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Probability-Guaranteed Distributed Secure
Estimation for Nonlinear Systems over Sensor
Networks under Deception Attacks on Innovations

Lifeng Ma, Zidong Wang, Yun Chen, and Xiaojian Yi

Abstract—This paper studies the distributed secure state es- distributed state estimation problem has stirred particular
timation problem for a class of general nonlinear systems over interest, see e.g. [10]-[12], [19], [24], [34], [41] for some
sensor networks under unknown deception attacks on innova- recent works. Compared with the traditional single-sensor
tions. At each sensing node, an estimator is designed to generate t th twork Id collect inf tion i
the state estimate by making use of the local measurements in Systems, the S(_ansor networks could collec m_ore informa 'On_'n
combination with the neighbours’ information shared via the @ comprehensive and complementary way via the cooperation
communication network. During the transmission of innovations among individual nodes, thereby making the corresponding
among nodes, the data are maliciously falsified by adversaries in a estimation algorithms more robust, accurate and flexible. As
random way. A neural-network-based mechanism is put forward 5 \yigely recognized, in the context of sensor networks, the
to approximate the unknown falsified innovations with the aim to lability i d th tati | lexit ¢
mitigate the effects on the estimation performance. The objective scqa lity 1ssue an € CO”‘P“ a 'Ona. Comp,ex'l( are two
of the addressed problem is to develop a distributed estimation Major concerns for the conventior@ntralizedestimation al-
approach to jointly estimate the system states as well as the gorithms, and this gives rise to the necessity of developing the
unknow deception attacks, ensuring that the state estimation go-called distributed state estimation/filtering problem where
errors at each sensing node reside within required ellipsoidal g5ch ingividual sensing node provides the state estimates
regions with a pre-specified probability. With the help of certain for the t ts of int t th h i f the | I
convex optimization methods, we obtain sufficient conditions or the targets .0 In er%‘s h VOUQ ma_'ng use_ 0 € loca
for the solvability of the addressed problem and the desired Measurements in combination with the information shared by
estimator gains can be iteratively computed by solving a series of neighbours [4], [5], [15], [25], [26], [30], [37], [39].
matrix inequalities. On basis of the proposed framework, some  So far, a great number of research results concerning dis-
optimization problems are presented to determine sub-optimal i, ted state estimation have been available in the literature,

estimator parameters from different perspectives. Finally, the - . .
applicability of the developed algorithms is validated via a 2MONg which the most popular techniques are Kalman filtering

numerical simulation example. [14], [18], [20], [23], [30] and H. approach [7], [33],
Index Terms—Distributed estimation, set-membership state 537]' Ndote tha:] thhe pehrform_ance of Ke;:mzén fllte_rlng Iargely_
estimation, deception attack, falsified innovations, probability- 9€P€Nds on whether the noises meet the Gaussian assumption

guaranteed estimation, neural networks [28], [35], while the H., approach is only applicable for
handling the so-called energy-bounded disturbances [21]. In
many practical scenarios, unfortunately, neither Gaussian nor
_ _ energy-bounded assumptions could adequately reflect the noise

The past decades have witnessed an exponential growttp@perties. For instance, in electronics and electrical engineer-
the deployments of sensor networks in various fields sugfy, the disturbance caused by the man-made electromagnetic
as military surveillance and environment detection [6], [13]jnterference is more suitable to be modeled by the so-called
[29], [31], [32], [45], [46], [48]. A typical sensor network unknown-but-bound (UBB) noise [1], [8]. By now, several
comprises a group of spatially dispersed sensing nodes Wafproaches have been exploited to study the state estimation
basic capab|I|t|_es of sensing, computing and communicatingsue against UBB noises (see e.g. [1], [3], [8], [16], [25],
To date, considerable research effort has been devoted4p]), most of which are based on the linear matrix inequality
sensor networks from many different perspectives, and thgproach and its variants inset-membershiframework.

. . _ _ Aside from the exogenous noises, another factor that comes
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[17]. As the reliability and safety are among the fundameones.,, denotes the identity matrix ofi dimensions. The
tal requirements of communication networks, the securitpotation A > B (respectivelyA > B), where A and B
relevant issues have provoked an ever-growing attention, saes symmetric matrices, means that- B is positive semi-
e.g.[17], [22], [42] for some recent publications. Most existingefinite (respectively positive definite). For matric&s and
results, however, have been based on the assumption that}thetheir Kronecker product is denoted & ® Y. For a
falsified signals are known and linear, and such an assumpti@ttor z, ||| = 2%z. For a matrix Z, tr[Z] means the
is often unrealistic in practical scenarios. As such, in thisace of matrixZ, and || Z||r = \/tr[Z1Z] is the Frobenius
paper, we make dedicated efforts to handi&nowndeception norm of Z. diag{X;, X, ..., X,,} denotes a block diagonal
attacks on the innovations by proposing a novel algorithmatrix whose diagonal blocks are given B, Xo, ..., X,,.
for the distributed state estimation problem with the aid dfhe notationdiag,,{ X;} represents the block diagonal matrix
artificial neural networks (NN). diag{ Xy, Xo, ..., X,,} andcol,,{z;} denotes the column vec-
In practical engineering, it is often unnecessary (and tor [zT zI ... zT]T.P{X} means the occurrence probability
nattainable) to design controllers/estimators which persistendlf/the event X".
achieve the desired performance indices with a 100% confi-
dence level. Instead, one would prefer to follow the so-called Il. PROBLEM FORMULATION

probability-guaranteed design principle which aims at reachingThe sensor network under consideration consista afen-
the desired indices with a satisfactory chance (less H)an sors with the communication topology described by a directed
[36], [40]. Such a concept could find wide applications igraphy = (¥, &, ), where? = {1,2,..., N} represents the
various engineering branches, for example, the target trackigit of sensing nodes; C 7 x 7 represents the set of edges,
issue and weapon shooting tests [27]. The advantage of sugly & — [0;;]nxn Tepresents the nonnegative adjacency
a concept lies in its capability of ensuring satisfactory perfomatrix. Speciﬁcally,oij > 0 means that sensor can send
mance while i) avoiding unnecessarily stringent requiremenigormation to sensoi (in such a casej is called a neighbour
and ii) leaving additional design freedom for other systeg ;) whiled,; = 0 indicates there are no data transmitted from
specifications. node; to nodei. Denote by.4; = {j € 7|(i,j) € &} the set

In response to the above discussions, this paper aimsgfoneighbours of node. Moreover, we assume thél; = 0
develop a probability-guaranteed distributed state estimatigft g)| ; ¢ 7.
approach over sensor networks where the communicationgonsider the following nonlinear system defined on the
among nodes are under the threat of malicious manipulatioRgrizon [0, 7]
Artificial neural networks are utilized to approximate the
unknown falsified innovations during data propagation among Tp1 =f(@k) + Brvk L
nodes. This would be a very challenging problem due to Yik =9i(xx) + Ei ki

some essential difficulties summarized as follows. 1) For . .
) where z;, € R"» is the system statey; , € R" is the

the unknown falsified innovations, it is invariably arduous .
y measurement output of sensor nage;, € R andu; € R~

to model the dynamical characteristics via a neural network .

o are the process and measurement disturbarégsand F;

and yet facilitate the subsequent development. 2) The cross . : e

: ) . re known real-valued matrices of compatible dimensions;
coupling between the desired estimator parameters and t)é

NN weight matrices brings considerable difficulties in analysis xk.) - R " R and g;(z¢) : R" — R™ are smooth
n8nI|near functions.

and design. 3) The joint estimation of the system state an : : . . .
e . . . Assumption 1:The noises/, andpy satisfy the following
falsified innovations brings extra challenges when determining ~~." ™
. X : ; c%ndmons.

the estimator gains and NN weight matrices. Consequently,’I R o

is our main purpose to tackle these challenges by investigating ve €V ={vp iy Vv < 1} @)

the_ addres;ed probability-guaranteed secure distributed state wr € Uy = {p, - ugUk_le <1}

estimation issue. h q K , ith suitabl
The contributions of this paper can be identified as f0||(i))NSZW_ erer >0 and U > 0 are known matrices with suitable

ensions.

the system under consideration is modeled by a nonlinedf" ; ina th ¢ distributed based
difference equation, which is much more general than thoseBe ore giving the structure of distributed NN-based state es-

studied in literature and could reflect engineering practice in AMator to be designed, we first recall the form of ttalition-
| distributed estimators. For each nod¢i = 1,2,..., N),

more comprehensive way; ii) in order to depict appropriatel he local . has the following form:

dynamical behaviors over a finite time interval of interest, & local state estimator has the Tollowing torm:

a new tranment___pen_‘ormance index is de_flr_1ed for system at g, . = F, 135 + Z 01 Hijr(yin — 95(Z51))

each time step; iii) with the purpose of avoiding unnecessarily jen

stringent requirements, a probabilistic design principle is P T

put forward aiming to achieve desired performances with & Fundin + 3 iHignzin ()

; ) o i . JEN

a satisfactory chance; and iv) a joint estimation algorithm

is provided to simultaneously estimate the system state amdere z; represents the state estimate of nade; ; £

falsified innovations. Yik — Uik 1S the innovation information witty; £ 9i(Zix)
Notation R™ denotes then-dimensional Euclidean spacebeing the estimated output; and the matri¢eg and H;; ;.

and 1, denotes amn-dimensional column vector with all are estimator gains.
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The most essential feature of a distributed estimation algo- + Z Hinij,k(éj,k — aWij,k(b(zi’k)) (8)
rithm is that each local estimator generates state estimates by JEMN;

utilizing its own measurements in combination with neighbor\%here F,., Gin and H;; , are estimator parameters to be
information shared via communication networks according H%signe:j’ﬁ’/- , ,:7is the estimate of the weight matrik; ; which
17, )

the interaction topology. Such an appealing feature WOud yefined as the ideal weight matrix féF; at sensing node
be jeopardized with deteriorated estimation performance Jn

the case that the networks are under the threat of maliciofj%emark 2:1t is worth noting that the innovations received

manlpulanons, and thls.g|ve.s rise to t,he motivation for us t&/ node: are not the original ones but containing the injected
consider the secure estimation issue in this paper. signals, which implies that the true value of , are not

Consider the information propagation process from nodgaijaple on the side of node Therefore, in (8), instead of

J to nodei. The adversary first intercepts the Innovation . e shall utilize the local innovatios; ;, as the input of
information sent by nodg (i.e., z; ). Then, by using the

: P the neural networks to approximate the injected sigrtal ).
interceptedz; ., the adversary generates a .S'Qﬂ ‘which  on the other hand, it is obvious that, on the side of noaree

injected signalzﬁ? is assumed to have the following form: due to the lack of original innovations sent fromTherefore,

() in (8), we use the estimatddl;; , to replace the ideal value of
Zj = X(zjk) 4 w,;, and an associated updating law T . will be designed
where x(-) : R™ — R" is an unknown nonlinear function later in Subsection IlI-A for tuningV;; . at each time step
defined on a compact set. according to the state estimation performance adaptively.
Taking (4) into account, the falsified innovation sent from Definition 1: An ellipsoid X(a,Y’) in R™ is defined by
node; (after being manipulated) is described as follows: X@,Y)2{zeR": (z—a)'Y Yz —a) <1} (9)
Zjk = Zjk + O‘kz(‘,ak) = zjk + arX(2jk) ()  wherea € R" represents the center and > 0 is a positive

whereqy, is a Bernoulli distributed random sequence satisfyin%ef'n'te, matrix W'th, appro.prlgte dlmenspn.

Prob{a; = 1} = a. Subsequently, the adversary will continue 1© Ve the design objective, we define the system state

to send such a manipulated message (5) to rdth the aim  €Stimation error byxiA,k = @ — & and the NN weights

to deteriorate the system performance. tning error byWi;, = Wij — Wijk. . .
Remark 1: It should be mentioned that. due to the com- 1he following assumption concerning the initial conditions

plexity of sensor networks, the adversary cannot perform t8 the estimation errors will be needed for our further devel-

attacks successfully all the time but has certain limitaio®®ment o . )

on ability. The Bernoulli distributed random variable, is Assumption 3:The initial condition ofW;; o andz; o sat-

introduced to describe the constraints or limitations imposé’ﬂy

on the ab|I|_ty of the adversa_lry. In other words, the innovation tr WE@QJIOWU,O <1
will be falsified with a certain success rate. A
On the other hand, at node the local estimator tries to (z0 — #i0) Py Hwo — 240) < 1

prowde. the state estimate py using 'OC"?" mea}surements as Wlere Qij0 and P, are known positive definite real-valued
as the innovation information sent by its neighboyrs N;. matrices.

Taking (5) into account, we shall use the neural networks toIt is the aim of this paper to design the estimator gains

approximate the unknown functioq(z; ) with the hope to Fix Gix and Hy, in (8) such that the state estimation

mitigate the effects from the falsified innovations as fO||0WS'err0rS at each sensing node satisfy the following probabilistic

ellipsoidal constraint:
X(zjk) = Wid(zjk) + 05k (6) P{z) € X(Zig, Br)} > p (10)

where W; is the ideal weight matrix of the neural network
¢(-) is the activation function and, ; is the approximation
error. P{Z B, 'Zin <1} > p (11)

Assumption 2: [38] The ideal weight matri¥¥’;, the acti-
vation functiong(-) and the approximation erra; ;, satisfy:

IWille < €15, NloO) < €2, 0kl <es; (7)

wheree,;, e2 andes; are known positive scalars.

We are now in the position to present the structure of the
local estimator by taking into account the falsified innovations.
In this paper, the local estimator on nodis reconstructed as €
follows:

or, equivalently,

where3;, > 0 is a pre-specified matrix anglis a pre-specified
scalar satisfyind) < p < 1.

IIl. MAIN RESULTS

In this section, we will discuss the distributed state esti-

ation issue subject to falsified innovations. First, two useful

mmas are introduced.

Lemma 1:(S-procedure [2]) Define a series of quadratic
functionsko(-),k1(+),. . .,k,(-) with respect to the variable €

i1 =Fi k@i + Gik(Yike — Uik) R™ as x;(a) £ aTYja Whel’eY;-T =Y, (j=0,.. ). If
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there exist a sequence of non-negative scaafses, ..., €, } = diagy{L;}, P £ diag y{®i 1},
satisfyingYy — 23:1 ¢;Y; < 0, then we have the following Uy, 2 diagy {U; ), ¥ 2 diagy {%i}
derivation: ' L N S e
Al = dlagN{Au}, AQ = dlagN{AQi},
ri(a) <0, ku(a) <0 = rola) < 0. 0. £ diag{0,...,0,1,0,...,0},
. . ' S—— S——
Lemma 2: (Schur Complement Equivalence) For the matri- i—1 N—i
ces)i, Vo, Vs where);, = VI and0 < Y, = Y, the matrix Rii2 Iy @1)0.: = {ngns,ny,ns}.
inequality Y1 + Y5 V5 ' Vs < 0 if and only if _ o c
o Then, we rewrite the estimation error dynamics in the follow-
RZRNZ V2 Vs ing form:
<0 < 0. 9 :
[yg —yz} o [y?,T yl}

Thtl :fk + Oz + LA1Z), + By
— Frlr — Gy — GrXAoZy
= GrEk(AN @ I, ) pr. — HiViTy — HipXAoZy,

By using Taylor expansion technique, we descrjtiey)
and g;(z) as follows:

flak) = f(fﬁj,k) + (I)i,kjj',k + LiAlii'f,k (12) — &Iy @ I, ik — e (Hi 0 W)y

gi(zk) = gi(Zi k) + Vi xTi g + XiDoiT5 i (13) N
whereL; € R™ and¥; € R™ are known matrices)\; € + @Zenzvimk o Wi)(An @ R, i) b
R™*"s gand Ay; € R™=*"= gre unknown matrices satisfying . 1:1A
[Ay] < 1 and|Ay|| < 1; ®;; and ¥, ;. are obtained as =fr = Frir + (P + LA — G Ty,
follows: — GrEAs — Hp Uy — HiEA0) 3y,

; B - ErL(1 I,
®,, & @) oy, 2 %9 e + Bive = (Gr + Hi)Ex(In @ Lo, )
' 0x le=g;, 0x  lo=d, — apHior — Ozk(Hk o W)qf)k
Remark 3:In (12) and (13), the term<;A;%;; and B N )

¥; A9 #; ), account for the truncation errors due to the ne- + az('—)nz,i(%k o Wi)(In ®@ R, i) Pk (16)
glected higher order terms in the Taylor series expansion of the i=1

corresponding nonlinear functions. Alternativelyy; andAz;  where#,, 2 [einij'rk}NxN' Note that since;; = 0 when
can also be illustrated as uncertain terms that are employedit9 _; 7/, is a sparse matrix described by
describe the modeling errors in the matricks, and VU, 4,
respectively. The readers are referred to [3] for a rigorous Hi € Tnyxn,
justification of the validity of such a representation for thﬁ/here 7 A2 (T = T € RVNwxNm|Ty, €
. . . Mg XMy - - ) 1]
linearization error. o _ R™X"™ Ty = 0 if j ¢ 4}. Moreover, in equation (16),
Then, the one-step estimation error dynamics are acquwr%g two block matricesA = [A;;]xxn and B = [Bij|nx

. - ) - 3
as follows: where 4;; and B;; are matrices with compatible dimensions,
the product of4 o B is defined byA o B £ [A;; Bij]nxn-

Tik+1 =Tht1 — Ti k+1
=f(zk) + Brvi

) R A. Tuning ofW;;
— (Fi,kffi,k + Gir(Yik — Uisk)

The adaptive tuning law of the estimated weight matrix

+ 37 0 Hij (G — @Wij,k¢(zi,k))) Wik is designed as follows:
JEN;
=f(@ik) + PipZin + LibriZik + B Wijh 1 =AWk + A mro T (2ix) 17)
- (Fi,kii,k + Gk (Vinip + SiloiZik + Eikiik)  where
+ Z 055 Hj (‘I/j.,kij,k + X80T 1 + Ej o pek wr 2 a Z 9in5,;€‘1’2;€+12@1€+1
JjEN: JEN;
+ Wi (2 k) + ardjr — @Wij,ksb(zi,k)))' and )\Z(.jl.)k and )\Z(.f.)k are positive tuning scalars that will be

(15) determined later.
Remark 4:The adaptive tuning law (17) is proposed ac-
cording to the gradient descent algorithm aiming to minimize
fk £ COlN{Ik}, fk £ COlN{ZEiyk}, fk £ COlN{fiyk}, the cost function defined byé ||Zi,k+1|| = ||yi,k+1_?]i,k+1”-
Fr 2 coly {f (@)}, 0r 2 coly{g(&ix)}, Ok £ coly{d;}, Thetuning sc?larsgjl._’)k apd/\g_’)k willbbe co-delsigned with the
a . A . N parameters of state estimators subsequently.

(bf = coln{o(zix)} 77; = colv{yir}, B’“A_ Ly @ By, The following theorem gives a sufficient condition under

Gr = diagy{Gix}, Fr = diagy{Fir}, & = diagy{Eir}, which the matrix1;;, will be bounded in the sense of

W2 [Wilnxn, Wi 2 [Wiiklnxw, weighted Frobenius norm.

For brevity of development, we define
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ThAeorem 1:For nonlinear system (1), the tuning law Lemma 4:If E{(zk—i:i_,k)TPk_l(a:k—jzl-_,k)}g1,then the
of Wi, is given by (17). Let the family of matricesfollowing holds:
{Qijr}reo,r) be given. If there exist families of positive

T > p.

scalars{gz(.;’)k, QE?,)k}ke[O,T_l] and families of tuning scalars Play € X(Zir, Br)} 2 P (20)
{)\1(_]1_7)]67 )\gfy)k}ke[o,T—l] satisfying: Proof: Lemma 4 is easily proved according to Lemma 3,

and the proof is therefore omitted here. |

{ $ijk * <0 (18) Defining &y, £ o, — &, we know that
Tije —Qijr+1 ~ y - A o
E{ar} =0, E{a;}=a(l—a)=o". (21)
where

N Theorem 2:Let the estimator gains; ,, G, , andH;; ;, be
Qijk =Qijk ® In,, given. Under the condition of Theorem 1, for a pre-specified

Qi 2diag{—1 + QE;,)k +é Ql(;,)k’ _QE;,)kI7 _Qz('.i)kj}’ family of positive definite matrice$ Py, } (0,71 with a factor-

N @) i W ization of P, = SkSkT, if there exist families of non-negative
Tij’k - [ _/\ij’ka ® (b(zi’k) /\ij’kMij’k (1 B /\”k)l scalars {ﬂi(,lk)v ](cQ)v I(cB)v ](c4)7 51(751@)’ ﬂi(,ﬁk)aﬂi(;c)}ke[o,T—l] satis-

with M, being a factorization of the matriQ;; (i.e., fying the following recursive matrix inequalities:

Qijk = Mij_,kMg,k), then the following inequality holds: —T * *
. _ - Ru,iZk  —Pin * <0 (22)
tr[Wg,kJrl Qij}lﬁ_l Wij,kJrl] <1 (19) CTRnI,iék 0 —Pip1
Proof: See Appendix VI-A. B \here

Remark 5:Theorem 1 gives a sufficient condition to con- N
strain the estimation errors of NN weight matrix (i.8; 1) Ir 2diaed 1 — ey ).y g _ 5B _ 254
to be bounded by a pre-specified criterion (@%g;,;) in the y lag{ (B Buies) = B — B ko

sense of weighted Frobenius norm. From (17) we know that N = N
the matrix W;; 1 will be tuned adap_tlvely by_ma_kmg the Zﬂi(,lk)@ns-,i _ Z( z(ﬁk) +ﬂ§77;3)@ns,i3;?3k,
trade-off between the current step weight matrix (il€;; 1) i1 P
and the innovation information (i.ez; x41). This theorem will N N
play a paramount role in the following analysis and design of Zﬂf_ﬁk)@nm, Zﬂfk)@nz,i, ,(f)V,;l, ,g?’)U,;l,
the desired state estimator gains. The connection between the =1 =1
tuning errors of NN weight and the estimation errors of system N ®) @
state will be discussed in detail in Remark 6 of Subsection Zﬂi,k Ons.is By, IN2}, (23)
I-C. i=1
=N é{ =2 L (G + He)E
B. E||IF)SOIda| corlstra|nt in probab|l|_t3p N B By 5216) oM, —at } ’ (24)
In this subsection, we shall establish the sufficient cond|t|o_n(11) . R R
under which the state estimation error will be driven t& = =/k — Frir — &(Hir 0 Wi)ok
reside within an allowable ellipsoidal area in a pre-specified N .
probability. First, we introduce the following lemmas that will +aY O, i(Hko W) (A ® R, i)k, (25)
be used in the derivation. ~ =1
Lemma 3: [36] Given a random variabler of suitable  Z 2| —(HroWi)ér 0 0 0
dimension which belongs to an ellipsai{«,Y") as follows: 0 0 —Hy —H ], (26)
veX(aY) 2 {v(v-a)"Y ' (v—a) <1} 51(612) 2(®y, — Gy, — HpVy)Sk, (27)
wherea and Y are given in Definition 1. If, for any given =002 (G + Hi)E(In @ I,,), (28)
0 <p <1, the following inequality then the following inequality holds:
_ Ty —1 _ <1-— N _ ~
E{(U a) Y (’U CL)} <1 p E{(karl _ xi,kJrl)TP;H_ll (karl _ xi,kJrl)} < 1. (29)
is true, then we have Proof: See Appendix VI-B. [ |

P{v e X(a,Y)} > p.
C. Distributed Estimator Design

1 In this subsection, a sufficient condition is provided for the
P& —%, solvability of the addressed probability-guaranteed distributed
1-p state estimator design problem. The desired estimator gains at
and then, on basis of Lemma 3, we immediately obtain theach time step can be acquired by solving the corresponding
following lemma. matrix inequalities.

Define a matrixP; by
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Theorem 3:Given a pre-specified) < p <1 and a Algorlthm 1 Distributed estimator deSign algorithm
family of positive definite matrice§*Px }repo,77- Under the Input: Topology informationy = (7, &,.%); Initial values:
condition given in Theorem 1, the design objective (11);0,%i0, Wij0, Wij0, Qij0, and Fy; Performance constraints
is satisfied if there exist families of non-negative scalafg?;;x}r>0, {Bx k>0 andp; Activation functiong(-); Other

{5571,3, ,(f), 23),5574,3,ﬂff’,ﬁ,ﬂfﬁ,ﬁi?}ke[oid] such that coefficients:a, €14, €2, €3;, Ux, andVj,; Maximum time step!.
1. Setk=0
2. if k< T then
_F’; . * * 3 Solve (30) for estimator gaingF; i, Gi k. Hij i }-
RnaiZk — 125 Pht * <0. (30) 4  Obtain one-step estimate ;. according to (8).
R, i%k 0 — 125 Pr+1 5. Obtain innovationz; ;. .
6: Solve (18) for tuning coef‘ficientsz(jl‘,),C and )\Z(.i)k.
Moreover, the estimator gaink; , G, and Hy;, can be 7-  ObtainWi; ., according to (17).

calculated via solving the corresponding matrix inequalities. & end if

Proof: Theorem 3 can be proved easily from Lemma 4
and Theorem 2 by taking,; = ﬁ‘ﬁkﬂ into account, and D. Optimization Problems

thus is omitted here. B |t should be noticed that within the design framework we
Remark 6: Theorem 3 provides a scheme to obtain theroposed in Subsection I1I-C, the acquired estimator parame-
desired estimator guaranteeing the state estimation errorstars could be a set if existing. Therefore, in this subsection,
confined within an allowable ellipsoidal area in probabilityve aim to present the optimization problems to seek the
p. Note that Theorem 3 has an inherent connection witbcally optimal estimator parameters by making use of trade-
Theorem 1. On one hand, the boundednesﬁ/gfk, ensured off between performance specifications.
by Theorem 1, is of help to restrict the state estimation errorOP1: Minimization ofQ;; . (in the sense of matrix trace)
Z; k; on the other hand, the satisfaction of the requiremetst ensure the minimal estimation errors of the NN weight
imposed on the state estimation errors, guaranteed by Theoreatrices (in the sense of weighted Frobenius norm)
3, contributes to constraWiM. In specific, Theorem 1 influ-  Corollary 1: Under the conditions given in Theorem 1, a
ences the state estimation via (37) and (53), while Theorenfanily of minimized matrices{Q;; x }xe[o,7) can be obtained
helps to regulate the tuning &F;; ; via state estimatg; , and in the sense of matrix trace if the following minimization
the resulting innovation characterized by formula (17). In sughtoblem is feasible:
a coupling yet collaborative way, the desired state estimation

min trace[Qij k+1] (31)
performance can be reached. (00D AD AP, Qi } /
Remark 7:Notice that the RLMI algorithm proposed in subject to (18)

this paper is based on LMI approach. As discussed in [2],

the computational complexity of an LMI system is bounded In the following, on basis of Corollary 1, we shall further
by O(2231log(% /<)) where & represents the row sizeZ present two optimization problems to guarantee locally opti-
stands for the number of scalar decision variablésis a mal state estimation performance from different perspectives.
data-dependent scaling factor aads relative accuracy set To this end, for brevity of development, denote a set of
for algorithm. For instance, let us now look at the conditiodariables by

proposed in Theorem 1, where the number of sensing nodes i » 1) a2) 43) 5@) 5(6) 5(6) A(7)

N, the iteration time i€’ + 1 (since the time interval i), T) & £ {70 G s B30 87,87 507 B3 B L

and the dimensions of variables are known freppe R"=, OP2: Minimization ofB; (in the sense of matrix trace) to
vik € R™, v, € R™ and u;, € R™. Moreover, we assume guarantee the locally optimal estimation subject to the fixed
thatr; , € R™ andx(z; ) € R"x. The RLMI-based algorith- pre-specified probability specification.

m is implemented recursively faf + 1 steps and, at each step, Corollary 2: Let p be given. Under the conditions given in
we need to solve the LMI (18) wit® = N2(1 +n, +n,n,) Theorem 2 and Corollary 1, a family of minimized matrices

rows andQ = NQ("i;nx + 4) scalar variables. Accordingly, {**}refo.r) can be ensured in the sense of matrix trace if the
the computational complexity of the proposed RLMI algorithrfPllowing minimization problem is feasible:

can be represented y((7'+ 1)PQ). We can now conclude min trace[ P 1] (32)
that the computational complexity of our proposed RLMI {Gk,PBri1}
algorithm depends linearly on the length of time intef/at 1. subject to (22)

It is worth mentioning that the study on LMI optimization is L .
very active in recent years within the communities of applied N€Xt, Supposep is time-varying and denote by, the
mathematics, control science and signal processing. We ¢§fPability criterion at instant. Define

expect substantial speedups in the near future. a2 1
The following algorithm provides a computing L —px

method to iteratively obtain the required estimator gains OP3: Minimization of q; subject to fixed}3; to determine
{Fi ks Gikes Hij i }- the lower bound on the probability criterion at each time step.
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Corollary 3: Let {x}reo,r) be given. Under the condi- follows:

tions in Theorem 3 and Corollary 1, the lower boundmnis [ 0.1+ 0.01cos(k + 1)
guaranteed if the following minimization problem is feasible: By, = 0.2+ 0.01 sin(k) } )
= [ 0.25
min  qp (33) LR 0.2401cos(k+1) |7
{Gk.ar} c 0.2
E26=1 0,15+ 0.1 sin(2k) } ’
[ 0.25 4 0.05sin(k
1< qp <400 B3 = 015 ()},
. —I'; * * r
subject to - (1) (e (D) (2)
j RotZe —aPr ) “0 Flog) = | 057 +0d5sin(@y)) +0.250 1 |
R, iZk 0 — Bt : 0.4cos(z; ) + 0.3z, + 0.6z,
o1 (20) 0.1521" + 0.35 sin(2z(") + 0.2z
1\Lk) = . )
The proofs of Corollaries 1-3 are quite simple on basis of 0.5 Sln(%(f)) + 0-1551(3) + 0-3551(:)
the obtained theorems, and are thus omitted here. [ 1 . 1 2
= . . B g (ax) = 0.3:05C ) 403 sm(argC ) + 1)+ 0.417,(C )
emark 8:So far, we have discussed the probability- 0.45 Cos(x(2)) +0.252% £ 0520 |7
guaranteed distributed state estimation problem for nonlinear - ) k ) k ) k
system over sensor networks under random falsified innova- () = 0.5 sin(az:,(C )) + O.4:c§C )+ 0-2$§c)
tions. The solvability of the addressed problem is cast into gtk 0.4 sin(x,(f)) +0.1x§f) +0.3x§€1) '

the feasibility of a set of recursive linear matrix inequalities. )

A methodology has been proposed which utilizes neuralVe Selecty, = 0.3cos(2k) and u(k) = 0.4sin(k). Set
networks to approximate the unknown falsified innovationg, = 1 @ndU = 1. It can be easily verified that Assumption 1
Within the established framework, the tuning parameters §fSatisfied. o _

NN weight matrices and the probabilistic ellipsoidal constraint S€t€1i = €2 = €3 = 3. Choose the activation function of
can be investigated systematically. The desired estimator gdfff neural networks as follows:

ensuring required performance criterion can be obtained by tanh(zi(lk))
solving the recursive linear matrix inequalities at each time P(2ik) = tanh(z(b)) .
ik

step. Three optimization problems are proposed to ensure the
sub-optimal estimation performances from different perspec-Assume that the number of sensor nodes is three, and the
tives. It should be emphasized that, it is not difficult to extenadjacency matrix? is set as follows:

our obtained results to the case where more performance 01 0
indices are considered simultaneously within the proposed -1 0 1
theoretical framework. 01 0

Remark 9:Our proposed algorithm possesses the following
merits: i) the recursive nature of the algorithm is a true reflec-
tion of the time-varying feature of the addressed estimatiGy

Setp = 0.8. The initial values in this simulation are selected
follows:

error dynamics; ii) the idea of using NN to approximate the B0 = 2.0 } Gao = [ 1.5 }
unknown falsified innovations is of more practical significance R [ O I 1.8 |7

in comparison to those existing methods where the attack . [ 1.7 1.8

functions are usually assumed to be known to the defenders; T30=1 19 } v To = [ 1.5 ] ’

and iii) within the established generic framework, it is not r 0.6887 —0.0588

difficult to apply our developed methodology to deal with sys- Py = —0.0588  0.7390 } ;

tems with more complex dynamics such as quantization effects -

and Markovian jump parameters, or handle more performance vi/ij_o = 10 } . Qijo= [ 20 0 ] )
indices such agi., specification and robustness. ' 101 ’ 0 20

The random falsified innovations are governed by the fol-

lowing parameters:
IV. A NUMERICAL EXAMPLE

0.15sin(2})

In this section, an illustrative example is presented to 0'30COS(Z£213)
demonstrate the usefulness of the proposed algorithm in thiBy solving the optimization problems in Corollaries 1-3,
paper. First, for a vector € R?, denote byc") andc® the the simulation results are obtained in Figs. 1-4. Specifically,
first and second entries of respectively. Figs. 1-2 depict the trajectories of the system state(i.e.,

Consider a nonlinear system whose parameters are giver;rg% and :c,(f)) and the corresponding estimates. Figs. 3-4

o= 067 X(Zi,k) = [
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present the trajectories of the estimation err@f# and 17(2)
respectively. It can be seen from Fig. 1 and Fig. 2 that th
developed technique can estimate the entries of stateafj.e.,
and x) with a satisfactory precision, which is also demon
strated via Fig. 3 and Fig. 4 where both the estimation erro
are confined within the required range. From the simulatio
figures we can clearly observe that the proposed algorithm c
effectively provide state estimates on each sensor node.
Next, we proceed to show the superiority of the propose
algorithm on mitigating the influence from falsified innova-
tions over the conventional distributed estimator characteriz:
by (3). A comparative simulation is carried out where we
apply the conventional algorithm (3) to generate local sta
estimates under the identical manipulations of innovation
The simulation results by using the conventional algorithr
are recorded in Figs. 5-8. In specific Figs 5-6 plot the
trajectories of the system statg (i.e. xé andxk )) and their Fig. 2.
estimates, respectively. Figs. 7-8 depict the evolutions of the

40

Trajectories ofrl(f) and :25212 (by estimator with NN).

estimation errorsc(k) andx( k) respectively. From the figures

we can see that the conventional algorithm is also capable ! . N‘ o1
—=%---Node
providing state estimation with certain precision. However, il 08 o Node 2|1
comparison to our developed approach, the conventional alc o6l ~o--Node 3|
rithm shows worse estimation performance in the existence
falsified innovations. E
=
2
=
3 T é
28+ ay,) —o-dy %
e f”(lli)c o i) £ o4l 1
261 = =
-0.6 q
24 q
== 081 ]
& 22 q
1% 2% 7 0 5 10 15 20 25 30 35 40
S rodod a 8 % . " Time (k)
=5 187 £ }Rw\ /ﬁ /@Y@ s Y
\ Q \ g\ %\ w
16 %&g%%w%% "y "Wfi Fig. 3. (1) (by estimator with NN).
14 r \ i
1.2 q
1 T
1 . . . . . . . —-=%---Node 1
0 5 10 15 20 25 30 35 40 08| —-%--Node 2|
Time (k) o6l --a--Node 3| |
. . . (1) (1) . . < L |
Fig. 1. Trajectories ofc,’’ andz,’, (by estimator with NN). g 04
) - @
% 0.21;’t f‘r F\J EZ\S,Q I’TK?E‘\ ﬁ X /\ 7,
= K EoRR 9’9@\ % é}@@ X7 Q%X =
V. CONCLUSION Z 02l O ¥ T B W} y Y
. . . " 1 P
In this paper, we have investigated the distributed sta £ 43 | ‘z; ]
. . . Y 1
estimation problem for a class of general nonlinear syster o5k o o |
s subject to falsified innovations. A neural-network-base
mechanism has been proposed to approximate the unkno o8y 1

manipulated data, thereby mitigating the effects on the sta
estimation. With the help of certain convex optimizatior

methods, sufficient conditions have been established for the

solvability of the addressed estimator design issue, ensurirg 4-

that the state estimation errors at each sensing node reside

within required ellipsoidal regions in a prescribed probability.

The desired estimator gains have been given in terms of the established framework, optimization problems have been
solution to a set of recursive matrix inequalities. On basis obnsidered with the aim to ensure locally optimal estimation

10
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20
Time (k)

(2) (by estimator with NN).
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Proof of Theorem 1
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on.
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true. Then, we only need to verify that at time step1, under

A. Ribeiro, I. Schizas, S. Roumeliotis and G. Giannakis, Kalman filterinthe condition given in this theorem, the following inequality

in wireless sensor network$£EE Control Systems Magazineol. 30,
pp. 66-86, 2010.

S. Seifzadeh, B. Khaleghi and F. Karray, Distributed soft-data-
constrained multi-model particle filtefEEE Transactions on Cybernet-
ics, Vol. 45, No. 3, pp. 384-394, 2015.

B. Shen, Z. Wang, D. Wang and H. Liu, Distributed state-saturated _

recursive filtering over sensor networks under Round-Robin protocol, W;j k41 =Wj;

IEEE Transactions on Cyberneticyol. 50, no. 8, pp. 3605-3615,
Aug. 2020.

B. Shen, Z. Wang and Y. S. Hung, Distributéfl,, -consensus filtering in
sensor networks with multiple missing measurements: The finite-horizon
case,Automatica Vol. 46, No. 10, pp. 1682-1688, 2011.

Y. Sun, J. Mao, H. Liu and D. Ding, Distributed recursive filtering for

also holds:

tr[WirgF',kH Q;}Hl Wije1] < 1. (34)

To this end, it is readily from the tuning law (17) that

discrete time-delayed stochastic nonlinear systems based on fuzzy rulesPefine a functionp(-) : R™>*™ — R™" as follows:

Neurocomputingvol. 400, pp. 412-419, 2020.
H. Tan, B. Shen, K. Peng and H. Liu, Robust recursive filtering for
uncertain stochastic systems with amplify-and-forward rel&y®rna-

- Wij,k+1
=Wi; — (ADWijk + Moy ko™ (2ik))
=(1 = A OWis + A0 Wijk — Ay o™ (2i.0)-
(35)
P(A) 2 [ A 4@ Alm) }T

tional Journal of Systems Scienal. 51, no. 7, pp. 1188-1199, 2020.where A®) stands for the.-th row of matrix A. Then, by

E. Tian, Z. Wang, L. Zou and D. Yue, Probabilistic-constrained filteringjapn

for a class of nonlinear systems with improved static event-triggered
communication/nternational Journal of Robust and Nonlinear Control
Vol. 29, No. 5, pp. 1484-1498, 2019.

oting

(1) 72
wi W

17, ],

e(Wijk) £ [
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we know that the following inequality
tr[Wg,kQ;j,lkWij-,k] <1
can be equivalently expressed by
@T(Wij,k)Qi_j}k@(Wij,k) <L

Consequently, according to [3], taking into acco@y . =

(36)

Mij,kMg,k, we have
e(Wijk) = Mij krij i (37)
wherer;; 5, satisfies
Tg;-_’krij_,k <1. (38)
By defining a vectorr;; ;, as follows:
mar 2 [ 1 rh T 1T, (39)
we rewrite the error dynamics (35) by
e(Wijha1) = TijkTijk- (40)

Next, in terms ofr;; &, the inequalityr; .7~ < 1 can be

reformulated by

W;l;ykMij,kﬂ'ij,k S 0 (41)
where M;; , = diag{—1,1,0}.
Similarly, based on Assumption 2, one has
tr[W; Wis] < €3, (42)

which, in terms ofr;; 1, is equivalently described by

T Wi e < 0 (43)
whereW;; , £ diag{—e¢},,0,I}.
On the other hand, it is easily inferred that
tr[Wz€,k+1Q;j}k+1Wij,k+l] <1 (44)
is equivalent to
0 Wighr1) Qi ¢ Wigern) < 1, (45)
which can be further expressed as follows:
71 (V5.6 Qi opaa Tigk — diag{1,0,0}) 7, < 0. (46)

Therefore, we know from Lemma 1 (S-procedure) that, if there
such that the following

(2)

exist positive scalarsgl(.;)k and ¢;7

inequality holds:
Y51 Qii a1 Yok — diag{1,0,0}
_Qz(‘gl‘,)kMij,k - QEJQ‘,)kWij,k <0, 47)

then inequality (45) also holds.

Finally, according to Lemma 2 (Schur Complement Equiv-
alence), we derive that (47) holds if and only if (18) holds:.

The proof is complete now. [ |

11

B. Proof of Theorem 2
Proof: The proof is performed by resorting to mathe-
matical induction approach. First, it is readily inferred from
Assumption 3 that
E{z] Py '#i0} < 1. (48)
Second, suppose that at step- 0, the following inequality
holds:
B{&} P &} < 1. (49)

Then, on basis of the principle of mathematical induction,
the rest of the proof is to demonstrate that, under the given
condition, inequality (29) also holds at time steg-1. In fact,
since (49) is true, we can always find a vectgy, € R"s
(i=1,2,...,N) with E{s]}s; .} <1 such that

T = ji,k + Sksi_,k. (50)

By denotings; = coly{s; 1} andSy = diagy{Sk}, (50)
is described by
& = g + Spsi.

Hence, (16) is rewritten by

Fra1 =fx — Frip + (@ — G0y, — HpWy)Sksi
+ Lp1k — GeXpar — HiXpar + Brui
— (Gr +Hi) (AN @ Ly, ) pre — axHp O

— My o Wi — aHi, o Wiy
N
+aY On, HioWi(1y @ Rn, i)k
i=1
=fr — Frip + (P — Gu W — 11 Uy)Shsi
+ Lpik — GeXpar — HipXpor + Bruy
— (G + Hi)E(An @ Ly, ) pur — (& + G ) HiOn
— (@ + ag)(Hi o W)k — (a + ) (Hi 0 W) b

(51)

N
+a Z O, .i(Hr o W) (An ® R, i) Pk

i=1
=fr — Frip + (P — Gu W — 11 Uy)Shsi
+ Lpik — GpXpar — HipXpoar + Brvg
— (G + Hi)Ex(An @ Ly, ) pur — (& + G ) HyOn
N
— (& + ax) Z O, iHiWi kb
i=1
— (@ + @) (Hi © Wi) pw
N
+aY O, (Mo Wi)(An ® R, i)k (52)
i=1

where

=
~
e

(> 1> >

diag{Wi1 k, Wia ks - -, Win i}
coly{p1ir} = A1Sksk,
coln{p2ix} = A2Sksp.

P1k
P2k

It is known that, under the condition of Theorem 1, we
acquire

e(Wijk) = Mijkrij i (53)
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with vectorr;; satisfyingriTj_krij_,k < 1.

By defining
ok 21, @ ¢ (zi),
we have
Wijkdi =ouo(Wijr) = o Myj k73 k-
Therefore, one obtains
Wi rdr =diagy{dr} - diag{ M1 k, Mig.ge, .. ., Min i} - Tk
EM; Tk

wherer; , £ [ 7, Tha TNk }T.

By defining a new vectoc, as

T
<’€é[ 1 Sg P?k ng Vg NE 51? Tg]

wherer, £ [ 1l 75, "Nk ]
state estimation error are formulated as follows:

Tyt = Sk 2 Sk + anZe) G (54)
where
=y, 2 [ = =P L (G +HY)S B
=19 @+ aHy —(a+an) } ’
M A F — Fudy — (@ + ) (Hy o Wi)én
N
+ Z Gnm,i(Hk o Wk)(ljv ® Rny,i)(bka
i=1
(12) £(Pp — Gy — Hi Vi) Sk,
Egﬁ) £ — (Gr + Hi)E(In ® I,,),
2[5 =2 L —(GrHOS B

=9 —aH, —a, } :
E (D 27— Fudy — a(Hy, o W)y,

N
+ 072 On,.i(Hr o W) (In ® R, i) bk,
=1
St~ HroWi)gr 0 0 0 0 0 Hp 4 ],
f%ﬁk Gnr,szMz ks

A 2| Ax Sk ANk |-

It is already known that the following conditions hold:
E{s?kszk} <1,
V,?Vk_luk <1,
pe Uy e <1,
T;ijkTij,k <1,
[16:]] < €3,

which can be equivalently expressed by utilizifagas follows:

E {¢Fdiag{~1,6.,,.,0,0,0,0,0,0} ¢} <0,
Cdeia’g{_l,0,0,0, V,;l,O,O,O}Ck < O7

T, the dynamics of

12
nglag{_lv Oa 07 Oa 07 Uk_17 05 O}Ck S 07

Ldiag{—N?0,0,0,0,0,0, Iy2}C <0,
¢ diag{—e3;,0,0,0,0,0,0,, ;,0}¢ < 0.

Moreover, from

[Aul <1 and [Agll <1
we have
prlri,k:pli,k: - SE;@SES]CSZ";C < 07

P;Fi,kpzi,k - SEkSgSksi_’k <0,
which can be equivalently described by
Fdiag {0, -0y, iSF Sk, ©,,.4,0,0,0,0,0} G < 0,

nglag {O, _('—)ns,isl;rsk) 07 @ng,i) 07 0) 07 0} Ck' S 0

Next, by virtue of Lemma 2 (Schur Complement Equiva-
lence), we know that inequalities (22) hold if and only if
EARY PR, iEk
+0’2EER;EI71:P/€+1RHI,1;EIC - Fk S 07 (55)

which, by considering the statistical property af. (i.e.,
formula (21)), implies that

E{(Ek + dkék)T'RT PkJrl'Rnui(ék + dkék)} —I'y <0.
(56)

By taking (23) and (54) into account, inequality (56) is
equivalent to

E{i;rk-&-lpk_jlji,k‘Fl} - nglag{l, 07 07 07 07 07 07 O}Ck
Zﬁ )¢ diag{~1,0,,.:,0,0,0,0,0,0}C

_ﬂ]f)cgdlag{_lv 07 Oa 07 Vk_la 07 Ov O}Ck:
8P ¢ diag{—1,0,0,0,0,U;,0,0}¢x
—5(4><Ediag{—1v2, 0,0,0,0,0,0, In2}Cs

Zﬂ ¢Fdiag{—es;,0,0,0,0,0,0,,.:, 0}
ZB ¢ diag{0, =0, iSF Sk, On,.i,0,0,0,0,0} ¢

ZB ¢Fdiag{0, -0, :SFSk,0,6,,.4,0,0,0,0}Cx
go. (57)
We now acquire from Lemma 1 (S-procedure) that

E{fzkﬂpl;rllii,kﬂ}

—(¢Fdiag{1,0,0,0,0,0,0,0}¢, <0, (58)

or equivalently,
E{& 1 Prfi g} < 1, (59)
which indicates the proof is complete. [ |
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