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Traffic signal prediction on transportation networks
using spatio-temporal correlations on graphs

Semin Kwak, Nikolas Geroliminis, and Pascal Frossard

Abstract—Multivariate time series forecasting poses challenges
as the variables are intertwined in time and space, like in the
case of traffic signals. Defining signals on graphs relaxes such
complexities by representing the evolution of signals over a space
using relevant graph kernels such as the heat diffusion kernel.
However, this kernel alone does not fully capture the actual
dynamics of the data as it only relies on the graph structure. The
gap can be filled by combining the graph kernel representation
with data-driven models that utilize historical data. This paper
proposes a traffic propagation model that merges multiple heat
diffusion kernels into a data-driven prediction model to forecast
traffic signals. We optimize the model parameters using Bayesian
inference to minimize the prediction errors and, consequently,
determine the mixing ratio of the two approaches. Such mixing
ratio strongly depends on training data size and data anomalies,
which typically correspond to the peak hours for traffic data. The
proposed model demonstrates prediction accuracy comparable
to that of the state-of-the-art deep neural networks with lower
computational effort. It notably achieves excellent performance
for long-term prediction through the inheritance of periodicity
modeling in data-driven models.

Index Terms—Multivariate time series forecasting, Bayesian
inference, heat diffusion model, dynamic linear model.

I. INTRODUCTION

MULTIVARIATE time-series prediction is an important
task since many real-life problems can be modeled

within this framework, such as weather forecasting [1]–
[3], traffic prediction [4]–[19], power consumption forecast-
ing [10], [20], and others [5], [18], [21]–[23]. In transportation
sensor networks, output signals from neighboring sensors may
be similar or vastly different, as shown in Fig. 1(a) and (b).
Therefore, in this example, sensor A’s signal can be utilized
to predict sensor B’s as the two signals are well correlated.
However, the signal of sensor C is not correlated with that of
sensor B, so it may not contribute to the prediction; Sensor
C is located after an intersection, and most traffic demands
flow in another direction in the intersection, therefore, the
sensor rarely suffers congestion. Naturally freeway congestion
(expressed with a sharp decrease in the average speed of
vehicles) is initiated at a bottleneck location such as an on-
ramp merging area with high entrance flow or an incident
location. Then, it propagates backwards with a finite speed,
which is 3 to 4 times smaller than the speed of traffic.
Fig. 1(c) shows an example of congestion propagation in I-
280 and I-880 freeways in California. Note that there is a
drastic decrease in the speed at a location (sensor B) and a
time (around 3 pm) that propagates through the traffic stream
(this is called a shockwave). Once demand for travel decreases
congestion disappears by following the opposite trend during
the offset of congestion with a forward moving wave. Note

that this propagation speed is not constant and depends on the
concentration or density of vehicles (with units of veh/km) on
the two sides of the shockwave. There are various theories
in transportation science to describe the mechanisms of stop-
and-go phenomena inspired by fluid and heat diffusion models
(see [24] for an overview).

Due to complex spatio-temporal correlation, the choice
of model greatly influences the predictive performance. For
small-scale sensor networks, such correlations can be esti-
mated directly from historical data [6]–[10]. The vector Auto
Regression (AR) is a representative model for multivariate
time series forecasting [8]–[10]. In this model, regression
parameters, or correlations between sensors, are estimated
solely using historical data. In our previous work [8], we
implemented a predictor that explicitly expresses the period-
icity of traffic signals with temporally localized vector AR
model. However, these data-driven models are not suitable
for multivariate time series prediction with a large number of
variables because the number of correlations to be estimated
increases exponentially compared with the number of sensors,
which causes incompleteness of the estimator (or overfitting).

Recently, many studies have prioritized the correlations
among sensors by defining signals on graphs [11]–[19]. In par-
ticular, in transportation networks, the physical travel distance
between sensors is a critical a priori information, the closer the
sensors are in space, the higher the correlation [25]. Utilizing
this information, the authors had extracted the signal’s spatial
features through the heat propagation kernel (or convolutional
filter) and passed it to temporal blocks for forecasting, such
as recurrent neural network (RNN) [11]–[14] and temporal
convolutional layer (TCN) [15]–[18]. By introducing this prior
information to complex deep neural networks, they achieved
state-of-the-art performance in traffic prediction.

However, the two predictors (with and without graphs)
each have their own drawbacks. In the former case, to the
best of our knowledge, all studies, which currently show
the best performance, construct predictors based on deep
neural networks. Therefore, these models require expensive
tuning processes of many hyperparameters and relatively long
training due to numerical optimization processes. In the latter
case, on the other hand, it can be inefficient concerning the
prediction accuracy, especially for large networks when the
structural information becomes important.

This paper proposes a new model that combines the ad-
vantages of different frameworks by implanting the sensors’
structural information into the existing data-driven model [8],
inheriting the periodicity modeling for the traffic signal. In
most studies, the periodicity of the traffic signal is taken as
the input feature of the predictor, such as an encoded vector
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(a) Sensor locations of PEMS-BAY network. The distance between
two consecutive sensors in a freeway is 0.6 mile in average.
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(b) Signals on different sensors

(c) Speed profile for the evening peak over time and space. The day 2017-
05-22 (Monday) is selected. The red dashed lines represent the waves that
congestion propagates.

Fig. 1. A transportation sensor network in California and signals of three
different sensors on the network. Although the sensors B and C are close
to each other in distance, two traffic signals from these sensors show very
different patterns.

that represents the time of the day or the day of the week,
but the study [8] instead induces the periodicity of the signal
more clearly by making the model itself different for each
time. Each model has a matrix, which should be estimated by
historical data, representing the correlation between signals at
two consecutive time intervals. As the size of the network is
proportional to the size of the matrix, a larger network can
lead to overfitting. In this paper, we resolve the overfitting
problem by approximating this matrix to the one derived from
data-independent graph topological information, therefore, we
estimate only the remainder by data. In detail, we transform
the graph topological information into heat diffusion kernels,
which is introduced in [26], and approximate the matrix to
a combination of the heat diffusion kernels. In the process,
we introduce some hyper-parameters. For example, one deter-
mines which of the prior or historical datasets is more reli-
able. Most of the existing studies estimate hyper-parameters
through exhaustive search as a cross-validation method using
a validation set, but we estimate hyper-parameters directly
from data by utilizing Bayesian inference [27]. As a result,
the estimation process is relatively fast as most parameter
estimation is performed by analytic calculations except a few
ones requiring a numerical optimization process. Besides, our
model is strongly interpretable. For example, through the
hyper-parameter, it can be seen that during the peak period,
traffic prediction is relatively more dependent on data than
structural information compared to the non-peak period. Also,
most importantly, predictors based on this model showed
comparable performance with a much shorter learning time
than state-of-the-art models. Especially, the proposed model
shows great long-term prediction performance as the model
captures well the periodicity of traffic signals. Since the pro-
posed model requires a minimal number of hyper-parameter
tuning, it might be applied to other daily periodic graph
signal prediction problems easily (e.g., weather forecasting,
daily energy consumption prediction). Here we summarize
contributions of the work:

• We propose a novel traffic prediction method that suc-
cessfully integrate graph structural information to the
existing data-driven model [8]. Hyper-parameters are
learned directly from data through Bayesian inference
rather than by exhaustive search.

• Therefore, the training time required for inference is
minimal. The trained model is straightforward to analyze,
unlike other deep neural network-based models.

• It shows prediction performance comparable with deep
learning methods especially for long-term prediction.

II. DATA MODEL

In this section, we describe a mathematical model that rep-
resents a relationship between traffic signals that are different
in time. First, we define traffic signals on a graph and introduce
an existing prediction model [8] using this signals. Then, we
suggest a model extending the previous one that is applicable
for large scale networks by exploiting graph information.
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TABLE I
THE NOTATIONS AND DEFINITIONS USED IN THIS ARTICLE.

Rm m-dimensional Euclidean space
a,a,A Scalar, vector, matrix
diag(a) The diagonal matrix whose diagonal elements are from

the vector a

diag(A) The vector whose elements are the diagonal components
of the matrix A

I Identity matrix
1 All one vector
eA limn→∞

(
I + 1

n
A
)n

=
∑∞
n=0

1
n!

An

[A]i,j The element of i-th row and j-th column of the matrix
A

[A]i,: The slice of i-th row of the matrix A

|A| The determinant of the matrix A

|S| The cardinality of the set S
N (µ, σ2) A Gaussian distribution which has the probability density

function f(x) = 1
σ
√
2π

exp

(
− 1

2

(
x−µ
σ

)2)
N (µ,Σ) A multivariate Gaussian distribution which

has the probability density function f(x) =
1√

(2π)N |Σ|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
N (M, σ2)

∏
i,j N ([M]i,j , σ

2)

N (M,Σ)
∏
iN ([M]i,:,Σ)

A. Graph signal

We start with modeling a transportation network using a
graph. We define an undirected graph G = (V, E); V is a set of
nodes where each v ∈ V denotes a node (sensor) on the graph;
E is a set of edges where each of the edges connects two nodes.
We define a signal on the nodes of the graph with a traffic
feature, in this paper, for instance, speed, which is expressed as
a vector xdt ∈ RN of a day d and time t, where the constant N
is the number of nodes. Therefore, the vector xdt represents a
snapshot of speeds at a particular time and day. Especially, we
express the day index on the vector representation to exploit
the periodicity of traffic signals later.

B. Dynamic linear model (DLM)

In our previous study [8], we defined a state equation of
traffic in a small-scale transportation network (a path graph)
as temporally localized linear models as follows:

xdt+1 = Htx
d
t + ndt ,∀t ∈ [0, T − 1] . (1)

We called this model the Dynamic linear model (DLM). The
first time index (t = 0) corresponds to the beginning of a day
(midnight in our work), and the last index (t = T−1) refers to
the end of the day. Each entry of the noise vector ndt ∈ RN
is assumed to be an independent and identically distributed
(i.i.d.) random variable, which follows a Gaussian distribution
N (0, α−1

t ). Here the precision parameter αt explains how
precisely a data pair (xdt ,x

d
t+1) fits to the model. The transition

matrix Ht represents the linear relationship between traffic
signals xdt and xdt+1.

The most important motivation behind this model is that the
propagation of traffic features over time occurs periodically
on a daily basis. Consequently, we modeled that the transition

matrix Ht as a time-variant matrix that contains temporally lo-
calized (only between two consecutive traffic features) spatio-
temporal correlations of every sensor pair regardless of the day
of the week, noting that the transition matrix does not have
the day index. In other words, we assumed the correlations
are identical both for weekends and weekdays [8].

In the work [8], the transition matrix is estimated by max-
imizing the likelihood (note that we ignore some parameters
such as the regularization parameter and the forgetting factor
introduced in the work for the brevity) as follows:

H̄t = argmax
Ht

f(Xt+1|Xt,Ht, αt) = Xt+1X
T
t (XtX

T
t )−1,

(2)
where the collection of the m-past signals Xt =(
x0
t x1

t · · · xm−1
t

)
. Therefore, the optimal transition ma-

trix is solely determined by the historical data Xt and Xt+1.
From Eq. (2) we see that the matrix XtX

T
t can be an ill-

conditioned matrix when N is large. In other words, the
transition matrix H̄t can be overfitted by data. In the following
subsection, we suggest a method to avoid this problem by
utilizing graph topological information.

C. DLM with graph topological information
In this subsection, we suggest a way to avoid the overfitting

problem approximating the transition matrix to a heat diffusion
matrix. To achieve this goal, we first define a weight matrix
that contains all edge weights between node vi and vj using a
Gaussian kernel weighting function with a threshold constant
κ:

[W]i,j =

{
e−

dist2(i,j)

σ2 , if dist(i, j) ≤ κ
0, otherwise.

(3)

The function dist(i, j) denotes the shortest travel distance on
G between the node vi and vj :

dist(i, j) = min{dist(vi → vj), dist(vj → vi)}, (4)

where the function dist(vi → vj) represents the shortest travel
distance from node vi to node vj . As the graph G is undirected,
the weight matrix is a symmetric matrix, i.e., WT = W.

The constants σ and κ are the kernel width and the distance
threshold. If the kernel width is large, the correlation of a pair
of nodes is strong (close to one) even though the shortest travel
distance between the two nodes is large. On the other hand,
the smaller the threshold is, the sparser the weight matrix is.

The graph heat diffusion model [26] explains how each
vertex propagates its heat to its neighbors on the graph over
time. As congestion evolves from one location to its neighbor
over time, we can express the change of traffic features by the
heat diffusion model, especially for short-term traffic changes
since the total traffic volume of a network is well preserved
for the short-term in general.

The kernel on graphs that supports the heat diffusion model
is introduced by [26]:

HG(τ) = e−τL(G), (5)

where the constant τ denotes the diffusion period and the
matrix L(G) is the Laplacian of a graph G. The matrix is
defined as

L(G) = diag(W1)−W. (6)
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By definition, two extreme heat diffusion kernels of a
connected graph G are:

HG(τ) =

{
I, when τ → 0,
1
N 11T , when τ →∞,

(7)

where 1 is the vector whose elements are all one.
Therefore, with the heat diffusion kernel, we can describe

the diffusion of a traffic signal through the graph G as follows:

x̃dt+1(τ) = HG(τ)xdt . (8)

We call the vector x̃dt+1(τ) the internally diffused signals
from xdt by the diffusion period τ on the graph G over one
incremental time step.

Here, we define a convex combination of the heat diffusion
kernels of K different predetermined diffusion periods with a
set T = {τ (0), τ (1), · · · , τ (K−1)}1 as

HG(T ) =
∑
τ∈T

π(τ)HG(τ), (9)

where
∑
τ∈T π

(τ) = 1. The mixture retains the property
that the total input volume is preserved through the diffusion
process as shown in Appendix A, i.e., 1THG(T )xdt = 1Txdt .

We embed heat diffusion kernels into DLM to exploit
topological information of the transportation network. The key
idea is to express the transition matrix as a small variant from
a mixture of diffusion kernels. We decompose the transition
matrix into the time-variant internal diffusion and residual as
follows:

Ht = HGt (T ) + residual (10)

so that the internal diffusion matrix HGt (T ) preserves the total
traffic volume over time, i.e., 1THGt (T )xdt = 1Txdt . Here, the
time dependent internal transition matrix can be safely defined
as in Eq. (9) by substituting the time-invariant parameter
π(τ) for the time-variant one π

(τ)
t because of the volume

conservation property. The internal diffusion matrix represents
how the current signal xdt diffuses through the transportation
network (endogenous) whereas the residual represents how
much the traffic situation is getting better or worse in the next
time step based on the current signal (exogenous).

With this interpretation, we model the prior distribution of
the transition matrix as:

f(Ht|γt,Πt,G) = N
(
HGt (T ), γ−1

t

)
, (11)

where the precision parameter γt represents how precisely
the diffusion matrix explains the transition matrix and Πt =

{π(τ)
t |τ ∈ T }.
The decomposition allows us to utilize data more efficiently

during the estimation process later. In Eq. (1), the transition
matrix is a variable to be estimated from the data. Since the
dimension of this matrix is N2, an increase in the number of

1We predetermine the set T with two diffusion periods τ0 and τ∞ that
correspond to each extreme case in Eq. (7), respectively. In practice, we
set τ0 as the biggest one that satisfies

∥∥HG(τ)− I
∥∥
2
< ε and τ∞ as the

smallest one that satisfies
∥∥HG(τ)− 1/N11T

∥∥
2
< ε with a predefined set

τ ∈ linspace(-10,10,0.1), where the set contains evenly spaced (0.1) numbers
from −10 to 10. After that, we define T = logspace(τ0, τ∞,K), where the
function returns K evenly spaced numbers on a log scale from τ0 to τ∞.

Algorithm 1 Inference of parameters
1: function INFERENCE(W,K,X1:T )
2: Set T = logspace(τ0, τ∞,K)
3: Define L(G) by Eq. (6)
4: Define the function HG(τ) = e−τL(G)

5: for t ∈ [0, T − 2] do
6: Infer α̂t, γ̂t and Π̂t by solving (25)
7: Infer Ĥt by Eq. (19)
8: end for
9: return Ĥt,∀t

10: end function

sensors causes the estimation of more elements, which results
in an overfitting problem. This is the biggest impediment
to extending DLM to large networks. Still, if the structural
information is set as a priori through Eq. (11), the problem
can be effectively avoided even if the number of sensors
increases. Assuming the graph G and the period set T are
predefined, the internal diffusion matrix only depends on the
parameters π(τ)

t . By setting the number of diffusion periods to
be much smaller than that of sensors i.e., |T | � N , we can
describe the major part of the transition matrix by the internal
diffusion matrix with a few parameters when the sampling
interval (the time difference of two consecutive time indices) is
relatively short, with likely preservation of the traffic volumes,
i.e., 1Txdt+1 ≈ 1Txdt . Consequently, we only need to exploit
data to infer the parameters π(τ)

t and the residual part whose
norm is small with the decomposition.

III. PREDICTION AND INFERENCE

This section describes how to estimate modeling parameters
and predict graph signals by using the model. Both the
estimation and the prediction were performed by maximizing
the posterior distribution of each variable. Especially for
hyperparameters, we utilize Bayesian inference to estimate
them instead of exhaustive search.

A. Inference of the transition matrix

We infer the transition matrix by maximizing its posterior
distribution:

Ĥt = argmax
Ht

f(Ht|Xt,Xt+1, αt, γt,Πt,G), (12)

which is proportional to the product of the prior and the
likelihood by Bayes’ rule:

Posterior dist. ∝ f(Ht|γt,Πt,G)f(Xt+1|Xt,Ht, αt). (13)

Maximizing the posterior distribution can be interpreted as
balancing between the prior and likelihood of the transition
matrix. For example, if there is no topological information
about sensors, the transition matrix should be inferred by
considering the training dataset only. In this case, we can
set the prior distribution as a uniform distribution, meaning
that there is no strong preference for a particular value of the
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transition matrix; the most probable transition matrix becomes
the maximum likelihood solution, which is Eq. (2):

Ĥt|No topological info. := H̄t

= argmax
Ht

f(Xt+1|Xt,Ht, αt)

= Xt+1X
T
t (XtX

T
t )−1.

(14)
On the other hand, if we do not have any measurements, the
most probable transition matrix should be the maximizer of
the prior distribution:

Ĥt|No measurements = argmax
Ht

f(Ht|γt,Πt,G) = HGt (T ).

(15)
Since we use both prior and data measurements, the actual

optimal transition matrix becomes a combination of these two.
According to the dynamic linear model, the likelihood

f(Xt+1|Ht,Xt, αt)

∝ e− 1
2 tr{αt(Xt+1−HtXt)(Xt+1−HtXt)

T } (16)

and the prior

f(Ht|γt,Πt,G) ∝ e− 1
2 tr{γt(Ht−HGt (T ))(Ht−HGt (T ))T }. (17)

Therefore, by Eq. (13), (16) and (17),

f(Ht|Xt+1,Xt, αt, γt,Πt,G)

∝ e− 1
2αttr{(Xt+1−HtXt)(Xt+1−HtXt)

T }

· e− 1
2γttr{(Ht−HGt (T ))(Ht−HGt (T ))T }

∝ e− 1
2 tr{(Ht−Ĥt)(αtXtX

T
t +γtI)(Ht−Ĥt)

T },

(18)

where

Ĥt = (H̄tαtUtΛt + HGt (T )γtUt)(αtΛt + γtI)−1UT
t

= H̄tαtUtΛt(αtΛt + γtI)−1UT
t

+ HGt (T )γtUt(αtΛt + γtI)−1UT
t ,

(19)

with the eigendecomposition of XtX
T
t = UtΛtU

T
t . There-

fore, f(Ht|Xt+1,Xt, αt, γt,Πt,G) is a multivariate Gaussian
distribution with mean Ĥt and the covariance of each row;
(αtXtX

T
t + γtI)−1.

Here, we measure how much each part contributes to the
transition matrix

cdata
t =

wdata
t

wdata
t + wprior

t

, cprior
t =

wprior
t

wdata
t + wprior

t

(20)

by defining the weight of each part

wdata
t =

∥∥αtUtΛt(αtΛt + γtI)−1UT
t

∥∥
F
,

wprior
t =

∥∥γtUt(αtΛt + γtI)−1UT
t

∥∥
F
.

(21)

Note that these weights depend on the precision parameters
αt and γt. If the data precision parameter αt is relatively
large compared to γt, then cdata

t > cprior, meaning that the
contribution of data measurements is larger than that of the
prior information.

Algorithm 2 Prediction of traffic features (h-steps ahead)

function PREDICTION(xdt , h, Ĥt, · · · , Ĥt+h−1)
Set p = xdt
for i ∈ [0, h− 1] do

Set p = Ĥt+ip
end for
xt+h|t = p

return xt+h|t
end function

B. Inference of other parameters

For the next step, we infer parameters αt, γt, and Πt.
Similar to inferring the most probable transition matrix, we
infer the most probable αt, γt, and Πt by maximizing the
following posterior distribution:

α̂t, γ̂t, Π̂t = argmax
αt,γt,Πt

f(αt, γt,Πt|Xt+1,Xt). (22)

Setting the prior distribution f(αt, γt,Πt) as a uniform
distribution based on the assumption that there is no
preference for a certain value for these parameters be-
fore inferring, the objective changes to maximize evidence
f(Xt+1|Xt, αt, γt,Πt) [27] since

f(αt, γt,Πt|Xt+1,Xt) ∝ f(Xt+1|Xt, αt, γt,Πt)f(αt, γt,Πt)

∝ f(Xt+1|Xt, αt, γt,Πt).
(23)

In Appendix B, we show that the evidence is

f(Xt+1|Xt, αt, γt,Πt)

=

∫
f(Xt+1|Xt,Ht, αt)f(Ht|γt,Πt)dHt

= N (HGt (T )Xt, α
−1
t I + γ−1

t XT
t Xt).

(24)

Therefore, we infer the most probable hyper-parameters by
maximizing the log-evidence with a quasi-newton method (L-
BFGS-B [28]):

maximize
αt,γt,Πt

logN (HGt (T )Xt, α
−1
t I + γ−1

t XT
t Xt)

subject to 0 ≤ π(τ)
t ≤ 1 ∀τ ∈ T , 0 < αt, 0 < γt,∑

τ∈T
π

(τ)
t = 1.

(25)

Algorithm 1 summarizes the inference processes.
We emphasize that parameter inference through evidence

maximization prevents overfitting of the transition matrix to
either data measurements or prior information. In Eq. (24) we
calculate the evidence by marginalizing the transition matrix.
In other words, we set the transition matrix as a random
variable instead of fixing it as a representative value, e.g.,
maximum likelihood estimator. Noting that these parameters
determine the contributions of measurements and priors when
the transition matrix is estimated in Eq. (19), the marginaliza-
tion process automatically penalizes the transition matrix to
avoid the extreme cases [27].



6

1

2

© OpenStreetMap contributors

Fig. 2. Transportation sensor networks (District 7 area in California) that are
used for evaluating the proposed method.

C. Prediction of traffic features

Prediction of traffic features is performed by extracting and
exploiting as much information as possible from measure-
ments and prior knowledge. Mathematically, we can express
a traffic signal that we want to predict as a random variable
since the signal defined in the future is entirely unknown. In
this paper, therefore, we try to infer the probability density
function of the signal xdt+h

f(xdt+h|xdt ,xdt−1 · · · ,G), (26)

where the time indices t and t+ h represent respectively the
current time and the future time index (h-steps ahead) that
we want to predict. In the expression, the probability density
function is conditioned by the signals {xdt ,xdt−1, · · · } and
the graph G that represents a set of measurements and prior
structural information, respectively.

In reality, it is common to limit the number of measurements
to a fixed-sized one in a training set. In addition to the training
set that contains measurements apart from the day to be
predicted, it is crucial to keep measurements just before t,
as the temporal correlation is strong when the time difference
is small. As a result, we estimate the density function that is
conditioned by a training set, the p-most recent measurements,
and the graph G:

f(xdt+h|xdt ,xdt−1, · · · ,xdt−(p−1),X0:T−1,G), (27)

where the training set X0:T−1 contains signals from t = 0 to
t = T −1 of multiple days d ∈ [0,m−1]. The dynamic linear
model further simplifies the distribution (27) as follows

f(xdt+h|xdt ,Xt:t+h,G) (28)

because of the temporal locality of the model.
We define a predictor xdt+h|t at the time step t for the

horizon h as the maximizer of the probability density function

xdt+h|t := argmax
xdt+h

f(xdt+h|xdt ,Xt:t+h,G). (29)
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Fig. 3. Prediction accuracy (RMSE) for the three different models on
the PEMS-BAY dataset. Each model represents respectively a single DLM
(without topological information), separate multiple DLMs for each freeway,
and the proposed model (a DLM with topological information).

In other words, we define the predictor xdt+h|t as the most
probable xdt+h based on the current measurement vector xdt ,
the training set Xt:t+h, and the graph G.

Proposition 1. f(xdt+h|xdt ,Xt:t+h,G) is a Gaussian distri-
bution that has the mean vector Ĥt+h−1 · · · Ĥtx

d
t assuming

f(Ht|Xt,Xt+1, αt, γt,Πt,G) = δ(Ht−Ĥt), where the Dirac
delta function δ(x) = 1 when x = 0 and δ(x) = 0, otherwise.
The most probable transition Ĥt is the maximizer of the
posterior distribution f(Ht|·).

Proof. See Appendix C.

Since the mean value of a Gaussian distribution maximizes
the distribution, the optimal predictor is

xdt+h|t = Ĥt+h−1 · · · Ĥtxt := Ĥt+h−1←tx
d
t . (30)

Therefore, the most probable signal xdt+h is the successive
propagation of the current measurement vector xdt through
the most probable transition matrices that coincides with a
straightforward computation with Eq. (1) ignoring the noise
term. Therefore, the prediction for any horizon is just a matrix
multiplication. Algorithm 2 summarizes this.

IV. EXPERIMENTS

A. Settings

The proposed method was evaluated on different trans-
portation networks. Figure 2 shows the networks (G1 and
G2) consisting of respectively 288 and 357 sensors with
multiple freeways that are connected through ramps. They
experience significant levels of congestion in the morning and
evening peaks at various locations. These networks connect
many origins and destinations with complex demand profiles,
creating propagation of congestion that is different in duration,
size, and time of occurrence. The PEMS-BAY dataset was
also used as a benchmark to compare with other state-of-the-
art models [11], [17]. This data set consists of data measured
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Fig. 4. The heatmap of the elements in an estimated transition matrix Ht

of the proposed model. Darker colors represent larger absolute values. The
sensors are grouped by freeways and ordered from upstream to downstream
within each freeway. Each axis shows the name of the freeways. The sensors’
correlations within the same freeway are represented as red-shaded areas
(block-diagonal elements of the matrix). The separate multiple DLMs only
use block diagonal elements in the matrix.

from 325 sensors (Fig. 1(a)) on the freeways of San Francisco
Bay area. The training and test dataset were constructed in the
same way as [11], [17] to achieve a fair comparison.

The sampling interval of each dataset is 5 minutes by
default, and in the following subsection, it is downsampled
to 10 and 15 minutes, respectively, for a specific experiment.
Both datasets of networks G1 and G2 contain 209 days of
speed data, and each of those is divided into a training set and
a test set at an 8:2 ratio by default. Another ratio is applied
in Section IV-B for a specific experiment.

We used the root mean square error (RMSE) as an error
metric to measure the accuracy of prediction since the solution
in Eq. (30) is also the optimal under the minimum mean
squares error (MMSE) sense [8]. The RMSE of a method with
the prediction horizon h is defined as

RMSE(h,method) =
√

mean(xmethod
t+h|t − xt+h)2, (31)

where the mean value is evaluated over all t in the test set.
For prediction horizons, we set from 5 minutes to 120

minutes every 5 minutes. In our previous work [8], on a
freeway with a total length of about 60 miles (similar to
the longest path of the networks considered here), the actual
travel time is about 70 minutes under usual congestion. In
the most severe congestion, the maximum travel time is about
100 minutes, and accordingly, we set the maximum prediction
horizon to 120 minutes.

All datasets were normalized using the mean and standard
deviation of each sensor in the training set. For a reference, we
defined a baseline method that predicts future traffic features

assuming that the current traffic does not change over time,
i.e., xbaseline

x+h|t = xt.

B. Analysis of network prior

In this section, we show how network prior information
contributes to predictive performance. Our model generalizes
the DLM [8] to extend the model for a more extensive sensor
network using the sensor’s topology structure. When the DLM
is simply used in an extensive network without topology
structure information, an overfitting problem can occur. We
introduce the three following setups to evaluate how well the
proposed model utilizes the topology structure avoiding the
overfitting problem,

1) a single DLM for the entire sensor network (without
topological information),

2) separate DLMs (K = 5) for each freeway (block-
diagonal DLM),

3) and the proposed model that is a single DLM (K = 5)
with topological information.

As shown in Fig. 3, the proposed model shows the best per-
formance, followed by block-diagonal DLM and single DLM
without topological information. The proposed model induces
the sensor’s topological information through heat diffusion
kernels to give weights to each element of this transition matrix
and focus on estimating more essential components, resulting
in it as a sparse matrix, as shown in Fig. 4. As a result, it shows
excellent performance in long-term prediction by effectively
estimating off-diagonal elements (correlation between signals
of sensors installed on different freeways) while avoiding the
overfitting problem. In the case of the model with a single
DLM, all elements of this matrix are estimated using historical
data, while in the case of the model with separate DLMs,
only the block diagonal elements are estimated (red shaded
area). Therefore, since the former one needs to estimate a
much larger number of elements from the data than the latter,
an overfitting problem may occur. In contrast, in the separate
DLMs, the historical data cannot be fully utilized due to the
lack of association between sensors belonging to different
freeways. In particular, this insufficiency causes degradation
of long-term predictions as congestion propagates slowly from
one freeway to others.

The low prediction error is obtained only when the topo-
logical information is optimally implanted into the DLM.
Bayesian inference in our model is the key component to
support this process, as it optimally estimates various pa-
rameters that characterize the mixing ratio between data and
prior, which respectively correspond to DLM and topological
information. We set up the following experiment to find test
the effectiveness of this estimation method:

1) the model with measurements (Eq. (2)),
2) the model with topological information (Eq. (15)),
3) and the model with both topological information and

measurements (Eq. (19)).
For all the above models, we set three different cases that are
characterized by different sizes of the training sets with the
same test set.
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Fig. 5. Accuracy of the prediction and the data contribution for different training-test set ratio. The baseline method predicts future traffic features assuming
that the current traffic does not change over time, i.e., xbaseline

x+h|t = xt.

Figures 5(a)-(c) show the prediction accuracy of each case.
Interestingly, the model with measurements produced smaller
errors when the size of the training set is smaller. The reason
is that each training set period is close to that of the test set
with respect to time, which means larger training sets contain
measurement that are far from those in the test sets. This
may distort the inference process as traffic measurements have
seasonal patterns. On the other hand, the model using only the
topological information showed poor performance in predict-
ing the far future because mixture kernels do not represent well
the change in traffic conditions due to the volume preservation
characteristic. The model with both topological information
and measurements showed the best performance and similar
outputs regardless of the size of the training set. It shows that
Bayesian inference estimates parameters αt and γt in Eq. (19)
optimally, extracting maximal information both from data and
prior.

Figures 5(d)-(f) show the data contribution which is defined
in Eq. (20) of the mixture model. As the size of the training
set increases, the data contribution increases since the larger
training set can generalize measurements more easily. Another
important aspect from the results is that the data contribution
increases during peak periods such as morning and evening
peaks since the traffic volume is most likely not preserved
during these periods (therefore, it is difficult to explain it only
with diffusion processes).

C. Analysis of different diffusion periods

We evaluated the proposed method with different diffusion
processes (short, long, and mixture of both) in order to
examine how the model of Eq. (9) performs in different
settings. The transition matrix Ĥt was set from Eq. (19) with
three different diffusion priors:

1) HGt (T ) = HG(τ0) = limτ→0 e
−τL(G) (short diffusion

kernel; identity mapping),
2) HGt (T ) = HG(τ∞) = limτ→∞ e−τL(G) (long diffusion

kernel; averaging),
3) and HGt (T ) = π

(τ0)
t HG(τ0) + π

(τ∞)
t HG(τ∞) (mixture

of short and long diffusion kernels).

We also set three different cases that are characterized by
different sampling intervals (Ts), 5, 10, and 15 minutes. The
sampling interval indicates the time duration that corresponds
to the one-time incremental (the difference between t+ 1 and
t). The sampling interval is related to the diffusion period τ as
a diffusion kernel expresses how traffic signals diffuse through
a graph within a sampling interval.

Figures 6(a)-(c) show the prediction accuracy of each
diffusion prior on the transportation network G1 with the
three different sampling intervals. The predictor with the
long diffusion process showed relatively poor performance
compared to the baseline method for small prediction horizons,
but it was improved when prediction horizons become larger.
On the other hand, the one with the short diffusion process
showed relatively good performance compared to the baseline
method for all prediction horizons; however, it had insufficient
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Fig. 6. Accuracy of the prediction and ratio of the short and long diffusion processes for the same test set with different time intervals. The baseline method
predicts future traffic features assuming that the current traffic does not change over time, i.e., xbaseline

x+h|t = xt.

performance for large prediction horizons compared to the
one with the long diffusion process. The mixture model takes
advantage of the two extreme cases, significantly improving
the performance for both small and large prediction horizons.
Specifically, around 50 minutes prediction horizon in Fig. 6(a),
the performance of the mixture model is noticeably better
than the others, meaning that a mixture of poor predictors
can produce a good performance.

We emphasize that the distribution of the diffusion processes
(Πt) was determined optimally by Bayesian inference. Fig-
ures 6(d)-(f) show the ratio of the coefficients π(τ0)

t and π(τ∞)
t

in the mixture model that corresponds to the short and long
diffusion processes, respectively. Although the short diffusion
process dominates the whole process, as shown in the figures,
the small portion of the long diffusion process contributes to
the improvement. More importantly, the ratio becomes smaller
when the sampling interval increases. It shows that Bayesian
inference performs well in optimally determining parameters,
since the performance of the mixture model stays similar when
the sampling interval is changed.

We also emphasize that the ratio depends on time. For
example, during the early morning, the diffusion kernel with
long diffusion period (τ∞) contributes more to the prediction
performance although short diffusion (identity mapping) seems
to be a more reasonable choice as there are few changes
in traffic during that time. However, if the signal values
are relatively uniform (in the case of a traffic signal at
early morning), taking an average can remove noise while
minimizing signal distortion as xt+1 ≈ xt (identity) ≈
1
N 11Txt (averaging; robust to noise).

D. Comparison with state-of-the-art technologies
We compare the proposed method with other methods using

a benchmark dataset: PEMS-BAY dataset [11]. For a fair
comparison, we use the same settings which are defined in
[11] (also same in [19])2. The models used for the comparison
are as follows.

1) FC-LSTM (Fully Connected Long Short-Term Memory):
This model has been used as a representative reference for
time-sequence modeling in deep learning [29]. In general,
the LSTM module extracts correlations of signals farther
apart in time than the RNN structure. However, this model’s
disadvantage is that spatial correlations can only be expected
to learn directly from data as there is no separate module for
extracting spatial relationships of signals. The RMSE score for
PEMS-BAY dataset is retrieved from [11].

2) STGCN: Yu et al. [15] extracted spatial features with
Graph Convolutional Neural Network (CNN) utilizing spectral
graph convolution in graph theory. After that, they attached
Gated CNN block to extract temporal features.

3) DCRNN (Diffusion Convolution Recurrent Neural Net-
work): Li et al. [11] constructed a successful predictor by
extracting the signal’s spatial features from the underlying
graph structure by diffusion convolutional layers. Compared to
STGCN, they designed the filter in the spatial domain directly
rather than the graph spectral domain. The authors combine
this diffusion module to Gated Recurrent Unit (GRU) which
is a Recurrent Neural Network (RNN) variant.

4) Graph WaveNet: Xu et al. [19] improved DCRNN
by using dilated 1D convolution (also called WaveNet) to

2Our code is available at: https://github.com/semink/lsdlm/



10

TABLE II
RMSE OF DIFFERENT METHODS

FOR PEMS-BAY DATASET.

Horizon 15 min 30 min 60 min

FC-LSTM [29] 4.19 4.55 4.96
DCRNN [11] 2.95 3.97 4.74
STGCN [21] 2.96 4.27 5.69
Graph WaveNet [19] 2.74 3.70 4.52
ST-MetaNet [30] 2.90 4.02 5.06
Proposed 2.90 3.77 4.44

TABLE III
COMPUTATION COSTS FOR TRAINING ON THE PEMS-BAY DATASET

Model Training(s)

DCRNN [11] 750 (per epoch)
Graph WaveNet [19] 580 (per epoch)
Proposed 760 (total)

extract temporal features in terms of computation time and
performance.

5) ST-MetaNet: Pan et al. [30] introduced graph attention
network to extract spatial features. They utilize RNN archi-
tecture to extract temporal features.

Table II shows the RMSE of each model and our proposed
method. We confirm that the performance of the proposed
method reaches that of state-of-the-art methods based on a
complex deep learning architecture. It even performs better
for long-term prediction as we model based on DLM that
explicitly expresses the daily periodicity of traffic signals. For
example, the RMSEs of our proposed method for 90 and 120
min horizons are respectively 4.70 and 5.26, while these are
5.26 and 6.02 with the pre-trained DCRNN model.3

Our proposed method requires lower computational effort
compared to the others. Also, it infers the majority of the
parameters (N2) analytically by Eq. (19). The method only re-
quires numerical computation when it solves the optimization
problem (25) to infer K + 2 parameters, which has O(K2)
complexity, where K2 is noticeably smaller than N2. Note
that the hyperparameters are optimally estimated by solving
the optimization problem (25) rather than the cross-validation
method. As hyperparameter tuning is an expensive task, it can
be a major advantage of the proposed method.

On the other hand, all state-of-the-art methods require heavy
numerical computations to train a large number of parameters
as they are based on deep-neural-net architectures. Our method
successfully infers all parameters at the time scale of minutes
with CPU computations, which is noticeably shorter than other
DNN based methods with GPU computations as shown in
Table III (note that the DNN based methods required from
50 epochs to 100 epochs to converge).

Another advantage of our model compared to the deep-
learning-based architectures is that only a small number of
parameters need to be decided heuristically. This can provide
easy scalability to apply our model to other traffic datasets

3As GraphWaveNet predicts all the horizons at once (not recursive), we
could not use the pre-trained model for the longer horizons. As a result, we
choose DCRNN which shows the second-best result on 60 min horizon.

or datasets with similar properties to traffic data (daily pe-
riodicity). For example, in our model, the parameters to be
determined before training are the threshold constant κ, the
kernel width σ to build a proper graph, and the number of
diffusion processes K to determine how many diffusion pro-
cesses should be mixed. We empirically choose the constants
κ and σ such that the corresponding graph G is a k-vertex-
connected graph with a small number k. For the number of
diffusion processes K, we set K = 5 for the PEMS-BAY
dataset but the prediction performance is not sensitive to the
parameter (±0.01 minutes changes of the RMSE score from
K = 3 to K = 7).

V. CONCLUSION

In this paper, we proposed a method for predicting traffic
signals in transportation sensor networks. We successfully
integrated topological information of the sensor network into
a data-driven model by assuming that the parameters in the
model are supported by the mixture of diffusion kernels
with uncertainties. We exploited the Bayesian inference to
optimally determine the parameters that characterize the dis-
tribution of diffusion processes and the importance of mea-
surements against prior information. The importance varies
with time, and we discover that the data are relatively more
important, especially for the peak period. Most importantly,
the proposed method reached accurate prediction at the level
of state-of-the-art methods with less computational effort. It
particularly shows excellent performance in long-term predic-
tions by exploiting DLM’s periodicity modeling. Our method
can be applicable for predicting graph signals exhibiting daily
patterns such as weather or energy consumption. For future
works, we may improve the short-term prediction performance
if we give more valuable prior information (e.g., graph struc-
ture more suitable for prediction; currently, it only depends on
topology), or if it is possible to derive all inference processes
(especially the marginalization steps in Eq. (40) and (35)) with
a non-linear model overcoming the limitation of linear models.
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APPENDIX

A. Volume conservation of mixture of heat diffusion

By definition (in Eq. (6)), the graph Laplacian L(G) has an
eigenvector 1√

N
1 with the corresponding eigenvalue 0. Let an
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eigen-decomposition of the matrix be

L(G) = VDVT , (32)

where the orthonormal matrix V and the diagonal matrix D
contain eigenvectors and corresponding eigenvalues, respec-
tively. Since the orthonormal matrix V contains the eigenvec-
tor 1√

N
1,

1T x̃dt+1(τ)
(8)
= 1THG(τ)xdt
(5)
= 1T e−τL(G)xdt = 1TVe−τDVTxdt

=
N√
N

1√
N

1Txdt = 1Txdt .

(33)

Therefore,

1T x̃dt+1(T ) = 1THG(T )xdt = 1T

(∑
τ

π(τ)HG(τ)

)
xdt

=
∑
τ

π(τ)1THG(τ)xdt =
∑
τ

π(τ)1Txdt

= 1Txdt
∑
τ

π(τ) = 1Txdt .

(34)

B. Evidence

f(Xt+1|Xt, αt,Πt)

=

∫
f(Xt+1|Xt,Ht, αt)f(Ht|Πt)dHt

∝
∫
e−

1
2αttr{(Xt+1−HtXt)(Xt+1−HtXt)

T }

· e− 1
2γttr{(Ht−HGt (T ))(Ht−HGt (T ))T }dHt

∝ e−
1
2αt(Xt+1(I−αtXT

t ΣtXt)X
T
t+1−2γtH

G
t (T )ΣtXtX

T
t+1)

·
∫

(2π)−
N2

2 |Σt|−
N
2 e−

1
2 tr{(Ht−Ĥt)Σ

−1
t (Ht−Ĥt)

T }dHt

∝ e−
1
2αt(Xt+1(I−αtXT

t ΣtXt)X
T
t+1−2γtH

G
t (T )ΣtXtX

T
t+1)

∝ e− 1
2 tr{αt(Xt+1−HGt (T )Xt)(I+αtγ

−1
t XT

t Xt)
−1(Xt+1−HGt (T )Xt)

T },
(35)

where Σ−1
t = αtXtX

T
t + γtI.

C. Posterior of xt+h

When h = 1,

f(xt+1|xt,Xt+1,Xt)

=

∫
f(xt+1|xt,Ht, αt)f(Ht|Xt+1,Xt, αt, γt,Πt,G)dHt

= f(xt+1|xt, Ĥt, αt) = N (Ĥtxt, α
−1
t I).

(36)
Assume the statement is true for h = l − 1 so that

f(xt+l−1|xt,Xt:t+l−1) = N (Ĥt+l−2←txt,Rt+l−2), (37)

where Ĥt+l−2←t = Ĥt+l−2Ĥt+l−3 · · · Ĥt. By the chain rule,

f(xt+l|xt,Xt:t+l)

=

∫
f(xt+l|xt+l−1,Xt+l−1)f(xt+l−1|xt,Xt:t+l−1)dxt+l−1.

(38)

Since

f(xt+l|xt+l−1,Xt+l,Xt+l−1)

(36)
= N (Ĥt+l−1xt+l−1, α

−1
t+l−1I),

f(xt+l−1|xt,Xt+l−1, · · · ,Xt)
(37)
= N (Ĥt+l−2←txt,Rt+l−2),

(39)

f(xt+l|xt,Xt+l, · · · ,Xt)

=

∫
N (Ĥt+l−1xt+l−1, α

−1
t+l−1I)

· N (Ĥt+l−2←txt,Rt+l−2)dxt+l−1

∝
∫
exp
(
− 1

2

{
αt+l−1(xt+l − Ĥt+l−1xt+l−1)T

· (xt+l − Ĥt+l−1xt+l−1)

+ (xt+l−1 − Ĥt+l−2←txt)
TRt+l−2

· (xt+l−1 − Ĥt+l−2←txt)
})
dxt+l−1

∝ exp
(
− 1

2

(
αt+l−1x

T
t+lxt+l

− (αt+l−1Ĥ
T
t+l−1xt+l + R−1

t+l−2Ĥt+l−2←txt)
T

· (αt+l−1Ĥ
T
t+l−1Ĥt+l−1 + R−1

t+l−2)−1

· (αt+l−1Ĥ
T
t+l−1xt+l + R−1

t+l−2Ĥt+l−2←txt)
))

∝ exp
(
− 1

2
αt+l−1

·
(
xTt+l(I− αt+l−1Ĥt+l−1(αt+l−1Ĥ

T
t+l−1Ĥt+l−1

+ R−1
t+l−2)−1ĤT

t+l−1)xt+l

− 2xTt+lĤt+l−1(αt+l−1Ĥ
T
t+l−1Ĥt+l−1 + R−1

t+l−2)−1

·R−1
t+l−2Ĥt+l−2←txt

))
.

(40)
Applying matrix inversion lemma, Eq. (40) becomes

exp
(
− 1

2
αt+l−1

·
(
xTt+l(I + αt+l−1Ĥt+l−1Rt+l−2Ĥ

T
t+l−1)−1xt+l

− 2xTt+l(I + αt+l−1Ĥt+l−1Rt+l−2Ĥ
T
t+l−1)−1

· Ĥt+l−1Ĥt+l−2←txt
))

∝ exp
(
− 1

2
(xt+l − Ĥt+l−1Ĥt+l−2←txt)

T

·R−1
t+l−1(xt+l − Ĥt+l−1Ĥt+l−2←txt)

)
,

(41)
where Rt+l−1 = α−1

t+l−1I + Ĥt+l−1Rt+l−2Ĥ
T
t+l−1 and by

definition Ĥt+l−1←t = Ĥt+l−1Ĥt+l−2←t, so

f(xt+l|xt,Xt+l, · · · ,xt) = N (Ĥt+l−1←txt,Rt+l−1). (42)

Finally xt+h|t = Ĥt+h−1 · · · Ĥtxt.


