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Analysis of the Spatio-temporal Dynamics of
COVID-19 in Massachusetts via Spectral Graph

Wavelet Theory
Ru Geng, Yixian Gao, Hongkun Zhang, and Jian Zu

Abstract—The rapid spread of COVID-19 disease has had
a significant impact on the world. In this paper, we study
COVID-19 data interpretation and visualization using open-data
sources for 351 cities and towns in Massachusetts from December
6, 2020 to September 25, 2021. Because cities are embedded
in rather complex transportation networks, we construct the
spatio-temporal dynamic graph model, in which the graph
attention neural network is utilized as a deep learning method
to learn the pandemic transition probability among major cities
in Massachusetts. Using the spectral graph wavelet transform
(SGWT), we process the COVID-19 data on the dynamic graph,
which enables us to design effective tools to analyze and detect
spatio-temporal patterns in the pandemic spreading. We design
a new node classification method, which effectively identifies
the anomaly cities based on spectral graph wavelet coefficients.
It can assist administrations or public health organizations in
monitoring the spread of the pandemic and developing preventive
measures. Unlike most work focusing on the evolution of con-
firmed cases over time, we focus on the spatio-temporal patterns
of pandemic evolution among cities. Through the data analysis
and visualization, a better understanding of the epidemiological
development at the city level is obtained and can be helpful with
city-specific surveillance.

Index Terms—Spectral Graph Wavelet Transform, Graph
Attention Neural Network, Graph Signal Processing, Spatio-
temporal Dynamic Model, COVID-19.

I. INTRODUCTION

WHEN writing this paper, the COVID-19 pandemic is
still ongoing and has resulted in more than 260 million

people diagnosed and more than 5 million deaths worldwide.
The COVID-19 spreading was recognized by the World Health
Organization (WHO) as a pandemic on March 11, 2020 [1].
As of December 1, 2021, confirmed cases in the United States
surpassed 4,810,000 and Massachusetts surpassed 919,000 [2].
With little information on similar past pandemics, collecting
mobility, safety, and behavior data related to COVID-19 and
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learning from the collected data become the key for decision-
makers. The final scale of the disaster had not yet been
determined. To make matters worse, the mutation of the virus
has led to waves of pandemics, and humankind still faces
significant challenges.

Traditional mathematical models use compartmental models
to study the transmission dynamics of COVID-19, such as SIR
and SEIR models and their variants, see Gao et al. [3], Church
[4], Neves and Guerrero [5], Ng and Gui [6]. Miranda et al.
[7] construct a hybrid ODE-network model for the COVID-19
pandemic accounting for certain spatial aspects. Some state-
of-the-art technologies, such as machine learning, and deep
learning, have been introduced in the research of COVID-19.
For example, Tang et al. [8] study the interplay of demographic
variables and social distancing scores in the deep prediction
of COVID-19 cases in the United States. Melin et al. [9] use
a self-organizing mapping neural network to cluster countries
with similar pandemics so that similar strategies can be used
to deal with the spread of the virus. Tat Dat et al. [10]
apply wavelet theory and machine learning method to study
the evolution of the pandemic in France, Germany, Italy, the
Czech Republic, and the US federal states of New York and
Florida. Graphs and networks are used to model many real-
world problems due to their flexible structure. Li and Mateos
[11] conduct a graph Fourier frequency analysis to investigate
the county-level contagion patterns of COVID-19. Gao et al.
[12] utilize a new graph neural network – STAN to predict
both state-level and county-level future number of infected
cases. Kapoor et al. [13] examine COVID-19 forecasting using
spatio-temporal graph neural networks. However, there is not
much work analyzing the spatio-temporal pandemic spread
patterns at the city levels.

In this paper, we focus on analyzing the local pandemic
spread patterns in the State of Massachusetts (MA), USA,
which covers a relatively small area of 21,000 square kilo-
meters. Cars are the primary transportation tools among cities
and towns in the state of MA. Therefore, the local spread
of the pandemic is mainly affected by the transportation
graph structure of the state. Unlike the state-level or county-
level graphs mentioned above, our city-level graph is more
suitable for the local epidemiological analysis in MA. In this
Massachusetts Route Graph GMR = (V,E), hand-crafted
from US Routes, we map cities to vertices on the graph,
such that each vertex τi ∈ V is associated with a set of
time-dependent features extracted from biweekly COVID-19
data. The edge between two vertices represents that there is a
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Fig. 1. The overall architecture of this paper.

US Route connecting the corresponding cities. The pandemic
spreading between two cities may be affected not only by
population movements such as transportation, commuting to
work, and tourism; but also by hidden complex factors such
as the circulation of COVID-19 virus-contaminated goods
on the packaging, etc. Therefore, the traditional method of
calculating the edge weight using distance and populations
cannot accurately represent the pandemic spread among cities.

This paper further utilizes a deep learning method via graph
neural networks – Graph Attention Network (GAT) – to learn
the Markov transition matrix P , in order to capture geograph-
ical proximity and data features similarity in the transition
probabilities. The resulting graph GMAR = (V, Ẽ, P ) is called
the Massachusetts Attention Route (MAR) graph. GAT has
been proved to be efficient for learning the edge weights
by adaptive assigning different importance to different nodes
through the learning of downstream tasks and data [14]–[19].
We also ranked the top influential cities for pandemic spread
based on the attention coefficients learned from the GAT.
Moreover, we construct the spatio-temporal dynamic graph
model connected by the strong product [20].

To analyze the pandemic signals on the spatio-temporal
dynamic graph model, we use a powerful tool – the spectral
graph wavelet transform (SGWT). Indeed classical wavelet
transformation has played an important role in multireso-
lution analysis, especially for studying signals containing
discontinuities and sharp spikes. However, the construction of
wavelets on graphs is rather difficult. Hammond et al. [21]
and Shuman et al. [22] construct SGWT, and successfully
apply it in studying graph signals and identifying anomalies.
The SGWT coefficients contain rich information about the
graph signal; however, it remains a big challenge to inter-
pret them properly for non-experts. In this paper, we use
a visualization methodology that relies on SGWT and the
structure of our graph to enable the visual multiresolution
analysis of time-varying COVID-19 data in Massachusetts. We
analyze the dynamic patterns of pandemic signals for cities

and towns, and provide visualization diagrams based on our
spectral graph wavelet analysis results. Moreover, we define
an average metric function based on wavelet coefficients to
give cities a spatio-temporal ranking synthetically. The top five
ranked cities include Springfield, Amherst, Great Barrington,
Holyoke, and Sandisfield, all in line with evidence of repeated
poor responses to the pandemic, see [23]–[25]. For example,
Amherst has reported pandemic peaks during the starting
period of semesters of University of Massachusetts (UMass)
Amherst, while Holyoke has reported pandemic breakout in
its nursing homes. These all make the pandemic situation
more severe than those in the surrounding areas. On the
other hand, according to our ranking, we identify the five
best-performance cities – New Marlborough, Harvard, West
Tisbury, Tolland, and Leverett. These are in line with evidence
showing their excellent pandemic prevention and control work,
[26]–[29], which shows that the search for ambassadors at
New Marlborough and the offer of free safety training courses
in Harvard, make their pandemic situations much better than
that of surrounding cities.

Experts often say that determining which cities and states
have had the best response to COVID-19 thus far is tough and
unfair [30]. In this paper we hope our study provides a useful
evaluation method. The basic framework and main results of
this paper are shown in Fig. 1.

In summary, the main contributions of this paper include:

• Massachusetts Route graph is constructed by connecting
cities and towns based on US Routes or interstate high-
ways.

• GAT learns the weights of the MAR graph, which
helps calculate each node’s vulnerability affected by the
COVID-19 infection rate of surrounding nodes.

• SGWT is used to analyze the spatio-temporal dynamic
model constructed by the strong product.

• We design a new node classification method, which
effectively identifies the anomaly cities based on spectral
graph wavelet coefficients.
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The outline of this paper is as follows: In section II, we
describe the COVID-19 data of cities and towns in Mas-
sachusetts. In section III, we construct the Massachusetts
Route graph and learn the pandemic transition probability
Matrix by graph attention neural network, then build the
spatio-temporal dynamic model of confirmed cases in Mas-
sachusetts. Section IV introduces the SGWT and develops
the node classification method based on SGWT. In section
V, we visually analyze the overall trend of the pandemic by
SGWT, make a refined node classification in anomaly cities,
and evaluate the city’s pandemic prevention work. In addition,
we identify the top influential pandemic spreader in the MAR
graph. In section VI, we close with a conclusion section.

II. COVID-19 DATA DESCRIPTION

This paper studies the COVID-19 pandemic spread in the
state of Massachusetts, USA, which consists of 351 cities and
towns. In the MA, the list of 10 largest cities (in population) is
Boston (692,958), Worcester (191,575), Springfield (156,245),
Lowell (116,143), Cambridge (111,989), Quincy (101,531),
Lynn (100,824), New Bedford (99,980), Brockton (99,226)
and Fall River (89,317). See Fig. 2 for the locations of these
cities.

Fig. 2. Map of Massachusetts.

The dataset available in this paper is composed of pop-
ulation data {Ni, i = 1, · · · , 351} and the ”two-week-case”
time series data {γi(t), t = 1, · · · , 41} at the city/town level
in Massachusetts, from December 6, 2020 to September 25,
2021, for 41 weeks total, which is collected from the official
website [31]. We define the biweekly confirmed COVID-
19 cases per thousand population (abbreviated as confirmed
cases), denoted by the multivariate time series

xi(t) = 1000 ∗ γi(t)
Ni

, i = 1, · · · , N, t = 1, · · · , T (1)

with N = 351 and T = 41.
The multivariate time series data xi(t) will first be used

to learn the pandemic transition probability pi,j from city
i to city j, in order to better capture the spatio-temporal
evolution of the local pandemic spread dynamics. After that,
their evolution patterns will be analyzed using the spatio-
temporal dynamic graph model, and we are able to identify the
most influential spreaders (cities), and detect anomaly cities
with unusual pandemic spread patterns.

III. MASSACHUSETTS ATTENTION ROUTE GRAPH AND
SPATIO-TEMPORAL DYNAMIC MODEL

In this section, we first construct the Massachusetts Route
graph GMR = (V,E) based on US Routes, then learn the
attention graph weight P from the COVID-19 data using
GAT to get the Massachusetts Attention Route (MAR) Graph
GMAR = (V, Ẽ, P ). The strong product is utilized to construct
a spatio-temporal dynamic graph model.

A. Construction of the Massachusetts Route graph

We take the longitude and latitude coordinates of the cities
and towns as the vertices τi ∈ V from the website [32].
The detailed list of cities and their corresponding vertex ID
is included in the Appendix. An edge ei,j ∈ E represents
the existing US Routes or interstate highways go through the
administrative regions of the cities τi, τj ∈ V successively.
We also connect the cities of Barnstable (No.21), Nantucket
(No.197), and Oak Bluffs (No.221) because of the heavy sea
transportation among them. The number of cities and towns
in our study is |V | = N = 3381. Let A ∈ RN×N be the
adjacency matrix of the graph GMR, such that ai,j = 1 if
ei,j ∈ E, and ai,j = 0 otherwise. Each vertex has signals
xi ∈ RT , γi ∈ RT and Ni ∈ R defined as in formula (1).

The size of vertices in Fig. 3 is proportional to the city pop-
ulation. For example, Vertex No. 36 represents metropolitan
Boston, with the largest population in Massachusetts.
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Fig. 3. Massachusetts Route graph GMR.

Since the cities within the range between 71◦E to 71.5◦E
and 42◦N to 42.8◦N are dense, to improve the visualization
in Fig. 3, we use the downsampling method [33] by hiding
some nodes in the Massachusetts Route graph. Specifically,
we hide the nodes with negative signs in the nodal domain of
the largest eigenvector of the Laplacian of the Massachusetts
Route graph GMR.

B. Massachusetts Attention Route graph learned by graph
neural network

The pandemic spreading between two cities may be affected
by many complex factors, including transportation, tourism,
commuting, and other hidden factors such as the circulation of

1There are 13 small towns located in rugged areas without any highway or
heavy sea transportation. We do not consider them in our following study.
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COVID-19 virus-contaminated goods. Due to the complexity
of the pandemic, the traditional weighting method by distance
is not a good choice in modeling the pandemic spread between
cities (towns). In order to accurately capture the pandemic
transition probabilities between cities, we utilize a deep learn-
ing method via GAT, to construct the transition probability
matrix P = {pij}, based on the importance of geographical
proximity on the Massachusetts Route graph GMR = (V,E)
and data feature similarity. The resulting new directed graph
with self-loops is called the Massachusetts Attention Route
(MAR) graph, denoted as GMAR = (V, Ẽ, P ). The edge set
Ẽ includes E, as well as self-loops.

GAT is a powerful deep learning method proposed in [14],
which has state-of-the-art performance on node classification
and link predictions. Instead of a simple mean aggregation,
the GAT learns to use weighted summation to aggregate
the features of neighboring nodes to update the features
of the nodes, and automatically adjust the weight through
downstream tasks [14]–[18]. Given N multivariate time series
xi(t), for i = 1, · · · , N , t = 1, · · · , T . Then xi ∈ RT can be
viewed as the T -dimensional input features of the node τi. We
use edge classification as the downstream task, for our GAT
neural network, and use the normalized attention matrix in
the last layer of the neural network as our Markov transition
matrix P = {pij}.

To improve the model capacity and stabilize the learning
process, GAT uses multi-head attention. Consider a multi-head
GAT layer with K heads. Wk ∈ ROk×T , k = {1, · · · ,K}, is
a learnable linear transformation, with Ok ≥ 1. Let âk ∈ R2Ok

be the k-th attention weight vector. The normalized attention
coefficients αki,j capture the importance of τj’s features to τi’s,
expressed as

αkij =
exp

(
LeakyReLU(âk · [Wkxi ‖Wkxj ])

)
∑
l∈Ni

exp
(

LeakyReLU(âk · [Wkxi ‖Wkxl])
) ,

(2)
where Ni denotes the set of first-order neighbours of node τi
(including τi) and ‖ denotes the concatenation operation, and
the activation function is LeakyReLU 2.

Let x′i ∈ RO be O-dimensional output features satisfying
O =

∑K
k=1Ok. A K-head GAT layer aggregates nodes

features across neighborhoods by

x′i = ||k∈{1,··· ,K}ELU

∑
j∈Ni

αkijW
kxj

 .

where ELU is an exponential linear unit 3.
To learn the attention matrix, we use edge classification [15]

as a downstream task. Let

M = {(τi, τj) ∈ V × V | ai,j = 1}

be the positive sample set, where ai,j is the element of the
adjacency matrix A of the graph GMR. For any integer l ≥ 1,

2LeakyReLU(x) = 0.35x(1− sgn(x))/2 + x(1 + sgn(x))/2.
3ELU(x) = (exp(x)− 1)(1− sgn(x))/2 + x(1 + sgn(x))/2.

the power of the adjacency matrix Al = (a
(l)
i,j)N×N can be

used to define the l-th order neighborhood of a vertex. Let

S− = {(τi, τj) ∈ V × V | ai,j = 0, a
(l)
i,j > 0,∃ l ∈ {2, 3}}

be the negative candidates set. The negative sample set M−

is randomly generated from the negative instances in S− with
a similar size to M . The GAT neural network is trained by
minimizing the following cost function:

L = −
∑

(i,j)∈M∪M−(ai,j log qij + (1− ai,j) log(1− qij))
|M ∪M−|

Here qij is the probability of whether there is an edge between
τi and τj ,

qij =
1

1 + exp
(
−(x′′i � x′′j ) · θ

) ,
where � denotes Hadamard product, x′′i is the output feature
of the last layer of GAT. θ is a learned parameter vector and
the dimension is the same as x′′i .

In our setup, there are two GAT layers. Each layer takes an
appropriate output dimensionality to improve the performance
of the model [34]. The first layer is a K-head attention layer
with K = 7, and the input feature is the graph signal xi ∈ RT
with T = 41. The output feature x′i is cascaded as O = 854.
i.e. we set Ok = 122 features each (for a total of 854 features).
The second layer is a single-head attention layer with the 88-
dimensional output features x′′i . During the training phase, we
divide the sample set M ∪M− into training set, validation
set and test set according to the ratio of 6 : 2 : 2. We also
make sure to keep the same number of positive and negative
samples in the test set. The learning rate is set as lr = 0.005.
The early stopping strategy is applied to the validation set to
avoid overfitting, with the patience set to 100 epochs. The
accuracy of edge classification of GMR without self-loops
in our result is 0.9499.

The transition probability pij is defined as the GAT coeffi-
cients of the last GAT layer, i.e.

pij =
exp

(
LeakyReLU(â · [Wx′i ‖Wx′j ])

)∑
l∈Ni

exp (LeakyReLU(â · [Wx′i ‖Wx′l]))
,

where â and W defined above are the learned attention
weight vector and the learned parameter matrix of this single-
head attention layer. One advantage is that the self-attention
coefficient pi,i > 0, which also explains the self-influence of
the pandemic in a city. Consequently, the obtained MAR graph
is a graph with self-loops. Fig. 4 shows the basic framework
of this method.

C. Spatio-temporal dynamic graph model

To perform the spatio-temporal node classification using
the time-dependent data {xi(t), i = 1, · · · , N, t = 1, · · · , T}
defined in (1), we introduce the concept of graph product.
The three well-known graph products are the graph Cartesian
product, graph Kronecker product, and graph strong product,
see Fig. 5. These have been powerful in studying time-vary
data on graphs, see [35]–[38].
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Fig. 4. GAT framework with edge classification as a downstream task. There are two GAT layers. The first layer is a 7-head attention layer, and the second
layer is a single-head attention layer. The attention coefficient learned by the GAT neural network is applied to define the MAR graph.

Fig. 5. Graph products of a spatial path graph (of 4 nodes) and a temporal
path graph (of length 3).

The graph Cartesian product only adds extra edges between
nodes on the adjacent graph time slices in series, which often
weakens the influence of spatial neighbors in the study of
SGWT for graph signals. Here we adapt the graph strong
product, which also adds temporal edges between pairs of one-
hop neighbors in its adjacent graph time slice.

Let H be a path graph consisting of T nodes. The strong
product graph can be defined by the product of the Mas-
sachusetts Route graph GMR and the path graph H . We assign
weights to the strong product graph based on the transition
probability matrix P of GMAR. The resulting directed graph
G without self-loops is the spatio-temporal dynamic model.
More precisely, the graph time slices {Gt = (Vt, Et, Pt), t =
1, · · · , T} are copies of graph GMR by assigning weights
Pt = P − diag(p11, p22, · · · , pNN ). The direction of the
temporal edge (black edge in Fig. 6) is from Gt to Gt+1,
which represents the time-evolution of the pandemic among
these cities. The weights of the new temporal edges are carried
from P . Now, the strong product graph can be represented as
G = (V, E ,W) with V = {τi,t, i = 1, · · · , N ; t = 1, · · · , T},
and E = (E1∪· · ·∪ET )∪(E1,2∪· · ·∪ET−1,T ), where Et,t+1

is the collection of temporal edges connecting Gt and Gt+1.
The new weight matrix W is not normalized anymore, as we
have added extra temporal edges, which carry the same weight
as the spatial edges. More precisely, the edge (τi,t, τj,t+1) has
the same weight pji as the spatial edge (τi,t, τj,t), see Fig.

6. Note that W is rather sparse, as we only added temporal
edges between two adjacent graph time slices.

Fig. 6. Construction of spatio-temporal dynamic graph based on MAR graph.
The black edge in the spatio-temporal dynamic graph represents the temporal
edge, and the blue edge is the spatial edge inherited from the MAR graph
without the self-loop.

IV. NODE CLASSIFICATIONS ON THE SPATIO-TEMPORAL
DYNAMIC GRAPH G

A. Brief introduction to the Spectral Graph Wavelet Transform

Let G = (V, E ,W) be the spatio-temporal graph constructed
in the above section. The graph signal X on V with X(τi,t) =
xi(t) defined on (1) represents the confirmed cases of city i
in the t-th week. Clearly, the cardinality of |V| = N̂ := NT .
The graph Laplacian is defined by L = D −W , where the
degree matrix D = (dij) is a diagonal matrix with entries
dii =

∑
k wik. The graph Laplacian L is not symmetric as

our pandemic graph is directed. We construct a symmetric
matrix by L = (L+L∗)/2, which is the averaging of the graph
Laplacian and its transpose. L has N̂ non-negative, real-valued
eigenvalues Λ = {λ1, λ2, · · · , λN̂} with λ1 = 0, and the
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corresponding normalized eigenvectors {ul, l = 1, · · · , N̂}
form an orthonormal basis for the Hilbert space. The graph
Fourier transformation of X can be written as

X̂(λl) =
∑
τ∈V

X(τ)ul(τ).

A graph spectral filter, or kernel ĝ : Λ → R is a func-
tion defined in the spectral domain λl ∈ Λ. A dictionary
{ĝm}m=1,2,··· ,M is a set of graph spectral filters constructed
to detect different frequencies of signals.

In this paper, we use the dictionary constructed by Ham-
mond et al. [21]:

{ĥ(λ), ĝ(sM−1λ), ĝ(sM−2λ), · · · , ĝ(s1λ)}, (3)

where the wavelet kernel

ĝ(λ) =

 λ2, 0 ≤ λ < 1,
−5 + 11λ− 6λ2 + λ3, 1 ≤ λ ≤ 2,

4λ−2, λ > 2

is a bandpass filter defined on the Fourier domain, the
stretching scale s1, s2, · · · , sM−1 are logarithmically sampled
between s1 = 1/λN̂ and sM−1 = 40/λN̂ , the scaling function

ĥ(λ) = b exp

(
−
(

10λ
0.3λN̂

)4)
is a low-pass filter detecting

the low frequency signal with the parameter b = maxλ ĝ(λ).
Such dictionary is designed to evenly cover the graph spectrum
domain.

Given a graph signal X and the dictionary {ĝm}m=1,2,··· ,M ,
the spectral graph wavelet coefficient WX : {1, · · · ,M} ×
V → R is defined as

WX(m, τ) =

N̂∑
l=1

ĝm(λl)X̂(λl)ul(τ). (4)

However, the above SGWT is rather expensive for large
graphs, as the resulting computational complexity is of order
O(N̂3). In this paper, we apply the fast spectral graph wavelet
proposed in [21] to overcome this difficulty. The fast spectral
graph wavelet transform based on Chebyshev polynomials
approximation [39] shows that the graph wavelet coefficients
in (4) can be approximated by

WX(m, τ) ≈
(

1

2
cm,0X +

Km∑
k=1

cm,kT k(L)X

)
(τ), (5)

where Km is the number of truncating terms, and

cm,k =
2

π

∫ π

0

cos(kθ)ĝm(cos(θ))dθ.

Moreover, T k is the shifted Chebyshev polynomials with the
domain of [0, λN̂ ], such that T k(x) satisfies the recursive
formula

T k(x) =
(

4
λN̂
x− 2

)
T k−1(x)− T k−2(x),

with initial conditions

T 0(x) = 1, T 1(x) = 2
λN̂
x− 1.

The computational cost to approximate the wavelet coefficients
is order O(Km|E|+Km|V|).

In this paper, we take Km = 40 in (5). It takes 0.5 seconds
on a laptop with a 2.3 GHz 8-core Intel Core i9 processor.
Without Chebyshev approximation, it costs 650 seconds.

B. Node Classification Using SGWT coefficients

Given our spatio-temporal dynamic graph G = (V, E ,W)
together with the COVID-19 confirmed cases X, one question
is how to provide a high-quality classification of nodes ac-
cording to the pandemic spreading patterns? We refer to this
as the ”node labeling problem” with the understanding that
the node classification problem can be abstracted as providing
a classification label for the graph structure. Here we will use
the information already encoded in the SGWT coefficients to
help us predict labels.

Let T = 41 be the number of time slices in the spatio-
temporal dynamic model from December 6, 2020, to Septem-
ber 25, 2021. Let M = 8 be the number of graph spectral
filters. Using the SGWT on the graph signal X, one gets a
N̂ ×M wavelet coefficient matrix with entires (5). We then
define node classification criteria based on the multiresolution
information carried by SGWT coefficients. We will classify the
nodes by the torque value obtained by some weighted average
of the SGWT coefficients.
Step 1: Data processing of wavelet coefficients.

Firstly, we use a data scaling method to ensure for each
wavelet coefficient that guarantees that they are on the same
scale. This method was introduced by RobustScaler [40] in
the machine learning library Scikit-learn as follows:

S(m, τ) = |WX(m, τ)|/R(m),

where R(m) is the interquartile range of |WX(m, τ)| with
respect to τ . The interquartile range is the difference between
the first and third quartile of a data set. The quartiles make the
RobustScaler ignore data points that are very different from
the rest (like machine errors).

Secondly, we use logarithmic normalization to normalize
each coefficient to [0, 1] to facilitate the calculation of the
torque value and comparison,

WX(m, τ) =
ln (1 + S(m, τ))

ln (1 + maxτ S(m, τ))
.

Logarithmic normalization does not change the order of the
values, but it can significantly reduce the effect of maximum
abnormal value [41].
Step 2: Spatial node classifications based on torque values.
In order to use the SGWT coefficients to classify the nodes,
we need to define the torque value function ϕ : V → R by:

ϕ(τ) = [WX(1, τ), · · · ,WX(8, τ)]·[−4,−3,−2,−1, 1, 2, 3, 4].

High torque values imply a high frequency of signal changes
[38]. More precisely, if a vertex τ(i, t) has a relatively high
torque value, then there are anomalies in the pandemic spread
patterns of the i-th city compared to its surrounding cities at
the time t.

Let d = maxτ ϕ(τ) −minτ ϕ(τ). By splitting the interval
[ϕmin, ϕmax] into 5 equal intervals, the vertex space V can
be divided into five disjoint sets {V1,V2,V3,V4,V5}, which
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represent the spatio-temporal changes of the xi(t) (in terms
of the SGWT coefficients) as low frequency, mid-low fre-
quency, uncertain, mid-high frequency, and high frequency,
respectively. The detailed node classifications are defined in
Table I.

TABLE I
NODE CLASSIFICATION IN V .

Torque Value Range [ϕmin, d/5] (d/5, 2d/5] (2d/5, 3d/5] (3d/5, 4d/5] (4d/5, ϕmax]
Node Subset V1 V2 V3 V4 V5

Signal Frequency low mid-low uncertainty mid-high high

The spatial node classification method is demonstrated in
Fig. 7, for the 2-week period of Jan.31-Feb. 13, 2021.

Fig. 7. Nodes classification of the 9th time slice. The dark red square
represents Amherst.

An efficient node classification should be able to capture
the abrupt changes of the graph signal, both spatially and
temporally. To make the illustrations more explicit, we use our
node classification method to investigate the city of Amherst
during the 13 weeks from December 16, 2020, to March
13, 2021. Fig. 8 shows that the confirmed cases in Amherst
were significantly higher than its neighbors from January 24,
2021 to February 27, 2021. Fig. 9 demonstrates the different
temporal stages of the node classification value of Amherst
during the 13 weeks. Compared with Fig. 8, we can see
that when the City of Amherst has similar pandemic patterns
as the surrounding cities, the wavelet coefficient represents
low frequency (Dec. 6-Dec. 19). On the other hand, as the
confirmed cases in the surrounding cities start to rise, the
wavelet coefficient of Amherst represents high frequency (Dec.
20-Jan. 2), which means that the pandemic cases of Amherst
have different patterns than its neighbors. Our node classi-
fication method accurately captures the abnormal pandemic
spread patterns of Amherst during the period from January 24,
2021, to March 6, 2021, see Fig. 8 and Fig. 9. In this period,
the University of Massachusetts Amherst partially opened its
campus, and many students returned to Amherst [42].

This method can effectively identify the pandemic spread
anomaly patterns of any specific period, which should be
valuable for further research.

Fig. 8. Visualization of the pandemic graph signal X at Amherst and its
adjacent areas from Dec. 6, 2020, to Jan. 9, 2021 and Jan. 24, 2021, to
Feb. 27, 2021. The color represents the actual value of the signal. The nodes
marked by the blue circle represent the city of Amherst.

V. VISUALIZATION ANALYSIS OF COVID-19 PANDEMIC
SPREAD PATTERNS

In this section, we focus on the visualization analysis of the
COVID-19 pandemic spread patterns on the spatio-temporal
dynamic graph model. We first conduct an overall analysis
of the COVID-19 data in Massachusetts. Then we identify
the supper pandemic spreaders (cities). Finally, a refined node
classification is performed in V4 and V5, where the pandemic
spread patterns have abrupt spatio-temporal changes.

A. Overall graph classifications

To have an overall temporal analysis of the pandemic
evolution patterns for cities in Massachusetts, we define a
graph classification method for the spatio-temporal dynamic
graph G, which enables us to classify each graph time slice
for {Gt, t = 1, · · · , T}.

First, we need to calculate the node classification distribu-
tion in Gt, which can be obtained by counting the frequencies
of nodes in Gt that occur in each of the five classes Vj ,
j = 1, · · · , 5:

σjt =
1

N

N∑
i=1

IVj (τi,t), j = 1, 2, · · · , 5, (6)

where IVj is the indicator function of the set Vj . The distri-
bution {σjt , j = 1, · · · , 5} can not be used to directly classify
the graph Gt, as one has to weigh in the distributions in other
time slices to well capture the role of each frequency class. We
adopt the method used by Dal Col. etc. [38], by first taking
σjmax = max{σj1, σ

j
2, · · · , σ

j
T }. Then we define the class of

Gt as Vrt , with

rt = arg max
j∈{1,2,3,4,5}

(σjt /σ
j
max). (7)

Next we conduct a temporal graph classification to get
an overall visual analysis of the spatio-temporal pandemic
spread patterns in Massachusetts, which is demonstrated in
Fig. 10. As we can see from Fig. 10, after Thanksgiving, 2021,
Massachusetts saw a substantial spike in confirmed cases as
there were more group gatherings. The confirmed cases in
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Fig. 9. Nodes classification (top) and normalized graph wavelet coefficients (bottom).

Fig. 10. Overall visual analysis of COVID-19 in Massachusetts. The figures depict graph classification for each graph time slice (top) using method (7), and
the spatial node classification distribution σj

i given by (6) (bottom).

Massachusetts reached their peak during the Christmas holiday
period. We can infer that multi-site outbreak patterns exist
because the temporal and spatial changes of confirmed cases in
many cities are different from those in the surrounding cities.
The cases declined sharply after mid-January due to restricting
gatherings, maintaining social distance, and advocating masks,
then stabilized in late February (mid-low frequency). Mas-
sachusetts entered the fourth phase of the state’s reopening
plan on March 22, 2021. With the relaxation of pandemic
restrictions, there was a small-scale rebound of confirmed
cases with the multi-point pattern at the end of March (mid-
high frequency). The numbers began to decrease from April
to July due to the increased vaccination rate.

B. Spatial ranking for super-spreader cities

Identifying influential spreaders (cities) in a pandemic net-
work is a core question to prevent pandemic spreading. Many
different centrality measures tied to the network topology
have been introduced to find the central nodes. However, the
importance of node features is mostly ignored in these works.
The centrality of a node in a pandemic network should depend
on two features: its local influence on the nodes in its one-hop
neighbor and its global influence on the nodes belonging to
higher-order hop neighbors. Taking advantage of the attention
coefficients learned from the GAT, we introduce a new score
function that allows us to redefine the classical centrality
measure by considering their importance to the neighbors’
features.

Considering the m-hop neighbor of node τi in the MAR
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Fig. 11. City spatial ranking of pandemic spread capability: from dark red (top rank) to white (low rank).

graph GMAR = (V, Ẽ, P ). The attention coefficient measures
the importance of τi’s features to τj . Let Pm = (p

(m)
i,j )N×N be

the m-th power of the matrix P . Then p(m)
i,j characterizes the

m-step influence of city i to city j. We define a new centrality
metric to capture the capability of city i to spread the pandemic
to their neighbors by

c
(m)
i =

∑
j

p
(m)
ji , j 6= i,m = 1, 2, 3, · · · .

In our practice, we define the influential score of city i by

Ci =

5∑
m=1

c
(m)
i

as the total capability of city i to spread the virus to other
cities.

The spatial ranking of cities according to their influential
scores is shown in Fig. 11. One can see that the top ten
cities with the largest pandemic spread (influential) scores (in
dark red) are Boston, Worcester, Springfield, Otis, Fitchburg,
Newton, Halifax, Dedham, Montague and Palmer. It’s not sur-
prising that Boston, Worcester, and Springfield are in the top
three, given these cities’ large populations and high mobility.
On the other hand, we are able to identify small cities, which
are otherwise difficult to identify without using our advanced
methods. For example, the City of Otis has a small population
but ranked fourth on the list. It is remarkable that the City
of Wayland has a larger population and the same number of
connected US Routes compared to Otis, but it ranks much
lower. This has been confirmed by news in [43], as well as the
fact that Otis has a ski resort. Using this new ranking metric,
we can correctly identify cities at risk and those more volatile
to pandemics and thus need to invest more social resources to
better control the pandemic.

C. Refined node classification in anomaly cities

Given the COVID-19 data in Massachusetts, another im-
portant question is to identify cities with anomaly spread
patterns during the pandemic period. More precisely, this is
equivalent to finding patterns in data (i.e., attribute values
or changes in the values over time) that are significantly
different from that of the spatio-temporal neighbors. These
non-conforming patterns are often referred to as anomalies.
The typical anomaly detection method concentrates on time
series, or static graph signals, which could not be applied to
our case. We aim to design a new method that enables us to
detect anomalies in COVID-19 time-series data belonging to
multiple entities (cities) and explain the anomalies to domain
experts in a comprehensible manner.

SGWT is a powerful tool for finding anomalies for spatio-
temporal graph signals. For example, the set V5 can be counted
as one anomaly class, both spatially and temporally. However,
in V5, by examining the distribution of the SGWT coefficients
more carefully, we find that there are situations in which there
is a node with a higher or lower signal value than that of the
surroundings. As shown in Fig. 12, there are two dramatically
types of vertices in V5, as indicated above.

Below we say the nodes in V4∪V5 are anomaly nodes. The
corresponding city is the anomaly city. We use a refined node
classification method to identify these two abnormal situations
in anomaly cities. Let N (1)

i = {τj ∈ V | ai,j = 1, j 6= i}. We
first define an anomaly metric:

ϑ(i, t) =


xi(t)

1

|N (1)
i |

∑
j∈N (1)

i
xj(t)

,
∑

j∈N (1)
i

xj(t) 6= 0

max{xi(t), 1},
∑

j∈N (1)
i

xj(t) = 0,
(8)

which is the relative ratio of the data information of city i
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Fig. 12. A specially-designed graph signal function f : V → {1, 7, 16},
such that f(τ1) = 1 and f(τ14) = 16. Both τ1 and τ14 are classified in
class V5, even though they are completely different typies of outliers.

at time t compared with the averaging data obtained from its
one-hop neighbors.

Then we define the anomaly score (a-score) a(i, t) to the
nodes in the set V4 ∪ V5 according to Fig. 13. According to
the a-score, we divide the V4 ∪ V5 into five groups as in Fig.
13.

Fig. 13. Refined node classification and a-score in V4 ∪ V5.

A city with high a-scores presents at risk or volatile in the
pandemic. It should ring an alarm for local city administra-
tions, as the city has the potential to increase infection spread
to its neighboring cities. Earlier identifying these cities can
prevent them from becoming the outbreak cities of a pandemic.
On the other hand, identifying cities with low a-scores can
be valuable in controlling virus spread, as they provide good
models for other cities.

1.31-2.13

Fig. 14. Refined node classification for the 9th week, from Jan. 31 - Feb. 13.

Fig. 14 depicts the data visualization plots for cities with
anomaly patterns from January 31 to February 13. We can
quickly detect Amherst with a high a-score, which is also

confirmed as one of the most significant COVID-outbreak
cities in Fig. 9.

D. Spatio-temporal ranking of super-spreader cities

The a-score defined in Fig. 13 depends on both spatial
and temporal coordinates. To have an overall picture of the
pandemic evolution behavior of these cities and evaluate the
urban pandemic prevention and control, we propose a data
visualization plot to explain the level of anomalies by the
anomaly score. Below, we use a-scores in Fig. 13, to provide
a new city ranking, by taking averages of its a-scores over the
41-week period for each city:

ā(i) :=
1

41

41∑
t=1

a(i, t). (9)

Fig. 15 shows the average anomaly scores of each city in MA.

Fig. 15. City spatio-temporal ranking from Dec. 6, 2020 to Sept. 25, 2021,
using the average a-score ā. Dark red refers to the highest average a-score ā,
while dark blue refers to the lowest average.

One can see that cities with higher ā(i) values are more likely
to become super-spreader (cities) for any future pandemic. A
by-product of using the ā(i) value is that, one could evaluate
the city’s pandemic prevention and control capabilities. In Fig.
15, the darker the red, the cities have the less successful
pandemic prevention and control. On the other hand, the
darker the blue, the cities are more successful in pandemic
prevention and control. The top five least successful cities are
identified as Springfield, Amherst, Great Barrington, Holyoke,
and Sandisfield; as well as the top five most successful cities
are New Marlborough, Harvard, West Tisbury, Tolland and
Leverett.

The detailed visualization analysis for these cities is in-
cluded in Fig. 16. This visual view can quickly locate the
outbreak time and duration of abnormal phenomenons. To
make effective comparisons, we also plot the pandemic time
evolution data of Springfield, Amherst, New Marlborough and
Harvard, see Fig. 17 - Fig. 20.

Our analysis identifies Springfield as the least successful
city using data from December 6, 2020, to September 25,
2021. Fig. 16 shows that most of the confirmed cases in
Springfield surpass the values of the surrounding areas during
the entire 41-week period, which can also be confirmed in Fig.
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Fig. 16. Ranking of the least successful and most successful cities in pandemic prevention and control from Dec. 16, 2020 to Sept. 25, 2021.

17. A recent report shows that Springfield is a center for the
Delta outbreak [23]. This confirms that the city has a much
higher risk of spreading new pandemic variants to other cities
and may need more help from administrations to control the
pandemic.

Fig. 17. The 41-week evolution of COVID-19 confirmed cases for Springfield
and its neighboring cities from Dec. 19, 2020 to Sept. 25, 2021.

Amherst is ranked as the second least successful city for
41 weeks from December 6, 2020 - September 25, 2021. Fig.
16 indicates that Amherst has much higher confirmed cases
than neighbors from January 24 to March 27, 2021, which is
consistent with Fig. 18. Indeed, we show that Amherst ranks as
the first pandemic spreader during a two-week short periodic
from January 31 - February 13, 2021, see Fig. 7. By digging
into the news of this period, we find that the University of Mas-
sachusetts Amherst started the spring semester on February 1.
Because many students moved into dorms or apartments in
Amherst, there had been more than 398 active cases during that
period. Contact tracing data record [44] has shown that some
students failed to follow social distancing and mask protocols
in social and residential settings, promoting pandemic virus
transmission. Subsequently, the university further strengthened
its management standards. For example, students who do not
wear masks will not be allowed on campus, and large group
gatherings were not encouraged. The pandemic spread was
effectively brought under control at the end of February 2021.

At the beginning of the fall semester (the end of August 2021),
a similar abnormal situation appeared again in Amherst, see
[24], [45].

Fig. 18. The 41-week time evolution of COVID-19 confirmed cases for
Amherst and its neighboring cities from Dec. 19, 2020 to Sept. 25, 2021.

New Marlborough and Harvard are the top two most suc-
cessful cities for the 41 weeks from December 6, 2020, to
September 25, 2021. Fig. 16 illustrates that the two cities have
much lower confirmed cases than those in the surrounding
cities most of the time. Fig. 19 and Fig. 20 describe the time

Fig. 19. The 41-week evolution of COVID-19 confirmed cases for New
Marlborough and its neighboring cities from Dec. 19, 2020 to Sept. 25, 2021.

evolution of the top two most successful cities, which have
good and stable spread patterns during the pandemic, and are
consistent with the situation illustrated in Fig. 16. It indicates
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Fig. 20. The 41-week evolution of COVID-19 confirmed cases for Harvard
and its neighboring cities from Dec. 19, 2020 to Sept. 25, 2021.

that these cities might have adequate prevention and control
measures. By digging into the news of this period, the Health
Board in New Marlborough looked for a temporary part-
time COVID Ambassador to provide COVID-19 prevention
guidance to citizens, businesses and community groups [26],
and held several sessions for discussions and updates on
COVID-19 [46]. Furthermore, New Marlborough has provided
free masks to residents since August 20, 2020 [27]. These
measures allow New Marlborough to remain unaffected even
when its neighbors sharply all had a sharp increase in cases,
see Fig. 19. Harvard offered free safety training courses for
workers [28]. Citizens volunteered to help the Board of Health
open a local vaccine clinic [29]. These measures may be the
reason for the success of Harvard’s pandemic prevention.

In Fig. 16, we show the five most successful and least
successful cities. By changing the time range of the formula
(9), we can also find successful and least successful cities
for any period. As a by-product, our visualization analysis is
based on the refined node classification for our spatio-temporal
dynamical graph, so it captures correlations of pandemic
evolution patterns among these cities. Take Springfield as an
example, see Fig. 16. Because the spatio-temporal outbreak
patterns of Springfield and Holyoke are similar, we can infer
a significant correlation between them. Indeed, we know that
they both have large traffic flows and are close to each other,
see Fig. 3, thus the patterns of their pandemic outbreaks should
be highly related. Our method can quickly help experts locate
cities with similar traits and apply insights from a city to
inform prevention and control strategies in similar areas.

VI. CONCLUSION

This paper draws a Massachusetts Route graph based on
the latitude and longitude of 351 cities and towns and the
main traffic routes passing nearby. The pandemic transition
probability is learned through semi-supervised deep learning,
based on the Graph Attention Neural Network. We construct
a spatio-temporal dynamic model by strong-product for the
time-varying data on the graph, which can better capture the
spatio-temporal pandemic evolution patterns. With the help
of SGWT, the COVID-19 pandemic spread patterns in Mas-
sachusetts from December 6, 2020, to September 25, 2021, are
analyzed and visualized. In addition to the overall analysis
of the temporal and spatial evolution of the pandemic data,
we also identify cities with strong pandemic spread influence,
such as the town of Otis. We also construct a new anomaly

indicator to classify cities with abnormal pandemic situations,
indicating cities at risk of virus transmission, and identifying
cities that are likely to be infected in the next step. The five
cities identified with the least successful pandemic prevention
are Springfield, Amherst, Great Barrington, Holyoke, and
Sandisfield; the five cities with the most successful pandemic
prevention are New Marlborough, Harvard, West Tisbury,
Tolland, and Leverett. These obtained results not only offer
descriptive insight for strategizing purposes in combating
the COVID-19 outbreak in Massachusetts, but also can be
used to protect those high-risk cities for the next possible
round of pandemics. Further, it also provides a framework for
evaluating regional pandemic prevention work in the COVID-
19 pandemic. It helps the policymakers identify cities with
better prevention in the pandemic and extract insights from
the successes.

However, in this paper, we only analyze cities and towns
within Massachusetts and do not consider the impact on other
states. In our further study, we will take our focus on the
influence of neighboring states to improve our method. In
addition, when calculating the transition probability matrix
using GAT, due to the limited features of our data, we
take the time series of confirmed cases every two weeks
and obtain the transition probability of the comprehensive
pandemic evolution for 41 weeks. Our further research will
try to overcome the limited features of the data and train the
network on the spatio-temporal dynamic graph to obtain the
time-varying transition probability matrix.
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TABLE II
LIST OF MASSACHUSETTS CITIES

ID City/Town ID City/Town ID City/Town ID City/Town ID City/Town
1 Abington 70 Cummington 142 Hull 215 Northborough 283 Stockbridge
2 Acton 71 Dalton 143 Huntington 216 Northbridge 284 Stoneham
3 Acushnet 72 Danvers 144 Ipswich 217 Northfield 285 Stoughton
4 Adams 73 Dartmouth 145 Kingston 218 Norton 286 Stow
5 Agawam 74 Dedham 146 Lakeville 219 Norwell 287 Sturbridge
7 Amesbury 75 Deerfield 147 Lancaster 220 Norwood 288 Sudbury
8 Amherst 76 Dennis 148 Lanesborough 221 Oak Bluffs 289 Sunderland
9 Andover 77 Dighton 149 Lawrence 222 Oakham 290 Sutton
10 Aquinnah 78 Douglas 150 Lee 223 Orange 291 Swampscott
11 Arlington 80 Dracut 151 Leicester 224 Orleans 292 Swansea
12 Ashburnham 81 Dudley 152 Lenox 225 Otis 293 Taunton
13 Ashby 82 Dunstable 153 Leominster 226 Oxford 294 Templeton
14 Ashfield 83 Duxbury 154 Leverett 227 Palmer 295 Tewksbury
15 Ashland 84 East Bridgewater 155 Lexington 228 Paxton 296 Tisbury
16 Athol 85 East Brookfield 157 Lincoln 229 Peabody 297 Tolland
17 Attleboro 86 East Longmeadow 158 Littleton 230 Pelham 298 Topsfield
18 Auburn 87 Eastham 159 Longmeadow 231 Pembroke 299 Townsend
19 Avon 88 Easthampton 160 Lowell 232 Pepperell 300 Truro
20 Ayer 89 Easton 161 Ludlow 233 Peru 301 Tyngsborough
21 Barnstable 90 Edgartown 162 Lunenburg 234 Petersham 303 Upton
22 Barre 91 Egremont 163 Lynn 235 Phillipston 304 Uxbridge
23 Becket 92 Erving 164 Lynnfield 236 Pittsfield 305 Wakefield
24 Bedford 93 Essex 165 Malden 237 Plainfield 306 Wales
25 Belchertown 94 Everett 166 Manchester 238 Plainville 307 Walpole
26 Bellingham 95 Fairhaven 167 Mansfield 239 Plymouth 308 Waltham
27 Belmont 96 Fall River 168 Marblehead 240 Plympton 309 Ware
28 Berkley 97 Falmouth 169 Marion 241 Princeton 310 Wareham
29 Berlin 98 Fitchburg 170 Marlborough 242 Provincetown 311 Warren
30 Bernardston 99 Florida 171 Marshfield 243 Quincy 312 Warwick
31 Beverly 100 Foxborough 172 Mashpee 244 Randolph 313 Washington
32 Billerica 101 Framingham 173 Mattapoisett 245 Raynham 314 Watertown
33 Blackstone 102 Franklin 174 Maynard 246 Reading 315 Wayland
34 Blandford 103 Freetown 175 Medfield 247 Rehoboth 316 Webster
35 Bolton 104 Gardner 176 Medford 248 Revere 317 Wellesley
36 Boston 105 Georgetown 177 Medway 249 Richmond 318 Wellfleet
37 Bourne 106 Gill 178 Melrose 250 Rochester 320 Wenham
38 Boxborough 107 Gloucester 179 Mendon 251 Rockland 321 West Boylston
39 Boxford 108 Goshen 180 Merrimac 252 Rockport 322 West Bridgewater
40 Boylston 110 Grafton 181 Methuen 254 Rowley 323 West Brookfield
41 Braintree 111 Granby 182 Middleborough 255 Royalston 324 West Newbury
42 Brewster 112 Granville 184 Middleton 256 Russell 325 West Springfield
43 Bridgewater 113 Great Barrington 185 Milford 257 Rutland 326 West Stockbridge
44 Brimfield 114 Greenfield 186 Millbury 258 Salem 327 West Tisbury
45 Brockton 115 Groton 187 Millis 259 Salisbury 328 Westborough
46 Brookfield 116 Groveland 188 Millville 260 Sandisfield 329 Westfield
47 Brookline 117 Hadley 189 Milton 261 Sandwich 330 Westford
48 Buckland 118 Halifax 191 Monson 262 Saugus 331 Westhampton
49 Burlington 119 Hamilton 192 Montague 263 Savoy 332 Westminster
50 Cambridge 121 Hancock 193 Monterey 264 Scituate 333 Weston
51 Canton 122 Hanover 196 Nahant 265 Seekonk 334 Westport
52 Carlisle 123 Hanson 197 Nantucket 266 Sharon 335 Westwood
53 Carver 124 Hardwick 198 Natick 267 Sheffield 336 Weymouth
54 Charlemont 125 Harvard 199 Needham 268 Shelburne 337 Whately
55 Charlton 126 Harwich 200 New Ashford 269 Sherborn 338 Whitman
56 Chatham 127 Hatfield 201 New Bedford 270 Shirley 339 Wilbraham
57 Chelmsford 128 Haverhill 202 New Braintree 271 Shrewsbury 340 Williamsburg
58 Chelsea 129 Hawley 203 New Marlborough 272 Shutesbury 341 Williamstown
59 Cheshire 130 Heath 204 New Salem 273 Somerset 342 Wilmington
60 Chester 131 Hingham 205 Newbury 274 Somerville 343 Winchendon
61 Chesterfield 132 Hinsdale 206 Newburyport 275 South Hadley 344 Winchester
62 Chicopee 133 Holbrook 207 Newton 276 Southampton 345 Windsor
63 Chilmark 134 Holden 208 Norfolk 277 Southborough 346 Winthrop
64 Clarksburg 136 Holliston 209 North Adams 278 Southbridge 347 Woburn
65 Clinton 137 Holyoke 210 North Andover 279 Southwick 348 Worcester
66 Cohasset 138 Hopedale 211 North Attleborough 280 Spencer 349 Worthington
67 Colrain 139 Hopkinton 212 North Brookfield 281 Springfield 350 Wrentham
68 Concord 140 Hubbardston 213 North Reading 282 Sterling 351 Yarmouth
69 Conway 141 Hudson 214 Northampton
Thirteen isolated cities
6 Alford 79 Dover 109 Gosnold 120 Hampden 135 Holland
156 Leyden 183 Middlefield 190 Monroe 194 Montgomery 195 Mount Washington
253 Rowe 302 Tyringham 319 Wendell
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