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Revisiting the Primal-Dual Method of Multipliers
for Optimisation over Centralised Networks

Guoqiang Zhang, Kenta Niwa and W. Bastiaan Kleijn

Abstract—The primal-dual method of multipliers (PDMM)
was originally designed for solving a decomposable optimisation
problem over a general network. In this paper, we revisit PDMM
for optimisation over a centralized network. We first note that the
recently proposed method FedSplit [1] implements PDMM for a
centralized network. In [1], Inexact FedSplit (i.e., gradient based
FedSplit) was also studied both empirically and theoretically.
We identify the cause for the poor reported performance of
Inexact FedSplit, which is due to the improper initialisation in the
gradient operations at the client side. To fix the issue of Inexact
FedSplit, we propose two versions of Inexact PDMM, which are
referred to as gradient-based PDMM (GPDMM) and acceler-
ated GPDMM (AGPDMM), respectively. AGPDMM accelerates
GPDMM at the cost of transmitting two times the number of
parameters from the server to each client per iteration compared
to GPDMM. We provide a new convergence bound for GPDMM
for a class of convex optimisation problems. Our new bounds
are tighter than those derived for Inexact FedSplit. We also
investigate the update expressions of AGPDMM and SCAFFOLD
to find their similarities. It is found that when the number K

of gradient steps at the client side per iteration is K = 1, both
AGPDMM and SCAFFOLD reduce to vanilla gradient descent
with proper parameter setup. Experimental results indicate that
AGPDMM converges faster than SCAFFOLD when K > 1 while
GPDMM converges slightly worse than SCAFFOLD.

Index Terms—Distributed optimisation, PDMM, FedSplit,
SCAFFOLD.

I. INTRODUCTION

In the last decade, distributed optimisation [2] has drawn

increasing attention due to the demand for massive-data pro-

cessing and easy remote access to ubiquitous computing units

(e.g., a computer or a mobile phone) over a network. Its

basic principle is to allocate the data over a set of computing

units instead of one server and then allow the computing

units to collaborate with each other in a distributed man-

ner to iteratively obtain a global solution (e.g., a machine

learning (ML) model) of an optimisation problem which is

formulated via the data. In general, the typical challenges

faced by distributed optimisation include, for instance, data-

heterogeneity across the network, expensive communication,

data-privacy requirements, massive scalability, and heteroge-

neous local computational resources [3], [4]. Depending on

the applications, various methods have been developed for

addressing one or more challenges in the considered network

(e.g., [5], [6], [7]).
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Considering the application of distributed optimisation for

learning an ML model, distributed learning [8], [9] over a

decentralized (i.e., peer-to-peer (P2P)) network and federated

learning [10] over a centralised (i.e., server-client topology)

network have been two of the most active research topics

in recent years. In a P2P network, network nodes can be

connected arbitrarily in an equal relationship. In this situation,

distributed optimisation methods are designed to be node-

independent w.r.t. local computation and communication to

enable network scalability. The algorithms in the literature

can be roughly classified as either average-consensus based

or primal-dual based.

In brief, the average-consensus approach [11], [12], [13]

allows the network nodes to share and average (or fuse) the

estimated models to be learned among neighbours iteratively

until reaching global consensus. On the other hand, the primal-

dual approach [8], [9], [14] intends to explicitly represent

the neighbouring consensus requirements via linear equality

constraints in terms of neighbouring model variables and then

iteratively solve the reformulated optimisation problem via

either Peaceman-Rachford (PR) splitting or Douglas-Rachford

(DR) splitting (e.g., [15], [16]). In particular, the alternating

direction method of multipliers (ADMM) [17] and the primal-

dual method of multipliers (PDMM) [8], [25] are two known

algorithms based on DR splitting and PR splitting, respec-

tively. One major advantage of the second approach is that it

is able to handle heterogeneous1 data implictly by imposing

linear equality constraints w.r.t. model variables.

Federated learning focuses on networks with server-client

topologies [10]. In the learning procedure, the server is re-

sponsible for collecting, fusing, and broadcasting informa-

tion from/to all the clients while each client only needs to

communicate with the server directly, which makes it easily

implementable. In general, federated learning is more time-

effective through global information collection and spread

at the cost of limited scalability than distributed learning

over a P2P network [4]. The algorithms developed for a

P2P network (e.g., [9]) can often be utilised for federated

learning by viewing the server-client structure as a special type

of P2P network. Recent developed algorithms for federated

learning include, for example, FEDAC [18], FedSplit [1], and

SCAFFOLD [19]. SCAFFOLD can be viewed as belonging

to the primal-dual approach due to the introduced covariates

in its update expressions for compensating the functional

heterogeneity.

In this paper, we revisit the primal-dual method of multipli-

1Alternatively referred to as non i.i.d. data across different network nodes.
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ers (PDMM) proposed in [8], [20]. The method was originally

designed to solve a decomposable optimisation problem over

a graphical model G = (V , E):

min
{xi}

(

∑

i∈V

fi(xi)
)

s. t. Bi|jxi=Bj|ixj ∀(i, j) ∈ E , (1)

where the notation s. t. stands for “subject to”, V and E
represent the sets of nodes and undirected edges respectively,

and fi(·) denotes the local function at node i ∈ V . The two

constant matrices Bi|j and Bj|i specify the linear equality

constraint for (i, j) ∈ E . As PDMM belongs to PR splitting, it

enjoys the benefit that PR splitting gives the best convergence

bounds with proper parameter setups for a certain class of

functions [17, Remark 4]. The recent work [9] has successfully

applied Inexact PDMM (or gradient based PDMM) for training

deep neural networks (DNNs) over P2P networks to the case

of heterogeneous data. In [14], the authors successfully extend

PDMM by incorporating SAGA, L-SVRG, and SVRG++ over

P2P networks. The performance of PDMM for centralised

networks remains to be explored.

This paper studies the relationship between PDMM, and the

two methods FedSplit and SCAFFOLD from the literature for

optimisation over centralised networks. Our contributions are

three-fold. Firstly, it is found that PDMM reduces to FedSplit

when applied to a centralized network. We identify the cause

for the poor reported performance of Inexact FedSplit (i.e.,

gradient based FedSplit) in [1], as being due to the improper

parameter initialisation at the client side per iteration.

Secondly, to correct the issue of Inexact FedSplit, we pro-

pose two versions of inexact PDMM, which are referred to as

gradient-based PDMM (GPDMM) and accelerated GPDMM

(AGPDMM), respectively. It is noted that GPDMM only needs

to transmit one variable (a combination of a primal variable

and a dual variable) per iteration between the server and

clients. To accelerate the convergence speed of GPDMM,

AGPDMM is designed to transmit two variables (a primal

variable and a dual variable) per iteration from the server to

the clients. Linear convergence rates for strongly convex and

sublinear convergence rates for general convex cases are then

established for GPDMM, which lead to tighter convergence

bounds than those in [1]. We note that, in principle, the

analysis results in [20], [14] for GPDMM over a decentralied

network also hold for centralised networks. However, [20] only

shows the convergence of GPDMM while the recent work [14]

only shows the sublinear convergence rates.

Thirdly, it is found that both AGPDMM and SCAFFOLD

reduce to the vanilla gradient descent operation under proper

parameter setup when the number K of gradient steps at the

client side per iteration is set to K = 1. Experimental results

show that GPDMM produces slightly worse performance

than SCAFFOLD which transmits two variables between the

server and clients per iteration. On the other hand, AGPDMM

converges faster than SCAFFOLD when K > 1.

II. PROBLEM DESCRIPTION

Notation and definition of a convex conjugate function:

We use bold small letters to denote vectors and bold capital

letters to denote matrices. In particular, I denotes the identity

matrix. The superscript (·)T represents the transpose operator.

Given a vector y, we use ‖y‖ to denote its l2 norm. Given

a graphical model G = (V , E), we use Ni to denote the set

of neighbours for node i. Suppose h : Rn → R ∪ {+∞} is

a closed, proper and convex function. Then the conjugate of

h(·) is defined as [23][Definition 2.1.20]

h∗(δ)
∆
= max

y
δTy − h(y), (2)

where the conjugate function h∗ is again a closed, proper and

convex function.

Problem settings: As a special case of (1), we focus on a

network of one server responsible for coordinating the learning

process of m clients, which can be represented as

min
{xs,xi∈Rd}

(

m
∑

i=1

fi(xi)

)

s. t. xs=xi i = 1, . . . ,m, (3)

where the edge set E in the graph is E = {(i, s)}mi=1, the server

function fs(xs) = 0, and each client function fi : R
d → R is

both continuously differentiable with the Lipschitz continuous

gradient L > 0 [24]

fi(yi) ≥ fi(xi)+∇fi(x)
T (yi−xi)

+
1

2L
‖∇fi(xi)−∇fi(yi)‖2, (4)

and (strongly) convex

fi(yi) ≥ fi(xi)+∇fi(x)
T (yi−xi)+

µ

2
‖xi−yi‖2, (5)

for all yi ∈ R
d,xi ∈ R

d. It is noted that convergence analysis

for GPDMM will be conducted for both strong convexity (µ >
0) and general convexity (µ = 0) later on.

It is worth noting that (4) is essential to prove the linear

convergence speed of GPDMM later on. In principle, the

gradient difference ‖∇fi(xi) − ∇fi(yi)‖2 is able to capture

how the estimates of the dual variables of the method evolve

over iterations.

The Lagrangian function for (3) can be constructed as

L(xs, {xi, δi}) =
m
∑

i=1

fi(xi) +

m
∑

i=1

δi(xs − xi), (6)

where {δi} are the Lagrangian multipliers, and can also

be viewed as the dual variables as opposed to the primal

variables xs and {xi}. We assume there exists a saddle point

x⋆
s, {x⋆

i , δ
⋆
i } for (6). The corresponding KKT conditions are

given by

∇fi(x
⋆
i ) = δ⋆i ∀i, x⋆

i = x⋆
s ∀i,

m
∑

i=1

δ⋆i = 0. (7)

The research goal is to obtain a good estimation of x⋆
s via local

computation and communication between the server and the m
clients after a reasonably number of iterations. We will propose

two versions of Inexact PDMM by inspection of the update

expressions of PDMM later on to reduce the computational

complexity of PDMM per iteration.
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III. RELATIONSHIP BETWEEN PDMM AND FEDSPLIT

In this section, we first briefly describe the updating pro-

cedure of PDMM for both the general problem (1) and

the special case (3). We will then explain that the recently

developed method FedSplit is identical to PDMM for solving

the special problem (3). After that, the poor performance for

Inexact FedSplit in [1] will be studied.

A. PDMM

Iterates over a general graph: Before introducing the

method, we first present the dual problem for (1), which can be

obtained by constructing and optimising the so-called (primal)

Lagrangian function

max
{δij}

min
{xi}

(

∑

i∈V

fi(xi)−
∑

(i,j)∈E

δT
ij(Bi|jxi−Bj|ixj)

)

(a)⇐⇒ max
{λi|j ,λj|i}

min
{xi}

∑

i∈V

(

fi(xi)−xT
i

∑

j∈Ni

BT
i|jλi|j

)

,

{

λi|j=−λj|i

∀(i, j) ∈ E

(b)⇐⇒ max
{λi|j ,λj|i}

∑

i∈V

−f∗
i

(

∑

j∈Ni

BT
i|jλi|j

)

,

{

λi|j = −λj|i

∀(i, j) ∈ E , (8)

where δij is the Lagrangian multiplier (or the dual variable)

for each constraint Bi|jxi = Bj|ixj , which by using the lift-

ing technique [8], can be further replaced by two dual variables

(λi|j ,λj|i) under the constraint λi|j = −λj|i in step (a). The

variable λi|j is owned by node i and is related to neighbour

j. It is noted that Ni denotes the set of neighbours for node i.
f∗
i in step (b) is the conjugate function of fi (see (2) for the

definition). We use λi to denote the vector by concatenating

all λi|j , j ∈ Ni. Finally, we let λ = [λT
1 , . . . ,λ

T
|V|]

T and

x = [xT
1 , . . . ,x

T
|V|]

T , where the dimension of λ depends on

the network topology.
Instead of solving the primal problem (1) or the dual one

(8) separately, PDMM is designed to iteratively approach a

saddle point of an augmented primal-dual Lagrangian function

obtained by combining (1) and (8) [8]:

Lρ(x,λ) =
∑

i∈V

[

fi(xi) +
∑

j∈Ni

λT
j|i(Bi|jxi)

−f∗
i

(

∑

j∈Ni

BT
i|jλi|j

)]

+ hρ(x)−gρ(λ) (9)

where hρ(x) and gρ(λ) are defined as

hρ(x) =
∑

(i,j)∈E

ρ

2

∥

∥Bi|jxi −Bj|ixj

∥

∥

2
(10)

gρ(λ) =
∑

(i,j)∈E

1

2ρ

∥

∥λi|j + λj|i

∥

∥

2
, (11)

where ρ > 0. Lρ is convex in x and concave in λ.
Synchronous PDMM optimises Lρ by updating x and λ

simultaneously per iteration through node-oriented computa-

tion. At iteration r, each i computes a new estimate xr+1
i by

locally solving a small-size optimisation problem based on the

neighbouring estimates {xr
j |j ∈ Ni} and {λr

j|i|j ∈ Ni} from

the last iteration:

xr+1
i =argmin

xi

[

fi(xi) +
∑

j∈Ni

(λr
j|i)

TBi|jxi

+
∑

j∈Ni

ρ

2
‖Bi|jxi−Bj|ix

r
j‖2
]

i ∈ V (12)

In principle, each estimate λr+1
i can be obtained similarly by

solving a small-size optimisation problem that involves the

conjugate function f∗
i from (9). It is shown in [8] that once

xr+1
i is obtained, {λr+1

i } can be computed directly as:

λr+1
i|j =ρ(Bj|ix

r
j−Bi|jx

r+1
i )−λr

j|i i ∈ V , j ∈ Ni. (13)

One can also design an asynchronous updating procedure

for PDMM, where the network nodes are activated asyn-

chronously for parameter updating at different iterations (see

[8] for more details).

We note that the above description of Lρ and the update

expressions (12)-(13) for PDMM builds a foundation for the

convergence analysis later on. The general linear constraints

{Bi|jxi =Bj|ixj} in (1) enable PDMM to cover a broader

class of problems than those methods which only focus on

the special constraints {xi = xj}. Another nice property of

PDMM is that two dual variables (λi|j ,λj|i) are introduced

per linear constraint, which makes the update expressions

node-oriented, thus facilitating practical implementation. It is

shown in [25] that PDMM can be alternatively derived from

the PR splitting by using monotone operator theory [16].

Iterates over the server-client graph for (3): We now

consider applying PDMM to the problem (3) by setting

Bi|s = Bs|i = I for all the edges (i, s) ∈ E . Instead of

performing synchronous updates, we let the server compute the

estimates (xr+1
s , {λr+1

s|i }) only after receiving the estimates

{xr+1
i ,λr+1

i|s } from the clients at iteration r. That is, at

iteration r, the server uses the most up-to-date estimates

{xr+1
i ,λr+1

i|s } from the clients instead of the old estimates

{xr
i ,λ

r
i|s} in computing (xr+1

s , {λr+1
s|i }). By inspection of

(12)-(13), one can then derive the following update expressions

with a slight index modification:

clients

{

xr+1
i =argminxi

[

fi(xi)+
ρ
2‖xi−xr

s+λr
s|i/ρ‖2

]

λr+1
i|s = ρ(xr

s−xr+1
i )−λr

s|i

(14)

server

{

xr+1
s = 1

m

∑m
i=1(x

r+1
i −λr+1

i|s /ρ)

λr+1
s|i = ρ(xr+1

i −xr+1
s )−λr+1

i|s

, (15)

where the computation for xr+1
s uses the fact that fs(xs) = 0.

Next we briefly discuss the variables that must be transmit-

ted between the server and the clients per iteration for PDMM

to work. It is noted from (14) that at iteration r, each client

i only needs the quantity xr
s−λr

s|i/ρ from the server for the

computation of (xr+1
i ,λr+1

i|s ). Similarly, the server only needs

the quantity xr+1
i −λr+1

i|s /ρ from client i to update xs and λs|i.

That is, both the server and the client need only to transmit

one variable to each other per iteration, where the variable is

a combination of the primal and dual estimates.

B. (Inexact) FedSplit

Iterates procedure: Recently, the authors of [1] applied

Peaceman-Rachford splitting to solve the special problem
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(3). The resulting update expressions at iteration r can be

summarised as follows:

clients

{

xr+1
i =argmin

[

fi(xi)+
1
2γ ‖xi−zr

s|i‖2
]

zr+1
i|s = 2xr+1

i − zr
s|i

(16)

server

{

xr+1
s = 1

m

∑m
i=1 z

r+1
i|s

zr+1
s|i = 2xr+1

s − zr+1
i|s

, (17)

where the parameter γ > 0, and {zi|s, zs|i} are the auxiliary

variables introduced in FedSplit. It is noted again that the

clients only need to send {zi|s} to the server for parameter

updating while the server only needs to send zs|i to client i,
which is in line with that of PDMM.

On equivalence between PDMM and FedSplit: We now

briefly show that the iterates (14)-(15) of PDMM reduce to

(16)-(17) by proper hyper-parameter setup and reformulation.

Specifically, by letting ρ = 1/γ, zi|s = xi − γλi|s, and

zs|i = xs − γλs|i in (14)-(15), one can easily oberse

that the resulting expressions are identical to (16)-(17). The

equivalence between PDMM and FedSplit is due to the fact

that both methods are based on Peaceman-Rachford splitting

(see [25] for more details about PDMM). However, PDMM

is more general than FedSplit since it can also be applied for

decentralised networks.

Inexact iterates: In practice, it might be difficult or expensive

to obtain a closed form solution for xr+1
i in (16) due to the

complexity of fi(xi). One common practice is to conduct an

inexact computation based on gradient descent.

The authors of [1] considered simplifying the minimisation

problem in (16) by performing K steps of consecutive gradient

descent operations for each client i at iteration r to obtain a

sequence of K estimates: {xr,k
i |k = 1, . . . ,K}. By starting

with x
r,k=0
i = zr

s|i, the estimate x
r,k+1
i at step k of iteration

r is computed as

x
r,k+1
i = x

r,k
i − η∇hr

i (x
r,k
i ) 0 ≤ k < K, (18)

where η is the stepsize, and the function hr
i (xi) at iteration r

is defined to be

hr
i (xi) = fi(xi) +

1

2γ
‖xi − zr

s|i‖2. (19)

We note that the initialisation x
r,k=0
i = zr

s|i for the set of K
steps within each iteration is not a good option, especially for

finite K or small ρ value. From the analysis about equivalence

on PDMM and FedSplit, we notice that x
r,k=0
i = zr

s|i =
xr
s −λr

s|i/ρ. That is, zr
s|i is a combination of both the primal

and dual variables. A good initialisation of x
r,k=0
i should not

include the dual variable λr
s|i. This is because in general, the

optimal solution λ∗
s|i of the dual variable λs|i is not zero.

Even the special initialisation λr=0
s|i = 0 would not guarantee

that λr
s|i is zero when the iteration r > 0. The component

λr
s|i/ρ makes the initialisation x

r,k=0
i = xr

s − λr
s|i/ρ less

effective than an initialisation without the dual variable. Small

ρ value would increase the impact of λr
s|i. There are different

ways to correct the improper initialisation of Inexact FedSplit

depending on how to choose the estimates for {xr,k=0
i }. See

the next section for the two versions of Inexact PDMM.
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Fig. 1. Plots of the optimality gap F (xr
s)−F ∗ versus the iteration number

r for Inexact FedSplit applied to a least-square problem over a network of 25
clients and one server, where F (xr

s
) =

∑
m

i=1
fi(xr

s
) and F ∗ denotes the

minimum functional value. See Subsection VI-A for more details about the
problem.

A simple evaluation of Inexact FedSplit is conducted for

solving a least-square problem. As shown in Fig. 1, when the

step number K is finite (e.g., K = 1, 3), Inexact FedSplit

does not converge to the optimal solution due to the improper

initialisation x
r,k=0
i = zr

s|i. If on the other hand, client i

initialises x
r,k=0
i to be x

r,k=0
i = xr

s at each iteration r, the

method converges for both K = (1, 3).
Convergence bounds of Inexact FedSplit: We note that

the convergence bounds derived in [1] for Inexact FedSplit are

not tight. Suppose all the client functions are strongly convex

and have Lipschitz continuous gradients. Assume that at each

iteration r, the error ‖xr,k=K
i − x

r,k=∞
i ‖ for each client is

always upper-bounded by a scalar b. With proper setup for γ
in (16) and (18), it is shown in [1] that the error ‖xr+1

s −x⋆
s‖,

r ≥ 1, is upper bounded by

‖xr+1
s −x⋆

s‖ ≤
(

1− 2√
κ+ 1

)r ‖x0
s−x⋆

s‖√
m

+(
√
κ+ 1)b,

where the parameter κ > 0 is determined by the properties

(e.g., L, µ in (4)-(5)) of the client functions. It is clear that the

scalar b is a loose offset for quantifying the error introduced

by the gradient descent operations in Inexact FedSplit. The

convergence results in Fig. 1 indicates that Inexact FedSplit

may even not converge for small K , which can be explained

by a large offset b.

IV. INEXACT PDMM AND ITS COMPARISON TO

SCAFFOLD

In this section, we first present the two versions of Inex-

act PDMM: namely, GPDMM and AGPDMM. In particular,

GPDMM is designed for both the server and clients to transmit

one variable to each other per iteration. To accelerate the

convergence speed of GPDMM, AGPDMM requires the server

to transmit two variables to each client per iteration. After that,

we investigate the similarity of AGPDMM and SCAFFOLD.

We show that when the number K of gradient steps at the

client slide per iteration is set to K = 1, both AGPDMM and

SCAFFOLD reduce to vanilla gradient descent under proper

parameter setups. As will be discussed later, SCAFFOLD

requires both the server and clients to transmit two variables

to each other per iteration.

A. GPDMM by sending one variable from server to each client

To correct the convergence issue of Inexact FedSplit,

GPDMM is designed to avoid using the estimate xs −λs|i/ρ
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Algorithm 1 GPDMM for a centralised network

1: Init.:{xr=0,K
i =x1

s}, {λ1
s|i=0}, η, ρ = 1

Kη
2: For each iteration r = 1, . . . , R do

3: Server s transmits xr
s − λr

s|i/ρ to each client i
4: On client i in parallel do

5: Init.: x
r,k=0
i = x

r−1,K
i

6: For k = 0, . . . ,K − 1 do

7: x
r,k+1
i =x

r,k
i − 1

1/η+ρ

[

∇fi(x
r,k
i )+ρ(xr,k

i −xr
s)+λ

r
s|i

]

8: End for

9: λr+1
i|s = ρ(xr

s−x̄r,K
i )−λr

s|i where x̄
r,K
i = 1

K

∑K
k=1 λ

r,k
i

10: client i transmits x̄
r,K
i − λr+1

i|s /ρ to server s
11: End on client

12: xr+1
s = 1

m

∑m
i=1(x

r+1
i −λr+1

i|s /ρ)

13: λr+1
s|i = ρ(x̄r,K

i −xr+1
s )−λr+1

i|s
14: End for

when conducting approximate optimisation at the client side.

Specifically, at iteration r, client i sets x
r,k=0
i = x

r−1,K
i and

then performs K steps of gradient-based approximate optimi-

sations to obtain a sequence of estimates {xr,1
i , . . . ,xr,K

i }.

The estimate x
r,k+1
i at step k is computed as

x
r,k+1
i =argmin

xi

[

f r,k
i (xi)+

ρ

2
‖xi−xr

s+λr
s|i/ρ‖2

]

= x
r,k
i − 1

1/η + ρ

[

∇fi(x
r,k
i )+ρ(xr,k

i −xr
s)+λr

s|i

]

, (20)

where f r,k
i (xi) is a quadratic approximation of fi(xi) at x

r,k
i :

f r,k
i (xi) =fi(x

r,k
i )+(xi−x

r,k
i )T∇fi(x

r,k
i )

+1/(2η)‖xi−x
r,k
i ‖2, (21)

where 1/L ≥ η > 0 is the gradient stepsize. The optimality

condition for x
r,k+1
i in (20) can be rewritten as

∇fi(x
r,k
i ) =1/η(xr,k

i −x
r,k+1
i )

− ρ(xr,k+1
i −xr

s+λr
s|i/ρ). (22)

After finishing the computation for x
r,K
i , client i then sets

λr+1
i|s to be

λr+1
i|s =ρ

(

xr
s−

1

K

K
∑

k=1

x
r,k
i

)

−λr
s|i, (23)

where, to facilitate convergence analysis, the average estimate
1
K

∑K
k=1 x

r,k
i is used for computing λr+1

i|s instead of the final

estimate x
r,K
i . See remark below for our detailed motivation.

Remark 1. We note that the computation for λr+1
i|s in (23) is

not the optimal setup from the viewpoint of fast convergence

speed. One should replace the average estimate 1
K

∑K
k=1 x

r,k
i

in (23) with the most recent estimate x
r,K
i when computing

λr+1
i|s , which can be represented as

λr+1
i|s =ρ

(

xr
s−x

r,K
i

)

−λr
s|i. (24)

This is because the most recent estimate x
r,K
i provides a

more accurate approximation of the optimal solution which

Algorithm 2 AGPDMM for a centralised network

1: Init.: x1
s , {λ1

s|i=0}, η, ρ = 1
Kη

2: For each iteration r = 1, . . . , R do

3: Server s transmits xr
s and λr

s|i to each client i
4: On client i in parallel do

5: Init.: x
r,k=0
i = xr

s

6: For k = 0, . . . ,K − 1 do

7: x
r,k+1
i =x

r,k
i − 1

1/η+ρ

[

∇fi(x
r,k
i )+ρ(xr,k

i −xr
s)+λ

r
s|i

]

8: End for

9: λr+1
i|s = ρ(xr

s−x
r,K
i )−λr

s|i

10: client i transmits x
r,K
i − λr+1

i|s /ρ to server s
11: End on client

12: xr+1
s = 1

m

∑m
i=1(x

r,K
i −λr+1

i|s /ρ)

13: λr+1
s|i = ρ(xr,K

i −xr+1
s )−λi|s

14: End for

minimises fi(xi)+
ρ
2‖xi−xr

s+λ
r
s|i/ρ‖2 in (14) than the average

estimate. As will be analysed in next section, the average

estimate 1
K

∑K
k=1 x

r,k
i in (23) facilitates convergence analysis.

We leave the convergence analysis for employing the update

expression (24) for future research work.

At the server side, once it receives the estimates {xr+1
i −

λr+1
i|s /ρ} at iteration r, the estimates xr+1

s and {λr+1
s|i } can

be computed by following (15). By inspection of (15), it is

not difficult to show that
m
∑

i=1

λr+1
s|i = 0, (25)

which always holds no matter how Inexact PDMM is per-

formed at the client side. It is noted that the above equation

is in line with one of the KKT conditions in (7). Equ. (25)

will be used for convergence analysis later on. See Alg. 1 for

a brief summary for GPDMM, where ρ is set to ρ = 1/(Kη),
which is inspired by the update expressions of SCAFFOLD

as will be discussed later on.

There are two differences between Inexact FedSplit and

GPDMM. Firstly, each time, GPDMM approximates fi(xi)
by (21) while Inexact FedSplit approximates the summation

hr
i (xi) = fi(xi) +

1
2γ ‖xi − zr

s|i‖2 in (19) by a quadratic

function. Secondly, Inexact FedSplit initialises x
r,k=0
i with the

starting point zr
s|i = xr

s − λr
s|i/ρ while GPDMM initialises

x
r,k=0
i with the starting point xr−1,K

i from the last iteration.

As concluded from last section, zs|i involves both the primal

and dual variables, and is thus not suitable for initialisation.

B. AGPDMM by sending two variables from server to each

client

Updating and transmission procedure: We note that the

convergence speed of GPDMM can be accelerated by a slight

modification of its updating expressions. It is known for both

PDMM and GPDMM that the server aggregates information

from all the clients at each iteration. At iteration r, the global

estimate xr
s should be more accurate than each individual

estimate x
r−1,K
i . Therefore, it is preferable for each client

i to employ the global estimate xr
s instead of x

r−1,K
i when
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conducting K steps of gradient-based approximate optimi-

sation at iteration r. That is, the quantity x
r,k=0
i should be

initialised as x
r,k=0
i = xr

s to achieve fast convergence speed.

The computation for λr+1
i|s follows from (24) instead of (23) to

further accelerate the convergence speed. Alg. 2 summarises

the updating procedure of AGPDMM, which is obtained by

following the above guideline.

We now briefly discuss the variables that need to be trans-

mitted from the server to the clients. At iteration r, it is clear

that AGPDMM has to send both xr
s and λr

s|i to each client i
to allow for parameter update while GPDMM only needs to

send the combination xr
s−λr

s|i/ρ to client i. The two versions

of inexact PDMM exhibit a trade-off between convergence

speed and transmission bandwidth. AGPDMM accelerates the

convergence speed of GPDMM at the cost of transmitting two

times the number of parameters as GPDMM from the server

to each client per iteration. In practice, one can select a proper

version of Inexact PDMM depending on the requirement of

the considered application.

Performance of AGPDMM when K = 1: We will show in

the following that under proper parameter selection, the update

expression for AGPDMM when K = 1 reduces to the vanilla

gradient descent operation. Specifically, xr+1
s at iteration r

can be represented as

xr+1
s =

1

m

m
∑

i=1

(xr,K=1
i −λr+1

i|s /ρ)

(a)
=

1

m

m
∑

i=1

(xr
s −

2

1/η + ρ

(

∇fi(x
r
s) + λr

s|i

)

+λr
s|i/ρ)

(b)
= xr

s −
2

1/η + ρ

1

m

m
∑

i=1

∇fi(x
r
s) (26)

ρ= 1

η

= xr
s − η

1

m

m
∑

i=1

∇fi(x
r
s), (27)

where step (a) utilises the expressions λr+1
i|s = ρ(xr

s −
x
r,K=1
i )−λr

s|i and x
r,K=1
i = xr

s − 1
1/η+ρ

[

∇fi(x
r
s) + λr

s|i

]

.

Step (b) employs the equality (25).

It is clear from (26) that the update expression for xr+1
s is

actually the vanilla gradient descent expression over the func-

tion 1
m

∑m
i=1 fi(x) at the estimate xr

s. The estimates {λr
s|i}

for the dual variables have no effect on the computation of

xr+1
s . The parameter ρ only affects the stepsize computation.

When ρ = 1
η , the stepsize becomes η as indicated by (27).

Remark 2. Alternatively, we can take Inexact FedSplit with

the special initialisation {xr,k=0
i = xr|r ≥ 0} as a variant of

AGPDMM. In this case, one can show that the estimate xr+1
s

when K = 1 is given by

xr+1
s = xr

s − 2η
1

m

m
∑

i=1

∇fi(x
r
s). (28)

It is seen that the step-size in (28) is 2η in comparison to

the step-size η in (27). This is because the quadratic term

‖xi−xr
s+λr+1

s|i /ρ‖2 in (14) is treated differently in AGPDMM

and its variant.

C. Comparison with SCAFFOLD

Updating and transmission procedure of SCAFFOLD:

The recent work [19] proposes SCAFFOLD for stochastic

distributed optimisation over a centralized network. To make

a fair comparison with Inexact PDMM, we present the update

expressions of SCAFFOLD for solving (3), which can be

represented as

clients











x
r,0
i = xr

s

x
r,k+1
i =x

r,k
i −η(∇fi(x

r,k
i )−cri+cr) k= |K−1

0

cr+1
i = cri − cr + 1

Kη (x
r
s − x

r,K
i )

(29)

server

{

xr+1
s =xr

s + ηg
1
m

∑m
i=1(x

r,K
i − xr

s)
cr+1 = cr + 1

m

∑m
i=1(c

r+1
i − cri )

, (30)

where all clients are included for information fusion at the

server side per iteration, k = |K−1
0 is a short notation for

k = 0, . . . ,K , and (η, ηg) are the stepsizes. The parameters

c and {ci} are the so-called server and client control variates

to compensate for the functional heterogeneity over different

clients [19]. From a high-level point of view, the control

variates of SCAFFOLD play a similar role as the dual variables

in (Inexact) PDMM.

We point out that in the computation of cr+1
i in (29), the

variable difference (xr
s −x

r,K
i ) is scaled by the factor 1

Kη . In

Alg. 1 and 2, the setup ρ = 1
Kη is selected to ensure that the

variable difference is also scaled by 1
Kη in computing λr+1

i|s .

From (29)-(30), it is not difficult to conclude that at iteration

r, the server needs to send the two variables (xr
s, c

r) to the

clients to enable parameter update. Each client i needs to send

the two variables (xr,K
i − xr

s, c
r+1
i − cri ) to the server for

information fusion. In contrast, the two versions of Inexact

PDMM only require each client to transmit one variable to

the server per iteration. The transmission load from the server

to the clients depends on how Inexact PDMM is realised

as discussed earlier. As will be shown in the experiment,

AGPDMM converges faster than SCAFFOLD when K > 1.

Performance of SCAFFOLD when K = 1: We now

show that when K = 1, the update expression for xr+1
s in

(30) also reduces to vanilla gradient descent operation under

proper parameter selection. Assume
∑m

i=1(c
r
i − cr)=0. It is

immediate that

xr+1
s =xr

s−
ηgη

m

m
∑

i=1

∇fi(x
r
s)

ηg=1
= xr

s−η
1

m

m
∑

i=1

∇fi(x
r
s). (31)

One can also easily show that
∑m

i=1(c
r+1
i −cr+1) = 0 based on

the assumption
∑m

i=1(c
r
i −cr)=0. Note that the parameter ηg

only affects the overall stepsize of the vanilla gradient descent.

When ηg = 1, (31) is identical to (27).

To summarise, when K = 1, both SCAFFOLD and AG-

PDMM may reduce to the vanilla gradient descent opera-

tion. For SCAFFOLD, it is required that the initialisation
∑m

i=1(c
0
i−c0)=0. In the special case of K = 1, the parameter

ρ in AGPDMM and ηg in SCAFFOLD only affect the overall

stepsizes of the vanilla gradient descent as discussed above.

V. CONVERGENCE ANALYSIS OF GPDMM

An inequality for each estimate x
r,k+1
i : Using the fact

that the client functions {fi} are (strongly) convex and have
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Lipschitz continuous gradients, we derive an inequality for

x
r,k+1
i in (20) at step k of iteration r in a lemma below:

Lemma 1. Let (1/η) ≥ L in the approximation function (21).

Then for any xi ∈ R
d and θ ∈ [0, 1], we have

fi(xi)− fi(x
r,k+1
i )

≥(xi−x
r,k+1
i )T [ρ(xr

s−x
r,k+1
i )−λr

s|i]+
1

2η
‖xi − x

r,k+1
i ‖2

− 1/η − θµ

2
‖xr,k

i − xi‖2+
1/η − L

2
‖xr,k+1

i −x
r,k
i ‖2

+
1− θ

2L
‖∇fi(x

r,k
i )−∇fi(xi)‖2, (32)

where µ = 0 corresponds to the general convex case. f

Proof. See Appendix A for detailed derivation.

An inequality for all estimates {xr,k
i |k = 1, . . . ,K}mi=1:

Suppose {x⋆
s = x⋆

i }mi=1 together with {λ⋆
i|s = −λ⋆

s|i)}mi=1

is an optimal solution satisfying (7) by letting {λ⋆
i|s =

δ⋆
i }mi=1. We utilise Lemma 1 to derive an inequality involving

{xr,k
i |k = 1, . . . ,K}mi=1 and the above optimal solution:

Lemma 2. Suppose the estimates {xr,k
i } are obtained by

performing (20)-(21) under the condition that 1/η ≥ L. Let

x̄
r,K
i = 1

K

∑K
k=1 x

r,K
i . Then

m
∑

i=1

1

K

K−1
∑

k=0

1/η − θµ

2
‖xr,k

i − x⋆
i ‖2

+

m
∑

i=1

1

4ρ
‖ρ(x̄r,K

i − x⋆
i ) + (λr+1

i|s − λ⋆
i|s)‖2

≥
m
∑

i=1

[

fi(x̄
r,K
i )− (x̄r,K

i )Tλ⋆
i|s − fi(x

⋆
i )

+
1

K

K−1
∑

k=0

( 1

2η
‖x⋆

i − x
r,k+1
i ‖2

+
1/η − L

2
‖xr,k+1

i −x
r,k
i ‖2+1− θ

2L
‖ρ(xr

s−x
r,k+1
i )

−λr
s|i− λ⋆

i|s −(1/η)(xr,k+1
i −x

r,k
i )‖2

)

+
1

4ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2

]

, (33)

where 1 ≥ θ ≥ 0.

Proof. See Appendix B for the proof.

Next we show that
∑m

i=1

[

fi(x̄
r,K
i )−(x̄r,K

i )Tλ⋆
i|s−fi(x

⋆
i )
]

in (33) is lower-bounded by zero in a lemma below:

Lemma 3. Suppose {x⋆
s = x⋆

i }mi=1 together with {λ⋆
i|s =

−λ⋆
s|i)}mi=1 is an optimal solution satisfying (7) by letting

{λ⋆
i|s = δ⋆i }mi=1. For any {xi ∈ R

d}mi=1,

m
∑

i=1

[

fi(xi)− fi(x
⋆
i )− xT

i λ
⋆
i|s

]

≥ 0. (34)

See Appendix D for the proof. Basically, (34) suggests that

the RHS of (33) is always lower-bounded by zero. If needed,

the quantity
∑m

i=1[fi(x̄
r,K
i ) − fi(x

⋆
i ) − (x̄r,K

i )Tλ⋆
i|s] can be

ignored in (33) due to its nonnegativity.

Linear convergence results: With Lemma 2 and 3, we are

ready to show the linear convergence speed for GPDMM in

Alg. 1. Our main objective is to show that the coefficients

before ‖xr,K
i −x⋆

i ‖2 and ‖ρ(x̄r+1,K
i −x⋆

i )+ (λr+2
i|s −λ⋆

i|s)‖2
on the RHS of (33) are greater than the ones before ‖xr−1,K

i −
x⋆
i ‖2 and ‖ρ(x̄r,K

i − x⋆
i ) + (λr+1

i|s − λ⋆
i|s)‖2 on the LHS of

(33) for each client i. The other quantities in (33) are either

dropped or combined to produce the above mentioned ones.

We summarise the results in a theorem below:

Theorem 1. Suppose the estimates {xr,k
i } are obtained by

performing (20)-(21) under the condition that 1/η > L ≥
µ > 0. Let Qr, r ≥ 1, be

Qr =

m
∑

i=1

[1/η − θµ

2K
‖xr−1,K

i − x⋆
i ‖2

+(
1

4ρ
−γ2

2
)‖ρ(x̄r,K

i −x⋆
i )+(λr+1

i|s −λ⋆
i|s)‖2

]

, (35)

where

γ2=min

(

θµφ

2ρ2
,
γ1η

2

2

)

, (36)

where 1>θ>0, 1>φ>0 satisfy θµφ
4ρ2 < 1

4ρ , and

γ1=min

(

1− θ

2Lη2
,
1/η−L

2

)

. (37)

Then

Qk+1 ≤ βQk, (38)

where 0 < β < 1 is computed as

β = max

(

1/(4ρ)− γ2/2

1/(4ρ)
,
1/η − θµ

1/η − θµφ

)

.

Proof. See Appendix E for the proof. The constraint 0 < β <
1 is guaranteed by the fact that 1/η > L ≥ µ > θµ, 1

4ρ >
θµφ
4ρ2 ≥ γ2

2 , and 1 > φ > 0.

Sublinear convergence results: For the special case that the

client functions are not strongly convex, (i.e., µ = 0 in

(5)), the method exhibits sublinear convergence speed. The

convergence rate can be characterised by setting µ = 0 and

θ = 0 in (33), performing summation from r = 1 to r = R,

and applying Jensen’s inequality. We summarise the results in

a theorem below:

Theorem 2. Consider the special case µ = 0 in (5) for

all clients. Suppose the estimates {xr,k
i } are obtained by

performing (20)-(21) under the condition that 1/η > L.

Let x̄
R,K
i = 1

R

∑R
r=1 x̄

r,K
i = 1

RK

∑R
r=1

∑K
k=1 x

r,k
i and

λ̄
R
i|s =

1
R

∑R
r=1 λ

r+1
i|s . Then

lim
R→∞

m
∑

i=1

[

fi(x̄
R,K
i )−λ

⋆,T
i|s x̄

R,K
i −fi(x

⋆
i )
]

=O(1/R) (39)
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Fig. 2. Performance comparison of FedAve, GPDMM, AGPDMM, and SCAFFOLD for solving a least square problem which is specified by synthetic data.
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Fig. 3. Performance comparison for softmax regression over the MNIST and Fashion-MNIST datasets, where the five subplots in the first row are for MNIST.
As classification over Fashion-MNIST is more challenging than that over MNIST, the training losses over Fashion-MNIST are larger than those over MNIST.

lim
R→∞

m
∑

i=1

[γ1η
2

2
‖λ̄R

i|s−λ⋆
i|s‖2

]

= O(1/R), (40)

where γ1 is given by (37) by setting θ = 0.

Proof. See Appendix F for the proof.

It is clear from Lemma 3 that the LHS of (39) is lower-

bounded by zero for all R ≥ 1. When R approaches to infinity,

we have {∇fi(x̄
R,K
i ) = λ⋆

i|s}mi=1, showing that the limiting

point {x̄R,K
i } is in fact the optimal solution.

VI. EXPERIMENTAL RESULTS
Two experiments were conducted to evaluate FedAve [?],

GPDMM, AGPDMM, and SCAFFOLD. Inexact FedSplit is

not considered because of its poor performance as demon-

strated in Fig. 1. The two experiments are least square minimi-

sation over synthetic data and softmax regression over MNIST

and Fashion-MNIST datasets, respectively.

A. Least square minimisation over synthetic data
We consider solving a least square problem over a cen-

tralised network (see [1] for a similar experimental setup). The

objective function fi(xi) takes the form fi(xi) =
1
2‖Aixi −

bi‖2, where Ai ∈ R
5000×500 are generated element-wise

from a Normal distribution. The vector bi is obtained by

letting bi = Aiy0 + vi, where y0 is a predefined vector and

vi ∼ N(0, 0.25I5000×5000).

In all four methods, {xi} and xs were initialised to be zero.

In addition, the other hyper-parameters η = {5e− 5, 1e− 4},

m = {25, 500}, and K = {1, 3, 5, 10, 20} were tested. The

parameter ηg in SCAFFOLD was set to ηg = 1 to be in line

with the setup ρ = 1
η of AGPDMM in (27). Finally, the control

covariates of SCAFFOLD were initialised to be zero.

Fig. 2 displays the convergence results for the four methods.

Firstly, one observes that FedAve has poor performance when

K > 1, which is due to the functional heterogeneity across the

clients nodes (i.e., the global optimal solution x∗
s is inconsis-

tent with the optimal solutions of individual client functions

[1]). Secondly, it is clear that AGPDMM converges faster than

GPDMM for all tested K values. As explained in Section IV,

the performance gain of AGPDMM is due to the fact that

at each iteration r, the global estimate xr
s instead of the
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TABLE I
VALIDATION ACCURACY (IN PERCENTAGE) OF THE THREE

METHODS FOR THE MNIST AND FASHION-MNIST DATASETS

K 1 5 10 30 40

M
N

IS
T

FedAve 90.80 91.70 91.67 91.32 91.16

GPDMM 90.25 91.92 92.20 92.46 92.52

SCAFFOLD 90.80 92.10 92.29 92.53 92.59

AGPDMM 90.80 92.14 92.37 92.61 92.64

F
as

h
io

n
-M

N
IS

T

FedAve 82.24 83.08 83.13 83.09 82.83

GPDMM 81.43 83.64 84.18 84.58 84.64

SCAFFOLD 82.24 83.97 84.49 84.66 84.65

AGPDMM 82.24 84.08 84.46 84.67 84.65

individual estimate x
r−1,K
i is utilised to perform approximate

optimisations at the client i. Thirdly, one can also find from

the figure that AGPDMM converges faster than SCAFFOLD

when K > 1. This might be because the computation of λr+1
s|i

in AGPDMM utilises both {xr
s − x

r,K
i } and {xr+1

s − x
r,K
i }

while the computation of cr+1 in SCAFFOLD utilises only

{xr
s − x

r,K
i }. When K = 1, both methods have identical

performance as FedAve. This is because both methods have

the identical update expression for the estimate xr+1
s , which

is in fact the expression of vanilla gradient descent in FedAve.

B. Softmax regression over MNIST and Fashion-MNIST

In this experiment, we consider performing softmax regres-

sion (i.e., a convex optimisation problem) over the MNIST and

Fashion-MNIST datasets, where each dataset has 10 classes.

The number of clients is set to be m = 10 for each dataset,

where each client carries the training images of a single class.

The above setup implies that the distributions of the training

data are heterogeneous across the different clients.
Similarly to the first experiment, {xi} and xs were ini-

tialised to be zero in the four methods . The other hyper-

parameters η = 0.05 and K = {1, 5, 10, 30, 40} were tested.

The parameter ηg and the control covariates for SCAFFOLD

were set as in the first experiment. At each gradient step of an

iteration at a client node, a mini-batch of 300 training samples

was utilised to compute the gradient and update the model

parameters accordingly. It is noted that the mini-batches were

taken in a pre-defined order instead of in a random manner

to remove any effect of randomness. That is, the training

procedure is deterministic.
The training results and validation accuracies are sum-

marised in Fig. 3 and Table I, respectively. One observes that

for each dataset, the training loss of each method improves

gradually as K increases from 1 to 40 except FedAve. In

addition, it is clear that AGPDMM performs the best w.r.t. the

training loss. As for validation accuracy, AGPGMM outper-

forms others for most scenarios except K = 10 for Fashion-

MNIST. SCAFFOLD performs slightly better than GPDMM.

The above phenomenon suggests that the initialisation for each

iteration at the client side is crucial for Inexact PDMM.

VII. CONCLUSIONS

In this paper, we first showed that PDMM reduces to Fed-

Split when applied to a centralised network. The poor reported

performance of Inexact FedSplit in [1] is analysed, which was

found to be due to the improper parameter initialisation at

the client side. Two versions of Inexact PDMM were then

proposed to correct the convergence issue of Inexact FedSplit,

which are GPDMM and AGPDMM. The main difference

between the methods is that at each iteration r, AGPDMM

utilises the global estimate xr
s to conduct approximate op-

timisations at the client slide, which is more informative

than the individual estimates {xr−1,K
i }. Linear and sublinear

convergence rates are established for GPDMM for any number

(K > 0) of approximate optimisations conducted at the client

side per iteration. It is also shown analytically that when

K = 1, both AGPDMM and SCAFFOLD reduce to the vanilla

gradient descent operation under proper parameter selection.

Therefore, convergence results of the classical vanilla gradient

descent operation apply directly to AGPDMM when K = 1.

Experimental results show that AGPDMM converges faster

than both SCAFFOLD and GPDMM.

One future work would be to provide a convergence analysis

for AGPDMM when K > 1. One can also extend the

deterministic analysis for GPDMM to the stochastic scenario.

APPENDIX A

PROOF FOR LEMMA 1

Before presenting the proof, we first introduce two lemmas

that will be needed later on:

Lemma 4. For any yi ∈ R
d, i = 1, . . . , 4, the following

equality holds

(y1 − y2)
T (y3 − y4)

=
1

2

(

‖y1+y3‖2−‖y2+y4‖2−‖y2+y3‖2+‖y2+y4‖2
)

.

Lemma 5. Suppose fi has the Lipschitz continuous gradient

L > 0. Then the following inequality

fi(yi)≤fi(xi)+∇fi(xi)
T (yi−xi)+

L

2
‖xi−yi‖2

holds, which is a consequence of the inequality (4) (see [24]).

Proof. We now describe the proof for Lemma 1. The expres-

sion fi(xi)− fi(x
r,k+1
i ) for client i can be lower-bounded to

be

fi(xi)− fi(x
r,k+1
i )

(a)

≥
[

fi(x
r,k
i ) + (xi − x

r,k
i )T∇fi(x

r,k
i ) +

θµ

2
‖xr,k

i − xi‖2

+
1− θ

2L
‖∇fi(x

r,k
i )−∇fi(xi)‖2

]

−
[

fi(x
r,k
i )

+(xr,k+1
i −x

r,k
i )T∇fi(x

r,k
i )+

L

2
‖xr,k+1

i −x
r,k
i ‖2

]

=(xi−x
r,k+1
i )T∇fi(x

r,k
i )+

θµ

2
‖xr,k

i −xi‖2

−L

2
‖xr,k+1

i −x
r,k
i ‖2+1− θ

2L
‖∇fi(x

r,k
i )−∇fi(xi)‖2
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(b)
=(xi−x

r,k+1
i )T

(

ρ(xr
s−x

r,k+1
i )−λr

s|i−
1

η
(xr,k+1

i −x
r,k
i )
)

+
θµ

2
‖xr,k

i − xi‖2−
L

2
‖xr,k+1

i −x
r,k
i ‖2

+
1− θ

2L
‖∇fi(x

r,k
i )−∇fi(xi)‖2

(c)
=(xi−x

r,k+1
i )T [ρ(xr

s−x
r,k+1
i )−λr

s|i]+
1

2η
‖xi − x

r,k+1
i ‖2

− 1/η − θµ

2
‖xr,k

i − xi‖2+
1/η − L

2
‖xr,k+1

i −x
r,k
i ‖2

+
1− θ

2L
‖∇fi(x

r,k
i )−∇fi(xi)‖2 (41)

where step (a) follows from (4)- (5) and Lemma 5, which are

due to the fact that fi is µ-convex (µ ≥ 0) and has Lipschitz

continuous gradient L ≥ µ. The parameter θ satisfy {1 ≥ θ ≥
0}. Step (b) uses the optimality condition (22). Step (c) makes

use of Lemma 4. The proof is complete.

APPENDIX B

PROOF FOR LEMMA 2

Proof. Invoking Lemma 1 with xi = x⋆
i , summing over all

the clients and all gradient steps i = 1, . . . ,K , for the iteration

r, and rearranging the quantities, we obtain

m
∑

i=1

1

K

K−1
∑

k=0

1/η − θµ

2
‖xr,k

i − x⋆
i ‖2

≥
m
∑

i=1

1

K

K−1
∑

k=0

[

fi(x
r,k+1
i )− fi(x

⋆
i )+

1

2η
‖x⋆

i − x
r,k+1
i ‖2

− (xr,k+1
i − x⋆

i )
T [ρ(xr

s−x
r,k+1
i )−λr

s|i]

+
1/η−L

2
‖xr,k+1

i −x
r,k
i ‖2+1−θ

2L
‖∇fi(x

r,k
i )−∇fi(x

⋆
i )‖2

]

(a)
=

m
∑

i=1

1

K

K−1
∑

k=0

[

fi(x
r,k+1
i )− fi(x

⋆
i )+

1

2η
‖x⋆

i − x
r,k+1
i ‖2

− (xr,k+1
i − x⋆

i )
T [ρ(xr

s−x
r,k+1
i )−λr

s|i]

+
1/η − L

2
‖xr,k+1

i −x
r,k
i ‖2+1− θ

2L
‖ρ(xr

s−x
r,k+1
i )

−λr
s|i− λ⋆

i|s −(1/η)(xr,k+1
i −x

r,k
i )‖2

]

(b)
=

m
∑

i=1

[

fi(x̄
r,K
i )− fi(x

⋆
i )+

1

K

K−1
∑

k=0

1

2η
‖x⋆

i − x
r,k+1
i ‖2

− (x̄r,K
i − x⋆

i )
Tλr+1

i|s

+
1/η − L

2
‖xr,k+1

i −x
r,k
i ‖2+1− θ

2L
‖ρ(xr

s−x
r,k+1
i )

−λr
s|i− λ⋆

i|s −(1/η)(xr,k+1
i −x

r,k
i )‖2

]

, (42)

where step (a) uses the optimality condition (22) and

{∇fi(x
⋆
i ) = λ⋆

i|s}mi=1. Step (b) is obtained by employing

Jensen’s inequality, x̄
r,K
i = 1

K

∑K
k=1 x

r,k
i , and λr+1

i|s =

ρ(xr
s−x̄

r,K
i )−λr

s|i.

To further simplify (42), we first present a lemma below:

Lemma 6. Suppose the estimates {xr,k
i }Kk=1 are obtained by

performing (20)-(21) under the condition that 1/η ≥ L. Then

the expression
∑m

i=1(x̄
r,K
i − x⋆

i )
Tλr+1

i|s in the RHS of (42)

can be alternatively represented as

2

m
∑

i=1

(x̄r,K
i − x⋆

i )
Tλr+1

i|s

= 2

m
∑

i=1

λ⋆
i|sx̄

r,K
i +

m
∑

i=1

1

2ρ
‖ρ(x̄r,K

i − x⋆
i ) + (λr+1

i|s − λ⋆
i|s)‖2

−
m
∑

i=1

1

2ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2. (43)

We postpone the proof for Lemma 6 in Appendix C.

Plugging (43) into (42) and rearranging the quantities pro-

duces (33). The proof is complete.

APPENDIX C

PROOF FOR LEMMA 6

Proof. In the first step, we derive two different but mathemat-

ically equivalent expressions for the quantity
∑m

i=1(x̄
r,K
i −

x⋆
i )

Tλr+1
i|s . Firstly, by plugging the expressions {λr+1

i|s =

ρ(xr
s−x̄

r,K
i )− λr

s|i} into
∑m

i=1(x̄
r,K
i − x⋆

i )
Tλr+1

i|s , we have

m
∑

i=1

(x̄r,K
i − x⋆

i )
Tλr+1

i|s

=

m
∑

i=1

(ρ(xr
s − x̄

r,K
i )− λr

s|i)
T (x̄r,K

i − x⋆
i )

=

m
∑

i=1

(

ρ(xr
s − x̄

r,K
i ) + λr+1

s|i − λr
s|i

)T

(x̄r,K
i − x⋆

i )

−
m
∑

i=1

λr+1
s|i (x̄r,K

i − x⋆
i )

=

m
∑

i=1

(

ρ(xr
s − xr+1

s ) + λr+1
s|i − λr

s|i

)T

(x̄r,K
i − x⋆

i )

−
m
∑

i=1

λr+1
s|i (x̄r,K

i − x⋆
i )

+

m
∑

i=1

ρ(xr+1
s − x̄

r,K
i )T (x̄r,K

i − x⋆
i ). (44)

Next we derive the 2nd expression for
∑m

i=1(x̄
r,K
i −

x⋆
i )

Tλr+1
i|s . To do so, we note that x̄

r,K
i can be represented in

terms of λr+1
i|s as

x̄
r,K
i =xr

s−
1

ρ
(λr

s|i+λr+1
i|s ) i = 1, . . . ,m, (45)

Similarly to the derivation for (44), we plug the expression

(45) for x̄
r,K
i where appropriate, which is given by

m
∑

i=1

(x̄r,K
i − x⋆

i )
Tλr+1

i|s

=
m
∑

i=1

(λr+1
i|s −λ⋆

i|s)
Tx̄

r,K
i −

m
∑

i=1

λ
r+1,T
i|s x⋆

i +
m
∑

i=1

λ
⋆,T
i|s x̄

r,K
i
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=

m
∑

i=1

[

xr
s−

1

ρ
(λr

s|i+λr+1
i|s )

]T

(λr+1
i|s − λ⋆

i|s)

−
m
∑

i=1

λ
r+1,T
i|s x⋆

i +

m
∑

i=1

λ
⋆,T
i|s x̄

r,K
i

=

m
∑

i=1

[

(xr
s − xr+1

s )− 1

ρ
(λr

s|i+λr+1
i|s )

]T

(λr+1
i|s − λ⋆

i|s)

+

m
∑

i=1

xr+1,T
s (λr+1

i|s −λ⋆
i|s)−

m
∑

i=1

λ
r+1,T
i|s x⋆

i +

m
∑

i=1

λ
⋆,T
i|s x̄

r,K
i

=

m
∑

i=1

[

(xr
s − xr+1

s )− 1

ρ
(λr

s|i−λr+1
s|i )

]T

(λr+1
i|s − λ⋆

i|s)

+

m
∑

i=1

xr+1,T
s (λr+1

i|s −λ⋆
i|s)−

m
∑

i=1

λ
r+1,T
i|s x⋆

i +

m
∑

i=1

λ
⋆,T
i|s x̄

r,K
i

−
m
∑

i=1

1

ρ
(λr+1

s|i +λr+1
i|s )T (λr+1

i|s − λ⋆
i|s). (46)

In the 2nd step, we derive two different but mathematically

equivalent expressions for
∑m

i=1 λ
r+1,T
s|i (xr+1

s −x⋆
s). By using

(25) and the expression for λr+1
s|i = ρ(x̄r,K

i − xr+1
s )− λr+1

i|s ,

we have

0 =
m
∑

i=1

λ
r+1,T
s|i (xr+1

s − x⋆
s)

=

m
∑

i=1

[

ρ(x̄r,K
i − xr+1

s )− λr+1
i|s

]T

(xr+1
s − x⋆

s)

=

m
∑

i=1

ρ(x̄r,K
i − xr+1

s )T (xr+1
s − x⋆

s)

−
m
∑

i=1

λ
r+1,T
i|s (xr+1

s − x⋆
s). (47)

The 2nd expression for
∑m

i=1 λ
r+1,T
s|i (xr+1

s − x⋆
s) can be

derived by utilising xr+1
s = x̄

r,K
i − 1

ρ (λ
r+1
s|i + λr+1

i|s ) as:

0 =

m
∑

i=1

λ
r+1,T
s|i (xr+1

s − x⋆
s)

=

m
∑

i=1

(

λr+1
s|i −λ⋆

s|i

)T

xr+1
s +

m
∑

i=1

λ
⋆,T
s|i x

r+1
s −

m
∑

i=1

λ
r+1,T
s|i x⋆

s

=
m
∑

i=1

(

λr+1
s|i − λ⋆

s|i

)T
[

x̄
r,K
i − 1

ρ
(λr+1

s|i + λr+1
i|s )

]

+

m
∑

i=1

λ
⋆,T
s|i x

r+1
s −

m
∑

i=1

λ
r+1,T
s|i x⋆

s

=

m
∑

i=1

(

λr+1
s|i − λ⋆

s|i

)T

x̄
r,K
i +

m
∑

i=1

λ
⋆,T
s|i x

r+1
s

−
m
∑

i=1

(

λr+1
s|i −λ⋆

s|i

)T 1

ρ
(λr+1

s|i +λr+1
i|s )−

m
∑

i=1

λ
r+1,T
s|i x⋆

s . (48)

Finally, combining (44) and (46)-(48) produces

2
m
∑

i=1

(x̄r,K
i − x⋆

i )
Tλr+1

i|s

=
m
∑

i=1

(

ρ(xr
s − xr+1

s )+λr+1
s|i −λr

s|i

)T

(x̄r,K
i −x⋆

i )

−
m
∑

i=1

λr+1
s|i (x̄r,K

i −x⋆
i )+

m
∑

i=1

ρ(xr+1
s −x̄

r,K
i )T (x̄r,K

i −x⋆
i )

+
m
∑

i=1

[

(xr
s − xr+1

s )− 1

ρ
(λr

s|i−λr+1
s|i )

]T

(λr+1
i|s −λ⋆

i|s)

+

m
∑

i=1

xr+1,T
s (λr+1

i|s −λ⋆
i|s)−

m
∑

i=1

λ
r+1,T
i|s x⋆

i+

m
∑

i=1

λ
⋆,T
i|s x̄

r,K
i

−
m
∑

i=1

1

ρ
(λr+1

s|i +λr+1
i|s )T (λr+1

i|s − λ⋆
i|s)

+

m
∑

i=1

ρ(x̄r,K
i − xr+1

s )T (xr+1
s − x⋆

s)

−
m
∑

i=1

λ
r+1,T
i|s (xr+1

s − x⋆
s) +

m
∑

i=1

(

λr+1
s|i − λ⋆

s|i

)T

x̄
r,K
i

−
m
∑

i=1

(

λr+1
s|i − λ⋆

s|i

)T 1

ρ
(λr+1

s|i + λr+1
i|s ) +

m
∑

i=1

λ
⋆,T
s|i x

r+1
s

−
m
∑

i=1

λ
r+1,T
s|i x⋆

s

(a)
=

m
∑

i=1

1

ρ

[

ρ(xr
s − xr+1

s ) + λr+1
s|i − λr

s|i

]T

· [ρ(x̄r,K
i − x⋆

i ) + λr+1
i|s − λ⋆

i|s] + 2

m
∑

i=1

λ⋆
i|sx̄

r,K
i

−
m
∑

i=1

ρ‖xr+1
s − x̄

r,K
i ‖2 −

m
∑

i=1

1

ρ
‖λr+1

s|i + λr+1
i|s ‖2

(b)
=

m
∑

i=1

1

2ρ
‖ρ(xr

s − x⋆
i )− (λr

s|i + λ⋆
i|s)‖2

−
m
∑

i=1

1

2ρ
‖ρ(xr+1

s − x⋆
i )− (λr+1

s|i + λ⋆
i|s)‖2

−
m
∑

i=1

1

2ρ
‖ρ(xr

s − x̄
r,K
i )− (λr

s|i + λr+1
i|s )‖2

+

m
∑

i=1

1

2ρ
‖ρ(xr+1

s − x̄
r,K
i )− (λr+1

s|i + λr+1
i|s )‖2

+ 2

m
∑

i=1

λ⋆
i|sx̄

r,K
i −

m
∑

i=1

ρ‖xr+1
s − x̄

r,K
i ‖2

−
m
∑

i=1

1

ρ
‖λr+1

s|i + λr+1
i|s ‖2

(c)
=

m
∑

i=1

1

2ρ
‖ρ(xr

s − x⋆
i )− (λr

s|i + λ⋆
i|s)‖2

−
m
∑

i=1

1

2ρ
‖ρ(xr+1

s −x⋆
i )−(λr+1

s|i +λ⋆
i|s)‖2+2

m
∑

i=1

λ⋆
i|sx̄

r,K
i

(d)
=

m
∑

i=1

1

2ρ
‖ρ(x̄r,K

i − x⋆
i ) + (λr+1

i|s − λ⋆
i|s)‖2
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−
m
∑

i=1

1

2ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2

+ 2

m
∑

i=1

λ⋆
i|sx̄

r,K
i , (49)

where step (a) uses the fact that
∑m

i=1 λ
⋆
s|i =

∑m
i=1 λ

⋆
i|s = 0,

step (b) follows from Lemma 4, step (c) uses the identities

of ρ(xr
s − x̄

r,K
i )− (λr

s|i +λr+1
i|s ) = 0 and ρ(xr+1

s − x̄
r,K
i ) +

(λr+1
s|i +λr+1

i|s ) = 0 from (16)-(17), and step (d) uses ρ(xk
s −

x̄
r,K
i )− (λr

s|i +λr+1
i|s ) = 0 and ρ(xr+1

s − x̄
r+1,K
i )− (λr+1

s|i +

λr+2
i|s ) = 0. The proof is complete.

APPENDIX D

PROOF FOR LEMMA 3

Proof. The lower bound in (34) can be easily proved to be:

m
∑

i=1

[

fi(xi)− fi(x
⋆
i )− xT

i λ
⋆
i|s

]

(a)

≥
m
∑

i=1

[

− f∗
i (λ

⋆
i|s)− fi(x

⋆
i )
]

= 0,

where f∗
i (·) is the conjugate function of fi(·) as defined in

(2). Step (a) uses Fenchel’s inequality (see [27]). It is known

that for a convex function, the duality gap is 0 at the optimal

solution. The proof is complete.

APPENDIX E

PROOF FOR THEOREM 1

Proof. The proof for Theorem 1 is mainly based on the results

in Lemma 2 and 3. Assume that 1 > θ > 0 and 1/η > L ≥
µ > 0}. The RHS of (33) in Lemma 2 can be further lower

bounded by

m
∑

i=1

1

K

K−1
∑

k=0

1/η − θµ

2
‖xr,k

i − x⋆
i ‖2

+

m
∑

i=1

1

4ρ
‖ρ(x̄r,K

i − x⋆
i ) + (λr+1

i|s − λ⋆
i|s)‖2

≥
m
∑

i=1

[

fi(x̄
r,K
i )− (x̄r,K

i )Tλ⋆
i|s − fi(x

⋆
i )

+
1

K

K−1
∑

k=0

( 1

2η
‖x⋆

i − x
r,k+1
i ‖2

+
1/η − L

2
‖xr,k+1

i −x
r,k
i ‖2+1− θ

2L
‖ρ(xr

s−x
r,k+1
i )

−λr
s|i− λ⋆

i|s −(1/η)(xr,k+1
i −x

r,k
i )‖2

)

+
1

4ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2

]

(a)

≥
m
∑

i=1

[ 1

K

K−1
∑

k=0

( 1

2η
‖x⋆

i − x
r,k+1
i ‖2

+
1/η − L

2
‖xr,k+1

i −x
r,k
i ‖2+1− θ

2η2L
‖η(ρ(xr

s−x
r,k+1
i )

−λr
s|i− λ⋆

i|s)−(xr,k+1
i −x

r,k
i )‖2

)

+
1

4ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2

]

(b)

≥
m
∑

i=1

[ 1

K

K−1
∑

k=0

(1/η − θµφ+ θµφ

2
‖x⋆

i − x
r,k+1
i ‖2

+
γ1
2
‖η(ρ(xr

s−x
r,k+1
i )−λr

s|i− λ⋆
i|s)‖2

)

+
1

4ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2

]

(c)

≥
m
∑

i=1

[ 1

K

K−1
∑

k=0

1/η − θµφ

2
‖x⋆

i − x
r,k+1
i ‖2

+
θµφ

2
‖x⋆

i − x̄
r,K
i ‖2 +γ1η

2

2
‖λr+1

i|s − λ⋆
i|s‖2

+
1

4ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2

]

(d)

≥
m
∑

i=1

[ 1

K

K−1
∑

k=0

1/η − θµφ

2
‖x⋆

i − x
r,k+1
i ‖2

+
γ2
2
‖ρ(x̄r,K

i − x⋆
i ) + (λr+1

i|s − λ⋆
i|s)‖2

+
1

4ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2

]

, (50)

where step (a) follows from Lemma 3. Step (b) introduces

1 > φ > 0 and utilises the inequality ‖b‖2+‖c‖2 ≥ 1
2‖b+c‖2.

The parameter γ1 is defined as

γ1 = min

(

1− θ

2Lη2
,
1/η − L

2

)

. (51)

Step (c) employs Jensen’s inequality and λr+1
i|s = ρ(xr

s −
x̄
r,K
i ) − λr

s|i. Step (d) utilises the inequality ‖b‖2 + ‖c‖2 ≥
1
2‖b+ c‖2 again, and the parameter γ2 is defined as

γ2 = min

(

θµφ

2ρ2
,
γ1η

2

2

)

. (52)

By using {xr−1,K
i = x

r,k=0
i }, the inequality (50) can be

reformulated as
m
∑

i=1

1/η − θµ

2K
‖xr−1,K

i − x⋆
i ‖2

+

m
∑

i=1

( 1

4ρ
− γ2

2

)

‖ρ(x̄r,K
i − x⋆

i ) + (λr+1
i|s − λ⋆

i|s)‖2

≥
m
∑

i=1

1

K

K−1
∑

k=1

θµ(1 − φ)

2
‖x⋆

i − x
r,k
i ‖2

+

m
∑

i=1

1/η − θµφ

2K
‖x⋆

i − x
r,K
i ‖2

+

m
∑

i=1

1

4ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2

≥
m
∑

i=1

1/η − θµφ

2K
‖x⋆

i − x
r,K
i ‖2



13

+
m
∑

i=1

1

4ρ
‖ρ(x̄r+1,K

i − x⋆
i ) + (λr+2

i|s − λ⋆
i|s)‖2. (53)

We note that when φ is chosen to satisfy 1
4ρ > θµφ

4ρ2 , we

have 1
4ρ > θµφ

4ρ2 ≥ γ2

2 based on the definition of γ2 in (52).

As a result, it is clear from (53) that the coefficients before

‖ρ(xr−1,K
i − x⋆

i )‖2 and ‖ρ(x̄r,K
i − x⋆

i ) + (λr+1
i|s − λ⋆

i|s)‖2
are smaller than those coefficients before ‖ρ(xr,K

i − x⋆
i )‖2

and ‖ρx̄r+1,K
i − x⋆

i ) + (λr+2
i|s − λ⋆

i|s)‖2. Therefore, we can

conclude that GPDMM has linear convergence rate under

certain conditions. The expression for the parameter β in

Theorem 1 can be easily derived from (53). The proof is

complete.

APPENDIX F

PROOF FOR THEOREM 2

Proof. Similar to Appendix E, the proof for Theorem 2 is

also based on the results in Lemma 2 and 3. Summing the

inequality (33) in Lemma 2 from r = 1 until r = R and

setting µ = 0 and θ = 0 produces

1

R

R
∑

r=1

1

K

[1/η

2
‖x0,K

i − x⋆
i ‖2

+
1

4ρ
‖ρ(x̄1,K

i − x⋆
i ) + (λ2

i|s − λ⋆
i|s)‖2

]

≥ 1

R

R
∑

r=1

m
∑

i=1

[

fi(x̄
r,K
i )− (x̄r,K

i )Tλ⋆
i|s − fi(x

⋆
i )

+
1

K

K−1
∑

k=0

(1/η−L

2
‖xr,k+1

i −x
r,k
i ‖2+ 1

2Lη2
‖η(ρ(xr

s−x
r,k+1
i )

−λr
s|i− λ⋆

i|s)−(xr,k+1
i −x

r,k
i )‖2

)]

(a)

≥ 1

R

R
∑

r=1

m
∑

i=1

[

fi(x̄
r,K
i )− (x̄r,K

i )Tλ⋆
i|s − fi(x

⋆
i )

+
1

K

K−1
∑

k=0

(γ1
2
‖η(ρ(xr

s−x
r,k+1
i )−λr

s|i− λ⋆
i|s)‖2

)]

(b)

≥ 1

R

R
∑

r=1

m
∑

i=1

[

fi(x̄
r,K
i )− (x̄r,K

i )Tλ⋆
i|s − fi(x

⋆
i )

+
(γ1η

2

2
‖xr+1

i|s − λ⋆
i|s‖2

)]

(c)

≥
m
∑

i=1

[

fi(x̄
R,K
i )− (λ̄

R,K
i )Tλ⋆

i|s − fi(x
⋆
i )

+
(γ1η

2

2
‖λ̄R

i|s− λ⋆
i|s‖2

)]

, (54)

where step (a) utilises the inequality ‖b‖2 + ‖c‖2 ≥ 1
2‖b +

c‖2, and the parameter γ1 is given by (51) with θ = 0. Step

(b) employs Jensen’s inequality and λr+1
i|s = ρ(xr

s − x̄
r,K
i )−

λr
s|i. Step (b) employs Jensen’s inequality again. The results

in Theorem 2 follows directly using the property that the LHS

of (54) decays in the order of O(1/R). The proof is complete.
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