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Abstract—Mining natural associations from high-dimensional
spatiotemporal signals plays an important role in various fields
including biology, climatology, and financial analysis. However,
most existing works have mainly studied time-independent signals
without considering the correlations of spatiotemporal signals
that achieve high learning accuracy. This paper aims to learn
graphs that better reflect underlying data relations by leveraging
the long- and short-term characteristics of spatiotemporal signals.
First, a spatiotemporal signal model is presented that considers
both spatial and temporal relations. In particular, we integrate
a low-rank representation and a Gaussian Markov process to
describe the temporal correlations. Then, the graph learning
problem is formulated as a joint low-rank component estimation
and graph Laplacian inference. Accordingly, we propose a
low rank and spatiotemporal smoothness-based graph learning
method (GL-LRSS), which introduces a spatiotemporal smooth-
ness prior into time-vertex signal analysis. By jointly exploiting
the low rank of long-time observations and the smoothness of
short-time observations, the overall learning performance can be
effectively improved. Experiments on both synthetic and real-
world datasets demonstrate substantial improvements in the
learning accuracy of the proposed method over the state-of-the-
art low-rank component estimation and graph learning methods.

Index Terms—Graph learning, spatiotemporal signal, graph
signal, low rank, spatiotemporal smoothness.

I. INTRODUCTION

APPLICATIONS in a variety of fields, from finance and
sociology to transportation and sensor networks, rely

on statistics, modeling, and processing of spatiotemporal sig-
nals. These signals often represent long time series measured
over a certain spatial range. Examples include biomedical
imaging data [1], video sequences [2], social interactions
among individuals [3], and environmental sensing [4]. The
usually complex spatiotemporal correlations and interactions
can hinder the analysis of spatiotemporal signals.

Graphs can be useful for data analysis due to their ability
to provide flexible descriptions in irregular domains. In recent
years, graph signal processing (GSP) [5] has provided an
engineering paradigm for processing spatiotemporal signals on
graphs, establishing time-varying graph signals, based on the
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spectral graph theory [6]. For analysis and learning, data may
be suitably represented by a graph, and the graph Laplacian
matrix, which is equivalent to graph topology, can be used to
solve many problems including graph signal compression [7],
graph signal reconstruction [8], and graph filtering [9]. Al-
though graph-based methods have been successfully applied,
the graph structure is not always available, and straightforward
representations (e.g., geographical k-nearest neighbors) may
not adequately capture intrinsic relations among data. There-
fore, efficient graph learning methods should be developed to
improve the quality and efficiency of data analysis (e.g., trend
identification). Extracting underlying relations from observed
spatiotemporal signals is essential for their analysis.

In many cases, the collected spatiotemporal signals are
highly redundant and thus strongly correlated. To learn a
high-quality graph from these spatiotemporal signals, their
correlation properties must be thoroughly studied. Recent
studies [10]–[12] provided effective ways of characterizing
correlation properties by assuming spatiotemporal signals to
be approximately low-rank and have short-term stability. The
corresponding results showed methodological superiority in
signal processing tasks. However, most existing graph learn-
ing methods neglect the long-term correlation of signals,
for example, by modeling the spatiotemporal signals locally
[13] or by treating the successive signals independently [14],
[15]. Although the mentioned graph learning methods achieve
satisfying results, there is still much room for improvement.
Therefore, in this paper, we propose an enhanced graph
learning method that fully leverages long- and short-term
correlations in spatiotemporal signals.

A. Related works

Our work involves joint graph learning and low-rank com-
ponent estimation. Several approaches have been proposed
to address these two problems, and detailed surveys are
available in [16]–[18]. However, graph learning and low-rank
approximation have not been jointly studied.

For low-rank component estimation, various methods have
approximated spatiotemporal signals as low-rank matrices
[19], [20], achieving satisfactory results by assuming that the
matrix collecting the time sequences is approximately low-
rank. Recently, GSP approaches were proposed to recover low-
rank components by using spectral graph regularization [16],
[21], [22]. These approaches incorporated graph smoothness
on low-rank matrices and improved both clustering and recov-
ery performance. However, the graphs are predefined based on
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the geometric distance in these methods, possibly undermining
the accuracy for subsequent analyses.

For graph learning, early studies provided graphical models
by neighborhood selection per node [23]. For stability under
noise, graphical lasso methods have been used to estimate
the inverse covariance or precision matrix [24]–[26]. The
fast-growing GSP allows solving graph learning problems by
implementing methods related to Gaussian Markov Random
Fields (GMRFs) with the precision matrix defined by a graph
Laplacian. For smoothing the graph signals, smoothness-based
methods have been adopted during graph inference. Dong et
al. [14] first proposed a valid combinatorial graph Laplacian
(CGL) learning method under a smooth graph representation.
Then, Kalofolias [15] reformulated the problem in terms of
the adjacency matrix and proposed a computationally efficient
algorithm. To generalize the restriction of the precision matrix
to be a CGL, Egilimez et al. [27] identified a GMRF model
whose precision matrix could be any of multiple types of
graph Laplacians. Alternative smoothness-based approaches
have also been effective [13], [28], [29], with the methodolog-
ical implementation in [13] and [28] being based on space-
time modeling and edge selection, respectively, whereas a
theoretical analysis of the reconstruction error was provided
in [29]. These methods learned graphs from smooth graph
signals, while a few other works added assumptions on the
graph dynamics for time-varying graph learning. For instance,
dynamic graphs have been learned by assuming that the graph
structure changes smoothly over time [30], whereas a method
considering the sparseness of the graph variation was also
proposed in [31].

Another family of graph learning approaches adopts a
physics perspective for modeling graph signals. In these cases,
observations are modeled considering a physical process for
the graph, such as diffusion [32]–[35] and causality [36]–
[38]. Segarra et al. [32] and Pasdeloup et al. [33] identified
a graph from stationary observations assumed to be generated
by a diffusion process. Shafipour et al. [34] generalized this
assumption by exploring a graph learning method that could
be applied to non-stationary graph signals. Thanou et al. [35]
proposed graph learning considering that the graph signals
result from heat diffusion. Causality-based methods focus on
the asymmetric adjacency matrix corresponding to a directed
graph. Mei et al. [36] considered a causal graph process
to characterize a time series and applied it to temperature
analysis. Under a structural equation model, Baingana et al.
[37] proposed a recursive least-squares estimator to track both
the signal state and graph topology. Similarly, Shen et al. [38]
described nonlinear dependencies of signals via structural vec-
tor autoregressive models and developed an efficient estimator
to infer a sparse graph. While these graph learning methods
can provide meaningful graphs from time series, long-term
correlations (i.e., low rank) have been neglected.

B. Contributions

For high-quality graph learning, we propose a method that
considers the low rank and local smoothness of spatiotemporal
signals. Low-rank component estimation allows to improve
the quality of the learned graph, with the low-rank compo-

nent being better estimated from a refined graph. The main
contributions of this study can be summarized as follows:

1) To the best of our knowledge, this is the first model of
spatiotemporal signals integrating a low-rank representa-
tion and a first-order Gaussian Markov process.

2) We introduce a spatiotemporal smooth prior to the time-
varying graph signal to facilitate graph learning.

3) Graph learning is formulated as a joint graph refinement
and low-rank component estimation problem solved us-
ing the proposed graph learning method based on low-
rank approximation and spatiotemporal smoothness (GL-
LRSS), which applies the alternating direction method of
multipliers (ADMM) and alternating minimization.

4) We provide visual and quantitative comparisons with
state-of-the-art low-rank component estimation and graph
learning methods. The extensive experimental results on
synthetic and real-world datasets demonstrate the superi-
ority and effectiveness of the proposed GL-LRSS.

C. Comparison with state-of-the-art methods
Regarding graph signal representation, the proposed GL-

LRSS extends smoothness-based graph learning. Although the
methods in [12] and [14] are the most related to the pro-
posed GL-LRSS, they neglect the local temporal correlations
of spatiotemporal signals. Specifically, the smoothness-based
method (e.g., [14], [15], [27]) uses a GMRF model which is
mainly suitable for time-independent signals, and the method
in [12] uses a low-rank signal model which lacks local signal
characterization. The proposed GL-LRSS adopts a different
model from these similar methods in the following aspects:
• The novel model for spatiotemporal signals considers

local and global correlations. By combining a low-rank
representation and a first-order Gaussian Markov process,
the proposed model can describe multiple types of time
correlations.

• Although both the method in [12] and the proposed GL-
LRSS aim to jointly estimate the graph structure and low-
rank components, the method in [12] obtains its final
optimization by directly combining the objective func-
tions of two estimation subproblems. Our method, on the
other hand, formulates the optimization problem based on
Bayesian inference and introduces a new regularization
term called spatiotemporal smoothness for graph learning.

The remainder of this paper is organized as follows. Section
II presents the notation and preliminaries of GSP. In Section
III, we propose the low-rank graph-based model and the
corresponding spatiotemporal smoothness prior. In Section IV,
we formulate the graph learning problem as a joint low-rank
component and graph topology estimation and propose the
GL-LRSS to solve the optimization problem alternately. In
Section V, the GL-LRSS performance on both synthetic and
real-world datasets is reported and compared with that of
baseline methods. A discussion is presented in Section VI,
and we draw conclusions in Section VII.

II. NOTATION AND PRELIMINARIES

A. Notations
Throughout this paper, lowercase letters (e.g., α, β), lower-

case boldface letters (e.g., x, u), and uppercase boldface letters
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TABLE I
LIST OF SYMBOLS AND THEIR MEANING

Symbols Meaning

G | L | LN weighted graph | graph Laplacian matrix | set of CGLs
V | E vertex set | edge set
N | M number of vertices | number of time instants

I |W | D identity matrix | adjacency matrix | degree matrix
U | Λ eigenvector matrix | eigenvalue matrix of L
0 | 1 column vector of zeros | column vector of ones

X−1 | X† inverse of X | pseudo-inverse of X
XT | xT transpose of X | transpose of x
(X)ij entry of X at i-th row and j-th column

xi i-th entry of x
≥ (≤) element-wise greater (less) than or equal to opertor
X � 0 X is a positive semidefinite matrix
tr | vec trace operator | vectorization operator
⊗ | 〈·, ·〉 Kronecker product operator | inner product operator
diag (x) diagonal matrix formed by elements of x
p (x) probability density function of random vector x

x ∼ N (0,Σ) zero-mean multivariate Gaussian with covariance Σ
‖X‖∗ nuclear norm of X

‖x‖1 | ‖X‖1 sum of absolute values of all elements (l1-norm)

‖x‖22 | ‖X‖2F sum of squared values of elements

(e.g., X, L) denote scalars, vectors, and matrices, respectively.
Unless otherwise stated, calligraphic capital letters (e.g., E and
L) represent sets. Additional notation is listed in Table I.

B. Graph Laplacian

We consider an undirected weighted graph with non-
negative edge weights and no self-loops. Let G = (V, E ,W)
be an N -vertex weighted graph, where V = (v1, . . . , vN ) is
the vertex set and E is the edge set. The adjacency matrix W
is an N ×N symmetric matrix. The CGL of G is defined as
L = D −W, where diagonal matrix D denotes the degree
matrix with its ith diagonal entry indicating the degree of
vertex i (i.e., diag(D)i =

∑N
j=1Wij). L is the set of all

valid N ×N CGLs for matrix L:

L =
{

L|L � 0, (L)ij = (L)ji ≤ 0 , i 6= j, and L · 1 = 0
}
. (1)

As the CGL is a real symmetric positive semidefinite matrix,
its eigenvalues are non-negative. Let the CGL eigendecompo-
sition be L = UΛUT , where Λ = diag (λ1, λ2, . . . , λN )
and U = [u1,u2, . . . ,uN ] are matrices containing the eigen-
values and eigenvectors, respectively. The graph frequency
spectrum is defined by the ascending array of eigenvalues
0 = λ1 ≤ λ2 ≤ · · · ≤ λN , referred to as the graph frequency,
and orthogonal eigenvectors u1,u2, . . . ,uN are the harmonics
associated with the graph frequencies. In addition, the CGL of
a connected graph always has a zero eigenvalue (i.e., λ1 = 0)
corresponding to eigenvector u1 = 1/

√
N · 1.

C. Smooth Graph Signals

For graph signal x = [x1, x2, . . . , xN ]
T , where xi is

attached to vertex vi, its frequency component is defined
by the graph Fourier transform denoted as x̂ = UTx. The
frequency components corresponding to higher eigenvalues
indicate larger variations between the signals of the vertices,
whereas those corresponding to small eigenvalues are rela-
tively smooth. Many real-world datasets have graph signals

that change smoothly between the connected vertices. Such
smoothness property indicates the graph signal variation with
respect to the underlying graph. To quantify the smoothness of
signal x, a typical metric can be written in the graph Laplacian
quadratic form [6]:

S (x) = xTLx =
∑

(i,j)∈I
(W)i,j [xj − xi]

2
, (2)

where I = {(i, j)| (vi, vj) ∈ E} is the set of index pairs
of connnected vertices. Eq. (2) measures the total variation
of connected vertices associated with edge set E . In the
vertex domain, smaller values of Eq. (2) indicate higher signal
smoothness in the graph.

D. Correlations in Spatiotemporal Signals

Spatiotemporal signals can be viewed as time-varying graph
signals in a graph structure of the observation sites. These
signals are usually highly redundant and thus strongly cor-
related. Global and local consistency principles have been
identified for data description [40], unveiling long- and short-
term correlations.

Long-term correlation: The global consistency indicates
that spatiotemporal signals are usually correlated globally
[11], [19]. Such correlation describes the space and time
commonalities over a long time and can be interpreted as
temporal sequences of the form x1,x2, . . . ,xM generated
from limited patterns. Hence, spatiotemporal signals X can
be approximately low-rank [16], [20].

Short-term correlation: Spatiotemporal signals can be lo-
cally correlated [13], [40], as observations from a site can be
correlated across neighboring time instants for the temporal
sequences to vary smoothly over time. Likewise, at a given
instant, nearby observation sites can exhibit spatial correlations
corresponding to similar values. These two types of short-
term correlations are respectively determined by temporal
smoothness and spatial smoothness.

GSP methods are based upon spatial and temporal smooth-
ness. Although spatial smoothness has been widely applied
[8], [15], [16], few studies have leveraged temporal smooth-
ness [41], [42]. By combining spatial and temporal smooth-
ness, we introduce the concept of spatiotemporal smoothness
and propose the GL-LRSS, which also considers long-term
correlations. Spatiotemporal smoothness describes short-term
characteristics of time-varying graph signals.

III. LONG- AND SHORT-TERM CHARACTERIZATION OF
SPATIOTEMPORAL SIGNALS

A. Signal Representation

Spatiotemporal signals exhibit global and local correlations
over the long and short terms, respectively. To describe these
correlations, we propose a model that characterizes spatiotem-
poral signals from the local and global perspectives.

Consider an N -vertex graph with graph Laplacian matrix
L ∈ RN×N . A spatiotemporal signal can be expressed by
matrix X = [x1,x2, . . . ,xM ] ∈ RN×M , where M is the number
of time instants. In the proposed model, the observed signal
is modeled as

Y = X + N, (3)
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where N denotes the additive Gaussian white noise.
1) Short-term signal characterization: Considering depen-

dencies in the neighboring space and time, we characterize the
observed signal from a local viewpoint as follows:

yt = xt + nt, (4)
xt = Rxt−1 + vt, (5)

where yt ∈ RN is the observation at the tth time in-
stant, and nt ∈ RN denotes the multivariate Gaussian
noise with zero mean and covariance σn

2IN . The state
transition matrix R is defined as a general diagonal matrix
R = diag (c1, c2, . . . , cN ), where ci denotes the coefficient
of the ith observation site and ranges from 0 to 1. Each c
represents the autocorrelation coefficient that describes the
time correlation of data with a delayed copy (one-time lag
in this model) of itself, and can be obtained in advance.

To represent signals residing on graphs and identify struc-
tures in data, we introduce graph-based process variable vt:

vt = U(r)zt, (6)

where U(r) ∈ RN×r contains the first r (r ≤ N ) eigenvectors
of the graph Laplacian matrix, and zt ∈ Rr is assumed to
follow a multivariate Gaussian distribution, zt ∼ N

(
0,Λ(r)

†),
with precision matrix Λ(r)

† being the Moore-Penrose pseu-
doinverse of the matrix that contains the first r eigenvalues.
This definition leads to a smooth graph signal representation
and provides an intuitive relationship between the graph struc-
ture and graph signal. According to Eq. (6), the assumption
about zt and the basis vector U(r) leads to a multivariate
Gaussian distribution for vt (i.e., vt ∼ N

(
0, L̃†

)
, with

L̃† = U(r)Λ(r)
†U(r)

T ), such that the representation of time-
varying signals reflects the graph topology. Furthermore, as is
shown in Section III-B-1, the short-term characterizations in
Eqs. (5) and (6) lead to the local smoothness of spatiotemporal
signals.

2) Long-term signal characterization: As mentioned in
Section II-D, spatiotemporal signals are approximately low-
rank in practice. Thus, it is realistic and efficient to treat
spatiotemporal signals from a global viewpoint. Consider-
ing the spatiotemporal signals across M time instant X =

[x1,x2, . . . ,xM ] with initialization x0 = v0, we obtain the
matrix form of Eq. (4) given by Eq. (3).

For a convenient signal representation of X, a normal
distribution N

(
µ, σ2

R

)
is used to model temporal correlation

coefficients c1, . . . , cN , such that correlation matrix R can
be decomposed as R = µI + ∆R, where µI corresponds to
the mean and ∆R represents the fluctuations around µI. By
applying both the decomposition of R and Eqs. (6) to (5), the
spatiotemporal signal X in Eq. (3) becomes

X = U(r)Z + Φ, (7)

where Z =
[
µz0 + z1, . . . , µ

Mz0 + µM−1z1 + · · ·+ zM
]
, and

Φ is a complex perturbation term related to ∆R. Mathe-
matically, Eq. (7) is the matrix expression of Eq. (5) that
establishes a relation between the long- and short-term signals.
As discussed in Section III-B-2, spatiotemporal signals under
the long-term characterization are approximately low-rank.

B. Long- and Short-Term Properties in Signal Representation

Under the local and global signal representations described
in Section III-A, we explore the long- and short-term prop-
erties (i.e., low-rank property and spatiotemporal smoothness,
respectively) of spatiotemporal signals.

1) Short-term property: As discussed in Section III-A-1,
the model given by Eq. (5) is analogous to a first-order
vector autoregressive model. It naturally promotes the tem-
poral smoothness of the signal. On the other hand, as small
eigenvalues correspond to smooth eigenvectors on the graph,
the selection of U(r) in Eq. (6) as the basis vector supports
the spatial smoothness of the signal. Therefore, the graph
signal under the short-term characterizations in Eqs. (5) and
(6) exhibit spatiotemporal smoothness. Moreover, we show
in Section IV-A that our proposed method enforces such
spatiotemporal smoothness property in graph learning. The
definition of spatiotemporal smoothness is given next.

Definition 1 (Spatiotemporal smoothness). The weighted time
differences of spatiotemporal signals are smooth with respect
to the graph structure. Based on (2), spatiotemporal smooth-
ness can be defined as

S (xt − Rxt−1) = (xt − Rxt−1)
T
L (xt − Rxt−1) = vt

TLvt. (8)

Considering the signals across multiple time instants, the
corresponding spatiotemporal smoothness in Definition 1 can
be expressed in a matrix form as follows.

Definition 2 (Weighted difference operator). The weighted
difference operator of graph signal X is D (X) = X − RXB,
where B is a shift operator given by

B =




0 1
0 1

0
. . .
. . . 1

0



M×M,

(9)

The weighted difference signal is equal to D (X) =

[x1,x2 − Rx1,x3 − Rx2, . . . ,xM − RxM−1] . Hence, the matrix
expression of spatiotemporal smoothness is

S (D (X)) =
M∑

t=1

S (xt − Rxt−1)
(a)
= tr

(
D (X)

T
LD (X)

)
, (10)

where (a) follows from Definition 2 and the smoothness metric
S (·) in (2).

2) Long-term property: Besides the above mentioned short-
term properties, the following discussion shows the approxi-
mately low-rank property of X considering Eq. (7).

The first term in Eq. (7) resembles the formulation of prin-
cipal component analysis (PCA), which is the most popular
technique for approximating low-rank components. According
to conventional PCA, the low-rankness of X mainly depends
on the number of basis vectors, i.e., the number of columns
of U(r). However, due to the perturbation in Eq. (7), the rank
of X is also affected by Φ. Specifically, a small σR tends
to reduce the effect of Φ, and hence X is more likely to be
low-rank, whereas a large σR tends to weaken the low-rank
property of X. When σR = 0 (i.e., X = U(r)Z), X is a low-
rank matrix. Therefore, the proposed model given by (3) and
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(7) can be viewed as an approximately low-rank representa-
tion that roughly characterizes long-term correlations of the
signal. To precisely constrain the low-rank property of X, we
introduce a nuclear norm for the optimization problem.

IV. GRAPH LEARNING BASED ON LOW RANK AND
SPATIOTEMPORAL SMOOTHNESS (GL-LRSS)

In this section, we propose an efficient graph learning
method by jointly exploiting the local smoothness and global
correlation of spatiotemporal signals. We first formulate the
graph learning problem and then propose an optimization
algorithm, GL-LRSS, which is based on the ADMM and al-
ternating minimization. Finally, the computational complexity
of the proposed algorithm is briefly analyzed.

A. Problem Formulation

As mentioned in Section III-A, the graph structural infor-
mation is encoded in the covariance of process variable vt. In
terms of graph structure recovery, our method can be regarded
as inverse covariance matrix estimation. For probabilistic
inference, we first introduce the following weighted difference
observation:

dt = yt − Ryt−1 = vt + nt − Rnt−1, (11)

with initialization d1=y1. Based on the distribution of Gaus-
sian noise, the conditional probability of dt given vt satisfies

dt|vt ∼ N
(
vt, σn

2
(
IN + RRT

))
. (12)

Given the weighted difference observation dt and the Gaus-
sian prior distribution of vt, we can compute a maximum a
posteriori (MAP) estimate of core component vt. Specifically,
by applying Bayes’ rule, the MAP estimate of vt is given by

vtMAP (dt) := arg max
vt∈RN

p (vt|dt) = arg max
vt∈RN

p (dt|vt) p (vt)

= arg min
vt∈RN

(− log pE (dt − vt)− log pV (vt))

= arg min
vt∈RN

(dt − vt)
T
W−1 (dt − vt) + αvt

T L̃vt,

(13)

where W = IN + RRT and α is a constant parameter pro-
portional to the noise variance, σn2. However, the objective
function in Eq. (13) is difficult to process [13], especially
for the unknown correlation matrix R. To obtain a solution,
a relaxation procedure can be adopted for the problem. By
leveraging the diagonal property of matrix R and inequality

(dt − vt)
T
W−1(dt − vt) ≥ λmin

(
W−1

)
‖dt − vt‖22 , (14)

we obtain a relaxed MAP estimation:

vtMAP (dt) := arg min
vt∈RN

‖dt − vt‖22 + α vt
T L̃vt. (15)

In Eq. (15), the Laplacian quadratic term is the same as
that of Eq. (8). Therefore, it verifies that the proposed method
enforces the spatiotemporal smoothness in graph learning.

Considering observations at M time instants Y =

[y1,y2, . . . ,yM ] ∈ RN×M , we focus on 1) learning the graph
Laplacian matrix that is equivalent to the graph structure and
2) improving the low-rank component estimation. By imposing

additional constraints on the graph Laplacian L and the low-
rank component X, we propose to solve the problem of (15)
using the following objective function, given in a matrix form:

(P1) min
X∈RN×M ,L

Q1 (L,X)

s.t. Q1 (L,X) = ‖D(X−Y)‖2F + αtr
(
D (X)

T
LD (X)

)

+ β ‖L‖2F + γ ‖X‖∗,
L ∈ L, tr (L) = N,

where α, β, and γ are positive regularization parameters
corresponding to the regularization terms. The first regular-
ization term, tr

(
D (X)TLD (X)

)
, induces the spatiotemporal

smoothness encoded in Eq. (10). Together with the trace
constraint that aims to avoid trivial solutions, the second
regularization term, ‖L‖2F , controls the sparsity of the off-
diagonal entries in L (i.e., the edge weights of the graph).
To promote long-term correlations, we impose nuclear norm
‖X‖∗, which is defined as the sum of the singular values
of X and corresponds to the convex envelope of rank (X).
The last Laplacian constraint guarantees that the learned graph
Laplacian is a valid CGL that satisfies Eq. (1).

Note that in problem (P1), we particularly introduce two
regularization terms, i.e., tr

(
D (X)TLD (X)

)
and ‖X‖∗ to

characterize the correlation properties of spatiotemporal sig-
nals. Although these two terms promote the correlation of
spatiotemporal signals from the local and global perspectives,
respectively, they compensate each other to deduce a mean-
ingful graph, as detailed below.

• Regularization term tr
(
D (X)TLD (X)

)
is derived from

the proposed signal representation for graph learning.
This term encodes spatial and temporal correlations of X
in graph Laplacian L and weighted difference operator
D, respectively, while enforcing the weighted difference
signal to be smooth on the graph. Unlike differential
smoothness [11], this term contains a general correlation
matrix R that considers the varying temporal evolution of
data at distinct observation sites. As demonstrated in real
experiments, when proper matrix R is known a priori, the
graph learning performance can be further improved.

• As data from many applications have the low-rank prop-
erty, we utilized ‖X‖∗ to improve the low-rank approxi-
mation. The nuclear norm directly forces spatiotemporal
signal X to achieve a low rank, thus compensating for
the limitation of the proposed model in terms of long-
term signal characterization, where the low-rank property
of the spatiotemporal signal is partially depicted through
the term resembling PCA in Eq. (7). Moreover, nuclear
norm ‖X‖∗ can increase the graph learning performance,
as verified experimentally.

In the optimization of (P1), the graph Laplacian interacts
with the low-rank component. Our hypothesis is that accurate
low-rank component estimation improves the quality of the
learned graph, which in turn improves the low-rank component
estimation. Therefore, we adopted an alternating minimization
framework that iteratively refines the graph topology and esti-
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Algorithm 1 : Graph learning based on low rank and
spatiotemporal smoothness (GL-LRSS)
Input: Observations Y, local correlation R, regularization

parameters α, β, γ, maximum iteration K, threshold ε.

1: Initialization: X0 = Y, k = 1;
2: repeat
3: 1) Graph topology refinement:

Lk+1 = G
(
Xk,Y

)
by (19)-(21)

4: 2) Low-rank component estimation:
Xk+1 = C

(
Lk+1,Y

)
by (25)-(27)

5: 3)
(
L̂, X̂

)
=
(
Lk,Xk

)
, k = k + 1;

6: until k = K or
∣∣Q1

(
Lk,Xk

)
−Q1

(
Lk+1,Xk+1

)∣∣ < ε

Output: Refined graph L̂, low-rank component X̂.

mates the low-rank components. This hypothesis was validated
through experiments on synthetic dataset.

B. Optimization algorithm

The formulation in (P1) establishes a biconvex optimization
problem, that is, it is a convex problem with respect to L
when X is fixed and vice versa. We propose the GL-LRSS to
solve the optimization problem via alternating optimization. At
each step, one variable is optimized while keeping the other
variables constant. The iterative procedure is given by

1. G (X,Y) , arg min
L

Q1 (L,X), (SL)

s.t. L ∈ L, tr (L) = N.

2. C (L,Y) , arg min
X∈RN×M

Q1 (L,X) . (SX)

By iteratively refining the graph from the low-rank rep-
resentation and estimating the low-rank component using
the learned graph, we obtain the final solution of (P1) by
alternating minimization. The detailed procedure for solving
(P1) is shown as follows.

1) Graph refinement in subproblem (SL): Notice that (SL)
is a strictly convex problem under convex constraints, because
the Hessian matrix of the objective function, 2βIN , is positive
definite. To solve this constrained convex problem, we apply
the ADMM method [44]. Specifically, we reformulate problem
(P1) with respect to the graph Laplacian L as follows:

min
L∈L∗

α tr
(
D (X)

T
LD (X)

)
+ β ‖L‖2F ,

s.t. L− Z = 0, Z ∈ L∗,
(16)

where Z is an auxiliary variable matrix and L∗is expressed as

L∗ = {L|L � 0, Lji = Lij ≤ 0 , i 6= j, and L · 1 = 0, tr (L) = N} . (17)

Therefore, the augmented Lagrangian of (16) is given by

Lρ (L,Z,Ξ) = α tr
(
D (X)

T
LD (X)

)
+ β ‖L‖2F

+ 〈Ξ,Z− L〉+
ρ

2
‖Z− L‖2F ,

(18)

where Ξ is the Lagrange multiplier, 〈·, ·〉 denotes the inner
product of matrices, and ρ > 0 is a prescribed penalty

parameter. We use the following formulas to update L, Z, and
Ξ to find a saddle point of (18)

Lk+1 = arg min
L∈L∗

Lρ
(
L,Zk,Ξk

)
, (19)

Zk+1 = arg min
Z∈L∗

Lρ
(
Lk+1,Z,Ξk

)
, (20)

Ξk+1 = Ξk + ρ
(
Zk+1 − Lk+1

)
. (21)

Setting the derivatives of Eqs. (19) and (20) with respect to
L and Z, respectively, equal to zero, we obtain the following
solutions:

Lk+1 =
ρZk + Ξk − αD (X)D (X)

T

2β + ρ
, Zk+1 = PL∗

(
Lk+1 − 1

ρ
Ξk

)
, (22)

where PL∗(·) denotes the Euclidean projection onto set L∗.
2) Low-rank component estimation in subproblem (SX):

The first two terms of (P1) are differentiable, and the third
term of X is proximable. We apply ADMM to solve problem
(SX). First, we provide an equivalent formulation of (P1) with
respect to X:

min
X,P∈RN×M

‖D (X−Y)‖2F +α tr
(
D(X)

T
LD (X)

)
+ γ‖P‖∗,

s.t. X = P.
(23)

The objective function is split into two parts by introducing
the linear equality constraint. Then, the augmented Lagrangian
of (23) is given by

Lρ (X,P,Q) = ‖D (X−Y)‖2F + α tr
(
D(X)

T
LD (X)

)

+ γ‖P‖∗ + 〈Q,X−P〉+
ρ

2
‖X−P‖2F ,

(24)

where Q is the Lagrange multiplier. Based on the augmented
Lagrangian in (24), the solution is obtained iteratively, as
follows:

Xk+1 = arg min
X∈RN×M

Lρ
(
X,Pk,Qk

)
, (25)

Pk+1 = arg min
P∈RN×M

Lρ
(
Xk+1,P,Qk

)
, (26)

Qk+1 = Qk + ρ
(
Xk+1 −Pk+1

)
. (27)

According to (24), the subproblem of (25) can be rewritten as

Xk+1 = arg min
X∈RN×M

‖D (X−Y)‖2F + α tr
(
D(X)

T
LD (X)

)

+
ρ

2

∥∥X−Pk + Qk
/
ρ
∥∥2

F
.

(28)

The expression in (28) is a differentiable convex opti-
mization problem that admits a closed-form solution. Using
vec (AXB) =

(
BT ⊗A

)
vec (X), the optimal update of Xk+1

is given by

vec
(
Xk+1

)
=
(

2TdTd
T + 2α

^

L + ρIMN

)−1 (
vec
(
ρPk −Qk

)
+

^

Y
)
, (29)

where the operator vec (·) stacks the columns of an M × N
matrix into a vector of dimension MN , and parameters

^

L and
^

Y are represented by Td (IM ⊗ L) Td
T and 2TdTd

T vec (Y),
respectively, with Td expressed as

Td =




IN −R
IN −R

IN
. . .
. . . −R

IN



NM×NM.

(30)
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Algorithm 2 : Method for solving subproblem (28)
Input: Y, R, B, Lk+1, Pk, Qk, α, ρ, K, error tolerance δ.

1: Initialization: X0 = 0; ∆X0 = −∇fX (X0);
2: repeat
3: 1) Dynamic stepsize selection:

4: µ = − tr{(∆Xm)T∇fX(Xm)}
tr{(∆Xm)T [∇fX(∆Xm)+ψ]} ,

with ψ = 2D (Y)− 2RD (Y) BT + ρPk −Qk;

5: 2) Conjugate direction update:
6: Xm+1 = Xm + µ∆Xm;
7: ∆Xm+1 = −∇fX (Xm+1) + θ∆Xm;
8: m = m+ 1;
9: until m reaches maximum number of iterations

Output: Recovered X.

A detailed derivation of (29) is outlined in Appendix A.
The solution in (29) requires the calculation of the inverse of
an MN ×MN matrix. Thus, for a large number of vertices or
time instants, this procedure is expected to be time-consuming.
Instead, the conjugate gradient method [45] can be adopted to
efficiently obtain a solution. Let fX (·) represent the objective
function in (28). The algorithm mainly updates the stepsize
and searching direction in each iteration. Denoting the search
direction of the mth iteration as ∆Xm, the optimal stepsize µ
at the mth step can be obtained by an exact line search [46]
given as min

µ
fX (Xm + µ∆Xm). By setting the derivative of

fX with respect to µ equal to zero, we obtain

tr
[
(∆Xm)

T∇fX (Xm + µ∆Xm)
]

= 0,

with the gradient of fX calculated as

∇fX =2D (X−Y)− 2RD (X−Y) BT + ρ
(
X−Pk

)
+ Qk

+ 2α
(
LD (X)−RLXBT + LXBBT

)
.

(31)

Therefore, we can determine optimal stepsize µ and update
the searching direction by introducing the Fletcher-Reeves
parameter given by θ =

∥∥∇fX
(
Xm+1

)∥∥2
F

/
‖∇fX (Xm)‖2F . The

corresponding iterative optimization is detailed in Algorithm2.
Similar to the subproblem of (25), by adding a constant

term 1
2
tr

(
(Qk)TQk

ρ2

)
, the subproblem of (26) is equivalent to

the following optimization problem

Pk+1 = arg min
P∈RN×M

1

2

∥∥∥∥P−Xk+1 − Qk

ρ

∥∥∥∥
2

F

+
γ

ρ
‖P‖∗, (32)

which has closed-form solution

Pk+1 = Γγ/ρ

(
Xk+1 +

Qk

ρ

)
, (33)

where Γ is singular value thresholding operator [47] that is
the proximity operator associated with the nuclear norm. For
each τ ≥ 0, the Γ is defined as follows:

Γτ (X) = UΘτ (Σ) VT , (34)

where U, V and Σ are obtained from the singular value
decomposition (SVD) of X, that is, X = UΣVT , with σi
denoting the ith singular value and

Θτ (σi) = sign (σi) max (|σi| − τ, 0) . (35)

The operator (35) applies a soft-thresholding rule to the
singular values of X, effectively shrinking these towards zero.

The overall graph learning framework is presented in Algo-
rithm 1. It should be noted that the optimization problem in
(P1) is not jointly convex in L and X, the solution therefore
corresponds to a local optimum rather than a global optimum.
Besides, our empirical results suggest that after only eight
iterations or less, the objective Q1 (L,X) does not change
more than the predefined threshold.

C. Complexity analysis

We next provide a brief complexity analysis of the proposed
GL-LRSS. For problem (SL), the computation is dominated
by the update of L in (22), and the update is in turn
dominated by D (X)D (X)T , where the matrix-matrix product
costs O(N2M+M2N+N3). For problem (SX), there are two
main steps having the highest computation burden. For the first
step of updating Xk, we utilize the conjugate gradient method
instead of the calculation in (29). In Algorithm 2, the computa-
tion is dominated by the gradient calculation according to (31),
which is mainly determined by the matrix-matrix product, that
is, RLXBT , which costs O(N2M +M2N +N3) flops. When
updating Pk in the second step of (26), the computation of Γ
dominates the computation consumption. The SVD of X takes
the computational cost of O(min(M2N,N2M)) [48]. The last
step of updating Ξ and Q involves the product of scalars and
matrices with a cost of O(MN). Overall, the GL-LRSS is
dominated by the updates of X in (25) and L in (22).

V. EXPERIMENTS

We verified the effectiveness and performance of the pro-
posed method on a variety of datasets: 1) two synthetic
datasets under different graph structures, 2) meshes represent-
ing a dancing man [49], 3) a daily temperature dataset of China
obtained from the National Oceanic and Atmospheric Admin-
istration [50], and 4) a daily evaporation dataset of California
from the Department of Water Resources [51]. Moreover, we
compare the proposed GL-LRSS with several state-of-the-art
methods, including GMS [23], GL-Logdet [26], GL-Sigrep
[14], SpecTemp [32], LGE [12], PCAG [21] and RPCAG [22].
GMS, GL-Logdet and SpecTemp are graph learning methods
that only infer the graph structure from observations, whereas
PCAG and RPCAG estimate low-rank components under a
k-nearest-neighbor graph. In contrast, GL-LRSS, GL-Sigrep,
and LGE simultaneously estimate the graph and low-rank
components. For real-world data, we evaluated two types of R
matrices for the proposed method. Specifically, we either set
R to identity matrix I or considered prior information of R.

We provided visual and quantitative results of the edges
from the learned graph and the ground-truth graph. We con-
ducted 20 independent Monte Carlo simulations to test the
average performance of the proposed and baseline methods.
To measure the estimation performance, we used the low-rank
component estimation error (LCE):

∥∥∥X̂−X0

∥∥∥
F

/
‖X0‖F and

graph structure estimation error (GSE):
∥∥∥L̂− L0

∥∥∥
F

/
‖L0‖F .

Additionally, to measure the recovery performance of the edge
position in the ground-truth graphs, we obtained the Precision,
Recall, F-measure and Normalized Mutual Information (NMI)
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Fig. 1. Visual comparison between the learned graph Laplacian matrices and the ground-truth Laplacian. The columns from the left to the right are the
ground-truth Laplacian, the Laplacians recovered by GL-LRSS, GL-Sigrep, LGE and GL-logdet. The rows from the top to the bottom are the learning results
for the random geometric graph GRGG and grid graph Ggrid, respectively.

TABLE II
GRAPH LEARNING PERFORMANCE FROM DIFFERENT TYPES OF TIME-VARYING GRAPH SIGNAL IN THE PROPOSED AND BASELINE METHODS.

Random geometirc graph GRGG Grid graph Ggrid
GL-LRSS GL-Sigrep LGE GL-logdet PCAG RPCAG GL-LRSS GL-Sigrep LGE GL-logdet PCAG RPCAG

F-measure 0.8201 0.7087 0.7196 0.6861 - - 0.7832 0.6913 0.7029 0.6764 - -
Precision 0.8709 0.7834 0.6469 0.8565 - - 0.7633 0.6547 0.6593 0.7517 - -
Recall 0.7984 0.6561 0.8212 0.5793 - - 0.8117 0.7554 0.7575 0.6456 - -
NMI 0.5096 0.2330 0.2761 0.2138 - - 0.4198 0.3282 0.3339 0.3033 - -
GSE 0.3315 0.3814 0.3445 0.5375 - - 0.7068 0.7229 0.7234 0.9664 - -
LCE 0.0545 0.2446 0.1424 - 0.4220 0.2432 0.0665 0.2465 0.1452 - 0.2223 0.1221

[52]. These four measures take values between 0 and 1, where
values close to 1 indicate higher learning performance. For a
fair comparison, we used a grid search to set the regularization
parameters that maximize the performance for each method.

A. Experiments on synthetic data

We evaluated the GL-LRSS performance on synthetic
datasets, which were created considering a 30-vertex undi-
rected graph and two different graph connectivity models:
grid graph Ggrid and random geometric graph GRGG. For
the grid graph, each vertex with a random coordinate was
connected to its five nearest neighbors, and the edge weight
between two vertices was inversely proportional to their dis-
tance. For the random geometric graph, the vertex coordinates
were uniformly random in a unit square, and each edge
weight was determined from a Gaussian function, W (i, j) =

exp
(
−d(i,j)2

2σ2

)
, where σ = 0.5, considering threshold weights

below 0.7. After graph construction, we computed the graph
Laplacian matrix and normalized its trace to 30.

Given a ground-truth graph, we generated 30 × 100 time-
varying graph signals based on the proposed model in Eqs. (4)
and (5). Unless otherwise stated, state transition R was set as
the identity matrix. The case of a general diagonal R was also
considered, as reported below. We selected the eigenvectors
corresponding to the smallest r = 3 eigenvalues as the basis

vectors, that is, the columns of U. Zero-mean Gaussian noise
having a standard deviation of 0.5 was set as the perturbation.
Initial signal x1 and weighted difference signal xt−Rxt−1 were
smooth graph signals residing on the subspace corresponding
to the three smallest eigenvalues of the graph Laplacian L.
Hence, the time-varying graph signals were approximately
low-rank and presented spatiotemporal smoothness.

We applied GL-LRSS, GL-Sigrep, LGE, and GL-Logdet to
learn the graph Laplacian matrices given only observation Y.
We used GL-LRSS, GL-Sigrep, LGE, PCAG, and RPCAG to
estimate the low-rank components and obtained their average
performance across 20 random instances of two graphs with
the associated graph signals.

1) Performance comparison: A visual comparison of the
evaluated methods is shown in Fig. 1, which depicts the
ground-truth graph Laplacian and the Laplacian matrices
learned by GL-LRSS, GL-Sigrep, LGE, and GL-Logdet from
left to right. The first and second rows show the results
under graph models GRGG and Ggrid, respectively. In both
cases, the graph Laplacian provided by GL-LRSS is visually
more consistent with the ground truth than the Laplacians
obtained from the baseline methods. For further performance
analysis, we obtained the quantitative results listed in Table
II. Compared with the other four graph learning methods, the
F-measure increases with the decreasing score of the LCE for
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Fig. 2. For a random instance of GRGG, (a) performance of the GL-LRSS under different ratios of β to α, with γ = 5.278, (b) performance of the GL-LRSS
under different value of γ, where α and β are chosen to maximize the F-measure for each γ and (c) the performance comparison of the proposed GL-LRSS
and the GL-LRSS (γ = 0) without nuclear norm under the different rank index.

the proposed GL-LRSS. Hence, better low-rank component
estimation improves the graph estimation accuracy. For the
five low-rank component estimation methods applied to Ggrid,
the LCE decreases with the increasing F-measure scores.
Specifically, the performance of PCAG and RPCAG on Ggrid
is better than that on GRGG because the predefined graph
is closer to the ground truth in Ggrid. These results suggest
that a better graph inference improves low-rank component
estimation. Thus, because the two estimation steps are al-
ternately optimized, the proposed method outperforms GL-
logdet, PCAG, and RPCAG.

The proposed GL-LRSS outperforms the baseline methods
in graph inference and low-rank component estimation. For
GRGG, GL-LRSS achieves the highest F-measure of 0.8201
and an NMI of 0.5096, as well as the lowest GSE of 0.3315 and
an LCE of 0.0545. The improvement of GL-LRSS, compared
with GL-Sigrep, is caused by the exploitation of long-term
correlations, that is, the low-rank components. The improve-
ment of GL-LRSS over LGE is due to the proper modeling
of short-term correlations in Eq. (5), which demonstrate the
benefits of applying spatiotemporal smoothness during graph
learning. For Ggrid, the superior GL-LRSS performance is less
obvious, possibly due to the low-rank assumption that limits
the graph information encoded in the low-rank component,
which varies depending on graph types.

2) Effect of regularization parameters: To better understand
the behavior of the proposed GL-LRSS under different reg-
ularization parameter settings, we chose different powers of
2 ranging from 0 to 5 with variations of 0.4 to set γ, and
different powers of 10 ranging from 0 to -2 with variations of
0.1 for α and from 2 to 0 with variations of 0.1 for β. For
the same GRGG, Fig. 2(a) shows the learning performance for
fixed γ and varying ratios of β to α. Because the learned
graph approaches the ground truth, the recall-precision curve
gradually interacts, leading to an F-measure peak. Thus, an
appropriate ratio of β to α can maximize the graph learning
performance of the proposed GL-LRSS. A similar trend can
be observed in the NMI curve.

To investigate the effect of parameter γ, we fixed α and
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Fig. 3. (a) Graph learning performance of the baseline and proposed methods
under different number of signals, and (b) low-rank component estimation
performance of the baseline and proposed methods under different number of
signals, for a random instance of GRGG.

β to their best values (Fig. 2(a)) while varying γ. The GL-
LRSS performance according to γ is shown in Fig. 2(b). The
F-measure initially increases with increasing γ, possibly due
to the action of the unclear norm in (P1) on the low-rank
component estimation. After the F-measure reaches its peak
of 0.93 and the LCE reaches its minimum, the performance
decreases, because the influence of the unclear norm weakens.
Hence, an appropriate value of γ improves the low-rank
component estimation and the overall graph inference.

To verify the effectiveness of the nuclear norm ‖X‖∗, we
generated graph signals for a random instance of GRGG under
varying r. Then, we inferred the graph by solving (P1) with
γ > 0 and γ = 0. The GL-LRSS performance with and
without (γ = 0) the nuclear norm according to the rank
index is shown in Fig. 2(c). For γ = 0, the GL-LRSS
performance is not affected by the nuclear norm regularization
term. For the F-measure, GL-LRSS with ‖X‖∗ outperforms
that without ‖X‖∗ for the low rank index. The superior GL-
LRSS performance with ‖X‖∗ is less obvious as the rank
index increases. This is possibly due to the introduction of
the nuclear norm, which is more effective at a lower rank
index, whereas its influence declines as the index approaches
30. Similar results were obtained for NMI and GSE. These
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TABLE III
THE GL-LRSS PERFORMANCE IN TWO CASES OF GENERAL DIAGONAL R.

F-measure Precision Recall NMI GSE LCE

Rknown 0.7657 0.8203 0.7346 0.3817 0.3632 0.1390
Runknown 0.6707 0.7873 0.5874 0.2833 0.6249 0.2870

results verify the correctness of the optimization problem (P1).
3) Effect of number of observations: For one random

instance of a random geometric graph, we investigated the in-
fluence of the number of signals, from 20 to 200 in increments
of 20. The graph learning performance is shown in Fig. 3(a) in
terms of F-measure and GSE. We also report the performance
of GSP-based methods as baselines for Laplacian recovery.
The performance of all methods initially increases with the
availability of an increasing number of signals for graph
learning, until convergence after approximately 80 signals.
Moreover, among all the evaluated methods, the proposed GL-
LRSS attains the highest F-measure of approximately 0.82
and the lowest GSE of approximately 0.28, indicating its
higher graph learning performance. The errors of the low-rank
components recovered by GL-LRSS, GL-Sigrep, and LGE are
shown in Fig. 3(b). The LCE trend is similar to that of the F-
measure. Figs. 3(a) and 3(b) verify that GL-LRSS outperforms
the other methods in terms of both graph learning and low-
rank component estimation, possibly because our formulation
utilizes long- and short-term correlations in spatiotemporal
signals to facilitate learning.

4) Effect of general diagonal matrix R: To examine the
GL-LRSS performance when R is a general diagonal matrix,
we generated R from a normal distribution N

(
0.5, 0.252

)
and

guaranteed that every entry in R was less than 1. We considered
two cases of known and unknown R. For the unknown R, we
assumed an incorrect R (R = IN ). For a random instance of
GRGG, the results of the evaluated method for the two cases are
listed in Table III. The GL-LRSS performance with unknown
R is much worse than that for the known matrix, possibly due
to the mismatching R. From Tables II and III for known R,
the GL-LRSS performance for a general diagonal R is not
as good as that for R being the identity matrix. Regarding
the LCE, the advantage of GL-LRSS for R being the identity
matrix is obvious, possibly because R = IN is the best case
for low-rank component recovery during graph learning.

B. Graph learning from dancer mesh dataset

We also evaluated the proposed GL-LRSS on real-world
data. We first considered the dancer mesh dataset containing
143 frames that represent different dancing postures. At each
frame, we considered the distance of 300 mesh vertices from
each coordinate to the centroid as the observed signals, thus
obtaining 143 time-varying graph signals with dimension of
300. During the whole sequence, the graph between the mesh
vertices is unknown but is assumed to be fixed. GL-LRSS
aimed to determine the intrinsic graph by capturing the body
connectivity between the mesh vertices in terms of distances
during the dancing sequence.
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Fig. 4. Clustering of the dancer mesh: the plot (below) shows for each line the
average distance between the points in different part of body and the centroid.
We observe that each frame belongs to different phase of the dance, named
”Arm”, ”Leg”, ”Body”. The classification of the motion depends on the main
fluctuation of the lines, that is, the part of body mainly involved in the dance.

TABLE IV
COMPARISON OF THE MOTION CLASSIFICATION PERFORMANCE BETWEEN

DIFFERENT METHODS IN DANCER MESH DATA.

GL-LRSS GL-Sigrep LGE PCAG RPCAG K-means on
original data

RI 0.8385 0.7271 0.7835 0.7340 0.7455 0.6698
Purity 0.8671 0.7203 0.8015 0.7343 0.7343 0.5874
NMI 0.6422 0.5040 0.6095 0.5412 0.5651 0.4519

As depicted in Fig. 4, we obtained the ground-truth clusters
of frames labeled by three dancing postures (i.e., moving
arms, stretching legs, and bending body). For performance
evaluation, we performed k-means clustering on the recovered
low-rank component and compared the classification results.
According to our experimental results on synthetic data, the
effectiveness of the low-rank component estimation depends
on the quality of the learned graph. Therefore, clustering
performance on the low-rank component reflects the graph
learning performance. We used Purity, NMI, and RI [53] to
make a quantitative evaluation of clustering results.

We compared the clustering performance of the proposed
GL-LRSS with two GSP-based methods (i.e., PCAG and
RPCAG) both having a predefined five-nearest-neighbor graph.
We also applied k-means clustering to the original data for
reference. The classification results are listed in Table IV.
The proposed GL-LRSS achieves the highest RI score of
0.8385, greater than the scores of 0.7271, 0.7835, 0.7340, and
0.7455 obtained by GL-Sigrep, LGE, PCAG, and RPCAG,
respectively. Similar results were obtained in terms of Purity
and NMI. As expected, the performance of k-means clustering
on the original dataset is the worst, possibly due to its suscep-
tibility to noise. These results demonstrate that the proposed
GL-LRSS provides superior performance compared with the
comparison methods on the dancer mesh dataset.

C. Graph learning from temperature dataset

The daily average temperature data is collected from 60
observation sites in China [50] over 150 days starting from
January 1, 2017 and have a size of 60×150. We aimed at learn-
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Fig. 5. (a) The locations of 60 measuring stations in China. Different colors represent the ground-truth 4 clusters that correspond to 4 geographical regions.
(b) The clustering results utilizing the graph Laplacian obtained by the GL-LRSS(RI ). (c) Graph structure learned by the GL-LRSS(RI ), which achieves the
best RI score in clustering performance. (d) Graph structure established by eight nearest neighbors according to the physical location of measuring stations.
The color code in (c) and (d) represents the realistic temperature in Celcius scale on the 20th day.

TABLE V
THE PERFORMANCE OF GRAPH LEARNING METHODS IN RECOVERING
GROUND-TRUTH CLUSTERS OF TEMPERATURE MEASURING STATIONS.

RI Purity NMI

KNN 0.7567 0.6667 0.4855
GMS 0.7667 0.5833 0.5037

GL-logdet 0.7411 0.6667 0.4701
SpecTemp 0.7832 0.5833 0.5201
GL-Sigrep 0.79 0.7167 0.5397

LGE 0.7833 0.75 0.5236
GL-LRSS (RI ) 0.8633 0.85 0.7203

GL-LRSS (Rprior) 0.8656 0.8333 0.7352

ing a graph structure for uncovering the inherent relationship
between these observation sites in terms of daily temperature
variations. In the experiment, we did not have an available
ground-truth graph. Additionally, a k-nearest-neighbor graph
was inappropriate. However, four climate zones of China
(i.e., northern, southern, northwest, Qinghai-Tibet) could be
regarded as a ground-truth clustering of the observation sites,
which are differentiated by colors in Fig. 5(a). For performance
evaluation, we compared the clustering results of the proposed
and baseline methods by applying spectral clustering [54],
which utilizes the learned graph Laplacian to divide the
observation sites into four disjoint clusters. The clustering
performance can reflect the quality of a graph.

Fig. 5(b) and 5(c) show the four-cluster partitions and
graph topology obtained from the proposed GL-LRSS(RI ).
The clusters are clearly distinguishable and close to the ground
truth in Fig. 5(a). For comparison, we also show the natural
choice of the graph constructed using eight nearest neighbors1

in Fig. 5(d). The resulting graph seems inaccurate because it
only considers the physical distance regardless of other influ-
encing factors (e.g., altitude). Consequently, observation sites
that are geometrically close may be geographically distant.
Table V lists the best RI, Purity, and NMI values achieved
by the evaluated graph learning algorithms. Compared with
the baseline methods, the proposed GL-LRSS achieves the
highest scores for all three evaluation measures. Moreover,

1For the KNN baseline, we choose k = 8 for both the temperature and
ETo datasets, which leads to the best performance (i.e., RI score).

by properly using the prior information of R2, GL-LRSS
(Rprior) outperforms GL-LRSS(RI ). Hence, the proposed GL-
LRSS outperforms the baseline methods for learning the graph
topology on the temperature data from China.
D. Graph learning from evapotranspiration dataset

We now move onto the final real-world dataset, California
daily evapotranspiration (ETo) dataset, published by the Cal-
ifornia Department of Water Resources [51]. It is collected
from 62 active observation sites over 150 days starting from
February 1, 2018, and it contains data with a size of 62×150.
We aimed at inferring a graph that captures the similarity
in the evapotranspiration evolution of different observation
stations. In this experiment, because we did not have an
obvious ground-truth graph topology, we used an ETo Zone
Map [55] as reference, which divides the 62 observation sites
into one of four zones. The ground-truth clusters are shown in
Fig. 6(a). Similar to the previous example, we applied spectral
clustering to the learned graphs and compared the resulting
clusters with the ground truth.

(a) (b)

Fig. 6. (a) The ground-truth clusters of 62 observation sites in California.
The colors from green, blue, cyan-blue to yellow represent ETo zone 14, zone
12, zone 6 and zone 9, respectively. (b) The resulting clusters obtained by the
proposed GL-LRSS(RI ).

Fig. 6(b) shows the clustering results of the proposed GL-
LRSS(RI ). The clusters obtained from the proposed GL-LRSS
are visually similar to the ground-truth clusters. The corre-
sponding quantitative results are listed in Table VI. Compared

2The parameter ci in matrix R can be viewed as autocorrelation coefficient
of data in the ith observation site. Here, we obtain ci in advance through the
autocorrelation function (ACF) (i.e., function [acf,lags]=autocorr(x)).
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TABLE VI
THE PERFORMANCE OF GRAPH LEARNING METHODS IN RECOVERING

GROUND-TRUTH CLUSTERS OF ETO MEASURING STATIONS.

RI Purity NMI

KNN 0.7644 0.6613 0.4805
GMS 0.7685 0.6774 0.5113

GL-logdet 0.7612 0.6290 0.4613
SpecTemp 0.7653 0.6451 0.4799
GL-Sigrep 0.8065 0.7419 0.5865

LGE 0.8153 0.7903 0.5945
GL-LRSS (RI ) 0.8496 0.8225 0.6544

GL-LRSS (Rprior) 0.8486 0.8064 0.6462

with the GSP-based methods (i.e., GL-Sigrep, GL-Logdet,
SpecTemp, and LGE) and the other baseline methods, the
proposed GL-LRSS(RI ) achieves the highest scores of 0.8496
for RI, 0.8255 for Purity, and 0.6544 for NMI. Nevertheless,
the superior performance of GL-LRSS(Rprior) is not obvious,
possibly because the correlation coefficients are inaccurate for
the ETo data. Therefore, the proposed method exhibits higher
performance than the comparison methods on the ETo dataset.

VI. DISCUSSION

In this section, we first clarify the difference of the proposed
method with methods for vector autoregressive models. Then,
we discuss the applicability of the proposed method for a
nondiagonal case of R in our model.

A. Comparison with methods for vector autoregressive models

The model given by Eqs. (4) and (5) is analogous to a
noisy version of a first-order vector autoregressive model. The
differences between these models are twofold.

First, the driving noise in vector autoregression is assumed
to be Gaussian white noise, whereas vt in (5) follows a GMRF
encoding graph structure in the covariance matrix. Benefitting
from the vector autoregressive model with driving noise having
a covariance following the GMRF, the proposed model in (5)
can thus characterize the spatial and temporal structures of the
spatiotemporal signal through vt and R, respectively.

Second, the transition matrices in the vector autoregressive
model can be viewed as weighted graphs that show Granger
causal connections between nodes, but they are usually un-
known. Thus, vector autoregression methods (e.g., those pro-
posed in [36] and [43]) aim to recover multiple transition
matrices from observations. In contrast, transition matrix R
in (5) is known. As mentioned, because the graph structure is
encoded in the covariance of vt, our graph learning problem
can be regarded as inverse covariance matrix estimation.

B. Applicability of our method for a nondiagonal R

In this work, we assume all measuring nodes to be inde-
pendent for simplicity, that is, considering the dependencies
of data in its own measuring node. Thus, we use a diagonal
transition matrix R in the proposed model. In some cases,
there exists dependencies between measuring nodes and hence
the transition matrix is nondiagonal. However, under certain
conditions of nondiagonal R, we can also derive the same

optimization problem in (15) by Proposition 1 below; thus,
the proposed method can be also applied in those conditions.

Proposition 1. If state transition matrix R in (5) is real and
symmetric but not necessarily diagonal, the eigendecomposi-
tion of R is denoted as R = QΛQT , and the model given by
(3) and (5) can be transformed into an equivalent model by
multiplying QT on both sides of the equation. The solution to
(15) still represents the MAP estimate of the process variable
in the equivalent model.

Proof: As matrix R is real and symmetric, the eigendecom-
position of R is denoted as R = QΛQT . We reformulate the
model in (3) and (5) by multiplying matrix QT as

ỹt = x̃t + ñt, (36)
x̃t = Λx̃t−1 + ṽt, (37)

where ỹt = QTyt, x̃t = QTxt, ñt = QTnt and ṽt = QTvt.
Based on the definition of nt and vt, we have that ñt ∼
N
(
0, σn

2IN
)

and ṽt ∼ N
(
0,QT L̃†Q

)
.

Note that model (5) with a non-diagonal transition matrix
can be transformed into an equivalent model (37) with a
diagonal transition matrix.

Given the weighted difference signal d̃t = ỹt − Λỹt−1 =

ṽt + ñt−Λñt−1 and the multivariate Gaussian distribution on
ṽt, we can compute the MAP estimate of ṽt as follows:

ṽtMAP

(
d̃t

)
:= arg max

ṽt

p
(
ṽt|d̃t

)
= arg max

ṽt

p
(
d̃t|ṽt

)
p (ṽt)

= arg min
ṽt

− log pE

(
d̃t − ṽt

)
− log pV (ṽt)

= arg min
vt

(
d̃t − ṽt

)T
W−1

(
d̃t − ṽt

)
+ αṽTt QT L̃Qṽt,

where W = IN + ΛΛT . By leveraging the inequality in (14),
we obtain a relaxed optimization problem:

min
ṽt

∥∥∥d̃t − ṽt

∥∥∥
2

2
+ αṽTt QT L̃Qṽt. (38)

Specifically, the first and second terms in (38) can be
rewritten as QT (dt − vt) and vt

T L̃vt, respectively. Using
the inequality ‖Q‖22

∥∥QT (dt − vt)
∥∥2
2
≥ ‖dt − vt‖22, we further

simplify the optimization problem (38) as

min
vt

‖dt − vt‖22 + αvt
T L̃vt. (39)

Therefore, the proof is complete.

VII. CONCLUSION

We study the problem of graph learning for spatiotemporal
signals with long- and short-term correlations. By leveraging
the spatiotemporal smoothness that reflects the temporal and
graph structural information, as well as the low-rank property
of the spatiotemporal signal, we formulate graph learning as
a joint problem of estimating low-rank components and the
graph topology. A new graph learning method, GL-LRSS,
is proposed by applying alternating minimization and the
ADMM to solve the formulated problem. These two opti-
mization strategies improve each other, fostering better graph
learning. Experiments on synthetic datasets verify a substantial
performance improvement of the proposed GL-LRSS over
state-of-the-art graph learning and low-rank component esti-
mation methods. In addition, experiments on three real-world
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datasets demonstrate that the proposed GL-LRSS outperforms
the baseline methods in practice. In our future work, we plan to
study a more general signal model with an arbitrary transition
matrix and explore effective graph learning approaches.

APPENDIX A
DERIVATION OF THE CLOSED-FORM SOLUTION IN (29)

Being prepared for the following analysis, we first introduce
the property of the vec-operator as follows:

tr
(
ATB

)
= vec(A)

T
vec (B) . (40)

Then the second term in (28) can be transformed as

tr
(
D(X)

T
LD (X)

)
= vec (X−RXB)

T
vec [L (X−RXB)]

=
[
vec (X)

T − vec (X)
T

(B⊗R)
]
·

[
(IM ⊗ L) vec (X)−

(
BT ⊗ LR

)
vec (X)

]

= vec (X)
T

Td (IM ⊗ L) Td
Tvec (X) .

Similarly, the first term in (28) is given by

‖D (X−Y)‖2F = tr
(
D(X−Y)

TD (X−Y)
)

= vec (X−Y)
T

TdTd
Tvec (X−Y) ,

and thus the objective function in problem (28) can be equiv-
alently written as

f̃X (υ) =
(
υT − vec(Y)

T
)

TdTd
T (υ − vec (Y)) + αυTGυ

+
ρ

2

[
υT − vec(P)

T
+ vec(Q)

T
/
ρ
]

[υ − vec (P) + vec (Q)/ρ] ,

where G = Td (IM ⊗ L) Td
T ∈ RNM×NM and υ = vec (X).

The gradient of f̃X (υ) can be deduced as

∇f̃X (υ) = 2TdTd
Tυ − 2TdTd

Tvec (Y) + 2αGυ

+ vec (Q) + ρυ − ρvec (P) .
(41)

The proof is accomplished by setting (41) to zero.
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Abstract—Mining natural associations from high-dimensional1

spatiotemporal signals have received significant attention in var-2

ious fields including biology, climatology and financial analysis,3

etcetera. Due to the widespread correlation in diverse applica-4

tions, ideas that taking full advantage of correlated property to5

find meaningful insights of spatiotemporal signals have begun6

to emerge. In this paper, we study the problem of uncovering7

graphs that better reveal the relations behind data, with the help8

of long and short term correlated property in spatiotemporal9

signals. A spatiotemporal signal model considering both spatial10

and temporal relationship is firstly presented. Particularly, a low-11

rank representation together with a Gaussian Markov process12

is adopted to describe the signals’ time-correlated behavior.13

Next, we cast the graph learning problem as a joint low-rank14

component estimation and graph Laplacian inference problem. A15

Low-Rank and Spatiotemporal Smoothness-based graph learning16

method (GL-LRSS) is proposed, which novelly introduces spa-17

tiotemporal smooth prior to the field of time-vertex signal anal-18

ysis. Through jointly exploiting the low-rank property of long-19

time observations and the smoothness of short-time observations,20

the overall performance is effectively improved. Experiments on21

both synthetic and real-world datasets demonstrate the significant22

improvement on learning accuracy of the proposed GL-LRSS23

over current state-of-the-art low-rank estimation and graph24

learning methods.25

Index Terms—Graph learning, spatiotemporal signal, graph26

signal, low rank, spatiotemporal smoothness.27

I. INTRODUCTION28

IN a variety of modern applications, from finance and soci-29

ology to transportation and sensor network, many problems30

in signal processing, machine learning and statistics involve31

the analysis of spatiotemporal signals. Much of these signals32

take the form of long time series measured over a certain33

spatial range. Examples include biomedical imaging data [1],34

video sequences [2], social interactions among individuals [3],35

and environmental sensing [4]. Due to the complex spatial and36

temporal correlation, together with the space-time interactions,37

analyzing spatiotemporal signals is a challenging problem.38
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Graph is a useful tool for data analysis, as it shows a flexible 39

description of data living on an irregular domain. In recent 40

years, graph signal processing (GSP) [5] offers an engineering 41

paradigm for processing spatiotemporal signals on graphs, 42

referred to as time-varying graph signals, based on spectral 43

graph theory [6]. For analyzing and learning purposes, it is 44

often meaningful to represent the data through graph, and 45

utilize graph Laplacian matrix which is equivalent to the graph 46

topology to deal with numerous problems including graph 47

signal compression [7], graph signal reconstruction [8], and 48

graph filtering [9], [10], etcetera. 49

Nevertheless, though graph-based methods have been suc- 50

cessful for many tasks, so far the graph structure is not always 51

available and its natural choice (e.g., geographical K-nearest- 52

neighbors) may not well capture the intrinsic relationship 53

among data. The demands for graph learning that aims to 54

spot trends or forecast future behavior from data analysis is 55

raising. Therefore, how to extract the underlying relationship 56

from observed spatiotemporal signals is important. In our 57

previous work [11], we study the graph learning problem for 58

time-varying graph signals where the temporal dynamic is 59

particularly described through a proposed space-time signal 60

model. As such, we successfully propose an efficient graph 61

learning method by regularizing spatiotemporal smoothness 62

of the graph signal. However, in many cases, the collected 63

spatiotemporal data is approximately low-rank over a long- 64

term horizon and has short-term stability. It is essential to 65

consider these properties in signal representation, while many 66

studies ignore the time-correlation of signals, for example 67

by treating the successive signal independently or processing 68

in the entire dimensional space [12], [13]. Even though the 69

temporal relationship in our previous work is modeled as a 70

first-order Markov process, it lacks the long-term characteri- 71

zation of spatiotemporal signals. Thus, this paper focuses on 72

an enhanced graph learning method by making full use of long 73

short-term correlated properties in spatiotemporal signals. 74

A. Related works 75

Nowadays several works have summarized the approaches 76

for the issue of low-rank component recovery [21] and graph 77

learning [14], [15]. But these issues have not been jointly stud- 78

ied yet. For low-rank component recovery, many researches 79

approximate spatiotemporal signals as low-rank matrices [16]– 80

[18], which assumes the matrix collecting the time sequences 81

to be approximately low-rank and achieves satisfying results. 82

Recently, GSP-based approaches are proposed to recover 83

approximated low-rank components by using spectral graph 84
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regularization [19]–[21]. They incorporate graph smoothness1

on the low-rank matrices and improve both clustering and2

recovery performance. It is worth mentioning that, in all these3

works, the graph is predefined based on the geometric distance,4

which may not be accurate enough for further analysis.5

For graph learning, the early studies learn the graphical6

model by per-node neighborhood selection [22]. To be stable7

under noise, the work in [23]–[25] propose graphical Lasso8

methods to estimate an inverse covariance or precision matrix.9

Nowadays, the fast-growing field of GSP provides a new way10

to solve graph learning problems. The basic idea of these meth-11

ods is to identify Gaussian Markov Random Field (GMRF)12

models with precision matrix denoted by graph Laplacian13

matrix or its variants. By leveraging the smooth property of14

graph signals, smoothness-based methods have been adopted15

for graph inference. Dong et al. [12] firstly propose a valid16

combinatorial graph Laplacian (CGL) learning method under a17

smooth graph representation. Following this work, Kalofolias18

[13] reformulates the problem in terms of the adjacency19

matrix and proposes a computationally efficient algorithm.20

To generalize the restriction of the precision matrix being21

CGL, Egilimez et al. [26] identify a GMRF model whose22

precision matrix can be multiple types of graph Laplacian.23

Alternative smoothness-based approaches [11], [27], [28] also24

show effectiveness, with the methodological implementation25

provided in the former two based on temporal dynamics26

and edge selection, respectively. A theoretical analysis of27

reconstruction error is provided in [28]. The above methods28

learn a graph from smooth graph signals, while a few works29

make extra assumptions on graph dynamic for time-varying30

graph learning. For instance, the work in [29] learns a dynamic31

graph under the hypothesis that graph changes smoothly over32

time, and the method of Koki et al. [30] is based on the33

sparseness of graph variation.34

There is another family of approaches to tackle the graph35

learning problem by incorporating physical insights on graph36

signal. In this case, the observations are modeled as the results37

of a physical process on the graph, for example, diffusion-38

based [31]–[34] and causality-based [35]–[37] methods. To be39

specific, Segarra et al. [31] and Pasdeloup et al. [32] identify40

a graph from stationary observations that are assumed to be41

generated by a diffusion process. To generalize the work,42

Shafipour et al. [33] explore the graph learning strategy that43

can be applied to non-stationary graph signals. Thanou et al.44

[34] propose a graph learning framework where the graph45

signals are the outcomes of heat diffusion processes. In addi-46

tion, causality-based methods focus on estimating asymmetric47

adjacency matrix corresponding to a directed graph. In [35],48

Mei et al. consider a causal graph process to characterize the49

time series and apply it to temperature analysis. Under a struc-50

tural equation model, authors in [36] propose a recursive least-51

square estimator to track both signal state and graph topology.52

Similarly, Shen et al. [37] describe the nonlinear dependency53

of signals via a structural vector autoregressive model and54

develop an efficient estimator to infer a sparse graph. Notice55

that graphs can be extracted from the aforementioned graph56

learning methods, but none of these works consider the global57

correlation of observations, i.e., the low-rank property.58

The works of [12] and [38] are most related to our work. 59

In signal representation, different from the model [12] for 60

time-independent signals, we propose a general model for the 61

spatiotemporal signal. Specifically, we fully exploit its long 62

short-term correlation property to describe multiple types of 63

time-correlated behaviors. Besides, benefit from such represen- 64

tation, the proposed model can be regarded as analogous to 65

the Kalman filter, which is shown to deal with prediction tasks 66

in our previous work [11]. Furthermore, in the optimization 67

problem, the study in [38] and this work have the same purpose 68

that jointly estimates the graph and low-rank component. By 69

contrast to [38] that directly combines these two estimation 70

problems for the final optimization, we derive the optimization 71

problem based on the Bayesian statistical method and hence 72

introduce a new regularization term to promote graph learning. 73

As will be discussed, the superiority and utility of the proposed 74

graph learning method is verified in our experiments. 75

B. Contributions 76

In this paper, in order to learn a graph with high quality, 77

a graph learning method is proposed, which takes low-rank 78

property and local smoothness of spatiotemporal signals into 79

consideration. Therein, leverage on the procedure of low-rank 80

component estimation, the quality of the learned graph is well 81

improved. In turn, the low-rank component is better estimated 82

with the help of a refined graph. The main contributions of 83

this paper are summarized as follows, 84

1) Taking advantage of both the long-term and short-term 85

correlation properties, a graph-based model is proposed 86

for the spatiotemporal signal. In particular, we integrate 87

the low-rank representation in a global sense and tem- 88

poral evolution in a local sense for signal description. 89

Benefit from such description, spatiotemporal smoothness 90

is introduced as a new prior to facilitate graph learning. 91

2) Under the signal model, the graph learning problem is 92

formulated as a joint graph refinement and low-rank com- 93

ponent estimation problem, which is then solved by the 94

proposed low-rank and spatiotemporal smoothness-based 95

graph learning method (GL-LRSS) as an application 96

of ADMM and alternating minimization schemes. With 97

special consideration of the different evolution patterns of 98

signal among observation sites, the learning framework is 99

well adapted to the real data analysis. 100

3) We perform numerous experiments on both synthetic and 101

real-world datasets. Visual and quantitative comparison 102

are provided in synthetic data. Besides, several classifica- 103

tion tasks on real-world datasets demonstrate the superior 104

performance of the proposed GL-LRSS over the state-of- 105

the-art low-rank estimation and graph learning methods. 106

The remainder of this paper is organized as follows. In 107

Section II, an overview of the notation and the preliminaries 108

in graph signal processing are reviewed. In Section III, a low- 109

rank graph-based model is proposed and the corresponding 110

spatiotemporal smoothness prior is introduced. In Section IV, 111

we formulate the graph learning problem as a joint low rank 112

and graph topology estimation problem, and propose GL- 113

LRSS to alternatively solve the optimization problem. The 114

performance of GL-LRSS is presented and compared with 115
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TABLE I
LIST OF SYMBOLS AND THEIR MEANING

Symbols Meaning

G | L | LN weighted graph | graph Laplacian matrix | set of CGLs
V | E vertex set | edge set
N | M number of vertices | number of time instants

I |W | D identity matrix | adjacency matrix | degree matrix
U | Λ eigenvector matrix | eigenvalue matrix of L
0 | 1 column vector of zeros | column vector of ones

X−1 | X† inverse of X | pseudo-inverse of X
XT | xT transpose of X | transpose of x
(X)ij entry of X at i-th row and j-th column

xi i-th entry of x
≥ (≤) element-wise greater (less) than or equal to opertor
X � 0 X is a positive semidefinite matrix
tr | vec trace operator | vectorization operator
⊗ | 〈·, ·〉 Kronecker product operator | inner product operator
diag (x) diagonal matrix formed by elements of x
p (x) probability density function of random vector x

x ∼ N (0,Σ) zero-mean multivariate Gaussian with covariance Σ
‖X‖∗ nuclear norm of X

‖x‖1 | ‖X‖1 sum of absolute values of all elements (l1-norm)

‖x‖22 | ‖X‖2F sum of squared values of elements

baseline methods on both synthetic and real-world datasets1

in Section V. Section VI concludes the whole paper.2

II. NOTATION AND PRELIMINARIES3

A. Notations4

For the convenience of reading, we firstly introduce some5

notations. Throughout the paper, the lowercase normal letters6

(e.g., α and β), the lowercase boldface letters (e.g., x and7

u) and the uppercase boldface letters (e.g., X and L) denote8

scalars, vectors, and matrices, respectively. Unless other stated,9

calligraphic capital letters (e.g., E and L) represent sets. The10

rest of the notations are listed in Table I.11

B. Graph Laplacian12

In this paper, we focus on an undirected, weighted graph13

with nonnegative edge weight and no self-loops. Let G =14

(V, E ,W) be an N -vertex weighted graph where V =15

(v1, . . . , vN ) is the vertex set and E is the edge set of the graph.16

The adjacency matrix W is an N ×N symmetric matrix such17

that (W)ij = (W)ji. The CGL of G is defined as L = D−W,18

where the diagonal matrix D denotes the degree matrix with19

its ith diagonal entry indicating the degree of vertex i (i.e.,20

diag(D)i =
∑N
j=1Wij). In general, the set of CGL matrices21

can be written as22

LN =
{

L|L � 0, (L)ij = (L)ji ≤ 0 , i 6= j, and L · 1 = 0
}
. (1)

As shown in (1), the CGL is a real symmetric positive23

semidefinite matrix, so its eigenvalues are all non-negative.24

Provided that the eigendecomposition of CGL is L = UΛUT ,25

where Λ = diag (λ1, λ2, . . . , λN ) and U = [u1,u2, . . . ,uN ]26

are the matrix of eigenvalue and eigenvector, respectively. The27

graph frequency spectrum is defined by the ascending array28

of eigenvalue 0 = λ1 ≤ λ2 ≤ · · · ≤ λN , referred to as graph29

frequency, and the orthogonal eigenvectors u1,u2, . . . ,uN are30

the harmonics associated with graph frequencies. In addition,31

the CGL of a connected graph always has a zero value32

of eigenvalue (i.e., λ1 = 0 with multiplicity one) which 33

corresponds to the eigenvector u1 = 1/
√
N · 1. 34

C. Smooth Graph Signals 35

For a graph signal x = [x1, x2, . . . , xN ]
T , where xi is 36

attached to vertex vi, its frequency component is defined by 37

the graph Fourier transform (GFT), denoted as x̂ = UTx. 38

Here, the frequency components corresponding to a higher 39

eigenvalue indicate the larger variations between the signals of 40

vertices, while the ones corresponding to small eigenvalue are 41

relatively smooth. Actually, many application datasets show 42

that signals residing on a graph change smoothly between 43

connected vertices. Such smoothness property suggests how 44

frequently a graph signal varies with respect to the underlying 45

graph. To quantify the smoothness of signal x, a typical metric 46

can be written by graph Laplacian quadratic form [6] as 47

S (x) = xTLx =
∑

(i,j)∈I
(W)i,j [xj − xi]

2
, (2)

where I = {(i, j)| (vi, vj) ∈ E} is the set of index pairs of 48

vertices. As shown in Eq. (2), it measures the total variation 49

of connected vertices associated with the edge set E . From 50

the view of vertex domain, the smaller value of (2), the better 51

smoothness of the signals on the graph structure. 52

D. Correlated property of Spatiotemporal Signals 53

Spatiotemporal signals can be viewed as time series attached 54

to a graph of the observation sites. The common characteristics 55

of them are massive redundancy and strong correlation. As 56

pointed out in [40], global and local consistency principles 57

have been identified for data description, which leads to 58

two types of correlation properties. Next, we review these 59

correlation properties in spatiotemporal signals as follows. 60

Long-term correlation: According to the global consistency, 61

there exist high correlations within spatiotemporal signals 62

under a fixed spatial structure of observation sites [16], [18]. 63

Such correlation defined in a global sense can be interpreted 64

as spatiotemporal signals lying in a low-dimensional subspace 65

or being approximately low-rank [17], [21]. 66

Short-term correlation: Following the local consistency 67

principle, spatiotemporal signals are locally correlated [11], 68

[40] as well. Concretely speaking, the observations of a certain 69

site are correlated in neighboring time instants, and hence the 70

temporal sequences vary smoothly over time. Similarly, at each 71

time instant, observation sites nearby are observed spatially 72

correlated with values being close to each other. These two 73

types of short-term correlations are evaluated by temporal 74

smoothness and spatial smoothness, respectively. 75

The past works in GSP are based on spatial and temporal 76

smoothness. For instance, spatial smoothness is widely applied 77

in GSP tasks including [8], [13] and [21], while quite a few 78

works, such as [41] and [42], take advantage of temporal 79

smoothness. Combining the two types of smoothness, our 80

previous work [11] introduces spatiotemporal smoothness and 81

proposes a graph learning method based on it. The spatiotem- 82

poral smoothness is recalled in Assumption 1. 83
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Assumption 1 (Spatiotemporal smoothness). The weighted1

time differences of spatiotemporal signals are smooth with2

respect to the graph structure.3

As shown above, the spatiotemporal smoothness character-4

izes the short-term property of time-varying graph signals.5

III. A GRAPH-BASED REPRESENTATION FOR6

SPATIOTEMPORAL SIGNALS7

A. Signal representation8

A spatiotemporal signal can be characterized by a matrix9

X = [x1,x2, . . . ,xM ] ∈ RN×M , where N and M are the10

number of observation sites and the number of time instants,11

respectively. As illustrated in Section II-D, spatiotemporal12

signals are usually correlated in a global sense and local13

sense. Taking these correlation properties into consideration,14

the observed signal can be modeled as15

yt = xt + nt, (3)

16
xt = Rxt−1 + vt, (4)

where yt ∈ RN is the observation at time instant t, xt ∈ RN17

forms the low-rank component, and nt ∈ RN denotes the18

perturbation part that is adopted as an isotropic noise model.19

We assume that the noise nt follows a multivariate Gaussian20

distribution with zero mean and covariance σn2IN .21

To describe the short-term correlation, we impose a first-22

order Gaussian Markov process on variable xt in Eq. (4). The23

state transition matrix is expressed by a correlation matrix24

R = diag (c1, c2, . . . , cN ), where ci is the local correlation25

coefficient of the ith observation site with value ranging from26

0 to 1. Each c can be read as the autocorrelation coefficient27

that describes the correlation of data with a delayed copy (one-28

time lag in this model) of itself, and obtained from the training29

phase in advance. In particular, R in our model is a general30

diagonal matrix, which considers the differences of data cor-31

relation in distinct observation sites. Based on our found in32

real data that the correlation coefficients in observation sites33

are concentrated around a value, we use a normal distribution34

N
(
µ, σ2

)
to model the value of ci, i = 1, . . . , N .35

As for long-term correlation, we present an approximately36

low-rank representation for spatiotemporal signals. Such rep-37

resentation to some extent may compensate for the inaccuracy38

of signal description where we only consider the first-order39

autoregression in our model. By imposing a principle compo-40

nent analysis type (PCA-type) representation on the process41

variable vt, the signals are constrained to be low-rank, which42

enforces the commonalities along space and time dimensions.43

Remark 1. In some cases, the short-term correlation can lead44

to a long-term correlation. Under the normal distribution of45

coefficient c, the signal matrix X will be low-rank when the46

variance σ2 = 0 (e.g., R = I). However, with the increasing47

value of σ2, or in other words, R is a more general diagonal48

matrix, the low-rank property of signal is less prominent.49

Recall that graph learning often relies on a signal represen-50

tation that reflects the topology of the graph. In the following,51

we discuss the choice of process variable in our model.52

B. Time-varying signals on graph 53

In this paper, we focus on the spatiotemporal signals which 54

can be viewed as time-varying signals attached to a graph of 55

observation sites. By using the graph Laplacian matrix, we 56

model the temporal evolution of signal on a graph by the 57

following definition of process variable vt 58

vt = U(r)zt and zt ∼ N
(
0,Λ(r)

†
)
. (5)

The PCA-type representation at time instant t is a product 59

vt = U(r)zt, where zt ∈ Rr×1 is the coefficient matrix and 60

U(r) ∈ RN×r is the basis vectors. Based on the fact that the 61

eigenvector matrix of graph Laplacian can be interpreted as 62

graph Fourier basis for graph signal representation, it provides 63

a natural choice for basis vectors. Thus, the basis vectors are 64

selected as the first r eigenvectors of the graph Laplacian. For 65

coefficient matrix zt, it is assumed to follow zt ∼ N
(
0,Λ(r)

†), 66

where Λ(r)
† is the Moore-Penrose pseudoinverse of eigenvalue 67

matrix with the first r eigenvalues. 68

The motivation of the above definition is twofold. First, we 69

seek a low-rank representation in terms of a small number of 70

basis vectors where most of the variability of the data lies. The 71

selected eigenvectors corresponding to r smallest eigenvalues 72

can bring benefits to the smoothness property. Second, it can 73

build an intuitive relationship between the graph structure 74

and the graph signal. According to the definition (5), the 75

assumption on zt together with the basis vector U(r) leads to a 76

multivariate Gaussian distribution of vt, i.e., vt ∼ N
(
0, L̃†

)
, 77

with L̃† = U(r)Λ(r)
†U(r)

T , such that the property or repre- 78

sentation of time-varying signals can reflect the topology of 79

the graph. To be noted, as L̃† is the approximation of L†, the 80

signal only contains partial information of graph Laplacian, 81

which actually influences the graph learning performance as 82

will be discussed in the experiments. 83

Next, we show that the proposed model under a Gaussian 84

prior on vt promotes the spatiotemporal smoothness in As- 85

sumption 1. Being prepared for the following analysis, we 86

introduce the weighted difference operator of signal. 87

Definition 1 (Weighted difference operator). The weighted 88

difference operator of graph signal X as D (X) = X−RXB, 89

where R is the local correlation matrix and B is the shift 90

operator denoted as 91

B =




0 1
0 1

0
. . .
. . . 1

0



M×M,

(6)

and the weighted difference signal equals to D (X) = 92

[x1,x2 −Rx1,x3 −Rx2, . . . ,xM −RxM−1] . 93

Similar to the smoothness metric (2), the mathematical 94

expression of the spatiotemporal smoothness is defined as 95

S (D (X)) =

M∑

t=1

S (xt −Rxt−1) = tr
(
D (X)

T
LD (X)

)
. (7)

According to our model, the process variable vt reveals the 96

core component of the graph signal. To intuitively show this, 97
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we apply the weighted difference operator to the observed1

signal and the model becomes2

dt = yt −Ryt−1 = vt + nt −Rnt−1, t = 1, 2, . . . ,M (8)

where we set d1 = y1. Based on the equation (8), the3

conditional probability of dt given vt can be written as4

dt|vt ∼ N
(
vt, σn

2
(
IN + RRT

))
. (9)

Then given the weighted difference signal dt and the Gaus-5

sian prior distribution of vt, we can compute a maximum a6

posteriori (MAP) estimate of the core component. Specifically,7

by applying Bayes’ rule, the MAP estimate of vt is8

vtMAP (dt) := arg max
vt

p (vt|dt) = arg max
vt

p (dt|vt) p (vt)

= arg min
vt

(− log pE (dt − vt)− log pV (vt))

= arg min
vt

(dt − vt)
T
W−1 (dt − vt) + αvt

T L̃vt

(10)

9 relax
:= arg min

vt

‖dt − vt‖22 + α vt
T L̃vt, (11)

where W = IN + RRT and α is a constant parameter propor-10

tional to the variance of noise σn2. We note that the objective11

function (10) is hard to process when the correlation matrix12

R is unknown. Taking advantages of the diagonal property of13

matrix R and the following inequality14

(dt − vt)
T
W−1(dt − vt) ≥ λmin

(
W−1

)
‖dt − vt‖22 , (12)

the optimization problem (11) can be obtained through a re-15

laxation procedure [11]. We can also derive the same problem16

for a nondiagonal matrix R by Proposition 1.17

Proposition 1. If the state transition matrix R in the model18

(4) is real, symmetric but non-diagonal, then19

1) The analysis for a diagonal state transition matrix can20

be extended to a non-diagonal case, and21

2) The optimization problems in the two cases are the same.22

Proof: See Appendix A.23

It is worth mentioning that the regularization term vt
T L̃vt24

derived in (11) is the same as S (xt −Rxt−1) when the whole25

time instants M are considered. As a result, it shows that our26

proposed model favors the spatiotemporal smoothness, which27

can be applied to the field of time-vertex signal analysis.28

IV. GRAPH LEARNING BASED ON LOW RANK AND29

SPATIOTEMPORAL SMOOTHNESS (GL-LRSS)30

In many cases, the graph structure is typically unavailable,31

which makes the MAP estimate in (11) difficult to solve.32

Moreover, an accurate graph inference calls for a deep under-33

standing on the property of spatiotemporal signals. Therefore,34

in the following, jointly exploiting the local smoothness and35

the global correlated property of spatiotemporal signals, we36

propose an efficient graph learning method. In Subsection37

A, we first formulate the graph learning problem. Then an38

optimization algorithm to the proposed problem, GL-LRSS, is39

presented in Subsection B based on ADMM and alternating40

minimization schemes. The complexity analysis of the pro-41

posed algorithm is provided as well.42

A. Problem Formulation 43

As mentioned in Section II-D, time-varying graph signals 44

smoothly evolve with respect to underlying graph topology, 45

and meanwhile exhibit low-rank property based on the global 46

consistency. Hence, given the observations of M time instants 47

Y = [y1,y2, . . . ,yM ] ∈ RN×M , we focus on two objects 48

of interest: (i) learn the graph Laplacian matrix L that is 49

equivalent to the graph structure. (ii) achieve better low-rank 50

component estimation. Mathematically, by imposing additional 51

constraints on graph Laplacian and low-rank component X, 52

we reformulate the graph learning problem (11) as a joint 53

optimization problem with respect to L and X: 54

(P1) min
L,X

Q1 (L,X)

s.t. Q1 (L,X) = ‖D(X−Y)‖2F + αtr
(
D (X)

T
LD (X)

)

+ β ‖L‖2F + γ ‖X‖∗,
L ∈ LN , tr (L) = N,

where α, β and γ are three positive regularization parameters 55

corresponding to the regularization terms. In addition, tr (·), 56

‖ · ‖F and ‖ · ‖∗ denote the trace, Frobenius norm and 57

nuclear norm of a matrix, respectively. The first regularization 58

tr
(
D (X)TLD (X)

)
induces the spatiotemporal smoothness 59

encoded in Eq. (7). Together with the trace constraint that 60

aims to avoid trivial solution, the second regularization ‖L‖2F 61

controls the sparsity of the off-diagonal entries in L, namely, 62

the edge weights of the graph. To promote the long-term 63

correlation property, we impose nuclear norm ‖X‖∗ defined as 64

the sum of the singular values of X. It is the convex envelope 65

of rank (X) that can be easy to solve. The last Laplacian 66

constraint guarantees that the learned graph Laplacian is a 67

valid CGL matrix satisfying the property in (1). 68

Notice that in problem (P1), the graph Laplacian and low- 69

rank component interact with each other. It inspires us to 70

extract a more accurate low-rank component for a better 71

graph learning performance. Although the two regularization 72

terms tr
(
D (X)TLD (X)

)
and ‖X‖∗ promote the correlation 73

property of spatiotemporal signals from a different perspective, 74

they compensate each other to infer a meaningful graph. The 75

detailed explanation is shown as follows 76

• Benefit from the signal representation, a new regular- 77

ization term tr
(
D (X)TLD (X)

)
is derived for graph 78

learning. It encodes spatial and temporal relations of X 79

in graph Laplacian L and weighted difference operator 80

D respectively, and meanwhile enforces the weighted 81

difference signal to be smooth on graph. Let us highlight 82

that, by contrast to the differential smoothness [18], this 83

term contains a general correlation matrix R that con- 84

siders the different temporal evolution of data in distinct 85

observation sites. As will be shown in real experiments, 86

when a proper matrix R is known a priori, the graph 87

learning performance can be further improved. 88

• The use of ‖X‖∗ induces a low-rank estimation, which 89

enforces the commonalities within spatiotemporal signals. 90

Although the short-term correlation in our model can 91

lead to the low-rank property under specific conditions, 92
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Algorithm 1 : Graph learning based on low rank and
spatiotemporal smoothness (GL-LRSS)
Input: Observations Y, local correlation R, regularization

parameters α, β, γ, maximum iteration K, threshold ε.

1: Initialization: X0 = Y, k = 1;
2: repeat
3: 1) Graph topology refinement:

Lk+1 = G
(
Xk,Y

)
by (16)

4: 2) Low-rank component estimation:
Xk+1 = C

(
Lk+1,Y

)
by (20)-(22)

5: 3)
(
L̂, X̂

)
=
(
Lk,Xk

)
, k = k + 1;

6: until k = K or
∣∣Q1

(
Lk,Xk

)
−Q1

(
Lk+1,Xk+1

)∣∣ < ε

Output: Refined graph L̂, low-rank component X̂.

it may be inaccurate for signal description as only a first-1

order Markov model is considered. Such a drawback is2

compensated by the nuclear norm term that characterizes3

signal in a global sense, and the effectiveness of imposing4

such term is verified in Section V-A.5

Having given the above analysis, we will give the solution6

to the problem. According to the fact that the better low-7

rank component estimation promotes the quality of the learned8

graph, while a good graph, in turn, facilitates an accurate9

low-rank component estimation. It motivates our alternating10

minimization framework, which iteratively refines the graph11

topology and estimates the low-rank component.12

B. Optimization algorithm13

As the optimization problem (P1) is not jointly convex in L14

and X, GL-LRSS is therefore proposed to solve the above non-15

convex problem through an alternating optimization scheme.16

At each step, we optimize only one variable while holding all17

other variables constant. The iteration is shown as follows18

1. G (X,Y) , arg min
L

Q1 (L,X), (SL)

s.t. L ∈ LN , tr (L) = N.

2. C (L,Y) , arg min
X

Q1 (L,X) . (SX)

It is interesting to find that (SL) and (SX) are two subprob-19

lems with respect to the graph Laplacian L and graph signal20

X, respectively. By iteratively refining graph from low-rank21

representation and estimating the low-rank component with22

the help of the learned graph, we obtain the final solution of23

(P1) through alternating minimization. The detailed procedures24

are shown in the following derivation.25

1) Graph refinement in problem (SL): Notice that (SL)26

is a strictly convex problem under convex constraints, since27

the Hessian matrix of the objective function 2βIN is positive28

definite. To solve such a constrained convex problem, we use29

the alternating direction method of multipliers (ADMM) [43].30

We reformulate the problem (P1) with respect to the graph31

Laplacian L as32

min
L
α tr

(
D (X)

T
LD (X)

)
+ β ‖L‖2F ,

s.t. L− Z = 0,

Z ∈ L∗
(13)

where Z is the auxiliary variable matrix and L∗ is denoted as 33

L∗ = {L|L � 0, Lji = Lij ≤ 0 , i 6= j, and L · 1 = 0, tr (L) = N} . (14)

Therefore, the augmented Lagrangian of (13) is 34

Lρ (L,Z,Ξ) = α tr
(
D (X)

T
LD (X)

)
+ β ‖L‖2F ,

+ 〈Ξ,Z− L〉+
ρ

2
‖Z− L‖2F ,

(15)

where Ξ is the Lagrange multiplier and 〈·, ·〉 is the inner 35

product of matrices, while ρ > 0 is the prescribed penalty 36

parameter. We use the following formulas to update L, Z and 37

Ξ to find a saddle point of (15) 38

Lk+1 = arg min
L

Lρ
(
L,Zk,Ξk

)
,

Zk+1 = arg min
Z

Lρ
(
Lk+1,Z,Ξk

)
,

Ξk+1 = Ξk + ρ
(
Zk+1 − Lk+1

)
.

(16)

By solving the linear equation where the gradient of each 39

subproblem of (16) equals to zero, we have the following 40

solutions 41

Lk+1 =
ρZk + Ξk − αD (X)D (X)

T

2β + ρ
, Zk+1 =

∏

L∗

(
Lk+1 − 1

ρ
Ξk

)
, (17)

where
∏
L∗

is the Euclidean projection onto the set L∗. 42

2) Low-rank component Estimation in problem (SX): As 43

shown in (P1), the first two terms of X are differentiable. But 44

the nuclear norm term is undifferentiable, which is typically 45

handled by the proximal operators. Due to the decomposability 46

and converge property of ADMM, we also choose ADMM 47

method to tackle the problem (SX). First of all, we provide 48

an equivalent formulation of (P1) with respect to X 49

min
X,P

‖D (X−Y)‖2F +α tr
(
D(X)

T
LD (X)

)
+ γ‖P‖∗,

s.t. X = P,
(18)

Notice that the objective function is split into two parts through 50

introducing the linear equality constraint. Then the augmented 51

Lagrangian of (18) is as follows 52

Lρ (X,P,Q) = ‖D (X−Y)‖2F + α tr
(
D(X)

T
LD (X)

)

+ γ‖P‖∗ + 〈Q,X−P〉+
ρ

2
‖X−P‖2F ,

(19)

where Q is the Lagrange multiplier and ρ is a penalty 53

parameter. Based on the augmented Lagrangian in (19), a final 54

solution is obtained through the following iterative scheme 55

Xk+1 = arg min
X

Lρ
(
X,Pk,Qk

)
, (20)

56Pk+1 = arg min
P

Lρ
(
Xk+1,P,Qk

)
, (21)

57Qk+1 = Qk + ρ
(
Xk+1 −Pk+1

)
. (22)

According to (19), the subproblem (20) can be rewritten as 58

Xk+1 = arg min
X
‖D (X−Y)‖2F + α tr

(
D(X)

T
LD (X)

)

+
ρ

2

∥∥X−Pk + Qk
/
ρ
∥∥2

F
.

(23)

As we can see, the subproblem (23) is a differentiable 59

convex optimization problem that admits a closed-form so- 60

lution. For the convenience of expression, we utilize the 61

property of the vectorization operator, that is, vec (AXB) = 62
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Algorithm 2 : Method for solving subproblem (23)
Input: Y, R, B, Lk+1, Pk, Qk, α, ρ, K, error tolerance δ.

1: Initialization: X0 = 0; ∆X0 = −∇fX (X0);
2: repeat
3: 1) Dynamic stepsize selection:

4: µ = − tr{(∆Xm)T∇fX(Xm)}
tr{(∆Xm)T [∇fX(∆Xm)+ψ]} ,

with ψ = 2D (Y)− 2RD (Y) BT + ρPk −Qk;

5: 2) Conjugate direction update:
6: Xm+1 = Xm + µ∆Xm;
7: ∆Xm+1 = −∇fX (Xm+1) + θ∆Xm;
8: m = m+ 1;
9: until Stopping criterion satisfied

Output: Recovered X.

(
BT ⊗A

)
vec (X). Then, the optimal update of Xk+1 is de-1

noted as2

vec
(
Xk+1

)
=
(

2TdTd
T + 2α

^

L + ρIMN

)−1 (
vec
(
ρPk −Qk

)
+

^

Y
)
, (24)

where vec (·) is the vectorization operator that stacks the3

columns of a matrix into a vector, and the dimension of the4

transformed vector is MN × 1. In addition, the parameters5
^

L and
^

Y are respectively represented by Td (IM ⊗ L) Td
T

6

and 2TdTd
T vec (Y), with ⊗ denoting the Kronecker product7

operator and Td denoting8

Td =




IN −R
IN −R

IN
. . .
. . . −R

IN



NM×NM.

(25)

The detailed derivation of (24) is described in Appendix B.9

To be noted, the solution in (24) consists of calculating10

the inverse of an MN ×MN dimensional matrix. With the11

increasing number of vertices or time instants, this procedure12

can be expected to be time-consuming. The conjugate gra-13

dient method [44] can be used to deal with such a problem14

efficiently. For simplicity, we denote the objective function in15

(23) as fX (·). In each iteration, it updates the stepsize and the16

searching direction. Since the fX is differentiable, the optimal17

stepsize at the mth step can be decided by exact line search18

[45], i.e., min
µ
fX (Xm + µ∆Xm), where µ and ∆Xm denote19

the stepsize and the search direction at the mth iteration,20

respectively. Taking the derivative with respect to µ and then21

setting to zero, we have22

tr
[
(∆Xm)

T∇fX (Xm + µ∆Xm)
]

= 0,

with the gradient of fX calculated as23

∇fX =2D (X−Y)− 2RD (X−Y) BT + ρ
(
X−Pk

)
+ Qk

+ 2α
(
LD (X)−RLXBT + LXBBT

)
.

(26)

Therefore, we can determine the optimal stepsize µ and update24

the searching direction by introducing the Fletcher-Reeves25

parameter given as θ =
∥∥∇fX

(
Xm+1

)∥∥2
F

/
‖∇fX (Xm)‖2F . The26

detailed procedure of iteration is described in Algorithm 2.27

Similar to the subproblem (20), by adding a constant term 28

1
2
tr

(
(Qk)TQk

ρ2

)
, the subproblem (21) is equivalent to the 29

following optimization problem 30

Pk+1 = arg min
P

1

2

∥∥∥∥P−Xk+1 − Qk

ρ

∥∥∥∥
2

F

+
γ

ρ
‖P‖∗. (27)

The above optimization has a closed-form solution 31

Pk+1 = Γγ/ρ

(
Xk+1 +

Qk

ρ

)
, (28)

where Γ is the singular value thresholding operator [46] that is 32

the proximity operator associated with the nuclear norm. For 33

each τ ≥ 0, the Γ is defined as follows 34

Γτ (X) = UΘτ (Σ) VT , (29)

where U, V and Σ are obtained from the singular value 35

decomposition (SVD) of X, that is, X = UΣVT , with σi 36

denoting the ith singular value and 37

Θτ (σi) = sign (σi) max (|σi| − τ, 0) . (30)

The operator (30) applies a soft-thresholding rule to the 38

singular values of X, effectively shrinking these towards zero. 39

The stopping criterion for solving subproblem (SL) and 40

(SX) could be either a maximum number of iterations, or the 41

change of target variable less than a threshold. By alternately 42

minimizing the two subproblems, we can get the final solution 43

within a few iterations. The detailed procedure for solving (P1) 44

is summarized in Algorithm 1. 45

Complexity analysis: In the following, we briefly discuss 46

the computational complexity of our graph learning algorithm. 47

For the problem (SL), the computation is dominated by 48

the update of L in (17). The update procedure is domi- 49

nated by D (X)D (X)T where the matrix-matrix product costs 50

O(N2M +M2N +N3) computational complexity. As for the 51

problem (SX), there are two main steps that are computation 52

consuming. When it comes to the first step updating Xk, we 53

utilize the conjugate gradient method instead of the calcula- 54

tion of (24). As shown in Algorithm 2, the computation is 55

dominated by the gradient calculation according to (26). The 56

gradient procedure is mainly determined by the matrix-matrix 57

product, i.e., RLXBT , which consumes O(N2M+M2N+N3) 58

flops. When updating Pk in the second step (21), the compu- 59

tation of Γ dominates the computation consumption. It takes 60

O(min(M2N,N2M)) for computing the SVD of matrix X 61

[47]. The last step of Ξ update and Q update involves the 62

product of scalar and matrix, and cost O(MN). Overall, we 63

learn that the computation of proposed GL-LRSS is dominated 64

by the X update in (20) and the L update in (17). 65

V. EXPERIMENTS 66

The suitability of the proposed method for graph learning 67

problem is illustrated on a wide variety of datasets: (a) two 68

synthetic datasets under different graph structures, (b) dancer 69

meshes representing a dancing man [48], (c) the daily tempera- 70

ture dataset of China from National Oceanic and Atmospheric 71

Administration (NOAA) [49] and (d) the daily evaporation 72

data of California from the California Department of Water 73

Resources [50]. 74
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(a) GL-LRSS
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(b) GL-Sigrep
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(c) LGE
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(d) GL-logdet
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Fig. 1. Visual comparison between the learned graph Laplacian matrices and the groundtruth Laplacian. The columns from the left to the right are the
groundtruth Laplacian, the Laplacians recovered by GL-LRSS, GL-Sigrep, LGE and GL-logdet. The rows from the top to the bottom are the learning results
for the random geometric graph GRGG and grid graph Ggrid, respectively.

TABLE II
GRAPH LEARNING PERFORMANCE FROM DIFFERENT TYPES OF TIME-VARYING GRAPH SIGNAL IN THE PROPOSED AND BASELINE METHODS.

Random geometirc graph GRGG Grid graph Ggrid
GL-LRSS GL-Sigrep LGE GL-logdet PCAG RPCAG GL-LRSS GL-Sigrep LGE GL-logdet PCAG RPCAG

F-measure 0.8201 0.7087 0.7196 0.6861 - - 0.7832 0.6913 0.7029 0.6764 - -
Precision 0.8709 0.7834 0.6469 0.8565 - - 0.7633 0.6547 0.6593 0.7517 - -
Recall 0.7984 0.6561 0.8212 0.5793 - - 0.8117 0.7554 0.7575 0.6456 - -
NMI 0.5096 0.2330 0.2761 0.2138 - - 0.4198 0.3282 0.3339 0.3033 - -
GSE 0.3315 0.3814 0.3445 0.5375 - - 0.7068 0.7229 0.7234 0.9664 - -
LCE 0.0545 0.2446 0.1424 - 0.4220 0.2432 0.0665 0.2465 0.1452 - 0.2223 0.1221

The proposed GL-LRSS is compared with several state-of-1

the-art methods, including GMS [22], GL-logdet [25], GL-2

Sigrep [12], SpecTemp [31], LGE [38], PCAG [19] and3

RPCAG [20]. Notice that GMS, GL-logdet and SpecTemp4

are graph learning methods that only infer the graph structure5

from observations, while PCAG and RPCAG are methods for6

only estimating low-rank components under a KNN graph.7

However, GL-LRSS, GL-Sigrep, and LGE simultaneously8

estimate the graph and low-rank component. For real-world9

data, we examine two types of R in our method. One is GL-10

LRSS (RI ) with R = I and the other is GL-LRSS (Rprior)11

with a prior information of R.12

In our experiments, we provide both visual and quantitative13

comparison between the edges of the learned graph and the14

ones of the groundtruth graph. Particularly, we perform Monte-15

Carlo simulations to test the average performance of the16

proposed and baseline methods. To measure the estimation17

performance, we use low-rank component estimation error18

(LCE):
∥∥∥X̂−X0

∥∥∥
F

/
‖X0‖F and graph structure estimation19

error (GSE):
∥∥∥L̂− L0

∥∥∥
F

/
‖L0‖F . In addition, to evaluate the20

performance in terms of the recovery of the edge position21

in the groundtruth graph, we use four evaluation criteria,22

namely, Precision, Recall, F-measure and Normalized Mutual23

Information (NMI) [51]. The above four criteria take a value24

between 0 to 1, where the value more close to 1 implies the25

better graph learning performance. Specifically, the F-measure 26

is the overall criterion that takes both Precision and Recall into 27

consideration, and it is defined as 28

F-measure =
2× Precision× Recall

Precision + Recall
, (31)

where Precision measures the percentage of the correct edges 29

in the learned graph and Recall evaluates the percentage of 30

edges in the groundtruth graph that are presented in the learned 31

graph. NMI is utilized to measure the mutual dependence 32

between the learned edge set and the groundtruth one from an 33

information-theoretic perspective. To make a fair comparison 34

on graph learning methods, we select the regularization param- 35

eters through a grid search in each method, which maximizes 36

the performance. Then we obtain the average performance over 37

20 independent Monte-Carlo experiments. 38

A. Experiments on synthetic data 39

In this subsection, we test the performance of the proposed 40

method in synthetic datasets. We first create several syn- 41

thetic datasets based on a 30-vertex undirected graph, chosen 42

from two different graph connectivity models: the grid graph 43

Ggrid and the random geometric graph GRGG. For a grid 44

graph, each vertex with random coordinate is connected to 45

its five nearest neighbors and the edge weight between two 46

vertices is inversely proportional to their distance. As for 47
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Fig. 2. For a random instances of GRGG, (a) performance of the GL-LRSS under different ratios of β to α, with γ = 5.278, (b) performance of the
GL-LRSS under different value of γ, where α and β are chosen to maximize the F-measure for each γ and (c) the performance comparison of the proposed
GL-LRSS and the GL-LRSS (γ = 0) without nuclear norm under the different rank index.

the random geometric graph, we generate the coordinates of1

vertices uniformly at random in the unit square, determine2

the edge weights by a threshold Gaussian function W (i, j) =3

exp
(
−d(i,j)2

2σ2

)
, where σ = 0.5, and threshold weights that4

are less than 0.7. After the graph construction, we compute5

the graph Laplacian matrix and normalize its trace to 30.6

Given a specific groundtruth graph, we next generate 30×7

100 time-varying graph signals Y based on the proposed8

model in (3) and (4). Without loss of generality, the local9

correlation matrix R is set as an identity matrix. We select10

eigenvectors corresponding smallest r = 3 eigenvalues as the11

basis vectors, i.e., the columns of U. As for the perturbation,12

the standard deviation of zero-mean Gaussian noise is set13

to 0.5. Notice that the initial signal x1 and the weighted14

difference signal xt−Rxt−1 are smooth graph signals residing15

on the subspace corresponding to the 3 smallest eigenvalues16

of graph Laplacian L. Hence, the time-varying graph signal17

Y is approximately low-rank and satisfies the spatiotemporal18

smoothness. We then apply GL-LRSS, GL-Sigrep, LGE, GL-19

Logdet to learn the graph Laplacian matrices given only20

the observation Y. Meanwhile, GL-LRSS, GL-Sigrep, LGE,21

together with PCAG and RPCAG are utilized to estimate the22

low-rank component. Finally, we average the performance of23

the proposed and baseline methods over 20 random instances24

of two graphs with the associated graph signals.25

1) Performance comparison: We first provide a visual26

comparison in Fig. (1), where from left to right denotes the27

groundtruth graph Laplacian, the Laplacian matrices learned28

by GL-LRSS, GL-Sigrep, LGE and GL-Logdet. The first and29

the second rows denote the results under the graph model30

GRGG and Ggrid, respectively. As we can see in both cases,31

the graph Laplacian learned by GL-LRSS is visually more32

consistent with the groundtruth one than the other baseline33

methods. For further analyzing the performance, we next34

show the quantitative comparison in Table II. First, on the35

one hand, compared with four graph learning methods, the36

F-measure increases with the decreasing score of LCE. It37

indicates that the better low-rank component estimation leads38

to a more accurate graph estimation. On the other hand, when39

it comes to five low-rank estimation methods in Ggrid, the LCE 40

decreases with the increasing score of F-measure. Specially, 41

the performance of PCAG and RPCAG in Ggrid is better 42

than that in GRGG, since the predefined graph is more close 43

to the groundtruth one in Ggrid. These results suggest that 44

a better graph inference improves the low-rank component 45

estimation. Thus, as two estimation steps enhance each other, 46

it is not surprising that the performance of GL-LRSS is better 47

than that in GL-logdet, PCAG and RPCAG. Second, the 48

proposed GL-LRSS shows superior performance compared to 49

the others in both graph inference and low-rank component 50

estimation. Especially, for GRGG, GL-LRSS achieves highest 51

F-measure at 0.8201, NMI scores at 0.5096 and lowest GSE 52

at 0.3315, LCE scores at 0.0545. The improvement of GL- 53

LRSS compared to GL-Sigrep is due to the exploitation of 54

long-term correlation, i.e., low rank. The improvement of GL- 55

LRSS over LGE comes from the proper modeling of short- 56

term correlation in (4), which verifies the benefits of applying 57

spatiotemporal smoothness in graph learning procedure. When 58

it comes to the graph Ggrid, the advantage of GL-LRSS is less 59

obvious, possibly due to the low-rank assumption where graph 60

information encoded in the low-rank component is limited and 61

different under different graph types. 62

2) Algorithm analysis: To better understand the behavior 63

of GL-LRSS under different sets of regularization parameters, 64

we choose different powers of 2 ranging from 0 to 5, with 65

a stepsize 0.4 for γ, and different powers of 10 ranging 66

from 0 to -2, with a stepsize 0.1 for α and 2 to 0, with 67

a stepsize 0.1 for β. For the same GRGG as before, we 68

firstly plot in Fig. 2(a) the learning performance given a 69

selected γ under different ratios of β to α. We see that in 70

Fig. 2(a), as the learned graph approaches to the groundtruth 71

one, the curve of Recall and Precision gradually interact, 72

leading to a peak value of F-measure. This implies that an 73

appropriate ratio of β to α can maximize the graph learning 74

performance of the proposed algorithm. A similar trend can 75

be also observed in the curve of NMI. Secondly, to investigate 76

the effect of the parameter γ, we choose the best combination 77

of α and β as illustrated in Fig. 2(a) for each value of γ. 78
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Fig. 3. (a) Graph learning performance of the baseline and proposed methods under different number of signals, and (b) low-rank component estimation
performance of the baseline and proposed methods under different number of signals, for a random instances of GRGG.

The performance of GL-LRSS under different value of γ is1

depicted in Fig. 2(b). It is interesting to find that F-measure2

initially increases as the value of γ becomes larger. This can3

be attributed to the fact that the unclear norm in (P1) works4

in low-rank component estimation. After F-measure reaching5

its peak at 0.93 and meanwhile LCE reaching the minimum,6

the performance decreases as the influence of unclear norm is7

weakened. This implies that an appropriate γ enhances low-8

rank component estimation and thus results in a better graph9

inference. Next, to test the effectiveness of the term ‖X‖∗,10

we generate time-varying graph signals for a random instance11

of GRGG under the different values of r. Then we infer a12

graph by solving (P1) with γ > 0 and γ = 0, respectively.13

The performance comparison of the proposed GL-LRSS and14

the GL-LRSS (γ = 0) without nuclear norm under different15

rank index is shown in Fig. 2(c). In the case of γ = 0, the16

nuclear norm term does not work. As for metric Fmeasure,17

it can be observed that GL-LRSS with ‖X‖∗ outperforms18

that without ‖X‖∗ under low rank index and the advantage19

of GL-LRSS with ‖X‖∗ is less obvious when the rank index20

increases. This possibly due to the introduction of the nuclear21

norm that efficiently works in the case of the lower rank index22

and its influence is declining as the rank index is close to 30.23

Similar results can be also obtained from the evaluation metric24

NMI and GSE. The above test verifies the correctness of the25

optimization model (P1).26

Finally, for one random instance of random geometric27

graph, we investigate the influence of the number of signals28

varying from 20 to 200 in steps of 20. The performance of29

graph estimation is shown in Fig. 3(a), we plot the criteria30

of F-measure and GSE to evaluate the graph learning per-31

formance. We also present the performance of GSP-based32

methods to serve as a baseline for Laplacian recovery. As33

we can see, the performance of all methods initially increases34

as more signals are available to learn the graph, but remains35

stable when the number of signals is more than 80. Moreover,36

the proposed GL-LRSS attains highest F-measure around 0.8237

and lowest edge recovery error GSE around 0.28, which shows38
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Fig. 4. Clustering of the dancer mesh: the plot (below) shows for each line the
average distance between the points in different part of body and the centroid.
We observe that each frame belongs to different phase of the dance, named
”Arm”, ”Leg”, ”Body”. The classification of the motion depends on the main
fluctuation of the lines, that is, the part of body mainly involved in the dance.

better graph estimation. The error of low-rank components 39

recovered by GL-LRSS, GL-Sigrep, and LGE are depicted 40

in Fig. 3(b). The tendency of LCE is similar to that of the 41

F-measure metric. Looking at Fig. 3(a) and 3(b) together, 42

GL-LRSS outperforms the other methods in both graph and 43

low-rank component estimation, possibly due to the fact that 44

our formulation utilizes long and short term correlation of 45

spatiotemporal signals to facilitate the learning performance. 46

B. Graph learning from dancer mesh dataset 47

We now test the proposed graph learning method on real- 48

world data. We first consider the dancer mesh dataset describ- 49

ing a dance of man dancer. It collects 143 frames representing 50

different phases of the dance. At each frame, we consider 51

the distance of 300 mesh vertices from each coordinates to 52

the centroid as our observed signals. This leads to 143 time- 53

varying graph signals (i.e., one per frame), each of dimension 54
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TABLE III
COMPARISON OF THE MOTION CLASSIFICATION PERFORMANCE BETWEEN

DIFFERENT METHODS IN DANCER MESH DATA.

GL-LRSS GL-Sigrep LGE PCAG RPCAG K-means on
original data

RI 0.8385 0.7271 0.7835 0.7340 0.7455 0.6698
Purity 0.8671 0.7203 0.8015 0.7343 0.7343 0.5874
NMI 0.6422 0.5040 0.6095 0.5412 0.5651 0.4519

300. During the whole sequences, the graph between mesh1

vertices is unknown and assumed to be fixed. Our object is to2

uncover the intrinsic graph that captures the body connectivity3

between mesh vertices in terms of their distances in the dance.4

As mentioned in Section V-A, low-rank component recovery5

and graph recovery benefit from each other, leading to a6

consistent optimal result. Even though the groundtruth graph7

of mesh data is unavailable, we can focus on low-rank recovery8

instead. As depicted in Fig. 4, according to the movement of9

different body parts, the frames can be labeled by three clusters10

indicating three phase of dance (i.e., moving arms, stretching11

legs and bending body). By performing k-means clustering12

on recovered low-rank component, the motion classification13

error can indirectly reflect the graph learning performance. The14

Purity, NMI and RI [52] scores are used to make a quantitative15

evaluation on the clustering results.16

We compare the clustering performance of our GL-LRSS17

with GSP-based methods, PCAG and RPCAG both with a18

predefined five-nearest-neighbor graph. Besides, we apply k-19

means on original data as a baseline for clustering. The results20

of the dance classification are shown in Table III. As we can21

see, the proposed GL-LRSS achieves the highest score 0.838522

for RI, compared to 0.7271, 0.7835, 0.7340 and 0.7455 in GL-23

Sigrep, LGE, PCAG, and RPCAG, respectively. Similar results24

can be obtained in metrics Purity and NMI. As expected, the25

performance of k-means on the original data is the worst,26

possibly due to the fact that it is susceptible to the pertur-27

bation of noise. These results demonstrate that the proposed28

method provides competitive or superior performance than the29

comparison methods on this dancer mesh dataset.30

C. Graph learning from temperature dataset31

The daily average temperature data is collected from 6032

observation sites in China [49] over 150 days starting from33

January 1, 2017, and the size of data is 60 × 150. By34

applying our graph learning method, we would like to learn a35

graph structure to explore the inherent relationship between36

these observation sites in terms of the daily variations of37

temperature at their locations. In this example, we do not38

have an available groundtruth graph. Meanwhile, the natural39

choice of a graph based on the geometrical distance between40

observation sites does not seem appropriate, which will be41

shown in the following analysis. However, we have that the42

land of China can be divided into 4 zones (i.e., northern,43

southern, northwest and Qinghai-Tibet). This can be viewed44

as a groundtruth clustering of the 60 sites, which is shown45

by different colors in Fig. 5(a). For performance evaluation,46

TABLE IV
THE PERFORMANCE OF GRAPH LEARNING METHODS IN RECOVERING
GROUNDTRUTH CLUSTERS OF TEMPERATURE MEASURING STATIONS.

RI Purity NMI

KNN 0.7567 0.6667 0.4855
GMS 0.7667 0.5833 0.5037

GL-logdet 0.7411 0.6667 0.4701
SpecTemp 0.7832 0.5833 0.5201
GL-Sigrep 0.79 0.7167 0.5397

LGE 0.7833 0.75 0.5236
GL-LRSS (RI ) 0.8633 0.85 0.7203

GL-LRSS (Rprior) 0.8656 0.8333 0.7352

we apply spectral clustering [53] to the graphs learned by the 47

proposed and baseline methods, and partition the vertex set 48

into four disjoint clusters. We then compare these resulting 49

clusters with the groundtruth information. 50

In Fig. 5(b) and 5(c), we visually show the four-cluster par- 51

tition and the graph topology learned by GL-LRSS(RI ). We 52

can see that the four clusters are well distinguished, which is 53

very close to the groundtruth one in Fig. 5(a). For comparison, 54

we also show the natural choice of the graph constructed by 8 55

nearest neighbors1 in Fig. 5(d). It is interesting to find that such 56

a graph does not seem accurate enough as it only considers 57

physical distance, regardless of other influence, e.g., altitude. 58

The observation sites that are geometrically close may be 59

geographically separated. It can be also verified by the results 60

shown in Table IV where the best RI, Purity and NMI achieved 61

by the graph learning algorithms are presented. Compared to 62

the baseline methods, the GL-LRSS attains the highest score 63

in terms of all three evaluation metrics. Besides, by properly 64

using the prior information of R2, GL-LRSS (Rprior) shows 65

better performance than GL-LRSS(RI ). These results show 66

that the proposed method outperforms the comparison methods 67

in learning the graph topology on this temperature dataset. 68

D. Graph learning from evapotranspiration dataset 69

We now move onto the final real-world dataset, California 70

daily evapotranspiration (ETo) dataset, published by California 71

Department of Water Resources [50]. It is collected from 62 72

active observation sites over 150 days starting from February 73

1, 2018, with the size of 62× 150. By applying the proposed 74

graph learning method, we would like to infer a graph that 75

captures the similarity of evapotranspiration evolution between 76

these stations. In this examples, we do not have an obvious 77

groundtruth graph topology, however, an ETo Zone Map [54] 78

provides another reference, which divides the 62 observation 79

sites into one of the four zones. This leads to a groundtruth 80

clusters shown in Fig. 6(a). Therefore, similar to the previous 81

1For the KNN baseline, we choose the number of neighbors k through a
grid search, that leads to the best performance (i.e., RI score). The optimal
value is k = 8 for both the temperature and ETo datasets.

2The parameter ci in matrix R can be viewed as the autocorrelation
coefficient of data in ith observation site. Here, we obtain the matrix
R in advance by using the autocorrelation function (ACF) (i.e., function
[acf,lags]=autocorr(x)). For temperature dataset, the coefficients c at first five
observation sites are shown as [0.9563, 0.9537, 0.9567, 0.9554, 0.9601]. For
ETo dataset, the coefficients c at first five observation sites are shown as
[0.7258, 0.7529, 0.7131, 0.6988, 0.7465].
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Fig. 5. (a) The locations of 60 measuring stations in China. Different colors represent the groundtruth 4 clusters that correspond to 4 geographical regions.
(b) The clustering results utilizing learned graph Laplacian obtained by the GL-LRSS(RI ). (c) Graph structure learned by the GL-LRSS(RI ), which achieves
the best RI score in clustering performance. (d) Graph structure established by 8 nearest neighbors according to the physical location of measuring stations.
The color code in (c) and (d) represents the realistic temperature in Celcius scale on the 20th day.

(a) (b)

Fig. 6. (a) The groundtruth clusters of 62 observation sites in California. The
colors from green, blue, cyan-blue to yellow represent ETo zone 14, zone
12, zone 6 and zone 9, respectively. (b) The resulting clusters obtained by
proposed GL-LRSS(RI ) method.

examples, we apply the spectral clustering to the learned graph1

and compare the resulting clusters to the groundtruth clusters.2

Fig. 6(b) shows the clustering results of the proposed3

GL-LRSS(RI ). As depicted, the clusters obtained from the4

learned graph is visually very similar to the groundtruth5

clusters. Quantitative evaluation is further compared in Table6

V. Compared to the GSP-based methods (e.g., GL-Sigrep,7

GL-Logdet SpecTemp, LGE) and other baseline methods, the8

proposed GL-LRSS(RI ) achieves the highest scores 0.84969

for RI, 0.8255 for Purity and 0.6544 for NMI. In addition,10

the advantage of GL-LRSS(Rprior) is not obvious, possibly11

due to the fact that the correlation coefficients obtained are12

not accurate enough for the ETo data. These results show13

that the proposed method exhibits better performance than the14

comparison methods on this ETo dataset.15

VI. CONCLUSION16

In this paper, we study the problem of learning graphs17

from spatiotemporal signals with long short-term correlation18

properties. By exploiting the low-rank property, as well as the19

spatiotemporal smoothness that accommodates both the time20

and graph structural information for graph learning procedure,21

we formulate the graph learning problem as a joint low-22

rank component and graph topology estimation problem. A23

correlation-aware graph learning method, GL-LRSS, is then24

proposed by applying alternating minimization and ADMM25

TABLE V
THE PERFORMANCE OF GRAPH LEARNING METHODS IN RECOVERING

GROUNDTRUTH CLUSTERS OF ETO MEASURING STATIONS.

RI Purity NMI

KNN 0.7644 0.6613 0.4805
GMS 0.7685 0.6774 0.5113

GL-logdet 0.7612 0.6290 0.4613
SpecTemp 0.7653 0.6451 0.4799
GL-Sigrep 0.8065 0.7419 0.5865

LGE 0.8153 0.7903 0.5945
GL-LRSS (RI ) 0.8496 0.8225 0.6544

GL-LRSS (Rprior) 0.8486 0.8064 0.6462

schemes to solve the proposed problem. These two optimiza- 26

tion steps facilitate from each other, leading to a better graph 27

learning performance. Experiments on synthetic datasets verify 28

a significant performance improvement over the state-of-the- 29

art graph learning and low rank estimation methods. Also, 30

experiments on three real-world datasets demonstrate that the 31

proposed GL-LRSS outperforms these compared methods. 32

APPENDIX A 33

PROOF OF PROPOSITION 1 34

As the matrix R is real and symmetric, the eigendecomposi- 35

tion of R is denoted as R = QΛQT . Utilizing such property, 36

we can reformulate the model in (3) and (4) by multiplying 37

matrix QT as 38

ỹt = x̃t + ñt, (32)

39x̃t = Λx̃t−1 + ṽt, (33)

where ỹt = QTyt, x̃t = QTxt, ñt = QTnt and ṽt = QTvt. 40

Based on the definition of nt and vt, we have that ñt ∼ 41

N
(
0, σn

2IN
)

and ṽt ∼ N
(
0,QT L̃†Q

)
. 42

As we can see, the model in (3) and (4) with non-diagonal 43

matrix R can be transformed into the above model with a 44

diagonal state transition matrix Λ. 45

Then given the weighted difference signal d̃t = ỹt − 46

Λỹt−1 = ṽt + ñt − Λñt−1 and the multivariate Gaussian 47
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distribution on ṽt, the MAP estimate of ṽt by applying Bayes’1

rule is expressed as2

ṽtMAP

(
d̃t

)
:= arg max

ṽt

p
(
ṽt|d̃t

)
= arg max

ṽt

p
(
d̃t|ṽt

)
p (ṽt)

= arg min
ṽt

− log pE

(
d̃t − ṽt

)
− log pV (ṽt)

= arg min
ṽt

(
− log e−(d̃t−ṽt)

T
W−1(d̃t−ṽt) − α log e−ṽ

T
t QT L̃Qṽt

)

= arg min
vt

(
d̃t − ṽt

)T
W−1

(
d̃t − ṽt

)
+ αṽTt QT L̃Qṽt,

where W = IN + ΛΛT . Utilizing the inequality in (12), the3

above optimization problem can be relaxed as4

min
ṽt

∥∥∥d̃t − ṽt

∥∥∥
2

2
+ αṽTt QT L̃Qṽt. (34)

According to our definition, the first term and second term can5

be rewritten as QT (dt − vt) and vt
T L̃vt, respectively. Ben-6

efit from the inequality ‖Q‖22
∥∥QT (dt − vt)

∥∥2
2
≥ ‖dt − vt‖22,7

the optimization problem in (34) can be further simplified as8

min
vt

‖dt − vt‖22 + αvt
T L̃vt. (35)

As shown above, the problem (35) is the same as (11).9

APPENDIX B10

DERIVATION OF THE CLOSED-FORM SOLUTION IN (24)11

Being prepared for the following analysis, we first introduce12

the property of the vec-operator13

tr
(
ATB

)
= vec(A)

T
vec (B) . (36)

Then the second term in (23) can be transformed as14

tr
(
D(X)

T
LD (X)

)
= vec (X−RXB)

T
vec [L (X−RXB)]

=
[
vec (X)

T − vec (X)
T

(B⊗R)
]
·

[
(IM ⊗ L) vec (X)−

(
BT ⊗ LR

)
vec (X)

]

= vec (X)
T

[(IM ⊗ IN )− (B⊗R)] ·[
(IM ⊗ L)−

(
BT ⊗ LR

)]
vec (X)

= vec (X)
T

Td (IM ⊗ L)
[
(IM ⊗ IN )−

(
BT ⊗R

)]
vec (X)

= vec (X)
T

Td (IM ⊗ L) Td
Tvec (X) .

Similarly, the first term in (23) can be denoted as15

‖D (X−Y)‖2F = tr
(
D(X−Y)

TD (X−Y)
)

= vec (X−Y)
T

TdTd
Tvec (X−Y) ,

and the objective function of problem (23) can be equivalently16

written as17

f̃X (υ) =
(
υT − vec(Y)

T
)

TdTd
T (υ − vec (Y)) + αυTGυ

+
ρ

2

[
υT − vec(P)

T
+ vec(Q)

T
/
ρ
]

[υ − vec (P) + vec (Q)/ρ] ,

where G = Td (IM ⊗ L) Td
T ∈ RNM×NM , and υ = vec (X).18

The gradient of f̃X (υ) can be deduced as19

∇f̃X (υ) = 2TdTd
Tυ − 2TdTd

Tvec (Y) + 2αGυ

+ vec (Q) + ρυ − ρvec (P) .
(37)

By setting ∇f̃X (υ) to zero, the unique optimal solution20

vec (X) can be obtained as (24).21
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