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Probability-Guaranteed Distributed Secure
Estimation for Nonlinear Systems over Sensor

Networks under Deception Attacks on Innovations
Lifeng Ma, Zidong Wang, Yun Chen, and Xiaojian Yi

Abstract—This paper studies the distributed secure state es-
timation problem for a class of general nonlinear systems over
sensor networks under unknown deception attacks on innova-
tions. At each sensing node, an estimator is designed to generate
the state estimate by making use of the local measurements in
combination with the neighbours’ information shared via the
communication network. During the transmission of innovations
among nodes, the data are maliciously falsified by adversaries in a
random way. A neural-network-based mechanism is put forward
to approximate the unknown falsified innovations with the aim to
mitigate the effects on the estimation performance. The objective
of the addressed problem is to develop a distributed estimation
approach to jointly estimate the system states as well as the
unknow deception attacks, ensuring that the state estimation
errors at each sensing node reside within required ellipsoidal
regions with a pre-specified probability. With the help of certain
convex optimization methods, we obtain sufficient conditions
for the solvability of the addressed problem and the desired
estimator gains can be iteratively computed by solving a series of
matrix inequalities. On basis of the proposed framework, some
optimization problems are presented to determine sub-optimal
estimator parameters from different perspectives. Finally, the
applicability of the developed algorithms is validated via a
numerical simulation example.

Index Terms—Distributed estimation, set-membership state
estimation, deception attack, falsified innovations, probability-
guaranteed estimation, neural networks

I. I NTRODUCTION

The past decades have witnessed an exponential growth of
the deployments of sensor networks in various fields such
as military surveillance and environment detection [6], [13],
[29], [31], [32], [45], [46], [48]. A typical sensor network
comprises a group of spatially dispersed sensing nodes with
basic capabilities of sensing, computing and communicating.
To date, considerable research effort has been devoted to
sensor networks from many different perspectives, and the
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distributed state estimation problem has stirred particular
interest, see e.g. [10]–[12], [19], [24], [34], [41] for some
recent works. Compared with the traditional single-sensor
systems, the sensor networks could collect more information in
a comprehensive and complementary way via the cooperation
among individual nodes, thereby making the corresponding
estimation algorithms more robust, accurate and flexible. As
is widely recognized, in the context of sensor networks, the
scalability issue and the computational complexity are two
major concerns for the conventionalcentralizedestimation al-
gorithms, and this gives rise to the necessity of developing the
so-called distributed state estimation/filtering problem where
each individual sensing node provides the state estimates
for the targets of interest through making use of the local
measurements in combination with the information shared by
neighbours [4], [5], [15], [25], [26], [30], [37], [39].

So far, a great number of research results concerning dis-
tributed state estimation have been available in the literature,
among which the most popular techniques are Kalman filtering
[14], [18], [20], [23], [30] and H∞ approach [7], [33],
[37]. Note that the performance of Kalman filtering largely
depends on whether the noises meet the Gaussian assumption
[28], [35], while the H∞ approach is only applicable for
handling the so-called energy-bounded disturbances [21]. In
many practical scenarios, unfortunately, neither Gaussian nor
energy-bounded assumptions could adequately reflect the noise
properties. For instance, in electronics and electrical engineer-
ing, the disturbance caused by the man-made electromagnetic
interference is more suitable to be modeled by the so-called
unknown-but-bound (UBB) noise [1], [8]. By now, several
approaches have been exploited to study the state estimation
issue against UBB noises (see e.g. [1], [3], [8], [16], [25],
[47]), most of which are based on the linear matrix inequality
approach and its variants in aset-membershipframework.

Aside from the exogenous noises, another factor that comes
with the use of open yet unprotected communication networks
is the malicious threats from adversaries. It has now been
widely recognized that cyber-attacks against the networks are
prevalent that behave as a major source of the performance
deterioration or even the system crash [9], [43], [44]. In the
context of sensor networks, it is worth noting that a large
part of malicious attacks against the target systems are per-
formed by injecting specific signals into the intercepted data
during the information transmission. By utilizing the falsified
information, the adversaries are able to deceive the receivers,
thereby deteriorating or manipulating system performances
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[17]. As the reliability and safety are among the fundamen-
tal requirements of communication networks, the security-
relevant issues have provoked an ever-growing attention, see,
e.g. [17], [22], [42] for some recent publications. Most existing
results, however, have been based on the assumption that the
falsified signals are known and linear, and such an assumption
is often unrealistic in practical scenarios. As such, in this
paper, we make dedicated efforts to handleunknowndeception
attacks on the innovations by proposing a novel algorithm
for the distributed state estimation problem with the aid of
artificial neural networks (NN).

In practical engineering, it is often unnecessary (and u-
nattainable) to design controllers/estimators which persistently
achieve the desired performance indices with a 100% confi-
dence level. Instead, one would prefer to follow the so-called
probability-guaranteed design principle which aims at reaching
the desired indices with a satisfactory chance (less than1)
[36], [40]. Such a concept could find wide applications in
various engineering branches, for example, the target tracking
issue and weapon shooting tests [27]. The advantage of such
a concept lies in its capability of ensuring satisfactory perfor-
mance while i) avoiding unnecessarily stringent requirements
and ii) leaving additional design freedom for other system
specifications.

In response to the above discussions, this paper aims to
develop a probability-guaranteed distributed state estimation
approach over sensor networks where the communications
among nodes are under the threat of malicious manipulations.
Artificial neural networks are utilized to approximate the
unknown falsified innovations during data propagation among
nodes. This would be a very challenging problem due to
some essential difficulties summarized as follows. 1) For
the unknown falsified innovations, it is invariably arduous
to model the dynamical characteristics via a neural network
and yet facilitate the subsequent development. 2) The cross
coupling between the desired estimator parameters and the
NN weight matrices brings considerable difficulties in analysis
and design. 3) The joint estimation of the system state and
falsified innovations brings extra challenges when determining
the estimator gains and NN weight matrices. Consequently, it
is our main purpose to tackle these challenges by investigating
the addressed probability-guaranteed secure distributed state
estimation issue.

The contributions of this paper can be identified as follows:i)
the system under consideration is modeled by a nonlinear
difference equation, which is much more general than those
studied in literature and could reflect engineering practice in a
more comprehensive way; ii) in order to depict appropriately
dynamical behaviors over a finite time interval of interest,
a new transient performance index is defined for system at
each time step; iii) with the purpose of avoiding unnecessarily
stringent requirements, a probabilistic design principle is
put forward aiming to achieve desired performances with
a satisfactory chance; and iv) a joint estimation algorithm
is provided to simultaneously estimate the system state and
falsified innovations.

Notation R
n denotes then-dimensional Euclidean space

and 1n denotes ann-dimensional column vector with all

ones.In denotes the identity matrix ofn dimensions. The
notation A ≥ B (respectivelyA > B), where A and B
are symmetric matrices, means thatA − B is positive semi-
definite (respectively positive definite). For matricesX and
Y , their Kronecker product is denoted asX ⊗ Y . For a
vector x, ‖x‖ = xTx. For a matrixZ, tr[Z] means the
trace of matrixZ, and‖Z‖F =

√

tr[ZTZ] is the Frobenius
norm of Z. diag{X1, X2, . . . , Xn} denotes a block diagonal
matrix whose diagonal blocks are given byX1, X2, . . . , Xn.
The notationdiagn{Xi} represents the block diagonal matrix
diag{X1, X2, . . . , Xn} andcoln{xi} denotes the column vec-
tor [xT

1 xT
2 . . . xT

n ]
T. P{X} means the occurrence probability

of the event ‘X ’.

II. PROBLEM FORMULATION

The sensor network under consideration consists ofN sen-
sors with the communication topology described by a directed
graphG = (V , E ,L ), whereV = {1, 2, ..., N} represents the
set of sensing nodes,E ⊆ V ×V represents the set of edges,
and L = [θij ]N×N represents the nonnegative adjacency
matrix. Specifically,θij > 0 means that sensorj can send
information to sensori (in such a case,j is called a neighbour
of i), whileθij = 0 indicates there are no data transmitted from
nodej to nodei. Denote byNi , {j ∈ V |(i, j) ∈ E } the set
of neighbours of nodei. Moreover, we assume thatθii = 0
for all i ∈ V .

Consider the following nonlinear system defined on the
horizon [0, T ]:

{

xk+1 =f(xk) +Bkνk

yi,k =gi(xk) + Ei,kµk

(1)

where xk ∈ R
nx is the system state;yi,k ∈ R

ny is the
measurement output of sensor nodei; νk ∈ R

nν andµk ∈ R
nµ

are the process and measurement disturbances;Bk andEi,k

are known real-valued matrices of compatible dimensions;
f(xk) : Rnx 7→ R

nx and gi(xk) : Rnx 7→ R
ny are smooth

nonlinear functions.
Assumption 1:The noisesνk andµk satisfy the following

conditions:
{

νk ∈ Vk , {νk : νTk V
−1
k νk ≤ 1}

µk ∈ Uk , {µk : µT
kU

−1
k µk ≤ 1}

(2)

whereVk > 0 andUk > 0 are known matrices with suitable
dimensions.

Before giving the structure of distributed NN-based state es-
timator to be designed, we first recall the form of thetradition-
al distributed estimators. For each nodei (i = 1, 2, . . . , N),
the local state estimator has the following form:

x̂i,k+1 = Fi,kx̂i,k +
∑

j∈Ni

θijHij,k(yj,k − gj(x̂j,k))

, Fi,kx̂i,k +
∑

j∈Ni

θijHij,kzj,k (3)

where x̂i,k represents the state estimate of nodei; zi,k ,

yi,k − ŷi,k is the innovation information witĥyi,k , gi(x̂i,k)
being the estimated output; and the matricesFi,k andHij,k

are estimator gains.
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The most essential feature of a distributed estimation algo-
rithm is that each local estimator generates state estimates by
utilizing its own measurements in combination with neighbors’
information shared via communication networks according to
the interaction topology. Such an appealing feature would
be jeopardized with deteriorated estimation performance in
the case that the networks are under the threat of malicious
manipulations, and this gives rise to the motivation for us to
consider the secure estimation issue in this paper.

Consider the information propagation process from node
j to node i. The adversary first intercepts the innovation
information sent by nodej (i.e., zj,k). Then, by using the
interceptedzj,k, the adversary generates a signalz

(a)
j,k which

will be utilized to inject into the original innovation. The
injected signalz(a)j,k is assumed to have the following form:

z
(a)
j,k = χ(zj,k) (4)

whereχ(·) : Rny 7→ R
ny is an unknown nonlinear function

defined on a compact set.
Taking (4) into account, the falsified innovation sent from

nodej (after being manipulated) is described as follows:

z̃j,k = zj,k + αkz
(a)
j,k = zj,k + αkχ(zj,k) (5)

whereαk is a Bernoulli distributed random sequence satisfying
Prob{αk = 1} = ᾱ. Subsequently, the adversary will continue
to send such a manipulated message (5) to nodei with the aim
to deteriorate the system performance.

Remark 1: It should be mentioned that, due to the com-
plexity of sensor networks, the adversary cannot perform the
attacks successfully all the time but has certain limitations
on ability. The Bernoulli distributed random variableαk is
introduced to describe the constraints or limitations imposed
on the ability of the adversary. In other words, the innovation
will be falsified with a certain success rate.

On the other hand, at nodei, the local estimator tries to
provide the state estimate by using local measurements as well
as the innovation information sent by its neighboursj ∈ Ni.
Taking (5) into account, we shall use the neural networks to
approximate the unknown functionχ(zj,k) with the hope to
mitigate the effects from the falsified innovations as follows:

χ(zj,k) = Wjφ(zj,k) + δj,k (6)

whereWj is the ideal weight matrix of the neural network,
φ(·) is the activation function andδj,k is the approximation
error.

Assumption 2: [38] The ideal weight matrixWj , the acti-
vation functionφ(·) and the approximation errorδj,k satisfy:

‖Wj‖F ≤ ǫ1j , ‖φ(·)‖ ≤ ǫ2, ‖δj,k‖ ≤ ǫ3j (7)

whereǫ1j , ǫ2 andǫ3j are known positive scalars.
We are now in the position to present the structure of the

local estimator by taking into account the falsified innovations.
In this paper, the local estimator on nodei is reconstructed as
follows:

x̂i,k+1 =Fi,kx̂i,k +Gi,k(yi,k − ŷi,k)

+
∑

j∈Ni

θijHij,k

(
z̃j,k − ᾱŴij,kφ(zi,k)

)
(8)

whereFi,k, Gi,k and Hij,k are estimator parameters to be
designed;Ŵij,k is the estimate of the weight matrixWij which
is defined as the ideal weight matrix forWj at sensing node
i.

Remark 2: It is worth noting that the innovations received
by nodei are not the original ones but containing the injected
signals, which implies that the true value ofzj,k are not
available on the side of nodei. Therefore, in (8), instead of
zj,k, we shall utilize the local innovationzi,k as the input of
the neural networks to approximate the injected signalχ(zj,k).
On the other hand, it is obvious that, on the side of nodei, we
cannot obtain the exact value of the ideal weight matrixWij

due to the lack of original innovations sent fromj. Therefore,
in (8), we use the estimated̂Wij,k to replace the ideal value of
Wij , and an associated updating law forŴij,k will be designed
later in Subsection III-A for tuningŴij,k at each time step
according to the state estimation performance adaptively.

Definition 1: An ellipsoidX(a, Y ) in R
n is defined by

X(a, Y ) , {x ∈ R
n : (x− a)TY −1(x− a) ≤ 1} (9)

wherea ∈ R
n represents the center andY > 0 is a positive

definite matrix with appropriate dimension.
To give the design objective, we define the system state

estimation error byx̃i,k , xk − x̂i,k and the NN weights
tuning error byW̃ij,k , Wij − Ŵij,k.

The following assumption concerning the initial conditions
on the estimation errors will be needed for our further devel-
opment.

Assumption 3:The initial condition ofW̃ij,0 and x̃i,0 sat-
isfy

tr
[

W̃T
ij,0Q

−1
ij,0W̃ij,0

]

≤ 1

(x0 − x̂i,0)
TP−1

0 (x0 − x̂i,0) ≤ 1

whereQij,0 and P0 are known positive definite real-valued
matrices.

It is the aim of this paper to design the estimator gains
Fi,k, Gi,k and Hij,k in (8) such that the state estimation
errors at each sensing node satisfy the following probabilistic
ellipsoidal constraint:

P{xk ∈ X(x̂i,k,Pk)} ≥ p (10)

or, equivalently,

P{x̃T
i,kP

−1
k x̃i,k ≤ 1} ≥ p (11)

wherePk > 0 is a pre-specified matrix andp is a pre-specified
scalar satisfying0 < p < 1.

III. M AIN RESULTS

In this section, we will discuss the distributed state esti-
mation issue subject to falsified innovations. First, two useful
lemmas are introduced.

Lemma 1: (S-procedure [2]) Define a series of quadratic
functionsκ0(·),κ1(·),. . .,κι(·) with respect to the variablea ∈
R

n as κj(a) , aTYja whereY T
j = Yj (j = 0, . . . , ι). If
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there exist a sequence of non-negative scalars{ǫ1, ǫ2, . . . , ǫι}
satisfyingY0 −

∑ι

j=1 ǫjYj ≤ 0, then we have the following
derivation:

κ1(a) ≤ 0, . . . , κι(a) ≤ 0 → κ0(a) ≤ 0.

Lemma 2: (Schur Complement Equivalence) For the matri-
cesY1,Y2,Y3 whereY1 = YT

1 and0 < Y2 = YT
2 , the matrix

inequalityY1 + YT
3 Y

−1
2 Y3 < 0 if and only if

[
Y1 YT

3

Y3 −Y2

]

< 0 or

[
−Y2 Y3

YT
3 Y1

]

< 0.

By using Taylor expansion technique, we describef(xk)
andgi(xk) as follows:

f(xk) = f(x̂i,k) + Φi,kx̃i,k + Li∆1ix̃i,k (12)

gi(xk) = gi(x̂i,k) + Ψi,kx̃i,k +Σi∆2ix̃i,k (13)

whereLi ∈ R
nl andΣi ∈ R

nΣ are known matrices;∆1i ∈
R

nl×nx and∆2i ∈ R
nΣ×nx are unknown matrices satisfying

‖∆1i‖ ≤ 1 and ‖∆2i‖ ≤ 1; Φi,k and Ψi,k are obtained as
follows:

Φi,k ,
∂f(x)

∂x

∣
∣
∣
x=x̂i,k

, Ψi,k ,
∂gi(x)

∂x

∣
∣
∣
x=x̂i,k

. (14)

Remark 3: In (12) and (13), the termsLi∆1ix̃i,k and
Σi∆2ix̃i,k account for the truncation errors due to the ne-
glected higher order terms in the Taylor series expansion of the
corresponding nonlinear functions. Alternatively,∆1i and∆2i

can also be illustrated as uncertain terms that are employed to
describe the modeling errors in the matricesΦi,k and Ψi,k,
respectively. The readers are referred to [3] for a rigorous
justification of the validity of such a representation for the
linearization error.

Then, the one-step estimation error dynamics are acquired
as follows:

x̃i,k+1 =xk+1 − x̂i,k+1

=f(xk) +Bkνk

−
(

Fi,kx̂i,k +Gi,k(yi,k − ŷi,k)

+
∑

j∈Ni

θijHij,k

(
z̃j,k − ᾱŴij,kφ(zi,k)

))

=f(x̂i,k) + Φi,kx̃i,k + Li∆1ix̃i,k +Bkνk

−
(

Fi,kx̂i,k +Gi,k

(
Ψi,kx̃i,k +Σi∆2ix̃i,k + Ei,kµk

)

+
∑

j∈Ni

θijHij,k

(
Ψj,kx̃j,k +Σj∆2j x̃j,k + Ej,kµk

+ αkWijφ(zj,k) + αkδj,k − ᾱŴij,kφ(zi,k)
))

.

(15)

For brevity of development, we define

ξk , colN{xk}, x̂k , colN{x̂i,k}, x̃k , colN{x̃i,k},

f̂k , colN{f(x̂i,k)}, ĝk , colN{g(x̂i,k)}, δk , colN{δi,k},

φk , colN{φ(zi,k)}, ηk , colN{yi,k}, Bk , 1N ⊗Bk,

Gk , diagN{Gi,k}, Fk , diagN{Fi,k}, Ek , diagN{Ei,k},

W , [Wij ]N×N , Ŵk , [Ŵij,k]N×N ,

L , diagN{Li}, Φk , diagN{Φi,k},

Ψk , diagN{Ψi,k}, Σ , diagN{Σi},

∆1 , diagN{∆1i}, ∆2 , diagN{∆2i},

Θι,i , diag{0, . . . , 0
︸ ︷︷ ︸

i−1

, Iι, 0, . . . , 0
︸ ︷︷ ︸

N−i

},

Rι,i , (1TN ⊗ Iι)Θι,i, ι = {nx, ns, ny, nΣ}.

Then, we rewrite the estimation error dynamics in the follow-
ing form:

x̃k+1 =f̂k +Φkx̃k + L∆1x̃k + Bkνk

−Fkx̂k − GkΨkx̃k − GkΣ∆2x̃k

− GkEk(1N ⊗ Inµ
)µk −HkΨkx̃k −HkΣ∆2x̃k

−HkEk(1N ⊗ Inµ
)µk − αk(Hk ◦W)φk

+ ᾱ
N∑

i=1

Θnx,i(Hk ◦ Ŵk)(1N ⊗Rny ,i)φk

=f̂k −Fkx̂k +
(
Φk + L∆1 − GkΨk

− GkΣ∆2 −HkΨk −HkΣ∆2

)
x̃k

+ Bkνk − (Gk +Hk)Ek(1N ⊗ Inµ
)µk

− αkHkδk − αk(Hk ◦W)φk

+ ᾱ

N∑

i=1

Θnx,i(Hk ◦ Ŵk)(1N ⊗Rny ,i)φk (16)

whereHk ,
[
θijHij,k

]

N×N
. Note that sinceθij = 0 when

j /∈ Ni, Hk is a sparse matrix described by

Hk ∈ Tnx×ny

where Tnx×ny
,

{
T = [Tij ] ∈ R

Nnx×Nny

∣
∣Tij ∈

R
nx×ny , Tij = 0 if j /∈ Ni

}
. Moreover, in equation (16),

for two block matricesA = [Aij ]N×N andB = [Bij ]N×N

whereAij andBij are matrices with compatible dimensions,
the product ofA ◦B is defined byA ◦B , [AijBij ]N×N .

A. Tuning ofŴij,k

The adaptive tuning law of the estimated weight matrix
Ŵij,k is designed as follows:

Ŵij,k+1 =λ
(1)
ij,kŴij,k + λ

(2)
ij,k̟kφ

T(zi,k) (17)

where

̟k , ᾱ
∑

j∈Ni

θijH
T
ij,kΨ

T
i,k+1zi,k+1

and λ
(1)
ij,k and λ

(2)
ij,k are positive tuning scalars that will be

determined later.
Remark 4:The adaptive tuning law (17) is proposed ac-

cording to the gradient descent algorithm aiming to minimize
the cost function defined byJ , ‖zi,k+1‖ = ‖yi,k+1−ŷi,k+1‖.
The tuning scalarsλ(1)

ij,k andλ(2)
ij,k will be co-designed with the

parameters of state estimators subsequently.
The following theorem gives a sufficient condition under

which the matrix W̃ij,k will be bounded in the sense of
weighted Frobenius norm.
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Theorem 1:For nonlinear system (1), the tuning law
of Ŵij,k is given by (17). Let the family of matrices
{Qij,k}k∈[0,T ] be given. If there exist families of positive

scalars{̺(1)ij,k, ̺
(2)
ij,k}k∈[0,T−1] and families of tuning scalars

{λ
(1)
ij,k, λ

(2)
ij,k}k∈[0,T−1] satisfying:

[
Ωij,k ∗
Υij,k −Qij,k+1

]

≤ 0 (18)

where

Qij,k ,Qij,k ⊗ Iny
,

Ωij,k ,diag{−1 + ̺
(1)
ij,k + ǫ21j̺

(1)
ij,k,−̺

(1)
ij,kI,−̺

(2)
ij,kI},

Υij,k ,

[

−λ
(2)
ij,k̟k ⊗ φ(zi,k) λ

(1)
ij,kMij,k (1− λ

(1)
ij,k)I

]

with Mij,k being a factorization of the matrixQij,k (i.e.,
Qij,k = Mij,kM

T
ij,k), then the following inequality holds:

tr[W̃T
ij,k+1Q

−1
ij,k+1W̃ij,k+1] ≤ 1. (19)

Proof: See Appendix VI-A.
Remark 5:Theorem 1 gives a sufficient condition to con-

strain the estimation errors of NN weight matrix (i.e.,W̃ij,k)
to be bounded by a pre-specified criterion (i.e.,Qij,k) in the
sense of weighted Frobenius norm. From (17) we know that
the matrix Ŵij,k+1 will be tuned adaptively by making the
trade-off between the current step weight matrix (i.e.,Ŵij,k)
and the innovation information (i.e.,zi,k+1). This theorem will
play a paramount role in the following analysis and design of
the desired state estimator gains. The connection between the
tuning errors of NN weight and the estimation errors of system
state will be discussed in detail in Remark 6 of Subsection
III-C.

B. Ellipsoidal constraint in probabilityp

In this subsection, we shall establish the sufficient condition
under which the state estimation error will be driven to
reside within an allowable ellipsoidal area in a pre-specified
probability. First, we introduce the following lemmas that will
be used in the derivation.

Lemma 3: [36] Given a random variableυ of suitable
dimension which belongs to an ellipsoidX(a, Y ) as follows:

υ ∈ X(a, Y ) ,
{
υ|(υ − a)TY −1(υ − a) ≤ 1

}

wherea and Y are given in Definition 1. If, for any given
0 < p < 1, the following inequality

E
{
(υ − a)TY −1(υ − a)

}
≤ 1− p

is true, then we have

P{υ ∈ X(a, Y )} ≥ p.

Define a matrixPk by

Pk ,
1

1− p
Pk,

and then, on basis of Lemma 3, we immediately obtain the
following lemma.

Lemma 4: If E{(xk− x̂i,k)
TP−1

k (xk− x̂i,k)} ≤ 1, then the
following holds:

P{xk ∈ X(x̂i,k,Pk)} ≥ p. (20)

Proof: Lemma 4 is easily proved according to Lemma 3,
and the proof is therefore omitted here.

Defining α̃k , αk − ᾱ, we know that

E{α̃k} = 0, E{α̃2
k} = ᾱ(1− ᾱ) , σ2. (21)

Theorem 2:Let the estimator gainsFi,k, Gi,k andHij,k be
given. Under the condition of Theorem 1, for a pre-specified
family of positive definite matrices{Pk}k∈[0,T ] with a factor-
ization ofPk = SkS

T
k , if there exist families of non-negative

scalars{β(1)
i,k , β

(2)
k , β

(3)
k , β

(4)
k , β

(5)
i,k , β

(6)
i,k , β

(7)
i,k }k∈[0,T−1] satis-

fying the following recursive matrix inequalities:




−Γk ∗ ∗
Rnx,iΞ̄k −Pk+1 ∗
σRnx,iΞ̃k 0 −Pk+1



 ≤ 0 (22)

where

Γk ,diag
{

1−
N∑

i=1

(β
(1)
i,k + β

(5)
i,k ǫ3i)− β

(2)
k − β

(3)
k −N2β

(4)
k ,

N∑

i=1

β
(1)
i,kΘns,i −

N∑

i=1

(β
(6)
i,k + β

(7)
i,k )Θns,iS

T
k Sk,

N∑

i=1

β
(6)
i,kΘnl,i,

N∑

i=1

β
(7)
i,kΘnΣ,i, β

(2)
k V −1

k , β
(3)
k U−1

k ,

N∑

i=1

β
(5)
i,kΘnδ,i, β

(4)
k IN2

}

, (23)

Ξ̄k ,

[

Ξ̄
(11)
k Ξ

(12)
k L −(Gk +Hk)Σ

Bk Ξ
(16)
k −ᾱHk −ᾱHk

]

, (24)

Ξ̄
(11)
k ,f̂k −Fkx̂k − ᾱ(Hk ◦ Ŵk)φk

+ ᾱ

N∑

i=1

Θnx,i(Hk ◦ Ŵk)(1N ⊗Rny,i)φk, (25)

Ξ̃k ,
[

−(Hk ◦ Ŵk)φk 0 0 0

0 0 −Hk −Hk

]
, (26)

Ξ
(12)
k ,(Φk − GkΨk −HkΨk)Sk, (27)

Ξ
(16)
k ,− (Gk +Hk)Ek(1N ⊗ Inµ

), (28)

then the following inequality holds:

E{(xk+1 − x̂i,k+1)
TP−1

k+1(xk+1 − x̂i,k+1)} ≤ 1. (29)

Proof: See Appendix VI-B.

C. Distributed Estimator Design

In this subsection, a sufficient condition is provided for the
solvability of the addressed probability-guaranteed distributed
state estimator design problem. The desired estimator gains at
each time step can be acquired by solving the corresponding
matrix inequalities.
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Theorem 3:Given a pre-specified0 < p < 1 and a
family of positive definite matrices{Pk}k∈[0,T ]. Under the
condition given in Theorem 1, the design objective (11)
is satisfied if there exist families of non-negative scalars
{β

(1)
i,k , β

(2)
k , β

(3)
k , β

(4)
i,k , β

(5)
i,k , β

(6)
i,k , β

(7)
i,k }k∈[0,T−1] such that





−Γk ∗ ∗
Rnx,iΞ̄k − 1

1−p
Pk+1 ∗

σRnx,iΞ̃k 0 − 1
1−p

Pk+1



 ≤ 0. (30)

Moreover, the estimator gainsFi,k, Gi,k and Hij,k can be
calculated via solving the corresponding matrix inequalities.

Proof: Theorem 3 can be proved easily from Lemma 4
and Theorem 2 by takingPk+1 = 1

1−p
Pk+1 into account, and

thus is omitted here.

Remark 6:Theorem 3 provides a scheme to obtain the
desired estimator guaranteeing the state estimation errors are
confined within an allowable ellipsoidal area in probability
p. Note that Theorem 3 has an inherent connection with
Theorem 1. On one hand, the boundedness ofW̃ij,k, ensured
by Theorem 1, is of help to restrict the state estimation error
x̃i,k; on the other hand, the satisfaction of the requirement
imposed on the state estimation errors, guaranteed by Theorem
3, contributes to constraiñWij,k. In specific, Theorem 1 influ-
ences the state estimation via (37) and (53), while Theorem 3
helps to regulate the tuning of̂Wij,k via state estimatêxi,k and
the resulting innovation characterized by formula (17). In such
a coupling yet collaborative way, the desired state estimation
performance can be reached.

Remark 7:Notice that the RLMI algorithm proposed in
this paper is based on LMI approach. As discussed in [2],
the computational complexity of an LMI system is bounded
by O(PQ3 log(U /ε)) whereP represents the row size,Q

stands for the number of scalar decision variables,U is a
data-dependent scaling factor andε is relative accuracy set
for algorithm. For instance, let us now look at the condition
proposed in Theorem 1, where the number of sensing nodes is
N , the iteration time isT +1 (since the time interval is[0, T ])
and the dimensions of variables are known fromxk ∈ R

nx ,
yi,k ∈ R

ny , νk ∈ R
nν andµk ∈ R

nµ . Moreover, we assume
thatri,k ∈ R

nr andχ(zj,k) ∈ R
nχ . The RLMI-based algorith-

m is implemented recursively forT+1 steps and, at each step,
we need to solve the LMI (18) withP = N2(1+nr +nχṅy)

rows andQ = N2(
n2
χ+nχ

2 + 4) scalar variables. Accordingly,
the computational complexity of the proposed RLMI algorithm
can be represented byO((T +1)PQ). We can now conclude
that the computational complexity of our proposed RLMI
algorithm depends linearly on the length of time intervalT+1.
It is worth mentioning that the study on LMI optimization is
very active in recent years within the communities of applied
mathematics, control science and signal processing. We can
expect substantial speedups in the near future.

The following algorithm provides a computing
method to iteratively obtain the required estimator gains
{Fi,k, Gi,k, Hij,k}.

Algorithm 1 Distributed estimator design algorithm

Input : Topology informationG = (V , E ,L ); Initial values:
xi,0, x̂i,0,Wij,0, Ŵij,0, Qij,0, andP0; Performance constraints
{Qij,k}k>0, {Pk}k>0 andp; Activation functionφ(·); Other
coefficients:ᾱ, ǫ1i, ǫ2, ǫ3i, Uk andVk; Maximum time stepT .

1: Setk = 0
2: if k < T then
3: Solve (30) for estimator gains{Fi,k, Gi,k, Hij,k}.
4: Obtain one-step estimatêxi,k+1 according to (8).
5: Obtain innovationzi,k+1.
6: Solve (18) for tuning coefficientsλ(1)

ij,k andλ(2)
ij,k.

7: ObtainŴij,k+1 according to (17).
8: end if

D. Optimization Problems

It should be noticed that within the design framework we
proposed in Subsection III-C, the acquired estimator parame-
ters could be a set if existing. Therefore, in this subsection,
we aim to present the optimization problems to seek the
locally optimal estimator parameters by making use of trade-
off between performance specifications.

OP1: Minimization ofQij,k (in the sense of matrix trace)
to ensure the minimal estimation errors of the NN weight
matrices (in the sense of weighted Frobenius norm)

Corollary 1: Under the conditions given in Theorem 1, a
family of minimized matrices{Qij,k}k∈[0,T ] can be obtained
in the sense of matrix trace if the following minimization
problem is feasible:

min
{̺

(1)
ij,k

,̺
(2)
ij,k

,λ
(1)
ij,k

,λ
(2)
ij,k

,Qij,k+1}

trace[Qij,k+1] (31)

subject to (18)

In the following, on basis of Corollary 1, we shall further
present two optimization problems to guarantee locally opti-
mal state estimation performance from different perspectives.
To this end, for brevity of development, denote a set of
variables by

Sk , {Fk,Gk,Hk, β
(1)
i,k , β

(2)
k , β

(3)
k , β

(4)
k , β

(5)
i,k , β

(6)
i,k , β

(7)
i,k }.

OP2: Minimization ofPk (in the sense of matrix trace) to
guarantee the locally optimal estimation subject to the fixed
pre-specified probability specification.

Corollary 2: Let p be given. Under the conditions given in
Theorem 2 and Corollary 1, a family of minimized matrices
{Pk}k∈[0,T ] can be ensured in the sense of matrix trace if the
following minimization problem is feasible:

min
{Sk,Pk+1}

trace[Pk+1] (32)

subject to (22)

Next, supposep is time-varying and denote bypk the
probability criterion at instantk. Define

qk ,
1

1− pk

.

OP3: Minimization ofqk subject to fixedPk to determine
the lower bound on the probability criterion at each time step.
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Corollary 3: Let {Pk}k∈[0,T ] be given. Under the condi-
tions in Theorem 3 and Corollary 1, the lower bound onpk is
guaranteed if the following minimization problem is feasible:

min
{Sk,qk}

qk (33)

subject to







1 < qk < +∞




−Γk ∗ ∗
Rnx,iΞ̄k −qkPk+1 ∗
σRnx,iΞ̃k 0 −qkPk+1



 ≤ 0

The proofs of Corollaries 1–3 are quite simple on basis of
the obtained theorems, and are thus omitted here.

Remark 8:So far, we have discussed the probability-
guaranteed distributed state estimation problem for nonlinear
system over sensor networks under random falsified innova-
tions. The solvability of the addressed problem is cast into
the feasibility of a set of recursive linear matrix inequalities.
A methodology has been proposed which utilizes neural
networks to approximate the unknown falsified innovations.
Within the established framework, the tuning parameters of
NN weight matrices and the probabilistic ellipsoidal constraint
can be investigated systematically. The desired estimator gains
ensuring required performance criterion can be obtained by
solving the recursive linear matrix inequalities at each time
step. Three optimization problems are proposed to ensure the
sub-optimal estimation performances from different perspec-
tives. It should be emphasized that, it is not difficult to extend
our obtained results to the case where more performance
indices are considered simultaneously within the proposed
theoretical framework.

Remark 9:Our proposed algorithm possesses the following
merits: i) the recursive nature of the algorithm is a true reflec-
tion of the time-varying feature of the addressed estimation
error dynamics; ii) the idea of using NN to approximate the
unknown falsified innovations is of more practical significance
in comparison to those existing methods where the attack
functions are usually assumed to be known to the defenders;
and iii) within the established generic framework, it is not
difficult to apply our developed methodology to deal with sys-
tems with more complex dynamics such as quantization effects
and Markovian jump parameters, or handle more performance
indices such asH∞ specification and robustness.

IV. A N UMERICAL EXAMPLE

In this section, an illustrative example is presented to
demonstrate the usefulness of the proposed algorithm in this
paper. First, for a vectorc ∈ R

2, denote byc(1) and c(2) the
first and second entries ofc, respectively.

Consider a nonlinear system whose parameters are given as

follows:

Bk =

[
0.1 + 0.01 cos(k + 1)
0.2 + 0.01 sin(k)

]

,

E1,k =

[
0.25

0.2 + 0.1 cos(k + 1)

]

,

E2,k =

[
0.2

0.15 + 0.1 sin(2k)

]

,

E3,k =

[
0.25 + 0.05 sin(k)

0.15

]

,

f(xk) =

[

0.5x
(1)
k + 0.45 sin(x

(1)
k ) + 0.25x

(2)
k

0.4 cos(x
(2)
k ) + 0.3x

(2)
k + 0.6x

(1)
k

]

,

g1(xk) =

[

0.15x
(1)
k + 0.35 sin(2x

(1)
k ) + 0.2x

(2)
k

0.5 sin(x
(2)
k ) + 0.1x

(2)
k + 0.3x

(1)
k

]

,

g2(xk) =

[

0.3x
(1)
k + 0.3 sin(x

(1)
k + 1) + 0.4x

(2)
k

0.45 cos(x
(2)
k ) + 0.25x

(2)
k + 0.5x

(1)
k

]

,

g3(xk) =

[

0.5 sin(x
(1)
k ) + 0.4x

(1)
k + 0.2x

(2)
k

0.4 sin(x
(2)
k ) + 0.1x

(2)
k + 0.3x

(1)
k

]

.

We selectνk = 0.3 cos(2k) and µ(k) = 0.4 sin(k). Set
V = 1 andU = 1. It can be easily verified that Assumption 1
is satisfied.

Set ǫ1i = ǫ2 = ǫ3i = 3. Choose the activation function of
the neural networks as follows:

φ(zi,k) =

[

tanh(z
(1)
i,k )

tanh(z
(2)
i,k )

]

.

Assume that the number of sensor nodes is three, and the
adjacency matrixL is set as follows:

L =





0 1 0
1 0 1
0 1 0



 .

Setp = 0.8. The initial values in this simulation are selected
as follows:

x̂1,0 =

[
2.0
1.4

]

, x̂2,0 =

[
1.5
1.8

]

,

x̂3,0 =

[
1.7
1.9

]

, x0 =

[
1.8
1.5

]

,

P0 =

[
0.6887 −0.0588
−0.0588 0.7390

]

,

Ŵij,0 =

[
1 0
0 1

]

, Qij,0 =

[
20 0
0 20

]

.

The random falsified innovations are governed by the fol-
lowing parameters:

ᾱ = 0.6, χ(zi,k) =

[

0.15 sin(z
(1)
i,k )

0.30 cos(z
(2)
i,k )

]

.

By solving the optimization problems in Corollaries 1–3,
the simulation results are obtained in Figs. 1–4. Specifically,
Figs. 1–2 depict the trajectories of the system statexk (i.e.,
x
(1)
k and x

(2)
k ) and the corresponding estimates. Figs. 3–4

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSIPN.2021.3097217, IEEE Transactions on Signal and Information Processing over Networks



FINAL VERSION 8

present the trajectories of the estimation errorsx̃
(1)
i,k and x̃(2)

i,k ,
respectively. It can be seen from Fig. 1 and Fig. 2 that the
developed technique can estimate the entries of state (i.e.,xk

and xk) with a satisfactory precision, which is also demon-
strated via Fig. 3 and Fig. 4 where both the estimation errors
are confined within the required range. From the simulation
figures we can clearly observe that the proposed algorithm can
effectively provide state estimates on each sensor node.

Next, we proceed to show the superiority of the proposed
algorithm on mitigating the influence from falsified innova-
tions over the conventional distributed estimator characterized
by (3). A comparative simulation is carried out where we
apply the conventional algorithm (3) to generate local state
estimates under the identical manipulations of innovations.
The simulation results by using the conventional algorithm
are recorded in Figs. 5–8. In specific, Figs. 5–6 plot the
trajectories of the system statexk (i.e.,x(1)

k andx(2)
k ) and their

estimates, respectively. Figs. 7–8 depict the evolutions of the
estimation errors̃x(1)

i,k and x̃(2)
i,k , respectively. From the figures

we can see that the conventional algorithm is also capable of
providing state estimation with certain precision. However, in
comparison to our developed approach, the conventional algo-
rithm shows worse estimation performance in the existence of
falsified innovations.

0 5 10 15 20 25 30 35 40
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fig. 1. Trajectories ofx(1)
k

and x̂(1)
i,k

(by estimator with NN).

V. CONCLUSION

In this paper, we have investigated the distributed state
estimation problem for a class of general nonlinear system-
s subject to falsified innovations. A neural-network-based
mechanism has been proposed to approximate the unknown
manipulated data, thereby mitigating the effects on the state
estimation. With the help of certain convex optimization
methods, sufficient conditions have been established for the
solvability of the addressed estimator design issue, ensuring
that the state estimation errors at each sensing node reside
within required ellipsoidal regions in a prescribed probability.
The desired estimator gains have been given in terms of the
solution to a set of recursive matrix inequalities. On basis of

0 5 10 15 20 25 30 35 40
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fig. 2. Trajectories ofx(2)
k

and x̂(2)
i,k

(by estimator with NN).
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-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. x̃
(1)
i,k

(by estimator with NN).

0 5 10 15 20 25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. x̃
(2)
i,k

(by estimator with NN).

the established framework, optimization problems have been
considered with the aim to ensure locally optimal estimation
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0 5 10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

4

Fig. 5. Trajectories ofx(1)
k

and x̂(1)
i,k

(by conventional estimator).
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Fig. 6. Trajectories ofx(2)
k

and x̂(2)
i,k

(by conventional estimator).

0 5 10 15 20 25 30 35 40
-2

-1.5
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0
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2

Fig. 7. x̃
(1)
i,k

(by conventional estimator).

performance. Finally, an illustrative numerical example has
been presented to demonstrate the effectiveness of the obtained

0 5 10 15 20 25 30 35 40
-6

-4

-2

0

2

4

6

Fig. 8. x̃
(2)
i,k

(by conventional estimator).

theoretical results.
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VI. A PPENDIX

A. Proof of Theorem 1

Proof: The proof is carried out by mathematical induc-
tion.

First, according to Assumption 3, at time stepk = 0,
tr[W̃T

ij,0Q
−1
ij,0W̃ij,0] ≤ 1 holds.

Second, suppose at time stepk, tr[W̃T
ij,kQ

−1
ij,kW̃ij,k] ≤ 1 is

true. Then, we only need to verify that at time stepk+1, under
the condition given in this theorem, the following inequality
also holds:

tr[W̃T
ij,k+1Q

−1
ij,k+1W̃ij,k+1] ≤ 1. (34)

To this end, it is readily from the tuning law (17) that

W̃ij,k+1 =Wij − Ŵij,k+1

=Wij −
(
λ
(1)
ij,kŴij,k + λ

(2)
ij,k̟kφ

T(zi,k)
)

=(1− λ
(1)
ij,k)Wij + λ

(1)
ij,kW̃ij,k − λ

(2)
ij,k̟kφ

T(zi,k).

(35)

Define a functionϕ(·) : Rm×n 7→ R
mn as follows:

ϕ(A) ,
[
A(1) A(2) · · · A(m)

]T

whereA(ι) stands for theι-th row of matrix A. Then, by
denoting

ϕ(W̃ij,k) ,
[

W̃
(1)
ij,k W̃

(2)
ij,k · · · W̃

(ny)
ij,k

]T

,
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we know that the following inequality

tr[W̃T
ij,kQ

−1
ij,kW̃ij,k] ≤ 1

can be equivalently expressed by

ϕT(W̃ij,k)Q
−1
ij,kϕ(W̃ij,k) ≤ 1. (36)

Consequently, according to [3], taking into accountQij,k =
Mij,kM

T
ij,k, we have

ϕ(W̃ij,k) = Mij,krij,k (37)

whererij,k satisfies

rTij,krij,k ≤ 1. (38)

By defining a vectorπij,k as follows:

πij,k ,
[
1 rTij,k ϕT(Wij)

]T
, (39)

we rewrite the error dynamics (35) by

ϕ(W̃ij,k+1) = Υij,kπij,k. (40)

Next, in terms ofπij,k, the inequalityrTij,krij,k ≤ 1 can be
reformulated by

πT
ij,kM̄ij,kπij,k ≤ 0 (41)

whereM̄ij,k , diag{−1, I, 0}.
Similarly, based on Assumption 2, one has

tr[WT
ijWij ] ≤ ǫ21j, (42)

which, in terms ofπij,k, is equivalently described by

πT
ij,kW̄ij,kπij,k ≤ 0 (43)

whereW̄ij,k , diag{−ǫ21j, 0, I}.
On the other hand, it is easily inferred that

tr[W̃T
ij,k+1Q

−1
ij,k+1W̃ij,k+1] ≤ 1 (44)

is equivalent to

ϕT(W̃ij,k+1)Q
−1
ij,k+1ϕ(W̃ij,k+1) ≤ 1, (45)

which can be further expressed as follows:

πT
ij,k

(
ΥT

ij,kQ
−1
ij,k+1Υij,k − diag{1, 0, 0}

)
πij,k ≤ 0. (46)

Therefore, we know from Lemma 1 (S-procedure) that, if there
exist positive scalars̺ (1)

ij,k and ̺
(2)
ij,k such that the following

inequality holds:

ΥT
ij,kQ

−1
ij,k+1Υi,k − diag{1, 0, 0}

−̺
(1)
ij,kM̄ij,k − ̺

(2)
ij,kW̄ij,k ≤ 0, (47)

then inequality (45) also holds.
Finally, according to Lemma 2 (Schur Complement Equiv-

alence), we derive that (47) holds if and only if (18) holds.
The proof is complete now.

B. Proof of Theorem 2

Proof: The proof is performed by resorting to mathe-
matical induction approach. First, it is readily inferred from
Assumption 3 that

E{x̃T
i,0P

−1
0 x̃i,0} ≤ 1. (48)

Second, suppose that at stepk > 0, the following inequality
holds:

E{x̃T
i,kP

−1
k x̃i,k} ≤ 1. (49)

Then, on basis of the principle of mathematical induction,
the rest of the proof is to demonstrate that, under the given
condition, inequality (29) also holds at time stepk+1. In fact,
since (49) is true, we can always find a vectorsi,k ∈ R

ns

(i = 1, 2, . . . , N) with E{sTi,ksi,k} ≤ 1 such that

xk = x̂i,k + Sksi,k. (50)

By denotingsk , colN{si,k} andSk , diagN{Sk}, (50)
is described by

ξk = x̂k + Sksk. (51)

Hence, (16) is rewritten by

x̃k+1 =f̂k −Fkx̂k + (Φk − GkΨk −HkΨk)Sksk

+ Lρ1k − GkΣρ2k −HkΣρ2k + Bkνk

− (Gk +Hk)Ek(1N ⊗ Inµ
)µk − αkHkδk

− αkHk ◦ W̃kφk − αkHk ◦ Ŵkφk

+ ᾱ

N∑

i=1

Θnx,iHk ◦ Ŵk(1N ⊗Rny,i)φk

=f̂k −Fkx̂k + (Φk − GkΨk −HkΨk)Sksk

+ Lρ1k − GkΣρ2k −HkΣρ2k + Bkνk

− (Gk +Hk)Ek(1N ⊗ Inµ
)µk − (ᾱ + α̃k)Hkδk

− (ᾱ+ α̃k)(Hk ◦ W̃k)φk − (ᾱ+ α̃k)(Hk ◦ Ŵk)φk

+ ᾱ

N∑

i=1

Θnx,i(Hk ◦ Ŵk)(1N ⊗Rny,i)φk

=f̂k −Fkx̂k + (Φk − GkΨk −HkΨk)Sksk

+ Lρ1k − GkΣρ2k −HkΣρ2k + Bkνk

− (Gk +Hk)Ek(1N ⊗ Inµ
)µk − (ᾱ + α̃k)Hkδk

− (ᾱ+ α̃k)

N∑

i=1

Θnx,iHkW̃i,kφk

− (ᾱ+ α̃k)(Hk ◦ Ŵk)φk

+ ᾱ

N∑

i=1

Θnx,i(Hk ◦ Ŵk)(1N ⊗Rny,i)φk (52)

where

W̃i,k , diag{W̃i1,k, W̃i2,k, . . . , W̃iN,k},

ρ1k , colN{ρ1i,k} = ∆1Sksk,

ρ2k , colN{ρ2i,k} = ∆2Sksk.

It is known that, under the condition of Theorem 1, we
acquire

ϕ(W̃ij,k) = Mij,krij,k (53)
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with vectorrij,k satisfyingrTij,krij,k ≤ 1.
By defining

φ̃k , Iny
⊗ φT(zi,k),

we have

W̃ij,kφi =φ̃kϕ(W̃ij,k) = φ̃kMij,krij,k.

Therefore, one obtains

W̃i,kφk =diagN{φ̃k} · diag{Mi1,k,Mi2,k, . . . ,MiN,k} · ri,k

,Mi,kri,k

whereri,k ,
[
rTi1,k rTi2,k · · · rTiN,k

]T
.

By defining a new vectorζk as

ζk ,
[
1 sTk ρT1k ρT2k νTk µT

k δTk rTk
]T

where rk ,
[
rT1,k rT2,k · · · rTN,k

]T
, the dynamics of

state estimation error are formulated as follows:

x̃k+1 = Ξkζk , (Ξ̄k + α̃kΞ̃k)ζk (54)

where

Ξk ,

[

Ξ
(11)
k Ξ

(12)
k L −(Gk +Hk)Σ Bk

Ξ
(16)
k −(ᾱ+ α̃k)Hk −(ᾱ+ α̃k)Hk

]

,

Ξ
(11)
k ,f̂k −Fkx̂k − (ᾱ+ α̃k)(Hk ◦ Ŵk)φk

+ ᾱ

N∑

i=1

Θnx,i(Hk ◦ Ŵk)(1N ⊗Rny,i)φk,

Ξ
(12)
k ,(Φk − GkΨk −HkΨk)Sk,

Ξ
(16)
k ,− (Gk +Hk)Ek(1N ⊗ Inµ

),

Ξ̄k ,

[

Ξ̄
(11)
k Ξ

(12)
k L −(Gk +Hk)Σ Bk

Ξ
(16)
k −ᾱHk −ᾱHk

]

,

Ξ̄
(11)
k ,f̂k −Fkx̂k − ᾱ(Hk ◦ Ŵk)φk

+ ᾱ

N∑

i=1

Θnx,i(Hk ◦ Ŵk)(1N ⊗Rny,i)φk,

Ξ̃k ,−
[

(Hk ◦ Ŵk)φk 0 0 0 0 0 Hk Hk

]
,

Hi,k ,Θnx,iHkMi,k,

Hk ,
[

H1,k H2,k · · · HN,k

]
.

It is already known that the following conditions hold:

E{sTi,ksi,k} ≤ 1,

νTk V
−1
k νk ≤ 1,

µT
kU

−1
k µk ≤ 1,

rTij,krij,k ≤ 1,

‖δi‖ ≤ ǫ3i ,

which can be equivalently expressed by utilizingζk as follows:

E
{
ζTk diag {−1,Θns,i, 0, 0, 0, 0, 0, 0}ζk

}
≤ 0,

ζTk diag{−1, 0, 0, 0, V−1
k , 0, 0, 0}ζk ≤ 0,

ζTk diag{−1, 0, 0, 0, 0, U−1
k , 0, 0}ζk ≤ 0,

ζTk diag{−N2, 0, 0, 0, 0, 0, 0, IN2}ζk ≤ 0,

ζTk diag{−ǫ3i, 0, 0, 0, 0, 0,Θnδ,i, 0}ζk ≤ 0.

Moreover, from

‖∆1i‖ ≤ 1 and ‖∆2i‖ ≤ 1

we have

ρT1i,kρ1i,k − sTi,kS
T
k Sksi,k ≤ 0,

ρT2i,kρ2i,k − sTi,kS
T
k Sksi,k ≤ 0,

which can be equivalently described by

ζTk diag
{
0,−Θns,iS

T
k Sk,Θnl,i, 0, 0, 0, 0, 0

}
ζk ≤ 0,

ζTk diag
{
0,−Θns,iS

T
k Sk, 0,ΘnΣ,i, 0, 0, 0, 0

}
ζk ≤ 0.

Next, by virtue of Lemma 2 (Schur Complement Equiva-
lence), we know that inequalities (22) hold if and only if

Ξ̄T
kR

T
nx,i

P−1
k+1Rnx,iΞ̄k

+σ2Ξ̃T
kR

T
nx,i

P−1
k+1Rnx,iΞ̃k − Γk ≤ 0, (55)

which, by considering the statistical property ofα̃k (i.e.,
formula (21)), implies that

E{(Ξ̄k + α̃kΞ̃k)
TRT

nx,i
P−1
k+1Rnx,i(Ξ̄k + α̃kΞ̃k)} − Γk ≤ 0.

(56)

By taking (23) and (54) into account, inequality (56) is
equivalent to

E{x̃T
i,k+1P

−1
k+1x̃i,k+1} − ζTk diag{1, 0, 0, 0, 0, 0, 0, 0}ζk

−
N∑

i=1

β
(1)
i,k ζ

T
k diag{−1,Θns,i, 0, 0, 0, 0, 0, 0}ζk

−β
(2)
k ζTk diag{−1, 0, 0, 0, V−1

k , 0, 0, 0}ζk

−β
(3)
k ζTk diag{−1, 0, 0, 0, 0, U−1

k , 0, 0}ζk

−β
(4)
k ζTk diag{−N2, 0, 0, 0, 0, 0, 0, IN2}ζk

−
N∑

i=1

β
(5)
i,k ζ

T
k diag{−ǫ3i, 0, 0, 0, 0, 0,Θnδ,i, 0}ζk

−
N∑

i=1

β
(6)
i,k ζ

T
k diag{0,−Θns,iS

T
k Sk,Θnl,i, 0, 0, 0, 0, 0}ζk

−
N∑

i=1

β
(7)
i,k ζ

T
k diag{0,−Θns,iS

T
k Sk, 0,ΘnΣ,i, 0, 0, 0, 0}ζk

≤0. (57)

We now acquire from Lemma 1 (S-procedure) that

E{x̃T
i,k+1P

−1
k+1x̃i,k+1}

−ζTk diag{1, 0, 0, 0, 0, 0, 0, 0}ζk ≤ 0, (58)

or equivalently,

E{x̃T
i,k+1P

−1
k+1x̃i,k+1} ≤ 1, (59)

which indicates the proof is complete.
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