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Abstract—Optimal curing strategy of suppressing competing
epidemics spreading over complex networks is a critical issue.
In this paper, we first establish a framework to capture the
coupling between two epidemics, and then analyze the system’s
equilibrium states by categorizing them into three classes, and
deriving their stability conditions. The designed curing strategy
globally optimizes the trade-off between the curing cost and the
severity of epidemics in the network. In addition, we provide
structural results on the predictability of epidemic spreading
by showing the existence and uniqueness of the solution. We
also demonstrate the robustness of curing strategy by showing
the continuity of epidemic severity with respect to the applied
curing effort. A gradient descent algorithm based on a fixed-point
iterative scheme is proposed to find the optimal curing strategy.
Depending on the system parameters, the curing strategy can
lead to switching between equilibria of the epidemic network as
the control cost varies. Finally, we use case studies to corroborate
and illustrate the obtained theoretical results.

Index Terms—Optimal curing, Epidemic spreading, Complex
networks, Competing epidemics

I. INTRODUCTION

With the growth of urban population and the advances in
technologies and infrastructures, our world becomes highly
connected, and witnesses fast economic development. The
connectivity not only enables the communications among
mobile and networked devices but also creates dense social
and physical interactions in societies, resulting in densely
connected complex networks. As the connectivity facilitates
the information exchange and the social interactions, its also
allows diseases and viruses to spread over the network in
multifarious ways. For example, the WannaCry Ransomware
has spread through the Internet and infected more than 230,000
computers in over 150 countries. The spreading of Ebola
disease in 2014 from West Africa to other countries such
as US, UK, and Spain relies on the global connectivity.
The undergoing COVID-19 pandemic around the world also
reflects the vulnerability of connectivity.
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Control of the epidemics of diseases and computer viruses is
an essential way to mitigate their social and economic impact.
Depending on the nature of the epidemics, we can design
centralized or distributed policies to contain the growth of the
infected population by protecting, removing, and recovering
nodes from the population. In human networks where HIN1,
HIV, and Ebola viruses can spread, vaccine allocations will
be an effective control mechanism. In computer networks that
are vulnerable to malware, anti-virus software and quarantine
strategies play an essential role in assuring network security.

The control of homogeneous epidemics has found applica-
tions in viral marketing [1], computer security [2], [3], and
epidemiology [4]–[6]. Note that in the control of epidemics,
the underlying network structure plays an essential role as
it provides communication and networking between nodes
which is reflected in application scenarios such as computer
and social networks [7]–[9]. With the integration of multiple
technologies and the growing complexity of the network
systems, homogeneous epidemic models are not sufficient to
capture the coexistence of heterogeneous epidemic processes.
For example, it has been shown that influenza viruses can
mutate and circulate in the human population during the
epidemic season. An individual is not likely being infected by
multiple strains simultaneously. Once an individual is infected
by one type, he cannot be infected by a virus of a different
type [10]. Similarly, in the marketing over social media, two
similar products will compete for their customers by spreading
information over social networks. An individual who has
bought one kind of product is not likely to purchase the same
product from another manufacturer. Therefore, it is essential to
address the heterogeneous control of interdependent epidemics
in a holistic framework.

To this end, this work focuses on the optimal control1 of
two interdependent epidemics with a competing mechanism
spreading over complex networks. To capture the dynamics
of the epidemics, we use an susceptible-infected-susceptible
(SIS) epidemic model for both epidemic processes of two
strains of viruses 1 and 2, which leads to an epidemic model
with three states: (i) susceptible (healthy), (ii) infected by
strain 1, and (iii) infected by strain 2. Those infected entities
can be treated and moved to the susceptible state through
control.

We first study the steady state of the proposed epidemics
over complex networks. Through analyzing the non-linear

1The control effort refers to the applied curing strategy which we use
interchangeably in the paper.
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differential equations that model the competing epidemics
with control, we observe a non-coexistence phenomenon.
Specifically, the network can be in the following three possible
equilibrium states: (i) only strain 1, (ii) only strain 2 and
(iii) disease-free. Therefore, a coexistence of two competing
epidemics in the same network is impossible at the steady
state. Furthermore, we investigate the stability of each net-
work equilibrium via the eigenvalue analysis of its linearized
dynamic systems.

To design the optimal control strategy, we formulate an
optimization problem that minimizes the control cost as well
as the severity of epidemics over the network jointly. We
propose a gradient-decent algorithm based on a fixed-point
iterative scheme to compute the optimal solution and show its
convergence to the corresponding fixed-point. In the disease-
free regime, we provide a closed-form solution for the optimal
control. One critical feature of the policy in this regime
is that it is fully determined by the average degree of the
epidemic network and the second moment of the degree distri-
bution which yields a distribution independent optimal curing
strategy. We further observe one emerging phenomenon that,
under some conditions, the network encounters a switching of
equilibrium through optimal control as the unit cost of effort
changes. Depending on the system parameters, the network
can be directly controlled to the disease-free equilibrium or
from one exclusive equilibrium to the other one first with
the symmetric control efforts of two competing epidemics.
As long as the applied effort drives the epidemic network
to the disease-free equilibrium, the control effort ceases to
increase though the unit control cost continues to decrease.
The control effort under which the network switches from
exclusive equilibrium of strain 1 or 2 to disease-free regime
is referred as fulfilling threshold. Finally, we use several
numerical experiments on a scale-free network to corroborate
the derived theoretical results and discovered phenomenon.
The proposed framework and approach in this paper can
provide decision support for healthcare sectors in controlling
competing epidemics spreading among a large population. The
equilibrium analysis greatly facilitates an accurate prediction
of system states, which leads to agile and optimal decision
making on curing strategies. Our results can also help cyber
operators determine policies in preventing the outbreak of
viruses in large-scale computer networks, creating a highly
trustworthy cyberspace.

The contributions of this paper are summarized as follows.
1) We analyze the SIS epidemic model with two competing

epidemic processes of two viruses on complex networks.
We characterize the equilibrium solution of the epi-
demics and observe a non-coexistence phenomenon, i.e.,
only one of the viruses or none of them will exist at the
steady state.

2) We derive the necessary and sufficient conditions for
the stability of three types of network equilibria: the
exclusive equilibria of two viruses and the disease-free
equilibrium.

3) We formulate an optimization problem to find the op-
timal control strategies for different regimes of the
epidemic process and propose an iterative algorithm to

compute the optimal curing strategy.
4) We show the predictability of epidemic spreading by

proving the existence and uniqueness of epidemic level
solution to the formulated problem. Furthermore, we
demonstrate the robustness of curing strategy by show-
ing the continuity of epidemic severity with respect to
the applied effort.

5) We study the switching phenomena between network
equilibrium under optimal curing strategy when the unit
control cost changes and present explicit conditions for
single and double switching of the equilibria under a
class of symmetric control.

6) We formally define fulfilling threshold which refers to
the optimal control strategy that drives the epidemic net-
work to the stable disease-free equilibrium. We explicitly
identify the fulfilling threshold which serves as an upper
bound on the network operator’s control effort.

A. Related Work

The growing social and computer networks provide a fertile
medium for the spreading of epidemics. A number of previous
works have been on modeling the dynamic processes of
epidemics including [4], [11]–[13]. More recently, a growing
number of works have investigated the epidemics spreading
on multiplex/interconnected networks [14]–[16], and time-
varying underlying epidemic networks [17], [18]. Optimal
control of single strain epidemics spreading over networks has
been considered in various applications including biological
disease and virus [6], [19]–[24], and network security [2],
[25]–[28]. In addition to the single strain epidemics, the
properties of competing epidemics or multi-strain epidemics
under different models have been well studied in literature
[10], [29]–[31]. Several methods have been proposed to con-
trol multi-strain epidemics over finite networks, including the
mean-field approximation-based optimization, impulse control,
and passivity-based approach [16], [32]–[34]. Our work con-
tributes to the literature on epidemic control by focusing on
the control of competing epidemics over complex networks.
Some preliminary results of this work have been included in
[35]. This work can be extended further and the developed
framework is applicable to address a number of cybersecurity
problems, such as trust in the Internet of things (IoT) [36],
cloud security [37], and IoT risk management [38], [39].

One seminal work on the control of epidemics is [40].
Our work differs from it significantly in multiple aspects.
Firstly, the underlying dynamic models of epidemics are
fundamentally different. Our work adopts the degree-based
mean-field model to capture the epidemic spreading in a large
population regime which preserves the statistics of network
structure, while the focus of [40] is the classical susceptible-
infected-recovered (SIR) model where all nodes are assumed
to be homogeneous. Secondly, we investigate the joint control
of two competing strains of epidemics, while [40] has focused
on a single strain. Thirdly, the authors in [40] have designed
the optimal control policy using the Pontryagin’s maximum
principle. However, our work aims to obtain the optimal
control of epidemics in the long run, and hence we focus



more on the equilibrium and stability analysis of the steady
states. Fourthly, our work also investigates the robustness of
the optimal control strategy, as well as the switching behavior
of network equilibrium under control, which are new to the
control of interdependent/competing epidemics over complex
networks.

Another critical factor that affects the epidemic spreading
is human behavior, including collective awareness and social
relationships. For example, [41] has investigated how people’s
awareness of disease reduces their susceptibility and influences
the epidemic outbreak threshold. Some recent works have
studied the impact of awareness on the epidemics on mul-
tiplex/multilayer networks [42], [43]. Furthermore, [44] has
provided a summary of the behavioral responses to the spread
of diseases and how they are incorporated into the epidemic
model. Social awareness can be seen as an alternative form of
control in our current work, and its explicit consideration is
an interesting future direction.

B. Organization of the Paper

The rest of the paper is organized as follows. Section II for-
mulates the control of competing epidemics problem. Network
equilibrium and stability analysis are presented in Section III.
Section IV analyzes the problem and develops an algorithm
to compute the optimal control strategy. Section V shows
the phenomenon of network equilibrium switching through
optimal control. Section VI presents numerical experiments,
and Section VII concludes the paper.

II. PROBLEM FORMULATION

In a complex network with a large number of agents, we
consider the classical SIS model in which each agent can be in
one of the following two states: susceptible (S) or infected (I).
We further consider two strains of competing epidemics, strain
1 and strain 2, spreading over the network. Specifically, strains
1 and 2 are in a competing mechanism, i.e., each susceptible
agent can either be infected by strain 1 or strain 2 by contacting
with other corresponding infected individuals. Let ζ1 and ζ2
be the spreading rate of strain 1 and strain 2, respectively.
In addition, the infected agents can recover to the susceptible
state with rate γ1 or γ2 (with respect to strain 1 or strain 2).
Besides the self-recovery mechanism, each infected agent can
be controlled to return to the healthy state through efforts, e.g.,
allocating vaccines during flu outbreak season.

To analyze the competing epidemic dynamics over complex
networks, we consider a degree-based mean-field (DBMF)
approximation model [4], [45]. Specifically, the DBMF model
assumes that the nodes with the same number of de-
gree/connectivity have an identical probability of being in-
fected, as these nodes are regarded as statistically equivalent.
One limitation of the DBMF model is that it destroys the
adjacency matrix of the network which is usually adopted in
the analysis of reasonable size networks. However, the mean-
field approximation approach offers a substantial complexity
reduction on the number of degrees of freedom, comparing
with investigating the adjacency matrix of complex networks.

Therefore, the DBMF model facilitates the analysis of epi-
demic spreading in a large population regime, such as social
networks and computer networks. The DBMF model has also
been corroborated to be powerful in studying the epidemic
spreading in real world. For instance, after analyzing the real
data reported by the Virus Bulletin from February 1996 to
March 2000, [4] has shown that the scale-free property, a
specific case based on the DBMF model, should be included in
developing theory of epidemic spreading of computer viruses.

To this end, we denote by k the degree of a node, where
k ∈ K := {0, 1, 2, ...,K}, and P (k) ∈ [0, 1] by the probability
distribution of node’s degree in the network. Further, we adopt
Ii,k(t) ∈ [0, 1] to represent the density of nodes at time t with
degree k infected by strain i, i ∈ {1, 2}. Then, the dynamics
of two competing epidemics with a control u := (u1, u2) ∈
R2

+ can be described by two coupled non-linear differential
equations as follows:

dI1,k(t)

dt
=− γ1I1,k(t)

+ ζ1k[1− I1,k(t)− I2,k(t)]Θ1(t)− u1I1,k(t),

dI2,k(t)

dt
=− γ2I2,k(t)

+ ζ2k[1− I1,k(t)− I2,k(t)]Θ2(t)− u2I2,k(t),
(1)

where (γ1, γ2) and (ζ1, ζ2) are the recovery and spreading
rates of two strains, respectively. The terms −γ1I1,k(t) and
−γ2I2,k(t) indicate the proportion of affected nodes returned
to the healthy state through recovery. The imposed control
effort to suppress the epidemic spreading is reflected by the
terms −u1I1,k(t) and −u2I2,k(t). Here, based on DBMF
model, the agents with different degrees are controlled in the
same manner reflected by u1 and u2. Note that it is also
possible to design heterogeneous control for nodes of different
degrees. However, in practice, identifying a group of nodes
with the same degree and applying specific control to this
particular group is challenging, knowing that the epidemic
network is large-scale. Furthermore, treating the nodes in a
homogeneous manner as in (1) also preserves fairness when
allocating recovery resources in combating the epidemics. In
(1), the term 1 − I1,k(t) − I2,k(t) captures the density of
susceptible nodes with degree k. In addition, Θi(t) represents
the probability of a given link connected to a node infected
by strain i, and Θi ∈ [0, 1], i ∈ {1, 2}. Specifically, Θ1(t) and
Θ2(t) admit the following expressions:

Θ1(t) =

∑
k′∈K k

′P (k′)I1,k′(t)

〈k〉
, (2)

Θ2(t) =

∑
k′∈K k

′P (k′)I2,k′(t)

〈k〉
, (3)

where 〈k〉 :=
∑
k kP (k) is the average degree/connectivity

of nodes in the network. The nominator
∑
k′ k
′P (k′)Ii,k′(t)

stands for the average connectivity of individuals infected by
strain i, i ∈ {1, 2}. Note that

∑
k′ k
′P (k′)Ii,k′(t) ≤ 〈k〉.

Therefore, in the class of agents with degree k, the epidemic
spreading processes of strain i, i ∈ {1, 2}, can be modeled by
the term ζik[1− I1,k(t)− I2,k(t)]Θi(t) as in (1).



The network cost over a time period [0, T ] is captured by
two terms: the control cost c1(u), and the severity of epidemics
c2(w1Ī1(t) +w2Ī2(t)), where c1 : R2

+ → R+, c2 : R2
+ → R+

w1 and w2 are two positive weighting constants. Note that
both c1 and c2 are assumed to be continuously differentiable,
convex, and monotonically increasing. When u = (0, 0), we
have c1(u) = 0. If there are no epidemics, then c2(0) = 0.
Furthermore, Ī1(t) and Ī2(t) are defined as

Ī1(t) :=
∑
k∈K

P (k)I1,k(t), (4)

Ī2(t) :=
∑
k∈K

P (k)I2,k(t), (5)

respectively, which can be interpreted as the severity of
epidemics in the network. The average combined cost
of epidemics and control in the long run is given by
lim
T→∞

1
T

∫ T
0
c2(w1Ī1(t)+w2Ī2(t))dt+c1(u). Hence, the sys-

tem operator needs to determine u to minimize the aggregated
epidemic and control costs. When Ī1(t) and Ī2(t) converge
to a steady state as T → ∞, the cost functions c1 and c2
admit constant values. Therefore, the problem of controlling
competing epidemics can be formulated as follows:

(OP1) : min
u

c1(u) + c2
(
w1Ī

∗
1 (u1) + w2Ī

∗
2 (u2)

)
s.t. system dynamics (1),

where Ī∗1 (u1) and Ī∗2 (u2) denote the densities of the strains
at the steady state under the control u. Note that the optimal
control resulting from (OP1) is a time-invariant strategy. This
modeling indicates that the system operator is concerned about
the epidemic spreading in the long run and develops the opti-
mal curing policy by predicting the network equilibrium state.
Prediction of the epidemic spreading also greatly facilitates the
design of a high-confidence control. The system operator can
predict which steady-state the epidemic dynamics will stabilize
at under the corresponding applied control to the network. An
accurate prediction also helps the operator design a proactive
curing mechanism.

To address (OP1), we need to obtain Ī∗1 (u1) and Ī∗2 (u2).
For convenience, we denote by

ψi :=
ζi

γi + ui
, i = 1, 2, (6)

the effective spreading rate (ESR) of strains under the control.
Note that ESR ψi quantifies the net spreading rate of strain i
over the network. However, the condition ψi > 1, i ∈ {1, 2},
alone cannot guarantee the outbreak of the epidemics, as
analyzed in Section III.

At the steady state, dI1,k/dt = 0 and dI2,k/dt = 0. Then,
from (1), we obtain

I1,k =
ψ1kΘ1

1 + ψ1kΘ1 + ψ2kΘ2
, (7)

I2,k =
ψ2kΘ2

1 + ψ1kΘ1 + ψ2kΘ2
. (8)

Therefore, with (7) and (8), the optimal control problem
(OP1) becomes

(OP2) : min
u

c1(u) + c2

(
w1Ī

∗
1 (u1) + w2Ī

∗
2 (u2)

)
s.t. I∗1,k(u1) =

ψ1kΘ∗1
1 + ψ1kΘ∗1 + ψ2kΘ∗2

, ∀k ∈ K,

I∗2,k(u2) =
ψ2kΘ∗2

1 + ψ1kΘ∗1 + ψ2kΘ∗2
, ∀k ∈ K,

ψi = ζi/(γi + ui), i = 1, 2,

where the variables with superscript ∗ denote the steady
state values, i.e., Θ∗i =

∑
k′ k
′P (k′)I∗

i,k′ (ui)

〈k〉 and Ī∗i (ui) =∑
k P (k)I∗i,k(ui), i ∈ {1, 2}.
In the suppression of diseases spreading, the control efforts

are generally determined by a centralized authority. Thus, our
objective is to design a control strategy via solving (OP2)
which jointly optimizes the control cost and the epidemics
spreading level in the network.

The control cost function c1(u) which measures the cost
of curing rate has been widely used in the control of epi-
demics literature [46]–[48]. Note that the adopted control cost
function is not unique, and it can take other forms such as
c1(u1Ī1(t) + u2Ī2(t)). However, such modeling may not be
appropriate if the system operator focuses on the average cost
shown in (OP2), as the cost of control degenerates to zero if
the epidemics die out under the applied control. Instead, the
functional c1(u1Ī1(t)+u2Ī2(t)) can be used when the system
operator cares about the running cost of control and severity of
epidemics over a considered time horizon. Comparing c1(u)
with c1(u1Ī1(t)+u2Ī2(t)), the former one may yield an over-
penalization of the control when the system operator aims
to achieve a disease-free network at the equilibrium. This
concern can be mitigated by assigning a larger weight on c2
over c1 in the cost objective in (OP2) such that the system
operator has a stronger desire to drive the network to a disease-
free equilibrium. To explicitly address such concern, one
can solve the epidemic control problem with a cost function∫ T

0
c1(u1Ī1(t) + u2Ī2(t)) + c2(w1Ī1(t) +w2Ī2(t))dt, and we

leave it as future work.

III. NETWORK EQUILIBRIUM AND STABILITY ANALYSIS

To solve the problem (OP2), we first need to analyze the
steady states of the epidemics. Substituting (7) and (8) into
(2) and (3), respectively, yields

Θ1 =
ψ1

〈k〉
∑
k′∈K

k′2P (k′)Θ1

1 + ψ1k′Θ1 + ψ2k′Θ2
, (9)

Θ2 =
ψ2

〈k〉
∑
k′∈K

k′2P (k′)Θ2

1 + ψ1k′Θ1 + ψ2k′Θ2
. (10)

Thus, the steady state pair (Θ∗1,Θ
∗
2) in (OP2) should satisfy

equations (9) and (10). For clarity, we denote

T1 =
ψ1〈k2〉
〈k〉

, T2 =
ψ2〈k2〉
〈k〉

. (11)

In general, the ESR for different strains of epidemics are
unequal, i.e., ψ1 6= ψ2. In the special case of ψ1 = ψ2,



the characteristics of two strains are the same, and it can be
seen as a generalized single-strain scenario. Therefore, in the
following study, we analyze the network equilibrium in the
nontrivial regime ψ1 6= ψ2.

A. Equilibrium Analysis

For the self-consistency equations (9) and (10), (Θ1,Θ2) =
(0, 0) is a trivial solution. In this case, Ī∗1 = Ī∗2 = 0 which
is a disease-free equilibrium. To obtain nontrivial solutions to
(9) and (10), we first present the following theorem.

Theorem 1. There exist no positive solutions to the equations
(9) and (10), i.e., Θ1 > 0 and Θ2 > 0.

Proof. We proof by contradiction. If there exist positive solu-
tions, i.e., Θ1 > 0 and Θ2 > 0, (9) and (10) are equivalent
to

1 =
ψ1

〈k〉
∑
k′∈K

k′2P (k′)

1 + ψ1k′Θ1 + ψ2k′Θ2
, (12)

1 =
ψ2

〈k〉
∑
k′∈K

k′2P (k′)

1 + ψ1k′Θ1 + ψ2k′Θ2
. (13)

Since ψ1 6= ψ2 and 1
〈k〉
∑
k′

k′2P (k′)
1+ψ1k′Θ1+ψ2k′Θ2

> 0, (12) and
(13) cannot be satisfied simultaneously which rules out the
positive solutions to equations (9) and (10). �

Remark: Based on Theorem 1, Θ1 and Θ2 cannot be both
positive at the steady state, resulting in a non-coexistence
phenomenon of the two competing strains.

The following corollary on the possible nontrivial solutions
of Θ1 and Θ2 naturally follows from Theorem 1.

Corollary 1. The possible nontrivial solutions to (9) and (10)
fall into two categories: (i) Θ1 > 0,Θ2 = 0 and (ii) Θ2 >
0,Θ1 = 0.

Proof. Since 0 ≤ Θi ≤ 1, i = 1, 2, no negative solutions
exist. Then, the possible nontrivial solutions are Θ1 > 0,Θ2 =
0 and Θ2 > 0,Θ1 = 0. �

Corollary 1 indicates that, for the possible nontrivial solu-
tions, strain 1 or strain 2 has an exclusive equilibrium. The
existence of nontrivial solutions is critical for the analysis
of network equilibrium. Therefore, we next investigate the
conditions under which the network stabilizes at the exclusive
equilibrium.

Theorem 2. Strain i has an exclusive equilibrium if and only
if Ti > 1, i ∈ {1, 2}.

Proof. For the two exclusive equilibria, i.e., Θ1 > 0,Θ2 = 0
and Θ2 > 0,Θ1 = 0, (9) and (10) are reduced to

1 =
ψi
〈k〉

∑
k′

k′2P (k′)

1 + ψik′Θi
, i = 1, 2. (14)

For the former case Θ1 > 0,Θ2 = 0, we define function
g : [0, 1] → R+, i.e., g(Θ1) = ψ1

〈k〉
∑
k′

k′2P (k′)
1+ψ1k′Θ1

. Then, we
obtain

g(1) =
ψ1

〈k〉
∑
k′

k′2P (k′)

1 + ψ1k′
=

1

〈k〉
∑
k′

ψ1k
′

1 + ψ1k′
k′P (k′)

<
1

〈k〉
∑
k′

k′P (k′) =
〈k〉
〈k〉

= 1.

Moreover, g′(Θ1) = − ψ2
1

〈k〉
∑
k′

k′3P (k′)
(1+ψ1k′Θ1)2 < 0. Therefore,

g is a decreasing function over the domain Θ1 ∈ [0, 1]. To
ensure the existence of nontrivial solutions to equation (14), a
necessary and sufficient condition is g(0) > 1. Since g(0) =
ψ1

〈k〉
∑
k′ k
′2P (k′) = ψ1〈k2〉

〈k〉 = T1, g(0) > 1 is equivalent to
T1 > 1. The analysis is similar for the case Θ2 > 0,Θ1 = 0,
and the necessary and sufficient condition is T2 > 1. �

Three possible equilibria are summarized as follows:
1) Disease-free equilibrium, E1 = (1, 0, 0).
2) Exclusive equilibrium of strain 1, E2 = (S̄∗1 , Ī

∗
1 , 0), if

and only if T1 > 1, where S̄∗1 is the density of healthy
nodes at this equilibrium.

3) Exclusive equilibrium of strain 2, E3 = (S̄∗2 , 0, Ī
∗
2 ), if

and only if T2 > 1, where S̄∗2 is the density of healthy
nodes at this equilibrium.

Remark: Ti > 1 is equivalent to ψi >
〈k〉
〈k2〉 , i = 1, 2.

In addition, strain i dies out when ψi does not satisfy the
condition, and the steady state of the network is the disease-
free equilibrium E1.

B. Stability Analysis of Equilibria

In this section, we analyze the stability of the candidate
equilibria presented in Section III-A.

Theorem 3. If T1 < 1 and T2 < 1, then the disease-free
equilibrium E1 is globally asymptotically stable.

Proof. Note that dIi,k(t)
dt ≤ −γiIi,k(t) + ζikΘi(t)− uiIi,k(t),

i ∈ {1, 2}. Then, it suffices to show that positive solutions
of the following auxiliary system dIi,k(t)

dt = −γ1Ii,k(t) +
ζikΘi(t) − uiIi,k(t) go to zero when t goes to infinity. We
define a Lyapunov function Vi(t) :=

∑
k∈K bkIi,k, where

bk = kP (k)
〈k〉(ui+γi)

, i ∈ {1, 2}. Then, we obtain

dVi
dt

=
∑
k∈K

bk [ζikΘi(t)− (ui + γi)Ii,k(t)]

=
∑
k∈K

kP (k)

〈k〉
[ζikΘi(t)− (ui + γi)Ii,k(t)]

= Θi(t)

[
〈k2〉ζi

〈k〉(ui + γi)
− 1

]
.

Thus, when 〈k2〉ζi
〈k〉(ui+γi)

< 1 (which is equivalent to Ti < 1),
then dVi

dt < 0, given Θi 6= 0, for i ∈ {1, 2}. We can further
conclude that, under Ti < 1, dVi

dt < 0 holds if strain i exists;
and dVi

dt = 0 only if Ii,k = 0, yielding limt→∞ Ii,k = 0,
∀k ∈ K, which is a disease-free equilibrium. �



We further investigate the stability of exclusive equilibrium
of strain 1, and the result is presented as follows.

Theorem 4. If T1 > 1 and T1 > T2, then the exclusive
equilibrium of strain 1, E2, is globally asymptotically stable.

Proof. First, the two coupled non-linear differential equations
in (1) can be rescaled as

dI1,k(t)

dt
=− I1,k(t) + ψ1k[1− I1,k(t)− I2,k(t)]Θ1(t),

dI2,k(t)

dt
=− I2,k(t) + ψ2k[1− I1,k(t)− I2,k(t)]Θ2(t).

(15)

The derivative of Θ1(t) with respect to time t can thus be
given as

dΘ1(t)

dt
=

1

〈k〉
∑
k∈K

kP (k)
dI1,k(t)

dt

=
1

〈k〉
∑
k∈K

kP (k) [−I1,k + ψ1kSk(t)Θ1(t)]

= Θ1(t)

[
1

〈k〉
∑
k∈K

kP (k)ψ1kSk(t)− 1

]
,

where Sk(t) := 1− I1,k(t)− I2,k(t). Similarly,

dΘ2(t)

dt
= Θ2(t)

[
1

〈k〉
∑
k∈K

kP (k)ψ2kSk(t)− 1

]
.

For the exclusive equilibrium of strain 1, I∗2,k = 0 for every
k and hence Θ∗2 = 0. The steady states at the exclusive
equilibrium of strain 1 agrees with the following identities:

I∗1,k = ψ1kS
∗
kΘ∗1,

S∗k = 1− I∗1,k,

1 =
1

〈k〉
∑
k∈K

kP (k)ψ1kS
∗
k .

Consider the following Lyapunov function V (t) for t ≥ 0,
which is defined along a given solution of system (15),

V (t) =
1

2

∑
k∈K

[
b̃k(Sk(t)− S∗k)2

]
+ Θ1(t)−Θ∗1

−Θ∗1 ln
Θ1(t)

Θ∗1
+ Θ2(t),

where the coefficients b̃k > 0 are given by b̃k = kP (k)
〈k〉S∗k

. Then
the time derivative of V obtained along the solution of system

(15) for t > 0 is

dV (t)

dt

=
∑
k∈K

[
b̃k(Sk − S∗k)

dSk
dt

]
+

Θ1 −Θ∗1
Θ1

dΘ1

dt
+
dΘ2

dt

=
∑
k∈K

b̃k(Sk − S∗k) [I1,k + I2,k − ψ2kSkΘ2 − ψ1kSkΘ1]

+ (Θ1 −Θ∗1)

[
1

〈k〉
∑
k∈K

kP (k)ψ1kSk − 1

]

+ Θ2

[
1

〈k〉
∑
k∈K

kP (k)ψ2kSk − 1

]
=
∑
k∈K

b̃k(Sk − S∗k)
[
(I1,k − I∗1,k) + I2,k

− ψ2k(SkΘ2 − S∗kΘ∗2)− ψ1k(SkΘ1 − S∗kΘ∗1)
]

+ (Θ1 −Θ∗1)

[
1

〈k〉
∑
k∈K

kP (k)ψ1k(Sk − S∗k)

]

+ Θ2

[
1

〈k〉
∑
k∈K

kP (k)k(ψ2Sk − ψ1S
∗
k)

]
=
∑
k∈K

b̃k
[
(Sk − S∗k)(I1,k − I∗1,k) + (Sk − S∗k)I2,k

− ψ2kΘ2(Sk − S∗k)2 + ψ2kS
∗
k(Sk − S∗k)(Θ∗2 −Θ2)

− ψ1kΘ1(Sk − S∗k)2 + ψ1kS
∗
k(Sk − S∗k)(Θ∗1 −Θ1)

]
+

1

〈k〉
∑
k∈K

kP (k)ψ1k(Sk − S∗k)(Θ1 −Θ∗1)

+
1

〈k〉
∑
k∈K

kP (k)k(ψ2Sk − ψ1S
∗
k)Θ2

=
∑
k∈K

b̃k
[
(Sk − S∗k)(I1,k − I∗1,k) + (Sk − S∗k)I2,k

− ψ2kΘ2(Sk − S∗k)2 − ψ1kΘ1(Sk − S∗k)2
]

− (ψ1 − ψ2)Θ2

[
1

〈k〉
∑
k∈K

k2P (k)s∗k

]
≤
∑
k∈K

b̃k [(Sk − S∗k)(1− Sk − I1,k + I1,k − 1 + S∗k)]

− (ψ1 − ψ2)Θ2

[
1

〈k〉
∑
k∈K

k2P (k)S∗k

]
≤ 0,

where the last inequality holds if ψ1 ≥ ψ2, i.e., T1 ≥ T2.
Note that dV (t)

dt = 0 holds if Sk = S∗k for k ∈ K and Θ∗2 =
0. Leveraging results from Theorem 2, by LaSalle’s invariant
principle [49] we can conclude that the exclusive equilibrium
of strain 1 is globally asymptotically stable if T1 > 1 and
T1 > T2. �

Similarly, we can obtain the condition for stable exclusive
equilibrium E3 as follows.

Theorem 5. If T2 > 1 and T2 > T1, then the exclusive
equilibrium of strain 2, E3, is globally asymptotically stable.

Proof. The proof is similar to that in Theorem 4 and hence
omitted here. �



In Theorems 3, 4, and 5, the ESR plays an critical role in de-
termining the equilibrium. For example, if ESR of both strains
of epidemics are smaller than 〈k〉

〈k2〉 , then both epidemics die
out at steady state. This disease-free stable state occurs when
either the control effort is sufficiently large or the epidemics
have a relatively low spreading ability. In comparison, when
strain 1’s ESR exceeds 〈k〉

〈k2〉 and it is also greater than strain
2’s ESR, then only strain 1 exists at equilibrium as shown in
Theorem 4. This non-coexistence phenomenon indicates that
the strain that has a larger spreading rate and is more loosely
controlled can eventually survive in the network.

Remark: Theorems 3, 4, and 5 provide global convergence
guarantees of the non-linear epidemic dynamics, which rules
out the possibility of limit cycles as could be observed in other
non-linear systems.

IV. OPTIMAL CURING STRATEGY DESIGN

We have obtained the stable equilibria of the competing
epidemics in Section III which further characterize the steady
state expressions of parameters in (OP2). In this section, we
aim to determine the optimal curing strategy of epidemics
spreading via solving (OP2) in Section II.

A. Bounds on Control Effort

Before addressing (OP2), we present the control bounds at
each network equilibrium which should be taken into account
when designing the optimal control. The following Theorem
6 directly follows from Theorems 3, 4, and 5.

Theorem 6. The control efforts leading to different network
equilibria are summarized as follows.

1) If the network reaches the disease-free equilibrium E1,
the control law needs to satisfy

u1 >
ζ1〈k2〉
〈k〉

− γ1, (16)

u2 >
ζ2〈k2〉
〈k〉

− γ2. (17)

Note that ui ≥ 0, i = 1, 2, and thus when ζi〈k2〉
〈k〉 − γi <

0, i = 1, 2, (16) and (17) hold.
2) If the network is stabilized at the exclusive equilibrium

E2, the control law needs to satisfy

u1 <
ζ1〈k2〉
〈k〉

− γ1, (18)

u2 >
ζ2(γ1 + u1)

ζ1
− γ2. (19)

3) If the network is stabilized at the exclusive equilibrium
E3, the control law needs to satisfy

u2 <
ζ2〈k2〉
〈k〉

− γ2, (20)

u1 >
ζ1(γ2 + u2)

ζ2
− γ1. (21)

As the results in Theorems 3, 4, and 5 are concerned with
the global asymptotic stability, the control bounds presented
in Theorem 6 are sufficient to drive the equilibrium to the

desired one. Furthermore, these control bounds in Theorem
6 have natural interpretations. The efforts to control strains
1 and 2 by the network operator need to be higher than the
thresholds shown in (16) and (17) to achieve a disease-free
steady state. In comparison, if only one strain of epidemics
exists at the equilibrium, then the control effort to the other
strain is upper bounded by a constant as shown in (18) and
(20).

B. Optimal curing of competing Epidemics
In this section, we address the optimal control problem for

each equilibrium case.
1) Stable disease-free equilibrium: In this case, the opti-

mization problem (OP2) is reduced to

(OP3) : min
u

c1(u) + c2(0)

s.t. inequalities (16) and (17).

Note that the solution to (OP3) ensures that the epidemic
network will stabilize at the disease-free equilibrium, as re-
flected in the constraints. The control cost c1(u) guides the
optimal strategy design that can drive the network to such
an equilibrium. In the implementation, when two strains of
epidemics die out, then the system operator can cease to apply
the control.

Due to the monotonicity of function c1, we can obtain the
optimal control solutions based on Theorem 6 as

u1 = max

(
0,
ζ1〈k2〉
〈k〉

− γ1

)
,

u2 = max

(
0,
ζ2〈k2〉
〈k〉

− γ2

)
.

(22)

When ζ1〈k2〉
〈k〉 < γ1 and ζ2〈k2〉

〈k〉 < γ2, then no control is
required and the network reaches the disease-free equilibrium
automatically at the steady state due to sufficiently high
recovery rates γ1 and γ2 of the epidemics comparing with
their spreading rates ζ1 and ζ2. We summarize the results of
optimal curing at disease-free regime in the following theorem.

Theorem 7. At the stable disease-free equilibrium, when
ζ1〈k2〉
〈k〉 < γ1 and ζ2〈k2〉

〈k〉 < γ2, the optimal effort is irrelevant
with network structure, i.e., the degree distribution P (k), and
admits a value 0. When ζ1〈k2〉

〈k〉 > γ1 or ζ2〈k2〉
〈k〉 > γ2, the

optimal effort is positive and depends on the average network
connectivity 〈k〉 and the second moment 〈k2〉.

Remark: In the disease-free regime, Theorem 7 indicates
that the optimal curing strategies for networks with different
degree distributions P (k) but the same 〈k〉 and 〈k2〉 are
identical, yielding a distribution independent optimal control
strategy.

2) Stable Exclusive Equilibrium of Strain 1: Since Ī∗2,k = 0
in this case, the optimization problem (OP2) becomes

(OP4) : min
u

c1(u) + c2
(
w1Ī

∗
1 (u1)

)
s.t. I∗1,k(u1) =

ψ1kΘ∗1
1 + ψ1kΘ∗1

, ∀k ∈ K,

ψ1 = ζ1/(γ1 + u1),

inequalities (18) and (19),



where Θ∗1 and Ī∗1 (u1) are defined in (OP2). Similar to (OP3),
(OP4) also belongs to a subcase towards solving (OP2). We
will comment on a specific mechanism in determining the
optimal solution to (OP2) in the end of this section.

To solve (OP4), we obtain an expression of Ī∗1 (u1) with
respect to u1. Note that Ī∗1,k(u1), k ∈ K, and Θ∗1 are coupled
in the constraints, and we need to solve the following system
of equations:

I∗1,k(u1) =
ψ1kΘ∗1

1 + ψ1kΘ∗1
, k ∈ K, (23)

Θ∗1 =

∑
k′ k
′P (k′)I∗1,k′(u1)

〈k〉
. (24)

To address this problem, we substitute (23) into (24) and
arrive at the following fixed-point equation:

Θ∗1 =
1

〈k〉
∑
k′

k′2P (k′)ψ1Θ∗1
1 + ψ1k′Θ∗1

. (25)

For the existence and uniqueness of the solutions to (25),
we have the following proposition.

Proposition 1. There exists a unique non-trivial solution Θ∗1
to the fixed-point equation (25).

Proof. From the proof of Theorem 2, we know that function
g(Θ1) = ψ1

〈k〉
∑
k′

k′2P (k′)
1+ψ1k′Θ1

is monotonously decreasing over
the domain Θ1 ∈ [0, 1]. Moreover, g(0) > 1 if ψ1 > 〈k〉/〈k2〉
and g(1) < 1 for all possible ψ1. Therefore, g(Θ1) = 1 has
a non-trivial solution over Θ1 ∈ (0, 1), and the solution is
unique. �

Remark: The existence and uniqueness of Θ∗1 ensures the
predictability of I∗1,k(u1) through (23).

Another critical aspect of (OP4) is the continuity of Ī∗1 (u1)
with respect to u1. When Ī∗1 (u1) is continuous with u1, the
objective function in (OP4) is a continuous convex function,
and thus can be theoretically solved by using the first-order
optimality condition directly. When Ī∗1 (u1) encounters jumps
at some points of u1, which is a possible case, (OP4) becomes
challenging to solve, since c2(w1Ī

∗
1 (u1)) is discontinuous in

u1. If this possible discontinuity feature is neglected, the
obtained optimal control law is incorrect. To rule out the
probability of discontinuity case, we have the following result.

Proposition 2. In the optimization problem (OP4), the map-
ping Ī∗1 (u1) is continuous in u1.

Proof. The proof to show that Ī∗1 (u1) is continuous follows
similar arguments as in the proof of Berge’s maximum theo-
rem. Define H(x, y) := 1

〈k〉
∑
k′
k′2P (k′)xy

1+k′xy , where x ∈ X :=

( 〈k〉〈k2〉 ,∞) and y ∈ Y := (0, 1). Note that the fixed-point
solution of y = H(x, y) is a solution of (25) given x = ψ1.
It is easy to see that H is continuous over X × Y . Define
f(x, y) = ‖H(x, y)− y‖, where ‖ · ‖ is a proper norm. Since
norms are continuous, f(x, y) is continuous over X×Y . From
Proposition 1, we know that for any given x ∈ X , there exists
a unique minimizer yx ∈ Y that minimizes f(x, y). Then
there exists a map x 7→ yx denoted by h : X → Y . To
show Ī∗1 (u1) is continuous in u1, it is sufficient to show that

the map h is continuous. Now we show the map x 7→ yx is
indeed continuous. Suppose that the map is not continuous.
Then we can find an ε > 0 such that for all δ > 0, there is
an x ∈ X , such that ‖x − x′‖ < δ but ‖h(x) − h(x′)‖ > ε.
That means there is an x′ such that ‖x − x′‖ < δ and some
ε′ > 0 such that ‖f(x, h(x))− f(x′, h(x))‖ = ‖f(x, h(x)) +
f(x′, h(x′)) − f(x′, h(x))‖ > ε′, where we use the fact that
f(x, h(x)) = f(x′, h(x′)) = 0 and miny∈Y f(x′, y) admits
a unique minimizer. This contradicts the fact that f(·, y) is
continuous over X . Hence, the map h is continuous. With
a slight abuse of notion, the map Θ1(ψ1) that defines the
solution of (25) is continuous in ψ1. From the definition of Ī∗1
in (4) and the definition of ψ1 in (6), we can conclude that
Ī∗1 (u1) is continuous in u1, which completes the proof. �

Remark: Based on Proposition 2, the continuous mapping
Ī∗1 (u1) leads to a robust epidemic control scheme. Specifically,
with a small perturbation of the unit control cost (e.g., a small
change on the constants K1 and K2 when the control cost
function admits a form of c1(u) = K1u1+K2u2), the severity
of epidemics under the optimal control resulting from (OP4)
does not encounter a significant deviation. The reason is that
a perturbation on the unit control cost (e.g., K1 or K2 above)
does not yield a large change on the optimal control and thus
Ī∗1 (u1) based on its continuity.

To obtain the solution Θ∗1 with respect to ψ1, we first
denote the right hand side of (25) as a function of Θ∗1, i.e,
Q : [0, 1]→ [0, 1]. Specifically,

Q(Θ∗1) =
1

〈k〉
∑
k′

k′2P (k′)ψ1Θ∗1
1 + ψ1k′Θ∗1

. (26)

Then, (25) can be solved by using the following fixed-point
iterative scheme:

Θ
∗(n+1)
1 = Q(Θ

∗(n)
1 ), n = 0, 1, 2, ..., N, (27)

until |Q(Θ
∗(n+1)
1 ) − Θ

∗(n+1)
1 | ≤ ε1, where ε1 > 0 is the

predefined error tolerance. The algorithm to obtain solution
Θ∗1 is summarized in Algorithm 1.

The convergence of the fixed-point iterative scheme is
guaranteed which is summarized in the following result.

Lemma 1. The iterative scheme in Algorithm 1 converges to
the unique fixed-point solution.

Proof. Let H(x, y) be the function defined in the proof of
Proposition 2 over the same domain X × Y . Define a fixed-
point iteration as yk+1 = H(x, yk). We show that the sequence
{yk, k ∈ N} converges to the fixed-point solution yx with
yx = H(x, yx) for any given initial point y0 ∈ Y . First, we
have

∂

∂y
H(x, y) =

1

〈k〉
∑
k′

k′2xP (k′)(1 + k′xy)− k′3P (k′)x2y

(1 + k′xy)2

=
1

〈k〉
∑
k′

k′2xP (k′)

(1 + k′xy)2
> 0,

That means for any given x, H(x, y) is monotonically increas-
ing over y. Then for any given y0 ∈ Y , y0 6= yx, we have
y1 > y0 or y1 < y0. If y1 > y0, then H(x, y1) > H(x, y0),



Algorithm 1 Fixed-Point Iterative Scheme

1: Initialize Θ
∗(0)
1 , ε1, n = 0

2: Calculate Q(Θ
∗(n)
1 )

3: while |Q(Θ
∗(n)
1 )−Θ

∗(n)
1 | > ε1 do

4: Θ
∗(n+1)
1 = Q(Θ

∗(n)
1 )

5: n = n+ 1
6: end while
7: return Θ

∗(n)
1

Algorithm 2 Gradient Descent Method based on Fixed-Point
Iterative Scheme

1: Initialize the starting point u(0) = 0, n = 0, tolerance ε2,
u(−1) = ε2 + 1. Obtain a feasible set U of effort u from
(18) and (19)

2: while ||u(n) − u(n−1)||2 > ε2 do
3: ψ

(n)
1 = ζ1

γ1+u
(n)
1

4: Obtain value Θ
∗(n)
1 through Algorithm 1

5: for k = 0 : K do
6: I1,k(u1) =

ζ1kΘ
∗(n)
1

γ1+u1+ζ1kΘ
∗(n)
1

7: end for
8: Ī1(u1) =

∑
k P (k)I1,k(u1).

9: Obtain u∗ = arg min
u
c1(u) + c2

(
w1Ī1(u1)

)
using

gradient descent method
10: u∗f = ProjU (u∗)
11: n = n+ 1
12: u(n) = u∗f
13: end while
14: return u∗f

which means y2 > y1. Then the sequence {yk, k ∈ N}
is monotonically increasing. Similarly, we can show that
if y1 < y0, the sequence {yk, k ∈ N} is monotonically
decreasing. Also, it is easy to see that H(x, y) ∈ (0, 1)
for all (x, y) ∈ X ,Y . Hence, the sequence {yk, k ∈ N} is
bounded. From proposition 1, we know for any given x ∈ X ,
the fixed-point solution is achieved within (0, 1) and unique.
By monotone convergence theorem, we can conclude that the
sequence {yk, k ∈ K} converges to yx. �

For a given Θ∗1, we have Ī1(u1) =
∑
k P (k)I1,k(u1), where

I1,k(u1) =
ζ1kΘ∗1

γ1+u1+ζ1kΘ∗1
. Define a function f : R2

+ → R+ by

f(u) := c1(u) + c2
(
w1Ī1(u1)

)
. (28)

Since u ≥ 0, c2
(
w1Ī1(u1)

)
is continuously differentiable, and

so does f(u). To minimize f(u), we use the gradient descent
method incorporating with backtracking line search to obtain
the optimal control u∗.

For clarity, the complete proposed method is summarized
in Algorithm 2.

3) Stable Exclusive Equilibrium of Strain 2: Since Ī∗1,k = 0,
the optimization problem (OP2) becomes

(OP5) : min
u

c1(u) + c2
(
w2Ī

∗
2 (u2)

)
s.t. I∗2,k(u2) =

ψ2kΘ∗2
1 + ψ2kΘ∗2

, ∀k ∈ K,

ψ2 = ζ2/(γ2 + u2),

inequalities (20) and (21),

where Θ∗2 and Ī∗2 (u2) are presented in (OP2). Since (OP5) is
similar to (OP4), the analysis to obtain the optimal control u∗

also follows and is omitted here.
We next comment on one observation of the optimal control

effort with respect to the network structure. Different from
the distribution independent strategy in disease-free regime
where 〈k〉 and 〈k2〉 are sufficient statistics, the node degree
distribution P (k) plays an essential role in the optimal control
of epidemics in the exclusive equilibria of strain 1 and strain
2. We summarize this result in the following corollary.

Corollary 2. In the exclusive equilibria of strain 1 and strain 2
regime, the optimal control effort is distribution dependent, i.e.,
correlated with the node degree distribution P (k), ∀k ∈ K, as
the epidemic severity cost c2 depends on the average epidemic
level including all nodes’ degree classes.

Remark: We have characterized the best curing strategy
in each equilibrium regime. The next critical problem is to
characterize the global optimal strategy across three equilibria,
which is the solution to the original problem (OP2). This
goal can be achieved as follows. After obtaining each optimal
curing strategy corresponding to different equilibria, we then
compare the objective values in these three cases. The one
associated with the lowest cost among (OP3), (OP4), and
(OP5) is the global optimal strategy.

Note that if the system operator has a predefined goal of the
steady state of the network, then it is sufficient to solve one of
the problems (OP3), (OP4), and (OP5). In such scenarios,
the designed control is regime-aware by taking the control
bounds in Section IV-A into account.

V. EQUILIBRIA SWITCHING VIA OPTIMAL CURING

In this section, we present a switching phenomenon of
network equilibria. Specifically, when the equilibrium state of
the epidemic network without control effort is not disease-free,
then it can switch to different equilibrium states through the
applied control effort. To better illustrate this phenomenon, we
focus on a class of symmetric control schemes and the system
operator aims to suppress two epidemics jointly. Furthermore,
we consider the nontrivial case ζ1

γ1
6= ζ2

γ2
where two strains of

epidemics are distinguishable.

A. Motivation of Equilibria Switching

Before presenting the formal results, we provide an intu-
itive example to motivate this switching phenomenon. Recall
that the optimal effort depends on the tradeoff between the
epidemic severity cost and the control cost captured by c1 and
c2, respectively. Then, the steady state of epidemic network



can switch if the unit cost of control effort changes. For
example, the control cost of strain 1 is relatively high at the
beginning which prohibits the system operator in adopting u1

and thus the anticipated network equilibrium only contains
strain 1. However, the control cost of strain 1 may decrease
significantly due to the maturity of curing technology for
agents infected by strain 1, and thus control effort u1 can be
applied to suppress the epidemic spreading before its outbreak.
The increase of u1 may lead to an equilibrium switching from
E2 to E3 as the total cost of network with steady state E3 is
lower than the one stabilized at E2, and hence it is an optimal
strategy for the system operator.

B. Symmetric Control Effort Scenario

In general, u1 and u2 can admit different values. For ease
of presenting the structural results, we focus on the symmetric
control scenario u1 = u2 = u and comment on the general
case later in this section. This scenario is practical as the global
system operator aims to suppress the spreading of two strains
simultaneously. In addition, the unit cost of control effort of
two strains decreases, and thus the optimal effort u increases
continuously based on the continuity result in Proposition 2.
Depending on the parameters of the epidemics, the increasing
optimal control can lead to either single or double switching
between equilibrium points. Based on Theorems 3, 4, and 5,
we obtain the following corollary which presents the condi-
tions under which the network encounters a single switching
of equilibria.

Corollary 3. Consider the case that ζi〈k
2〉

γi〈k〉 > 1, and ζi
γi
> ζ−i

γ−i
,

where i = 1 or 2, and −i := {1, 2} \ {i}, i.e., the epidemic
network is stabilized at the exclusive equilibrium of strain i
without control. If

ζi ≥ ζ−i or

ζi < ζ−i and ζi − γi > ζ−i − γ−i,

then, there exists a single transition from the exclusive equi-
librium of strain i to the disease-free equilibrium with the
increase of optimal u.

The single switching phenomenon in Corollary 3 enhances
the prediction of network equilibrium under control, since it
confirms that the exclusive equilibrium of strain −i is not
possible under the symmetric optimal control case in this
parameter regime.

Similarly, the phenomenon of double switching of equilib-
rium points is presented as follows.

Corollary 4. Consider the case that ζi〈k2〉
γi〈k〉 > 1, i = 1, 2,

i.e., the epidemic network does not reach the disease-free
equilibrium without control. When

ζi
γi
>
ζ−i
γ−i

, ζi < ζ−i, and
ζi − γi
ζ−i − γ−i

< 1,

where i = 1, 2 and −i := {1, 2} \ {i}, then, there exist
transitions from the exclusive equilibrium of strain i, to the
exclusive equilibrium of strain −i, and to the disease-free
equilibrium with the increase of u.

For the special case that ζ1
γ1

= ζ2
γ2

, and ζi〈k2〉
γi〈k〉 > 1, i =

1, 2, when ζi > ζ−i, there exist transitions from the current
network equilibrium (mixed steady state with both strains) to
the exclusive equilibrium of strain i, and then to the disease-
free equilibrium with the increase of optimal control u as the
unit control cost decreases.

To identify the optimal policies under which the control
effort leads to a stable disease-free equilibrium through switch-
ing, we present the following definition.

Definition 1 (Fulfilling Threshold). The fulfilling threshold
refers to the optimal control ū = (ū1, ū2) under which the
epidemic network stabilizes at the disease-free equilibrium
after switching of network equilibria, and the total cost c1(ū)
is the lowest among all control policies. Equivalently, ū
satisfies the following conditions:

c1(ū) ≤ c1(u), ∀u,

ū1 >
ζ1〈k2〉
〈k〉

− γ1,

ū2 >
ζ2〈k2〉
〈k〉

− γ2.

(29)

Based on Definition 1, we next characterize the fulfilling
threshold in the investigated scenario.

Proposition 3. The optimal control effort does not increase
after the epidemic network switches from the exclusive equi-
librium E2 or E3 to the disease-free equilibrium E1. In
the investigated symmetric control scenario with constraint
u1 = u2, the fulfilling threshold is

ū = max

(
0,
ζ1〈k2〉
〈k〉

− γ1,
ζ2〈k2〉
〈k〉

− γ2

)
. (30)

Proof. The fulfilling threshold in the studied cases can be
directly verified by the zero epidemic cost in regime E1 and
the monotonically increasing function c1 with respect to the
applied effort. Based on Definition 1 and symmetric control
structure, we can obtain the threshold ū in (30). �

Remark: The fulfilling threshold in Proposition 3 provides
an upper bound for the network operator’s control effort to
bring the network equilibria to the disease-free regime. As the
unit cost of effort decreases, the amount of optimal control
should not exceed the fulfilling threshold.

Another result on the number of network equilibria switch-
ing is summarized as follows.

Corollary 5. Under the symmetric optimal control scenario
with decreasing unit control cost, the maximum number of
network equilibria switching is two.

Corollary 5 generalizes Corollaries 3 and 4 by studying
the entire parameter regime. The monotonically increasing
optimal control yields either single or double switching of
equilibria. For general cases in which optimal u1 and u2

are not necessarily the same, then the switching of network
equilibria depends on the specific unit costs of u1 and u2.
However, if the system operator has a preference to avoid
the outbreak of strain i, then as the optimal control ui
increases, either single or double switching happens with the



network stabilizing at disease-free equilibrium depending on
the epidemic system parameters.

VI. NUMERICAL EXPERIMENTS

In this section, we corroborate the obtained results with
numerical experiments. First, we generate a scale-free (SF)
network with 500 nodes using the Barabási-Albert model [50].
The SF model has been found very successful in capturing
the features and properties of a large number of real-world
networks, including social networks, computer networks, fi-
nancial networks, and airline networks, etc [51]. Comparing
with random homogeneous network and small world network,
the SF network is more suitable for our applications of
epidemics spreading in social networks and viruses spreading
in the Internet, as these real-world networks usually exhibit
the characteristics that a significant number of nodes have
a lot of connections (seen as hubs), and a trailing tail of
nodes have a few connections. Further, as claimed in [51],
power laws on the degree distribution (namely SF network) are
ubiquitous in complex networks. More detailed comparisons
between these models as well as the practical examples of SF
network modeling can be found in [52].

In our numerical experiment, the degree distribution of the
SF network satisfies P (k) ∼ k−3. The typical generated
random network in the following studies has an average
connectivity 〈k〉 = 1.996 and 〈k2〉 = 13.75. Our objective is to
design the optimal control of competing epidemics spreading
under different network equilibrium cases. During control
implementation, increasing the curing/recovery rate can be
achieved, for instance, by allocating antidotes or providing
other forms of treatment to a fraction of the vulnerable
population (e.g., the infected population or likely infected
population). Each infected node is treated homogeneously
with a same probability of receiving treatment in the complex
network. Note that the curing rate is increased when additional
resources are leveraged to facilitate the recovery process of
a fraction of population. The functions in the optimization
problems admit the forms: c1(u) = K1u1 + K2u2, and
c2(w1Ī

∗
1 (u)+w2Ī

∗
2 (u)) = K3(Ī∗1 (u)+ Ī∗2 (u)), where K1, K2

and K3 are positive constants, and w1 = w2 = 1. Specifically,
we choose K1 = 15, K2 = 10 and K3 = 50. For better
illustration purposes, we assume that strain 1 and strain 2
have the same spreading rate, i.e., ζ1 = ζ2 = ζ. We find and
compare the optimal control solutions of the following two
scenarios: scenario I where γ1 = 0.5, γ2 = 0.3, and scenario
II where γ1 = 0.5, γ2 = 0.8.

A. Optimal Control in Disease-Free Case

In the disease-free case, the epidemic spreading levels are
zero at the steady state. By solving (OP3), we obtain the results
of optimal control which are shown in Fig. 1. We can see that
the control efforts u1 and u2 both increase linearly with the
spreading rate ζ as expected by (22). Due to the same recovery
rates of strain 1 in two scenarios, the applied control efforts u1

overlap as shown in Fig. 1(a). In addition, because of a smaller
self-recovery rate of strain 2 in scenario I, its corresponding
control effort u2 is larger than that in scenario II. Hence, the

0.2 0.4 0.6 0.8
spreading rate 

0

1

2

3

4

5

6

va
lu

e 
of

 th
e 

op
tim

al
 c

on
tro

l u
1 a

nd
 u

2

u1 ( 1 = 0.5, 2=0.3)
u1 ( 1 = 0.5, 2=0.8)
u2 ( 1 = 0.5, 2=0.3)
u2 ( 1 = 0.5, 2=0.8)

(a) optimal control (u1 overlaps in two
cases)

0.2 0.4 0.6 0.8
spreading rate 

0

50

100

150

ob
je

ct
iv

e

1 = 0.5, 2=0.3 (with control)

1 = 0.5, 2=0.8 (with control)

(b) objective value

Fig. 1. (a) and (b) show the results of the optimal control and the associated
objective value, respectively, where the network stabilizes at the disease-free
equilibrium.

optimal objective value in scenario II is smaller than that of
scenario I shown in Fig. 1(b).

B. Optimal Control in Exclusive Equilibrium Case

We investigate the case when the network is stabilized at the
exclusive equilibrium of strain 1. By solving (OP4) using the
proposed Algorithm 2, the obtained results are shown in Fig.
2. Specifically, Figs. 2(a) and 2(b) show the optimal control
efforts. In scenario I, the control u1 (red line in Fig. 2(a))
increases first when the spreading rate ζ is relatively small. It
then decreases after ζ > 0.55, since it is not economical to
control the spreading of strain 1 comparing with its control
cost. Further, because the recovery rate of strain 2 in scenario
I is low, the applied control u2 (red dotted line in Fig.
2(b)) should be relatively large to suppress its spreading. An
important phenomenon is that u2 decreases after ζ > 0.55,
which follows the pattern of u1, since u2 can be chosen as
long as it satisfies the conditions in Theorem 4, and strain 2
does not exist at the steady state. In scenario II, due to the
high self-recovery rate γ2, strain 2 dies out at the equilibrium
even without control. Thus, the control of strain 2 is 0, i.e.,
u2 = 0 (blue dotted line in Fig. 2(b)). In addition, the control
u1 in this scenario (blue line in Fig. 2(a)) first increases to
compensate the spreading of strain 1. Then, it stays flat after
ζ > 0.27, since otherwise larger control u1 leads to a network
equilibrium switching from E2 to E3. Fig. 2(c) depicts the
severity of epidemics at the steady state with and without
control. We can conclude that the optimal control effectively
reduces the spreading of epidemics in both scenarios. Note that
the epidemic spreading levels without the control intervention
overlap in two cases (dotted lines in Fig. 2(c)) though only
strain 2 and strain 1 exist at equilibrium in scenarios I and
II, respectively. The reason is that the severity of epidemics
is determined by the network structure and the steady state,
while the parameter ζ only influences the rate of epidemics
spreading.

C. Transition of the Equilibrium through Control

In this section, we illustrate the transition between the epi-
demic equilibrium through control. First, we study the single
transition case. From Corollary 3, we choose ζ1 = 0.2, γ1 =
0.4, ζ2 = 0.15 and γ2 = 0.4. The result is shown in Fig. 3. As
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Fig. 2. The network is stabilized at the exclusive equilibrium of strain 1.
(a) and (b) are the optimal control of strain 1 and strain 2, respectively. (c)
and (d) show the severity of epidemics and the corresponding objective value
under the optimal control, respectively.

the unit control cost changes, the network equilibrium at steady
state will be different. Specifically, as the optimal control
increases due to the decrease of unit control cost, the epidemic
network equilibrium switches from the exclusive equilibrium
of strain 2 to the disease-free equilibrium. For the double
transitions case, based on Corollary 4, we select parameters
ζ1 = 0.1, γ1 = 0.1, ζ2 = 0.15 and γ2 = 0.2. The result is
shown in Fig. 4. Consistent with Corollary 4, the network
equilibrium switches first from the exclusive equilibrium of
strain 2 to the exclusive equilibrium of strain 1, and then to
the disease-free equilibrium, as the applied optimal control
increases. One common feature in these two cases is that once
the effort drives the network to the disease-free equilibrium,
the control effort ceases to increase, where fulfilling threshold
is reached (corresponding to the effort level at the transition
point denoted by black dot in Figs. 3 and 4). Specifically,
based on Proposition 3, the fulfilling thresholds in Figs. 3 and
4 are 0.978 and 0.834, respectively.

D. Network Rewiring and Model Mismatch

In this subsection, we compare the results of our model un-
der different random realizations of networks. We generate two
SF networks with 500 nodes from the same generative model
and revisit the disease-free case. The results of experiments are
shown in Fig. 5. Note that network in (a) has 〈k2〉 = 12.3960
while network in (b) has 〈k2〉 = 10.3600 and both have a same
level of average connectivity 〈k〉 = 1.996. Network (b) could
be considered as a network that changes from network (a) with
randomly rewired network connections, or the degree-based
mean-field model has some mismatch with the real network.
We can see that the control efforts in network (b) are slightly
lower than the one in network (a), and the optimal objective
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Fig. 3. Transition of the equilibrium with the increase of control across two
regimes: from the exclusive equilibrium of strain 2 (III) to the disease-free
equilibrium (I).
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Fig. 4. Transition of the equilibrium with the increase of control across three
regimes. (from the exclusive equilibrium of strain 2 (III) to the exclusive
equilibrium of strain 1 (II), then to the disease-free equilibrium (I)).

values in network (b) are also slightly lower than the ones
in network (b). We next comment on the consequences when
the system operator has inaccurate modeling of the epidemic
network. Specifically, consider that the real network admits a
structure of network (a), but the system operator assumes that
it is of network (b) and designs the corresponding control.
Then, based on the optimal solution presented in (22), the
designed control is not sufficient to achieve a disease-free
equilibrium, and the network stabilizes at one of the exclusive
equilibria (the exact equilibrium depends on γ1 and γ2). In
comparison, if the real network admits a structure of network
(b) but the system operator assumes that it is of network
(a), then the designed corresponding control is still able to
drive the system to a disease-free equilibrium, showing the
robustness of the control in such scenarios. The reason is that
the designed control (Fig. 5(d)) is more conservative compared
with the optimal control needed for the real network (Fig.
5(c)). Fig. 6 further presents a case study to illustrate this
phenomenon, where γ1 = 0.5, γ2 = 0.3, ζ = 0.3. Fig. 6
corroborates that the optimal control designed under accurate
modeling can successfully lead the system to a disease-free
equilibrium. Furthermore, the control designed for network in
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Fig. 5. (a) and (b) present two random realizations of SF network. (c) and
(e) show the results of the network in (a), while (d) and (f) show the results
of network in (b). Both networks in (a) and (b) stabilize at the disease-free
equilibrium. The differences on the control and the objective in two cases are
relatively small.

Fig. 5(a) is able to achieve the disease-free objective if applied
to the network in Fig. 5(b) (shown in Fig. 6(a)), while not
vice versa (shown in Fig. 6(b)). Therefore, when the system
operator has uncertainties on the underlying network structure,
it might be better to design a more conservative control
strategy to achieve a disease-free objective, as inaccurate
modeling is possible to yield an epidemic outbreak.

VII. CONCLUSION

We have studied the optimal control of competing epi-
demics spreading over complex networks. The competing
mechanism between two strains of epidemics results in a
non-coexistence phenomenon at the steady state. Furthermore,
we have explicitly derived the conditions under which the
network is stabilized at different equilibria with control. The
optimal control computed via the designed iterative algorithm
can effectively reduce the spreading of epidemics. At the
disease-free equilibrium, the optimal control is independent
of nodes’ degree distribution as the optimal strategy can
be fully determined by the sufficient statistics including the
average degree and the second moment of the degree distri-
bution. Furthermore, depending on the epidemic parameters,
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(a) Optimal control designed for network in Fig. 5(a) and
applied it to network in Fig. 5(a) and Fig. 5(b) separately.
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(b) Optimal control designed for network in Fig. 5(b) and
applied it to network in Fig. 5(b) and Fig. 5(a) separately.

Fig. 6. (a) and (b) present the results when the system operator has and has not
model uncertainty on the epidemic network. In both (a) and (b), the epidemics
extinct under the designed optimal control without model mismatch. However,
in (b), strain 2 will exist at the equilibrium state if the system operator has an
inaccurate network model. In contrast, the network still achieves the disease-
free equilibrium in (a) under model mismatch. Thus, a more conservative
control design is preferred to eliminate the viruses when the system operator
has uncertainty on the underlying epidemic network structure.

the network equilibrium can switch via the adopted control
strategy. Once the epidemic network switches to the disease-
free equilibrium under the optimal control, the applied effort
does not increase though the unit cost of effort continues
to decrease, and the optimal control effort at the associated
switching point is called the fulfilling threshold. One possible
direction for future work would be extending the framework to
multi-strains scenario and considering heterogeneous types of
epidemic interdependencies. Another direction is to explicitly
consider the transient behavior of the epidemic spreading
and develop time-varying optimal control strategies. It is also
worth investigating the optimal curing design when the system
operator or node does not have a perfect knowledge on the
node’s state in the network.



REFERENCES

[1] Y. Moreno, M. Nekovee, and A. F. Pacheco, “Dynamics of rumor
spreading in complex networks,” Physical Review E, vol. 69, no. 6,
p. 066130, 2004.

[2] J. Omic, A. Orda, and P. V. Mieghem, “Protecting against network
infections: A game theoretic perspective,” in IEEE Conference on
Computer and Communications, 2009, pp. 1485–1493.

[3] M. Garetto, W. Gong, and D. Towsley, “Modeling malware spreading
dynamics,” in IEEE Conference on Computer and Communications,
vol. 3, 2003, pp. 1869–1879.

[4] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free
networks,” Physical review letters, vol. 86, no. 14, p. 3200, 2001.

[5] T. Gross, C. J. D. D’Lima, and B. Blasius, “Epidemic dynamics on an
adaptive network,” Physical review letters, vol. 96, no. 20, p. 208701,
2006.

[6] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. Pappas,
“Optimal vaccine allocation to control epidemic outbreaks in arbitrary
networks,” in IEEE Conference on Decision and Control, 2013, pp.
7486–7491.

[7] R. Pastor-Satorras and A. Vespignani, “Immunization of complex net-
works,” Physical Review E, vol. 65, no. 3, p. 036104, 2002.
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spreading on interconnected networks,” Physical Review E, vol. 86,
no. 2, p. 026106, 2012.

[16] N. J. Watkins, C. Nowzari, V. M. Preciado, and G. J. Pappas, “Opti-
mal resource allocation for competitive spreading processes on bilayer
networks,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 1, pp. 298–307, 2018.
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[42] C. Granell, S. Gómez, and A. Arenas, “Dynamical interplay between
awareness and epidemic spreading in multiplex networks,” Physical
review letters, vol. 111, no. 12, p. 128701, 2013.

[43] Q. Guo, Y. Lei, X. Jiang, Y. Ma, G. Huo, and Z. Zheng, “Epi-
demic spreading with activity-driven awareness diffusion on multiplex
network,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 26, no. 4, p. 043110, 2016.
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