dB, γcl = 5 dB,∀l
and γd1 = 14 dB, γd2 = 8 dB, γd3 = 2 dB. Regarding Fig. 6 we
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Fig. 6: {γol =5 dB, γcl =5 dB}3l=1 and γd1 >γ
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Fig. 7: {γol =5 dB, γdl =5 dB}3l=1 and γc1>γ
c
2>γ
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make the following observations: 1) all powers increase as
Ptot increases, 2) when Ptot is small, only cluster 1 is active,
and as Ptot increases, clusters 2 and 3 become active in a
sequential order, 3) in all regions of Ptot, a cluster with a larger
γdl is allotted a larger ψl (water filling), 4) in low-region to
moderate-region of Ptot, a cluster with a larger γdl is allocated
a larger Vl (water filling), and in high-region of Ptot, Vl of all
clusters converge (uniform power allocation), 5) in all regions
of Ptot, a cluster with a larger γdl is assigned a larger Pl (water
filling), 6) in low-region of Ptot, a cluster with a larger γdl is
allocated a larger Pl (water filling), and in high-region of Ptot,
a cluster with a larger γdl is allotted a smaller Pl (inverse of
water filling). The behavior of Pl and Pl in high-region of Ptot
can be explained by examining the behavior of Vl. Note that,
although CNRs γd1 , γ

d
2 , γ

d
3 are different, the differences are

compensated as Ptot increases and Vl of all clusters converge.
This fact implies the behaviors of Pl and Pl in high-region of
Ptot are opposite, i.e., water filling and inverse of water filling
power allocation for Pl and Pl, respectively.

Figs. 7a, 7b, 7c, 7d, respectively, depict ψl (dB), Vl (dB), Pl
(dB), Pl (dB),∀l, versus Ptot for γol =5 dB, γdl =5 dB,∀l and
γc1 =14 dB, γc2 =8 dB, γc3 =2 dB. The following observations
can be made for Fig. 7: comments 1) and 2) for Fig. 6 also
hold for Fig. 7, 3) in all regions of Ptot, ψl of all clusters
are equal (uniform power allocation) since γdl ’s are equal, 4)
behavior of Vl in Fig. 7b is the same as that of Fig. 6b, 5)
in low-region of Ptot, a cluster with a larger γcl is allocated a
larger Pl (water filling), and in high-region of Ptot, a cluster
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Fig. 8: {γcl =5 dB, γdl =5 dB}3l=1 and γo1>γ
o
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with a larger γcl is allocated a smaller Pl (inverese of water
filling), 6) in all regions of Ptot, a cluster with a larger γcl is
allocated a larger Pl (water filling). Note that, although CNRs
γc1, γ

c
2, γ

c
3 are different, the differences are compensated as Ptot

increases and Vl of all clusters converge. This fact implies the
behaviors of Pl and Pl in high-region of Ptot are opposite,
i.e., inverse of water filling and water filling power allocation
for Pl and Pl, respectively.

Figs. 8a, 8b, 8c, 8d, respectively, depict ψl (dB), Vl (dB), Pl
(dB), Pl (dB),∀l, versus Ptot for γcl =5 dB, γdl =5 dB,∀l and
γo1 =14 dB, γo2 =8 dB, γo3 =2 dB. The following observations
can be made for Fig. 8: comments 1) and 2) for Figs. 6 and
7 also hold for Fig. 8, 3) in all regions of Ptot, ψl of all
clusters are equal (uniform power allocation) since γdl ’s are
equal, 4) in all regions of Ptot a cluster with a larger γol
is allocated a larger Vl, a larger Pl, and a larger Pl (water
filling). The behaviors of Vl, Pl, Pl in high-region of Ptot
are different from the two previous scenarios (CNRs across
clusters were different), in which Vl of all clusters converge as
Ptot increases. Here the difference in observation SNR across
clusters cannot be compensated as Ptot increases. Hence, Vl of
clusters are different, such that a cluster with a larger (smaller)
γol is allocated a larger (smaller) Vl.

One may wonder given our proposed power allocation
scheme, how the powers allocated to a CH and a sensor would
be different. To answer this question, we let PCHl = Pl + ψl
denote the sum of power that CHl consumes for transmitting
its fused signal yl as well as its training symbol to the
FC. Fig. 9 plots PCHl and Pl,k versus Ptot, using the same
setup parameters of Fig. 8. We observe that for all clusters
PCHl >>Pl,k, k = 1, ...,Kl, i.e., the power allocated to each
sensor is much smaller than the power allocated to each CH.

IX. CONCLUSIONS

We studied distributed estimation of a random source in
a hierarchical power constrained WSN, where CHs linearly
fuse the received signals from sensors within their clusters,
and transmit over orthogonal fading channels to the FC. Prior
to data transmission, CHs send pilot symbols to the FC to
enable channel estimation at the FC. We derived the MSE
D corresponding to the LMMSE estimator of the source at
the FC, and established lower bounds on D, including the
Bayesian CRB. We addressed constrained minimization of D
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Fig. 9: PCHl = Pl + ψl and Pl,k = Pl
Kl

versus Ptot(dB) when {γcl =5 dB, γdl =5 dB}3l=1 and γo1>γ
o
2>γ

o
3 .

under the constraint on Ptot, where the optimization variables
are: i) training power Ptrn and {ψl}Ll=1, ii) sensor-CH data
transmission powers {Pl}Ll=1, iii) CH-FC data transmission
powers {Pl}Ll=1. We demonstrated the superior performance
of our proposed power allocation scheme, comparing with
schemes obtained from solving special case problems where
subsets of these variables are optimized. Our simulations re-
vealed that 1) when CNR corresponding to CHl-FC link varies
across clusters, ψl, Pl allocation follow water filling fashion
in all regions of Ptot, Pl follows (inverse of) water filling
fashion in (high-region) low-region of Ptot, 2) when CNR
corresponding to sensors-CHl links varies across clusters, Pl
allocation follows (inverse of) water filling fashion in (high-
region) low-region of Ptot, Pl allocation follows water filling
fashion in all regions of Ptot, 3) when observation SNR varies
across clusters, both Pl,Pl allocation follow water filling
fashion in all regions of Ptot, and they diverge from uniform
power allocation scheme as Ptot increases. Leveraging on
this work, we discuss three future research directions as
follows. First direction is considering a coherent multiple
access channel model (instead of orthogonal channels) for
intra-cluster communication, where sensors within a cluster
transmit their amplified measurements to their CH simultane-
ously. Second direction is exploring distributed estimation of
a random vector source with correlated components. Similar
to our work, all sensors can make noisy measurements of a
common vector source, or sensors of different clusters can
make partial observations of the vector source. Third direction
is studying a system where the FC is equipped with multiple
antennas (MIMO system model).

APPENDIX

A. Derivation of Bayesian CRB
Using the Bayes’ rule f(z, ĥ, θ) = f(z, ĥ|θ)f(θ), we can

decompose G into two terms [33]:

G=E{−∂
2 ln f(θ)

∂θ2︸ ︷︷ ︸
=G1(θ)

}+E{−E{∂
2 ln f(z, ĥ|θ)

∂θ2
}︸ ︷︷ ︸

=G2(θ)

}, (57)

in which the outer expectations are taken over the pdf of
θ, denoted as f(θ). Note that E{G1(θ)} depends on f(θ)
[35]. For instance, if θ is Gaussian with variance σ2

θ , we
obtain E{G1(θ)} = σ−2θ . Since ĥ and θ are independent,
the Bayes’ rule says f(z, ĥ|θ) = f(z|ĥ, θ)f(ĥ), and we can
rewrite G2(θ) = −E{E{∂

2 ln f(z|ĥ,θ)
∂θ2

∣∣ĥ}}, where the outer
and inner expectations are taken over the pdfs f(ĥ) and
f(z|ĥ, θ), respectively. We note that G2(θ) depends on the

parameters of the observation model at the sensors as well as
the physical layer parameters corresponding to sensors-CHs
and CHs-FC links. One can show that zl’s conditioned on ĥ, θ
are independent, i.e., f(z|ĥ, θ) =

∏L
l=1 f(zl|ĥl, θ). Moreover,

since channel estimation is performed independently for each
cluster, we have f(ĥ)=

∏L
l=1 f(ĥl). Hence G2(θ) becomes:

G2(θ)=−
∫
ĥ

∫
z

{
L∑
l=1

[
∂2f(zl|ĥl, θ)

∂θ2
− 1

f(zl|ĥl, θ)
(
∂f(zl|ĥl, θ)

∂θ
)

2

]

× f(ĥl)}
L∏
i=1
i6=l

f(zi|ĥi, θ)f(ĥi)dzdĥ.

Using the following two facts:∫
ĥ1

. . .

∫
ĥl−1

∫
ĥl+1

. . .

∫
ĥL

∫
z1

. . .

∫
zl−1

∫
zl+1

. . .

∫
zL

L∏
i=1
i6=l

f(zi|ĥi, θ)f(ĥi)×

dz1 . . . dzl−1dzl+1 . . . dzLdĥ1 . . . dĥl−1dĥl+1 . . . dĥL = 1,

L∑
l=1

∫
zl

∂2f(zl|ĥl, θ)
∂θ2

dzl =

L∑
l=1

∂2

∂θ2
(

∫
zl

f(zl|ĥl, θ)︸ ︷︷ ︸
=1

) = 0,

we find that G2(θ) reduces to (27). Examining (27) we realize
that we need to find two terms in order to fully characterize
G2(θ): the conditional pdf f(zl|ĥl, θ), and its first derivative
with respect to θ, ∂f(zl|ĥl, θ)/∂θ. In the following, we derive
these two terms. Using (15) we can write the received signal
at the FC from CHl as:

zl = (ĥl + h̃l︸ ︷︷ ︸
=u1l

)wl
T (
√
Al(θ1l + nl) + ql)︸ ︷︷ ︸

=u2l

+vl. (58)

in which u1l , u2l , vl are mutually independent conditioned on
ĥl, θ. Let z̄l = u1lu2l . Hence, zl = z̄l + vl. Next, we find
the conditional pdf of z̄l, conditioned on ĥl, θ. Considering
(5), we note that hl, νl are zero-mean independent complex
Gaussian, and hence from (14) we find that ĥl is also a zero-
mean complex Gaussian. Since hl = ĥl+ h̃l, we have h̃l ∼
CN

(
0, ζ2l

)
. Also, u1l ∼ CN

(
ĥl, ζ

2
l

)
and u2l ∼ N

(
µ̄l, σ̄

2
l

)
in (58), where µ̄l = θwl

T
√
Al1l, σ̄2

l =wl
T (
√
AlΣnl

√
Al +

Σql)wl. To find the conditional pdf of z̄l we use the following
lemma from [42].

Lemma 2. If X ∼ CN
(
µxe

jφx , σ2
x

)
and Y ∼

CN
(
µye

jφy , σ2
y

)
are independent complex Gaussian random

variables, the pdf of Z=XY (which is equal to the joint pdf
of its real and imaginary parts) is:
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f(Z)=f(zr, zi)=
2

πσ2
xσ

2
y

e−(k
2
x+k

2
y) (59)

×
∞∑
m=0

m∑
n=0

m−n∑
p=0

(2 cos(∠Z − φx − φy))
m−n−p

m!n!p!(m− n− p)!

×(
|Z|kxky
σxσy

)
m

(
kx
ky

)
n−p

Kn−p(
2|Z|
σxσy

),

where kx = µx/σx, ky = µy/σy, |Z| =
√
z2r + z2i ,∠Z =

arctan(zi/zr), and Kr(x) is the modified Bessel function of
the second kind with order r and argument x.

Therefore, we can write the conditional joint pdf
f(z̄lr , z̄li |ĥl, θ) using (59). Recall vl ∼ CN

(
0, 2σ2

vl

)
. Hence

f(vl) = f(vlr , vli) = 1
(2πσ2

vl
) exp (−v

2
lr
+v2li

2σ2
vl

). Since z̄l and vl

are independent, the conditional joint pdf f(zlr , zli |ĥl, θ) is
computed as f(zlr , zli |ĥl, θ) = f(z̄lr , z̄li |ĥl, θ) ∗ f(vlr , vli),
in which ∗ is the operator for two-dimensional convolution.
Substituting for f(z̄lr , z̄li |ĥl, θ), f(vlr , vli) from above and
defining b = |b|ej∠b, after some mathematical manipulations,
we reach f(zl|ĥl, θ) and ∂f(zl|ĥl,θ)

∂θ in (28) and (29), respec-
tively, whose parameters are defined in (30). Substituting (28)
and (29) in (27), we compute G2(θ).

B. Proof of Proposition 1: Finding wopt
l ,Foptl in terms of Pl

According to (39), the only non-zero eigenvalue of B1 and
its corresponding eigenvector are:

Foptl = |µl|
TB1

−1|µl|, soptl = B1
−1|µl|. (60)

Define δl=Vl−Pl, ξl= σ2
θ

|ĥl|
2 (
σ2
vl

δl
+ζ2l ), Σµl = |µl||µl|

T
, φl=

|ĥl|
2

+ ζ2l +
σ2
vl

δl
, ΣPl = Σql +Pl∆l, Σφl = φlΣPl . By

substituting ∆l,Πl into Ωl and Bl, and Ωl into Rtl , B1 in
(38) becomes B1 =Σφl+ξlΣµl . Using the Binomial inversion
Lemma [32] we compute soptl in (60):

soptl =
Σ−1φl |µl|

1 + ξl|µl|
T
Σ−1φl |µl|

. (61)

From (61), we obtain wopt
l :

wopt
l =

√
δl

|µl|
T
Σ−1φl RtlΣ

−1
φl
|µl|

Σ−1φl |µl| (62)

(a)
=

√
δl

ρTl Σ−1Pl ρl(1 + σ2
θPlρ

T
l Σ−1Pl ρl)

Σ−1Pl ρl
(b)
=

√
δl
τl
Rtl
−1ρl,

where τl is defined in Proposition 1. To obtain (a) in (62),
we use the fact that |µl|

T
Σ−1φl RtlΣ

−1
φl
|µl|= εl

φ2
l
(1 +

σ2
θ

|ĥl|
2 εl),

where εl = |µl|
T
Σ−1Pl |µl|. To obtain (b) in (62), we use

Rtl
−1ρl =

Σ−1
Pl
ρl

1+σ2
θPlρ

T
l Σ
−1
Pl
ρl

, which is established using the

Binomial inversion lemma. We have Foptl = |µl|
T
soptl .

Substituting soptl from (61) in (60) and using the fact that

1−σ2
θPlτl=

1
1+σ2

θPlρ
T
l Σ
−1
Pl
ρl

we reach:

Foptl =
|µl|

T
Σ−1φl |µl|

1 + ξl|µl|
T
Σ−1φl |µl|

(63)

=
|ĥl|

2
Plτl

|ĥl|
2
(1− σ2

θPlτl) + ζ2l +
σ2
vl

δl

=
|ĥl|

2
βlPlτl

σ2
vl

(1 + βl
δl

)
,

C. Solution of the Problem in (49)

Define δl=Vl−Pl and let T denote the objective function in
(49). We have ∂T

∂δl
=
|ĥl|

2
β2
l Plτl

σ2
vl

(βl+δl)
2 >0, implying that the solution

to (49) must satisfy the equality constraint
∑L
l=1 δl + Pl =

σPtot. Also, ∂2T
∂δi∂δj

=0,∀i 6=j, and ∂2T
∂δ2l

=
−2|ĥl|

2
β2
l Plτl

σ2
vl

(βl+δl)3
<0,∀l.

Thus the Hessian of T with respect to δl’s is diagonal and
negative definite, proving that T is jointly concave over δl’s.
Since the constraint is linear in δl, the problem in (49) is
concave. The Lagrangian function L associated with (49) is:

L(λ, {ηl, δl}Ll=1)=

L∑
l=1

|ĥl|
2
βlPlτl

σ2
vl

(1+ βl
δl

)
−δl (λ−ηl)+λ(σPtot−

L∑
l=1

Pl),

where λ, ηl’s are the Lagrange multipliers. The KKT optimal-
ity conditions are:

|ĥl|
2
β2
l Plτl

σ2
vl

(βl + δl)
2 − λ+ ηl = 0, ∀l, (64a)

λ

(
L∑
l=1

δl + Pl − σPtot

)
= 0, λ ≥ 0, (64b)

ηlδl = 0, ηl ≥ 0, δl ≥ 0, ∀l. (64c)

The condition (64c) implies ηl = 0 for active clusters with
δl>0. From (64a) we infer:

δoptl =

[
βl(
|ĥl|
σvl

√
Plτl
λ
− 1)

]+
, (65)

in which [x]
+

=max{x, 0}. Having δoptl , we find Voptl =δoptl +
Pl given in (50a). Substituting (65) in the active constraint
condition

∑L
l=1δl +Pl = σPtot, the Lagrange multiplier λ

becomes equal to the expression given in (50b), in which
A is the set of active clusters. To uniquely determine A,
we carry out the following procedure. Let LA = |A| where
LA ≤L. Suppose the clusters are indexed in the descending
order of |ĥ1|

2
P1τ1

σ2
v1

≥ |ĥ2|
2
P2τ2

σ2
v2

≥ ...≥ |ĥL|
2
PLτL

σ2
vL

. Choosing an

LA value we find λ and compute δoptl =βl(
|ĥl|
σvl

√
Plτl
λ −1),∀l.

If δoptl > 0, l = 1, ..., LA and δoptl ≤ 0, l = LA+ 1, ..., L,
then we have identified the set of active clusters A with their
corresponding Pl, l∈A. Otherwise, we repeat this process for
another LA value. It is proved that the solution always exists
and is unique [43].

D. Proof of Concavity of sub-problem (a) of (P1-SC3) over Pl’s
We rewrite the cost function of sub-problem (a), denoted

as F , as:
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F =
1

σ2
θ

L∑
l=1

Fl︷ ︸︸ ︷
1

bl
(1− sl

sl + Plml
), (66)

where bl = 1

|ĥl|
2 (
σ2
vl

P +ζ2l ), sl = 1+bl
σ2
θbl
,ml = ρl

TΣ−1Pl ρl,ΣPl =

Σql + Pl∆l. We have bl, sl,ml > 0 and ΣPl �
0. Also, ∂ml

∂Pl
= −ρlTΣ−1Pl ∆lΣ

−1
Pl
ρl < 0, ∂

2ml
∂P 2

l
=

2ρl
TΣ−1Pl ∆lΣ

−1
Pl

∆lΣ
−1
Pl
ρl > 0. One can obtain ∂Fl

∂Pl
=

sl(ml+Pl
∂ml
∂Pl

)

bl(sl+Plml)2
and prove that ml +Pl

∂ml
∂Pl

> 0 which infers
∂Fl
∂Pl

>0, i.e.,
Σql�0⇒ ΣPl�Pl∆l ⇒ Σ−1Pl �PlΣ

−1
Pl

∆lΣ
−1
Pl
⇒

ρl
TΣ−1Pl ρl − Plρl

TΣ−1Pl ∆lΣ
−1
Pl
ρl>0⇒ ml+Pl

∂ml

∂Pl
>0.

F in (66) is an increasing function of Pl, and thus, the solution
of sub-problem (a) of (P1-SC3) must satisfy the equality
constraint Ptrn+

∑L
l=1{Pl+P}=Ptot. Furthermore

∂2Fl
∂P 2

l

=
sl[(sl + Plml)(2

∂ml
∂Pl

+ Pl
∂2ml
∂P 2

l
)− 2(ml + Pl

∂ml
∂Pl

)2]

bl(sl + Plml)3
.

The denominator of the right-hand side is positive. The nu-
merator of the right-hand side can be simplified as num =
I1+I2+I3, where

I1 = slρl
T (PlΣ

−1
Pl

∆lΣ
−1
Pl

∆lΣ
−1
Pl
−Σ−1Pl ∆lΣ

−1
Pl

)ρl,

I2 = ρl
T (PlΣ

−1
Pl

ΠlΣ
−1
Pl

∆lΣ
−1
Pl
−Σ−1Pl ΠlΣ

−1
Pl

)ρl,

I3 = P 2
l ρl

T (Σ−1Pl ΠlΣ
−1
Pl

∆lΣ
−1
Pl

∆lΣ
−1
Pl

−Σ−1Pl ∆lΣ
−1
Pl

ΠlΣ
−1
Pl

∆lΣ
−1
Pl

)ρl.

One can prove that I1<0, I2<0, I3 =0. Hence, num<0 and
∂2Fl
∂P 2

l
<0. The following sequences of inequalities are easy to

verify:
Σql�0⇒ ΣPl�Pl∆l ⇒ I�PlΣ−1Pl ∆l ⇒

Σ−1Pl ∆lΣ
−1
Pl
�PlΣ−1Pl ∆lPlΣ

−1
Pl

∆lΣ
−1
Pl
⇒ I1<0 ,

I�PlΣ−1Pl ∆l ⇒ (ρl
Tρl)

2>Pl(ρl
Tρl)(ρl

TΣ−1Pl ∆lρl)⇒
Πl�PlΠlΣ

−1
Pl

∆l ⇒ Σ−1Pl ΠlΣ
−1
Pl
�PlΣ−1Pl ΠlΣ

−1
Pl

∆lΣ
−1
Pl

⇒ I2<0 ,

ρl
TΣ−1Pl ∆lρl

(a)
= ρl

T∆lΣ
−1
Pl
ρl ⇒ (ρl

Tρl)ρl
TΣ−1Pl ∆lρl=

ρl
T∆lΣ

−1
Pl
ρl(ρl

Tρl)⇒ ΠlΣ
−1
Pl

∆l=∆lΣ
−1
Pl

Πl ⇒
Σ−1Pl ΠlΣ

−1
Pl

∆lΣ
−1
Pl

∆lΣ
−1
Pl

=Σ−1Pl ∆lΣ
−1
Pl

ΠlΣ
−1
Pl

∆lΣ
−1
Pl

⇒ I3 =0 ,

where (a) comes by the fact that ρl
TΣ−1Pl ∆lρl is scalar. The

Hessian of F with respect to Pl’s is diagonal and negative
definite, which proves that F is jointly concave over Pl’s.
Moreover, the constraint is linear in Pl, and therefore finding
Pl’s in sub-problem (a) of (P1-SC3) is jointly concave over
Pl’s and has a unique solution.

REFERENCES

[1] M. Shirazi and A. Vosoughi, “On bayesian fisher information maximiza-
tion for distributed vector estimation,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 5, no. 4, pp. 628–645, Dec
2019.

[2] M. Shirazi and A. Vosoughi, “Bayesian Cramer-Rao bound for dis-
tributed vector estimation with linear observation model,” in IEEE
International Symposium on Personal, Indoor, and Mobile Radio Com-
munication, 2014.

[3] ——, “Bayesian Cramer-Rao bound for distributed estimation of corre-
lated data with non-linear observation model,” in Asilomar Conference
on Signals, Systems and Computers, 2014.

[4] A. Sani and A. Vosoughi, “Distributed vector estimation for power- and
bandwidth-constrained wireless sensor networks,” IEEE Transactions on
Signal Processing, vol. 64, no. 15, pp. 3879–3894, Aug 2016.

[5] A. Sani and A. Vosoughi, “On distributed linear estimation with obser-
vation model uncertainties,” IEEE Transactions on Signal Processing,
vol. 66, no. 12, pp. 3212–3227, June 2018.

[6] J. Fang and H. Li, “Power constrained distributed estimation with
cluster-based sensor collaboration,” IEEE Transactions on Wireless
Communications, vol. 8, no. 7, pp. 3822–3832, July 2009.

[7] C. A. Lin and C. H. Wu, “Linear coherent distributed estimation with
cluster-based sensor networks,” IET Signal Processing, vol. 6, no. 7, pp.
626–632, Sep. 2012.

[8] M. H. Chaudhary and L. Vandendorpe, “Performance of power-
constrained estimation in hierarchical wireless sensor networks,” IEEE
Transactions on Signal Processing, vol. 61, no. 3, pp. 724–739, 2013.

[9] S. A. Aldalahmeh, S. O. Al-Jazzar, D. McLernon, S. A. R. Zaidi, and
M. Ghogho, “Fusion rules for distributed detection in clustered wireless
sensor networks with imperfect channels,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 5, no. 3, pp. 585–597,
Sep. 2019.

[10] M. Gastpar, B. Rimoldi, and M. Vetterli, “To code, or not to code:
lossy source-channel communication revisited,” IEEE Transactions on
Information Theory, vol. 49, no. 5, pp. 1147–1158, May 2003.

[11] S. Cui, J. Xiao, A. J. Goldsmith, Z. Luo, and H. V. Poor, “Estimation di-
versity and energy efficiency in distributed sensing,” IEEE Transactions
on Signal Processing, vol. 55, no. 9, pp. 4683–4695, Sep. 2007.

[12] P. Salvo Rossi, D. Ciuonzo, K. Kansanen, and T. Ekman, “Performance
analysis of energy detection for mimo decision fusion in wireless sensor
networks over arbitrary fading channels,” IEEE Transactions on Wireless
Communications, vol. 15, no. 11, pp. 7794–7806, Nov 2016.

[13] F. Jiang, J. Chen, A. L. Swindlehurst, and J. A. Lpez-Salcedo, “Massive
mimo for wireless sensing with a coherent multiple access channel,”
IEEE Transactions on Signal Processing, vol. 63, no. 12, pp. 3005–
3017, June 2015.

[14] H. R. Ahmadi and A. Vosoughi, “Optimal training and data power
allocation in distributed detection with inhomogeneous sensors,” IEEE
Signal Processing Letters, vol. 20, no. 4, pp. 339–342, April 2013.

[15] ——, “Impact of wireless channel uncertainty upon distributed detection
systems,” IEEE Transactions on Wireless Communications, vol. 12,
no. 6, pp. 2566–2577, June 2013.

[16] H. R. Ahmadi, N. Maleki, and A. Vosoughi, “On power allocation for
distributed detection with correlated observations and linear fusion,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8396–
8410, Sep. 2018.

[17] M. Sedghi, G. Atia, and M. Georgiopoulos, “Low-dimensional decom-
position of manifolds in presence of outliers,” in 2019 IEEE 29th
International Workshop on Machine Learning for Signal Processing
(MLSP), Oct 2019, pp. 1–6.

[18] ——, “Robust manifold learning via conformity pursuit,” IEEE Signal
Processing Letters, vol. 26, no. 3, pp. 425–429, March 2019.

[19] M. Hosseini, A. S. Maida, M. Hosseini, and G. Raju, “Inception-inspired
lstm for next-frame video prediction,” 2019.

[20] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detection techniques
for wireless sensor networks: A survey,” IEEE Communications Surveys
Tutorials, vol. 12, no. 2, pp. 159–170, Second 2010.

[21] M. Hosseini, M. A. Salehi, and R. Gottumukkala, “Enabling interactive
video streaming for public safety monitoring through batch scheduling,”
in 2017 IEEE 19th International Conference on High Performance
Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2017, pp. 474–481.

[22] M. K. Banavar, C. Tepedelenlioglu, and A. Spanias, “Estimation over
fading channels with limited feedback using distributed sensing,” IEEE
Transactions on Signal Processing, vol. 58, no. 1, pp. 414–425, 2010.

[23] C.-H. Wang and S. Dey, “Distortion outage minimization in nakagami
fading using limited feedback,” EURASIP Journal on Advances in Signal
Processing, vol. 2011, no. 1, pp. 92–107, Oct 2011.

[24] H. Senol and C. Tepedelenlioglu, “Performance of distributed estimation
over unknown parallel fading channels,” IEEE Transactions on Signal
Processing, vol. 56, no. 12, pp. 6057–6068, Dec 2008.



17

[25] C.-H. Wu and C.-A. Lin, “Linear coherent distributed estimation over
unknown channels,” Signal Proc., vol. 91, no. 4, pp. 1000 – 1011, 2011.

[26] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: A survey,” IEEE
Communications Surveys Tutorials, vol. 15, no. 2, pp. 551–591, Second
2013.

[27] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. McGraw-
Hill, New York, 2007, pp. 63–64.

[28] J. H. Kotecha, V. Ramachandran, and A. M. Sayeed, “Distributed
multitarget classification in wireless sensor networks,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 4, pp. 703–713, April
2005.

[29] C.-H. Wang and S. Dey, “Distortion outage minimization in nakagami
fading using limited feedback,” EURASIP Journal on Advances in Signal
Processing, vol. 2011, no. 1, pp. 92–107, Oct 2011.

[30] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice-Hall PTR, 1993, p. 382.

[31] Y. Jia and A. Vosoughi, “Transmission resource allocation for training
based amplify-and-forward relay systems,” IEEE Transactions on Wire-
less Communications, vol. 10, no. 2, pp. 450–455, February 2011.

[32] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Society for
Industrial and Applied Mathematics (SIAM), 2001, p. 124.

[33] H. L. Van Trees and K. L. Bell, Bayesian Bounds for Parameter
Estimation and Nonlinear Filtering/Tracking. Wiley, 2007, p. 5.

[34] A. Vosoughi and A. Scaglione, “Everything you always wanted to know
about training: guidelines derived using the affine precoding framework
and the CRB,” IEEE Transactions on Signal Proc., vol. 54, no. 3, pp.
940–954, March 2006.

[35] ——, “On the effect of receiver estimation error upon channel mutual
information,” IEEE Transactions on Signal Processing, vol. 54, no. 2,
pp. 459–472, Feb 2006.

[36] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, Aug 2006.

[37] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[38] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 4th ed.
International Series in Operations, Research and Management Science,
Springer, 2015.

[39] A. M. Davie and A. J. Stothers, “Improved bound for complexity of
matrix multiplication,” Proceedings of the Royal Society of Edinburgh,
Section: A Mathematics, vol. 143, pp. 351369, April 2013.

[40] L. Grippof and M. Sciandrone, “Globally convergent block-coordinate
techniques for unconstrained optimization,” Optimization Methods and
Software, vol. 10, no. 4, pp. 587–637, 1999. [Online]. Available:
https://doi.org/10.1080/10556789908805730

[41] L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear gaussseidel method under convex constraints,” Operations
Research Letters, vol. 26, no. 3, pp. 127 – 136, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167637799000747

[42] N. O’Donoughue and J. M. F. Moura, “On the product of independent
complex Gaussians,” IEEE Transactions on Signal Processing, vol. 60,
no. 3, pp. 1050–1063, March 2012.

[43] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. Goldsmith, “Power scheduling of
universal decentralized estimation in sensor networks,” IEEE Transac-
tions on Signal Processing, vol. 54, no. 2, pp. 413–422, Feb 2006.

https://doi.org/10.1080/10556789908805730
http://www.sciencedirect.com/science/article/pii/S0167637799000747

	I Introduction
	II System Model and Problem Formulation
	II-A System Model Description
	II-B bluePower Constraints
	II-C blueProblem Statement

	III Characterizing D and its Lower Bounds
	III-A Characterization of D in terms of Channel Estimates
	III-B Three Lower Bounds on D
	III-C Bayesian CRB

	IV blueSolving the Constrained Minimization of D 
	IV-A Finding Optimal {Pl, bold0mu mumu wwsubsectionwwwwl}l=1L blueGiven Total Training Power
	IV-A1 Solving Optimization Problem (??)
	IV-A2 Solving Optimization Problem (??)

	IV-B Finding Optimal blueTotal Training Power and its Distribution Among CHs
	IV-C Minimizing Lower Bounds on MSE D

	V blueSolving the Special Cases of the Original Problem
	V-A blueSolving Special Case (??): When Intra-Cluster Powers of all Clusters are Equal
	V-B blueSolving Special Case (??): When Powers of all CHs for Their Data Transmission to the FC are Equal

	VI Complexity of Algorithms
	VII Convergence Analysis
	VIII Numerical and Simulation Results
	VIII-A Comparing D and its Lower Bounds
	VIII-B Comparing Different Power Allocation Schemes
	VIII-C Behavior of Power Allocation Across Clusters

	IX Conclusions
	Appendix
	A Derivation of redBayesian CRB
	B Proof of Proposition ??: Finding bold0mu mumu wwsubsectionwwwwoptl, Foptl in terms of Pl
	C Solution of the Problem in (??)
	D Proof of Concavity of sub-problem (a) of (??) over Pl's

	References

