
 
 

Delft University of Technology

Task-Aware Connectivity Learning for Incoming Nodes Over Growing Graphs

Das, Bishwadeep; Hanjalic, Alan; Isufi, Elvin

DOI
10.1109/TSIPN.2022.3206578
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Signal and Information Processing over Networks

Citation (APA)
Das, B., Hanjalic, A., & Isufi, E. (2022). Task-Aware Connectivity Learning for Incoming Nodes Over
Growing Graphs. IEEE Transactions on Signal and Information Processing over Networks, 8, 894-906.
https://doi.org/10.1109/TSIPN.2022.3206578

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSIPN.2022.3206578
https://doi.org/10.1109/TSIPN.2022.3206578


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



894 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 8, 2022

Task-Aware Connectivity Learning for Incoming
Nodes Over Growing Graphs

Bishwadeep Das , Graduate Student Member, IEEE, Alan Hanjalic , Fellow, IEEE,
and Elvin Isufi , Member, IEEE

Abstract—Data processing over graphs is usually done on graphs
of fixed size. However, graphs often grow with new nodes arriving
over time. Knowing the connectivity information of these nodes,
and thus, the expanded graph is crucial for processing data over
the expanded graph. In its absence, its inference and the sub-
sequent data processing become essential. This paper provides
contributions along this direction by considering task-driven data
processing for incoming nodes without connectivity information.
We model the incoming node attachment as a random process
dictated by the parameterized vectors of probabilities and weights
of attachment. The attachment is driven by the existing graph
topology, the corresponding graph signal, and an associated pro-
cessing task. We consider two such tasks, one of interpolation at
the incoming node, and that of graph signal smoothness. We show
that the model bounds implicitly the spectral perturbation between
the nominal topology of the expanded graph and the drawn realiza-
tions. In the absence of connectivity information our topology, task,
and data-aware stochastic attachment performs better than purely
data-driven and topology driven stochastic attachment rules, as is
confirmed by numerical results over synthetic and real data.

Index Terms—Graph signal interpolation, graph signal
processing, graph smoothness, graph topology identification,
incoming nodes, spectral perturbation.

I. INTRODUCTION

GRAPH topology identification is a crucial step preced-
ing the analysis of relationships of users in social net-

works [2], proteins in biological networks [3], and entities in
recommender systems [4], to name just a few. Typical ap-
proaches infer a topology with a fixed number of nodes [5],
[6] but graphs often grow with new nodes attaching to the
existing ones [7]. This attachment is often unknown, making
the downstream tasks more challenging. One such task is the
cold start recommendation in collaborative filtering [8]. Here,
a new user enters the system but cannot attach to the existing
ones in the absence of prior information, thereby affecting the
subsequent recommendation. In another scenario, a new online
political blog becomes available and we want to know how it
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associates with the existing political blogs without knowing its
affiliation and its influence on the overall network [9].

We want to process data at the incoming node in situations
when the true connectivity is unknown. This may be the case
when side information in collaborative filtering is unavailable
or when new blogs are not associated with a particular category.
However, at the same time, we want to process data in the
most informed way possible. One way is to consider how the
previous nodes connect and apply that rule for the incoming
node. Differently, we want to handle the attachment in the
context of a data-processing task over the network, focused at the
new node. Taking the task into consideration will lead to more
relevant attachments, possibly improving upon the performance
of other attachment rules.

Existing graph identification approaches infer the full [5] or
partial [6] connectivity of a fixed graph but do not consider
incoming nodes, while stochastic approaches model the con-
nectivity with a known attachment model [7], [10], [11], [12]
but ignore the existing data and how it ought to be processed.
Some recent works that process data over expanding graphs
require the connectivity knowledge [13], [14], which is often
unavailable. Thus, information processing for incoming nodes
in such situations is challenging.

One way to overcome this challenge is to consider a data-
driven stochastic model, where the available data is leveraged
to learn the mapping between the incoming nodes and the
existing graph for the task at hand. When combined with a
prediction mechanism, such a hybrid approach can overcome
the limitations of purely stochastic or data-oriented predictions
We develop a stochastic attachment model for incoming nodes
given a graph signal processing (GSP) task [15]. We combine
preferential attachment with GSP and topology identification
for modelling the incoming node connectivity. The mecha-
nisms of such a framework come with the following three
contributions.

1) We formulate a task-driven attachment model for incom-
ing nodes without connectivity information. Such a model
is parameterized by the probabilities of attachment and the
edge-weights. We specialize the model to two GSP tasks.
The first task is graph signal interpolation, where the aim
is to predict the signal value at the incoming node. The
second task is to learn the attachment of the incoming node
such that the graph signal is smooth over the expanded
graph.
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2) We propose an empirical risk minimization problem to
estimate the model parameters and solve them using alter-
nating projected gradient descent. We discuss the conver-
gence properties of this approach to a local minimum.

3) We study the learned connectivity from a perturbation
viewpoint. We look at the small perturbation analysis of
the eigenvalues of the nominal graph relative to the model
realizations. Using this result, we link the task-specific
costs with the expected squared perturbation and show
that the proposed algorithm learns a topology that keeps
this perturbation in check. We corroborate the proposed
approach with numerical results on synthetic and real data
from recommender systems and blog networks.

The remainder of this paper is organized as follows: Sec-
tion II elaborates on the related works; Section III formulates
our problem; Section IV contains the task-aware connectivity
modelling for incoming nodes and discusses the algorithm’s
convergence; Section V discusses the perturbation analysis;
Section VI contains the numerical results. Section VII concludes
the paper. All proofs are collected in the appendix.

II. RELATED WORKS

Inferring node connections has been approached from differ-
ent viewpoints ranging from GSP to statistical models. Here, we
cast our work w.r.t. these existing frameworks.

Graph Signal Processing (GSP): Topology identification via
GSP estimates a fixed topology from data by leveraging different
priors, such as signal smoothness [16], [17], [18], realizations
of a diffusion process [19], [20], [21], [22], or a Gaussian
process [23], [24], [25], to name a few. These priors have also
been used to estimate time-varying topologies where a fixed
topology is estimated per batch of data [26], [27], [28]. More
recently, online methods avoid batch processing and estimate
the topology on the fly from time-varying signals [29], [30],
[31], [32], [33]. Differently, we will learn a stochastic model
for incoming nodes rather than a fixed topology. And differently
from the online methods, we consider an expanding topology but
with a fixed time-invariant signal. As in these approaches, we
will also consider the smoothness criterion, which is typically
encountered in practice because of homophily (i.e., connected
nodes share similar values) [34].

Statistical Methods: Connectivity of incoming nodes is com-
monly approached in network science via stochastic models,
such as the Erdős-Rényi (ER) and the preferential attachment.
The ER model assumes each incoming node connects uniformly
at random with any of the existing nodes [10], while preferen-
tial attachment assumes each incoming node connects with a
probability proportional to a node’s degree [7]. More complex
models include a competition factor between nodes [11], [12].
Altogether, these methods focus on the existing topology and
do not account for the data over it. Accounting for the data is
paramount to solving network learning tasks because of the im-
plicit data-topology coupling. Therefore, we propose to estimate
the attachment model parameters, i.e., attachment probabilities
and edge weights of the incoming nodes by incorporating both
the data and the task into the learning.

Link Prediction: Modelling the connectivity of incoming
nodes can also be seen as a link prediction task given some topo-
logical and nodal features [6], [35]. Link prediction techniques
can be grouped into three categories: i) probabilistic approaches
that use random models to predict links using, for example,
hierarchical graphs and stochastic block models [36], [37]; ii)
similarity-based approaches that predict a link between any
two nodes based on their common neighborhood features [38],
[39] or global graph features [40], [41]; and iii) classifier-based
approaches that train a machine learning model based on node
features. However, most of these approaches fail in the incom-
ing node scenario because we have no topological information
about the incoming nodes and, in the absence of node features,
classifier-based approaches are also inapplicable.

Learning on Expanding Graphs: Lastly, recent works con-
sider specific expanding graph models or solve a specific task
with the knowledge of the connectivity. The works in [42], [43]
focus on estimating node connectivity for ER and Bollobás-
Riordan models by observing auto-regressive signals on some
nodes. Differently, we propose a data-driven approach that is
agnostic to the graph and signal model. The works in [13], [14]
solve regression tasks over expanding graphs but assume known
connectivity. Instead, we consider unknown connectivity. All in
all, the proposed method stands at the intersection of preferential
attachment and data-driven topology estimation to learn the
stochastic model parameters w.r.t. a task-specific cost function.

III. PROBLEM FORMULATION

Consider an undirected graph G = (V, E) of N nodes in set
V = {v1, . . . , vN} and E edges in set E ⊆ V × V . Let A be
the graph adjacency matrix with Aij > 0 only if (vi, vj) ∈ E
and L = diag(A1)−A be the graph Laplacian. When an in-
coming node v+ connects to G, it forms the expanded graph
G+ = (V+, E+) with node set V+ = V ∪ v+ and edge set E+ =
E ∪ (v+, vi) for all new connections (v+, vi). The attachment
of node v+ is characterized by vector a+ ∈ RN such that
[a+]i = wi if v+ attaches to vi with edge-weight wi, and zero
otherwise. This leads to the respective expanded adjacency and
Laplacian matrices

A+ =

[
A a+
a�+ 0

]
, L+ =

[
L+ diag(a+) −a+

−a�+ a�+1

]
(1)

in which the last row and column represent the connectivity of
v+ with the nodes in V .1

We consider v+ connects independently to each existing vi ∈
V with probability pi. Thus, the attachment vector a+ is random
with each entry being a weighted Bernoulli random variable; i.e,

[a+]i =

{
wi with probability pi
0 with probability (1− pi)

(2)

for i = 1, . . . , N . The expected value of a+ is E[a+] = p ◦
w where p = [p1, . . . , pN ]�, w = [w1, . . . , wN ]�, and ◦ is

1Like in the fundamental studies about growing networks [7], [10], we
consider for simplicity of exposition the attachment of a single node. However,
our findings extend to multiple incoming nodes with appropriate modifications.
E.g., making vector a+ in (1) a matrix, in which each column corresponds to
one incoming node.
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the Hadamard product. Likewise, the variance of [a+]i is
var([a+]i) = w2

i pi(1− pi) and the covariance matrix of a+ is

Σ+ = diag(w◦2 ◦ p ◦ (1− p)) (3)

where a◦2 := a ◦ a. The expected topology of G+ has the deter-
ministic adjacency matrix

E[A+] =

[
A p ◦w

(p ◦w)� 0

]
. (4)

Thus, we can write the attachment vector of a new realization
as a+ = S(p) ◦w, where S(p) is a binary vector obtained by
sampling p element-wise.

On the vertices of the existing graph G, we have a graph
signal x = [x1, . . . , xN ]� in which entry xi is the value on
node vi. Processing this signal by accounting for its coupling
with G is key to several network data tasks. For instance, we
use such coupling to predict the rating of a specific item in
nearest-neighbour collaborative filtering [4]. In the incoming
node setting, this translates to identifying the signal value x+

for node v+, e.g., the rating of a new user. Since we do not have
the connectivity of v+, we rely on stochastic models governed
by the attachment probabilities p and weights w, which are
in turn unknown. Not knowing the connectivity results from not
knowing the existing preference of v+, so we rely on the existing
users and their connections to predict ratings. This works when
the ratings obey some distribution over the sample space of users
and the existing graph. To identify a task-specific connectivity
for the incoming nodes, we merge data-driven solutions with
statistical models. Given a fixed graph G and a training set
of incoming nodes T = {(vt+, xt+,at+,bt+)}t, we infer the
attachment probabilities p and weights w in an empirical risk
minimization fashion. Each element inT comprises an incoming
node vt+, its signalxt+, the attachment vectorat+, and its binary
form bt+. We define a task-specific loss fT (p,w,at+,xt+)
measuring the incoming nodes performance. E.g., in collabo-
rative filtering with cold starters, we build a user-user graph
G with some existing users and treat some other users as cold
starters with known connectivity and ratings in T . Estimating
the task-aware connectivity translates into solving the statistical
optimization problem

min.
p,w

E [fT (p,w,at+,xt+)] + gT (p,bt+) + hT (w,at+)

subject to p ∈ [0, 1]N ,w ∈ W (5)

where gT (p,bt+) and hT (w,at+) are regularizers imposing a
prior between p and the binary attachment b+, and between w
and training attachment a+, respectively; and W is a convex
set constraining the edge-weights, e.g., non-negative or finite.
Upon estimating the probabilities p∗ and weights w∗ from (5),
we generate realizations for v+ /∈ T .

Problem Statement: Given graphG with signalx and a training
set T of incoming nodes, our goal is to estimate the attachment
probabilitiesp and weightsw of a preferential attachment model
w.r.t. a task-specific cost function fT (·) by solving problem (5).

We will particularize the cost function in (5) to the signal
interpolation error at the incoming node and to the graph signal
smoothness [44]. Since such problems are in general jointly non-
convex inp andw, we develop an alternating projected-gradient

descent and discuss its marginal convexity and convergence
(Section IV). And since each connectivity realization perturbs
the graph from its nominal form, we conduct a statistical pertur-
bation analysis [16], [17] to show the effects of the attachment
model on the nominal spectrum (Section V).

IV. TASK-AWARE CONNECTIVITY LEARNING

In this section, we consider first the task of signal recon-
struction at the incoming node through percolation via graph
filtering [45]. Graph filters facilitate data processing at each node
locally through a combination of successive shift operations and
compare well with alternatives in these problems [46]. Second,
we consider the task of estimating a topology such that the signal
is smooth on the expanded graph.

A. Signal Interpolation

Consider the graph signal x+ = [x�, 0]� for G+, where zero
is the unknown signal at v+. The output y+ of an order L graph
filter is

y+ = H(A+)x+ =

L∑
l=1

hlA
l
+x+ (6)

where h = [h1, . . . , hL]
� are the filter coefficients and

H(A+) =
∑L

l=1 hlA
l
+ is the filtering matrix. The filter order

L implies that nodes up to L-hops away contribute to the
interpolated signal of v+. Also, the direct term l = 0 is ignored
in (6) because it does not contribute to the output at v+. Given
the percolated signal [y+]N+1 at node v+ is random, the fol-
lowing proposition quantifies the signal reconstruction MSE as
a function of the model parameters p and w.

Proposition 1: Given graph G = {V, E} with adjacency ma-
trix A and signal x, let matrix Ax = [x, . . . ,AL−1x] contain
the first L− 1 shifted versions of x. Let the incoming node v+
attach to G with probability vector p and edge weight vector
w, forming graph G+ with the expanded adjacency matrix A+

[cf.(1)]. The MSE of the interpolated signal y+ at node v+ by
an order L graph filter H(A+) [cf.(6)] is approximately

MSE(p,w) ≈ ((w ◦ p)�Axh− x�
+)

2 + h�A�
xΣ+Axh (7)

where h = [h1, . . . , hL]
� are the filter coefficients and x�

+ is the
true signal at v+.

Proof: See Appendix A. �
Proposition 1 provides insights on the role of p and w on

the signal interpolation MSE. The first term on the RHS of (7)
captures the model bias w.r.t. the true signal x�

+. Essentially,
the model output is the dot product between the filter output
Axh with the expected attachment vector w ◦ p. Minimizing
the bias implies selecting a pair (p, w) that combines the
signal at each v ∈ V to predict x�

+ accurately. The second term
h�A�

xΣ+Axh = ‖Axh‖2Σ+
measures the percolated signal

norm w.r.t. the uncertainty of the new connections, which is
also the prediction variance. Minimizing this term might give
solutions such as p = 1 where incoming nodes connect to all
v ∈ G and p = 0 which prevents any connections. So, regular-
izers are needed for each variable. In the MSE expression, we
remark that theLth shiftALx+ does not appear in (7) because of
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the structure of matrix A+ in (1). We also remark that the MSE
is (7) is only an approximation because for filter order L ≥ 3
the MSE expression becomes intractable due to the higher order
moments of a+. Instead, if the filter order is smaller, expression
(7) holds also with equality. The MSE in (7) holds also with
equality for any order L when the expanded graph has directed
edges landing at v+.

Corollary 1: If each incoming node v+ forms directed edges
leaving from the nodes in G and landing on v+, the MSE in (7)
holds with equality for any filter of order L.

Proof: See Appendix A. �
Applications with directed links on incoming nodes include

collaborative filtering [4] and a new user in a social network
interacting with the existing ones.

Regularizers: The MSE plays the role of fT (·) in (5). Func-
tions gT (·) and hT (·) regularize the problem with priors on p
andw, respectively. While there are several choices for the latter,
we focus on the following two.
� For the probability attachment p, we consider

gT (p,bt+) = μp

|T |∑
t=1

||p− bt+||qq (8)

where q ∈ {1, 2} and μp > 0 is a scalar. For q = 1, (8)
enforces sparsity on the attachment probabilities p, i.e.,
the incoming node will connect only with a few of the
nodes in V . This is intuitive as graphs are sparse. However,
if only a few entries in p are nonzero, this may lead to no
connections. Using q = 2 may overcome this as it allows
v+ to connect in expectation to any other node but with a
small probability.

� Likewise, for the weights w we consider

hT (w) = μw

|T |∑
t=1

||w − at+||qq (9)

where μw > 0. Imposing sparsity on w results in zero
weights for many edges. This implies even if the attachment
probability is one, it may incur a zero edge weight. So, we
prefer a two-norm penalty.

Alternatively, another approach is to consider a joint regu-
larizer gT (p,w) = ||w ◦ p− a+||qq . However, this might limit
our control over the connectivity and the edge weights.2 We may
also consider w to be a random variable drawn from a normal
distribution N (µw,Σw). In this case, we need priors for the
mean µw and covariance matrix Σw. The proposed approach
is modular to such choices and we leave their evaluation to
interested readers.

Optimization Problem: With this in place, we can formulate
problem (5) as

min.
p,w

CI(p,w) = MSET (p,w)

+

|T |∑
t=1

(
μp||p− bt+||qq + μw||w − at+||qq

)

2Imposing joint sparsity, we have wipi = 0 for some vi ∈ V . If pi ≈ 1, i.e.,
the incoming node connects to vi with a high probability, wi would have to be
zero, which will make the connection meaningless.

Algorithm 1: Alternating Projected Gradient Descent for
Problems (10) and (16).

1: Input: Graph G, training set T , graph signal x,
adjacency matrix A, number of iterations K, cost
C ∈ {CI , CS}, learning rates λp, λw.

2: Initialization: p = p0, w = w0 randomly, k = 0.
3: for k ≤ K do
4: p gradient: p̃k+1 = pk − λp∇pC(pk,wk);
5: Projection: pk+1 = Π

[0,1]N
(p̃k+1);

6: w gradient: wk+1 = wk − λw∇wC(pk+1,wk);
7: Projection: wk+1 = Π

W
(w̃k+1);

8: end for

subject to p ∈ [0, 1]N ,w ∈ W (10)

where MSET (p,w) [cf. (7)] is the empirical MSE over the
training set T .

Problem (10) is non-convex in w and p, but it is marginally
convex in w and not always in p due to the variance term in (7).
We solve (10) with alternating projected gradient descent. Al-
gorithm 1 summarizes the main steps. The gradient of CI(p,w)
w.r.t. p and w for q = 2 are respectively.

∇pCI(p,w) = 2

|T |∑
t=1

((w ◦ p)�Axh− xt+)(w ◦Axh)

+ |T |(Axh)
◦2 ◦ (w◦2) ◦ (1− 2p) + 2μp

|T |∑
t=1

(p− bt+)

(11)

∇wCI(p,w) = 2

|T |∑
t=1

((w ◦ p)�Axh− xt+)(p ◦Axh)

+ 2|T |(Axh)
◦2 ◦w ◦ p ◦ (1− p) + 2μw

|T |∑
t=1

(w − at+).

(12)

Instead, for q=1, we replace terms 2μp(p−bt+) and 2μw(w−
at+)with sign(p−bt+) and sign(w − at+) respectively, where
sign(x)=1 forx ≥ 0 and−1 otherwise. To select an appropriate
μp and μw, one can perform cross validation over a range of
candidate values. The complexity of the algorithm is of the order
O(TKE +NT ), where K is the filter order, E the number of
edges in the existing graph, N the number of existing nodes,
and T the number of update steps in each of the variables. The
complexity O(TKE) is due to the term Axh, which incurs a
complexity of the output of an order K FIR graph filter, equal to
O(KE). The term O(NT ) is due the projection operation over
N elements.

While we can use Algorithm 1 to solve the general non-
convex case of problem (10), the following corollary provides
a sufficient condition for problem (10) to be marginally convex
also in p.
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Corollary 2: Problem (10) is marginally convex in p if the
regularization weight μp satisfies

μp ≥ w2
hmax

i
([Axh]i)

2 − ||w ◦Axh||22. (13)

Proof: See Appendix B. �
While ensuring convexity, hence a guarantee for a minima,

condition (13) may lead to an optimum that is worse than the
local optima of its non-convex counterpart. This is because of
the greater focus on the training attachment patterns than on
the cost. When Ax, h and wh are known, we can evaluate the
R.H.S. of (13) and set μp so that we avoid this condition. We
shall corroborate this in Section VI-A.

B. Signal Smoothness

We now learn the connectivity of the incoming nodes such
that expanded graph signal is smooth. The smoothness of a
graph signal x w.r.t. G is SG(x) = x�Lx, where a lower value
implies connected nodes have similar signals and vice-versa.
Upon attachment of v+ with signal x�

+, the smoothness of the
new graph signal x+ = [x�, x�

+]
� w.r.t. the expanded graph

Laplacian L+ is

SG+
(a+) = x�(L+ diag(a+))x− 2x�

+x
�a+ + x�2

+ a�+1

= a�+x̂+ SG(x) (14)

where x̂ = x◦2 − 2x�
+x+ x�2

+ 1. I.e., the smoothness of the ex-
panded graph signal is linked to the connectivity of the incoming
node. We use this relationship to learn a connectivity model that
ensures the expanded graph signal is smooth.

Let a�+ be the true connectivity of v+ and a+ be the con-
nectivity pattern obeying the model. We are interested in the
expected squared smoothness error between the model smooth-
ness and the true smoothness, i.e., E[SG+

(a+)− SG+
(a�+)]

2.
The following proposition quantifies the latter.

Proposition 2: Let G = (V, E) be a graph with Laplacian L
and signal x. Let an incoming node v+ with signal x�

+ attach to
G forming graph G+ = (V+, E+) with attachment probability p,
weightw, and covariance matrixΣ+ [cf. (3)]. Let a�+ be the true
attachment. The expected squared smoothness error (ESSE) for
signal x+ = [x, x�

+]
� is

ESSE(p,w) = x̂�Σ+x̂+ x̂�(w ◦ p)
(
(w ◦ p)�x̂

− 2a�+
�x̂

)
+ x̂�a�+a

�
+
�x̂ (15)

where x̂ = (x− x�
+1)

◦2.
Proof: See Appendix C. �
Result (15) shows the relationship between the attachment

model, the existing graph signal, and the signal at the incoming
node w.r.t. the overall smoothness. The first term is the quadratic
norm of x̂ w.r.t. the covariance matrix Σ+. It contributes to a
lower ESSE when the variance of the attachment is low at nodes
with a high signal difference. The second term is the alignment
between the expected attachment pattern w ◦ p and the squared
difference signal x̂; the ESSE reduces when this is smaller
than twice the alignment between the true attachment and the

difference signal. Thus, the ESSE reduces when x̂�(w ◦ p) is
small.

Optimization Problem: The ESSE plays the role of fT (·) in
(5) as the MSE did in problem (10). Differently though from
(10), the ESSE captures the interaction between p and the true
connectivity a�+ in the second term in (15). Thus, we drop the
regularizer gT (·) on p. Particularizing then problem (5) w.r.t.
the smoothness cost, we get

min.
p,w

CS(p,w) = ESSET (p,w) + μw

|T |∑
t=1

||w − at+||qq

subject to p ∈ [0, 1]N ,w ∈ W (16)

where ESSET (p,w) is the empirical expression of (15) aver-
aged over T . The cost CS(p,w) in (16) is non-convex and also
marginally non-convex in p because of the first ESSE term. We
again apply the alternating projected gradient in Algorithm 1.
The gradients for q = 2 are

∇pCS(p,w) =

|T |∑
t=1

(
w◦2 ◦ (1− 2p) ◦ x̂◦2

t+ + 2 ((w ◦ p

−at+)
�x̂t+

)
w ◦ x̂t+

)
(17)

∇wCS(p,w) =

|T |∑
t=1

(
2w ◦ p ◦ (1− p) ◦ x̂◦2

t+ + 2 ((w ◦ p

−at+)
�x̂t+

)
p ◦ x̂t+ + 2μw(w − at+)

)
.

(18)

We considered Algorithm 1 also for (10) to provide a unified
approach for both problems despite problem (10) being also
marginally non-convex. But we could also simply choose a joint
stochastic gradient method. The choice of alternating descent
approach is rather standard, as seen in [47], [48] but the alter-
nating one allows us to characterize the convergence for both
costs [cf. Appendix D].

C. Convergence

To comment on the convergence of the alternating projected
gradient descent approach, we assume the following.

Assumption 1: The Hessians of the costs (10) and (16) w.r.t.
the variables w and p are upper bounded by

∇2
pC(p,w) 
 LpI, ∇2

wC(p,w) 
 LwI (19)

This implies that the maximum eigenvalue of the Hessian is
upper-bounded for both costs w.r.t. both variables. This can be
easily verified for (10) and (16).

Theorem 1: Given costs (10) and (16) satisfy Assumption 1
and given Algorithm 1 runs with step-sizes λp and λw. Then, it
holds that:

1) Claim: If the step sizes satisfy 0 < λp ≤ 3
4Lp

, 0 < λw ≤
3

4Lw
, the cost is non-increasing over the iterations, i.e.,

C(pk+1,wk+1) ≤ C(pk,wk).
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2) Claim: If there exist a feasible local minimum (p∗,w∗)
and the step sizes satisfy 0 < λp ≤ 1

2Lp
, 0 < λq ≤ 1

2Lw
,

Algorithm 1 reaches this local minimum (p�,w�) with
convergence rate O(1/K), where K is the number of
iterations.

Proof: See Appendix D. �
Since the choice of the local minima is arbitrary, this shows

that Algorithm 1 can converge to any of the local minima. One
way to deal with this is to run Algorithm 1 for multiple initializa-
tions and select the pair (p,w) that gives the lowest training cost.
We show in Section VI-A that this may not always be needed
as we have seen consistently that different initializations lead to
similar costs.

V. PERTURBATION ANALYSIS

During testing, we draw samples from the learned p to obtain
expanded graph realizations. Such realizations are edge sampled
versions of the nominal graph that contains all possible edges to
sample. This leads to differences both in the vertex and spectral
domain [49], which have an impact on the task of interest. To
characterize such an impact, we look at the spectral difference
between the realized and nominal graphs and link it with our
cost functions.

Given p and w, we have a nominal graph G+ with adjacency

matrix A+ = [
A w
w� 0 ] and Laplacian L+. I.e., realization

A+ is a probabilistic edge-sampled version of A+ where edge
(v+, vi) in A+ is removed with probability (1− pi). To study
the difference of each realization A+ from its nominal version
A+, we analyze the nominal matrices in the spectral domain via
a perturbation analysis [50]. Consider their eigendecompositions

A+ = UΛAU
�, L+ = VΠLV

� (20)

where U = [u1, . . . ,uN ], ΛA = diag(γ1, . . . , γN ) and (γi,ui)
is the ith eigenpair. Let also [ui]1:N be the firstN elements ofui

and [ui]j be the j-th entry of vector ui. Similarly, for L+, define
V = [v1, . . . ,vN ], ΠL = diag(π1, . . . , πN ), [vi]1:N , and [vi]j .

Assumption 2: There exists finite positive constants c1 and c2
such that

||2[ui]N+1[ui]1:N )||2≤c1, ||([vi]1:N−[vi]N+11N )◦2||2≤c2.
(21)

These constants depend on eigenvectors U and V which are
deterministic as A+ and L+ are in turn fixed. So, we can always
evaluate c1 and c2. Generating realizations A+ and L+ leads to
the perturbations

�A+ = A+ −A+, �L+ = L+ − L+. (22)

We then assume the following to study the spectral effect of the
perturbation.

Assumption 3: The perturbation is small in nature, i.e.,

||�A+||F � ||A+]||F , ||�L+||F � ||L+]||F (23)

where || · ||F denotes the Frobenius norm.
This is a standard assumption for robustness in the graph

spectral domain [49], [50]. For this assumption to hold,p should
have high values for most nodes in V or be sparse, which can

be set during the training phase. Then, the spectral deviations
in the ith eigenvalue γi of the nominal adjacency and πi of the
nominal Laplacian due to the sampling perturbation are given
by

�γi = u�
i �A+ui, �πi = v�

i �L+vi. (24)

I.e., they are dictated to how aligned are the respective eigen-
vectors to the perturbed graph. With this in place, we claim the
following.

Proposition 3: GivenA+,L+ and their eigendecompositions
in (20). Let Assumption 2 hold with constants c1 and c2. Let the
covariance matrix of attachment be Σ+ and vector p+ be such
that [p+]i = 1/

√
pi, if pi �= 0, and zero otherwise. When v+

joins, the expected squared deviation in the ith eigenvalues of
A+ and L+ are respectively upper bounded as

E[�2γi] ≤ c1p
�
+Σ+p+, (25)

E[�2πi] ≤ c2p
�
+Σ+p+. (26)

Proof: See Appendix E. �
Proposition 3 shows that both bounds have the common term

p�
+Σ+p+, which is similar to the variance term in the MSE, i.e.,

1
2h

�A�
xΣ+Axh [cf. (7)] and the ESSE term of x̂�Σ+x̂ [cf.

(15)]. If Axh =
√
2c1p+ and x̂ =

√
c2p+, we have equality

in (25) and (26), respectively. Since the MSE and the ESSE
already contain similar terms, minimizing these over w and p
helps minimizing the expected squared eigenvalue perturbation.
So, the optimization problems (10) and (16) account implicitly
for minimizing this measure of the spectral perturbation. In the
next section, we contrast the perturbation achieved with other
attachment methods.

VI. NUMERICAL RESULTS

In this section, we evaluate our approach and compare it with
related methods with synthetic and real data. For comparison,
we consider three attachment rules:

i) uniform attachment: The node attaches uniformly, i.e.,
prd = 1

N 1.
ii) preferential attachment: The node attaches to vi with

probability pi ∝ di with di the degree of vi, and ppf =
d

1�d where d = [d1, . . . , dN ]� is the degree vector.
iii) training attachment only: It relies only on the attachment

patterns available during training to build p and w, i.e.,
we ignore the MSE and ESSE costs in their respective cost
formulations. They are given by pg = 1

|T |
∑|T |

t=1 bt+ and

wg = 1
|T |

∑|T |
t=1 at+.

The first two rules serve as baselines to assess how the pro-
posed data-driven stochastic model compares with conventional
statistical models, while the latter assesses the importance of the
task-specific cost.

A. Synthetic Data

We build two synthetic graphs of N = 100 nodes following
the Erdős Rényi (ER) and the Barabasi-Albert (BA) model. We
consider the tasks of signal interpolation at an incoming node
and the prediction of the ESSE for an incoming node.
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Fig. 1. Training error vs. iterations semilog plots over 50 initializations each for (left) : ER graph with MSE; (centre) : BA graph with MSE; (right) : ER and
BA graphs with ESSE. For the MSE, the blue line represents non-convexity in p while the red represents otherwise. For all initializations, the proposed algorithm
converges to the same training cost.

TABLE I
MSE PERFORMANCE COMPARISON BETWEEN PROPOSED, PREFERENTIAL AND RANDOM ATTACHMENT OVER THE ERDŐS RÉNYI AND BARABASI-ALBERT GRAPH

FOR TRAINING OVER (LEFT TWO COLUMNS) BOTH AND (RIGHT TWO COLUMNS) ONE VARIABLE(S)

Experimental Setup: For each graph, we generated the graph
signal x by combining the first 30 eigenvectors of its Lapla-
cian matrix with weights from a normal distribution. Then,
we normalized the signal to be zero mean. The edge forma-
tion probabilities for these graphs were set as prd and ppf,
respectively. We select w to be the vector of all ones for both
graphs. We use a filter of order one with h1 = 1 to percolate the
signal.

The training set comprises 1000 data points divided into
an 80-20 train-test split. The regularization weights μp, μw

for problems (10) and (16) were selected via ten-fold cross
validation from the set [10−5, 100]. We performed K = 3000
iterations of alternating projected descent [cf. Algorithm 1]. The
learning rates λp, λw are 10−5. We averaged the performance
over 100 realizations and 50 train-test splits to get the error for
each test node.

Algorithm Convergence: We solved (10) for each graph under
two scenarios, one where μp satisfies the convexity criterion
(13), and one where it does not. Fig. 1 shows the training
costs as a function of the number of iterations for 50 random
initializations. The non-convex cost (blue) and the marginally
convex cost in both variables (red) for μp = 30 (satisfying (13))
converge following Algorithm 1. Most importantly, optimizing
over the non-convex cost yields a lower training cost because a
higher weight μp on the regularizer

∑|T |
t=1 ||p− bt+||2 results

in p fitting the binary training attachments bt+ than reducing
the MSE. Fig. 1 (right) shows the ESSE training error for both
graphs. We see multiple local minima and that they all lead to
the same training cost.

MSE: Here, we evaluate the signal interpolation performance.
We choose μp = 1, μw = 1 for the ER graph and μp = 1, μw =
0.1 for the BA graph. Table I compares the different methods
on the left two columns. The proposed approach outperforms
the others in both settings in expectation and has a comparable
standard deviation.

To investigate the effect of jointly training p and w, we train
for each of them separately while keeping the other fixed to
the true value used for data generation. In Table I (right two
columns), we find that training the weights, given ptr provides
a performance comparable to the proposed for the ER graph
and similar to that of the BA graph. On the other hand, training
p given wtr degrades the performance appreciably, performing
worse than prd and ppf. This is because when we train on w,
we deal with a convex function and reach a global optimum,
whereas training on p leads to local minima, thus affecting
the performance. However, these results show that the proposed
approach is able to learn both p and w to solve the task.

ESSE: Now, we look at the ESSE performance in the same
setting with μw = 0.1 in Problem (16). Table II shows in the
left two columns that the data-driven attachment outperforms
the random and preferential attachment, with a lower standard
deviation. Table II also shows in the right two columns the ESSE
for training with one parameter fixed, as done for the MSE. We
see a similar trend as before when we train only w for the ER
graph.

Choice of regularizer: Table III highlights the role of q in
estimating the attachment model, through the MSE and ESSE
for the two synthetic graphs. We observe that for q = 2, the MSE
and ESSE are lower than for q = 1, which promotes a sparse p
and w. For a sparse p, the model restricts attachment to some
nodes, and for a sparse w, even an attachment results in zero
weights, thus incurring a higher error in the inference.

Perturbation: We now analyse the mean squared deviation for
each eigenvalue over multiple realizations. To give a graph-wide
representative metric we report the average taken over all eigen-
values and compare with the uniform and preferential attach-
ment with w = 1. We focus on the effect of edge perturbation
only.

Table IV showcases this deviation. The proposed approach
achieves the lowest perturbation for both graphs while training

Authorized licensed use limited to: TU Delft Library. Downloaded on November 21,2022 at 07:17:19 UTC from IEEE Xplore.  Restrictions apply. 



DAS et al.: TASK-AWARE CONNECTIVITY LEARNING FOR INCOMING NODES OVER GROWING GRAPHS 901

TABLE II
MSE PERFORMANCE COMPARISON BETWEEN PROPOSED, PREFERENTIAL AND RANDOM ATTACHMENT OVER THE ERDŐS RÉNYI AND BARABASI-ALBERT GRAPH

FOR TRAINING OVER (LEFT TWO COLUMNS) BOTH AND (RIGHT TWO COLUMNS) ONE VARIABLE(S)

TABLE III
MSE AND ESSE COMPARISON FOR THE PROPOSED METHOD OVER THE ERDŐS

RÉNYI AND BARABASI-ALBERT GRAPH FOR q = 2 AND q = 1

TABLE IV
SQUARED EIGENVALUE PERTURBATION

for MSE. However, for the ESSE, the edge perturbation is higher
for the ER graph due to more links being formed. In turn, more
links changes affect more eigenvalues, thereby causing a higher
perturbation.

B. Collaborative Filtering

We consider the task of cold start rating prediction on the
Movielens 100 K data-set. This amounts to rating prediction for
unknown users, i.e., we start with some existing users as nodes
of a user-user graph and interpolate the rating of a new user
when joining the network. We use the graph collaborative filter
in [4] to percolate the ratings of the existing users and the learnt
attachment to predict the rating at the cold starter.

Experimental Setup: We retained all users and items with
more than ten interactions, giving 943 users and 1152 items.
We considered 50 existing users and build the adjacency matrix
based on the Pearson correlation between their ratings. Next,
for each item i we built the corresponding adjacency matrix by
1) retaining all outgoing links from users who rated that item;
2) building its 35 nearest neighbour graph following [4]. The
remaining users were treated as cold starters and were divided
into train (793) and test (100). We used an order five FIR graph
filter obtained by optimally solving the rating prediction problem
over the existing users and items [4]. For the interpolation cost
(10), we impose an l1-norm constraint onp an l2-norm constraint
on w. We applied Algorithm 1 for K = 1000 iterations with
learning rates λp, λw = 10−4. We predicted the ratings for the
test users and for each item we averaged the performance over
100 connectivity realizations drawn from p. As a baseline, we
considered the mean prediction which uses the mean of the item

TABLE V
ITEM DETAILS. ITEMS 1 AND 48 HAVE HIGH, 459 AND 550 HAVE MEDIUM, 57

AND 877 HAVE LOW TRAINING SAMPLES

ratings in training to predict how cold start users will rate the
item.

Item-specific Learning: First, we learnt (p,w) for each item
separately, which is preferred for personalized recommenda-
tions. We focused on three categories of items with a high,
medium and a low number of training samples. For each cat-
egory, report in Table V two examples. We evaluated the perfor-
mance via the Root Median Square Error (RMedSE) between
the predicted and the true ratings, which is more robust than
the mean to outliers that are inevitably present in all stochastic
approaches.

In Table VI we show the relative performance difference –
worse (red) or better (green) between the proposed approach
and the alternatives. The proposed method outperforms the
alternatives convincingly for items with high training samples
(1 and 48) and does well even with low training samples. When
compared with the training attachment only, it is clear that in-
cluding the graph structure and ratings along with the attachment
patterns is more beneficial. The training only and the preferential
attachment strategies prioritise users who have rated the item as
only those users have links directed outwards. The performance
of our approach suggests that such attachments are not always
optimal for the cold start. The poor performance of the uniform
and the preferential attachment (except item 459) shows the
importance of using a task-aware connectivity approach. The
mean prediction performance is dependent on the quality and
quantity of the available ratings. For example, it is considerably
worse off for all items except for item 877, even though it has
few training samples.

Learning for all Items: Second, we learnt a common (w,p)
across all the 1152 items in the data set. We select μp = 1 and
μw = 10−3. The results are in the last column of Table VI. We
notice that with all the item data, even though the proposed
performs the best, the performance gap reduces, which is some-
what expected as we are not personalizing recommendations.
This suggests that to improve the cold start performance, we
should approach each item individually following the spirit of
nearest neighbour collaborative filtering. The attachment only
method performs well because the attachment rule is cognizant
of a diverse set of node attachments over many graphs and
ratings. The proposed still does substantially well compared to
alternatives.
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TABLE VI
RMEDSE OF ALL APPROACHES. IN BRACKETS WE SHOW RELATIVE PERFORMANCE DIFFERENCE IN % TO THE PROPOSED

Fig. 2. Histogram of the clustering coefficient deviation of the proposed approach compared with the (a) :uniform; (b) :preferential attachment; (c) :training
attachment only. The proposed approach causes positive deviation for the most test nodes, while causing the fewest negative deviations as well.

C. Blog Network

We consider a political blog network with blogs as nodes and
their political orientation (liberal vs. conservative) as signals [9].
We study how nodes attaching based on the ESSE influence the
structure of the existing graph. This is because the ESSE is low
when the signal varies slowly within a cluster than arbitrarily
between clusters [16], [17].

Experimental Setup: We extracted a connected sub-graph
from the main network with N = 600 blogs such that this graph
retains the clustering. The remaining 622 nodes are split into
train (400) and test (200). The existing adjacency matrix is
binary, so we setw = 1, i.e., we train to minimise the ESSE only
w.r.t. p. We apply Algorithm 1 for 500 iterations with learning
rates λp = 10−5 and λw = 10−6. We consider the clustering
coefficient of a graph as a measure of how well it is clustered [51].
A large value implies a more clustered graph. Upon learning p,
we calculate the clustering coefficient of the expanded graph
formed upon its attachment. We contrast this with the clustering
coefficient with that of the true attachment.

Fig. 2 compares the histograms of the clustering coefficient
difference between the realization and the true attachment be-
tween the proposed and other approaches. A positive deviation
improves upon the clustered nature of the graph, while a neg-
ative deviation reduces it. Ideally, we want more positive and
fewer negative deviations. In Fig. 2(a) the proposed approach
outperforms the random attachment, which is likelier to make
an incoming node connect to both clusters and incur a negative
deviation. In Fig. 2(b), the preferential attachment incurs neg-
ative deviation for more test nodes but also reports the highest
positive deviation for a few nodes. In Fig. 2(c) the proposed
approach influences positive deviation for more test nodes in
the two furthest bins and fewer negative deviations than training

attachment only. By minimizing the ESSE, new nodes attach in a
way that is likelier to retain/ improve upon the overall clustering
for unknown nodes. Hence, the data-driven attachment follows
the true network properties if the cost function matches with the
task; here, preserve its clustering structure.

VII. CONCLUSION

We proposed an approach to learn the random connectivity
model for incoming nodes by solving a signal processing task
over the expanding graph. Incorporating the data-processing task
to determine the attachment is beneficial compared to relying
on the knowledge of previous node attachments and standard
stochastic attachments. We formulated a stochastic optimization
problem w.r.t. the attachment parameters for graph signal inter-
polation and signal smoothness. The problem is solved via an al-
ternating projected descent approach with provable convergence
to local minima. By conducting a perturbation analysis, we show
that our method implicitly controls the spectral perturbation
caused by such nodes.

For undirected graphs, the higher-order statistics limit the
MSE analysis to be an approximation of the true one. This might
be addressed by learning two graphs with incoming and outgoing
directed attachments. Thus said, this method lays the foundation
for approaching signal processing on expanding graphs by rely-
ing only on its stochastic connectivity model. Throughout, we
consider the addition of only one node to an existing graph.
To extend this approach to a continuously expanding graph,
one has to generate or make available a corresponding training
set. Moreover, with an increase in the dimension of the existing
graph, the dimensions of p and w will also grow, which requires
a treatment outside of the scope of this paper.
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APPENDIX A

Proof of Proposition 1: The output of an order L filter at
node v+ is [cf. (6)] [y+]N+1 = a�+

∑L
l=1 hlA

l
+x+. The MSE

at the incoming node is E[([y+]N+1 − x�
+)

2]. Expanding the
MSE for L ≥ 3 leads to terms of the form E[a�+a+a

�
+x] which

involve the third order statistics of a+. Computing the latter
is notoriously challenging. We approximate the MSE up to
second order statistics. Then, by substituting A+ [cf. (1)] into
the filtering expression we get

[y+]N+1 ≈ a�+

L∑
l=1

hlA
l−1x = a�+Axh (27)

whereAx = [x, . . . ,AL−1x] andh = [h1, . . . , hL]
�. The MSE

is approximately

MSE(p,w) ≈ E[(a�+Axh− x�
+)

2]. (28)

Adding and subtracting (w ◦ p)�Axh within the expectation,
we get

MSE(p,w) ≈ E[(a�+Axh− (w ◦ p)�Axh

+ (w ◦ p)�Axh− x�
+)

2] (29)

which by expanding becomes

E[(a�+Axh− (w ◦ p)�Axh)
2] + E[(w ◦ p)�Axh− x�

+)
2]

+ 2E[(a�+Axh− (w ◦ p)�Axh)((w ◦ p)�Axh− x�
+)].

(30)

In the first term, we expand the square, take Axh common
and take the expectation inside to get (Axh)

�Σ+Axh =
(Axh)

�E[(a+ −w ◦ p)(a+ −w ◦ p)�]Axh. The second
term is deterministic, thus we can drop the expectation. The
third term instead is zero because E[a+] = w ◦ p. Combining
these results we get (7). �

Proof of Corollary 1: When node v+ only forms directed
edges landing on itself, the expanded adjacency matrix A+ and
its lth power become

A+ =

[
A 0
a�+ 0

]
and Al

+ =

[
Al 0

a�+A
l−1 0

]
. (31)

Thus, the output of an order L graph filter is

[y]N+1 = a�+

L∑
l=1

Al−1x = a�+Axh (32)

which is identical to (27). Then, the proof follows similarly as
for Proposition 1. �

APPENDIX B

Proof of Corollary 2: To find the convexity condition, we
analyze when the Hessian of the function in (11) is positive
semi-definite. The gradient of (10) w.r.t. p is shown in (11). The
Hessian w.r.t. p is

∇2
pCI(p,w) = 2(w ◦Axh)(w ◦Axh)

�

− 2diag((w ◦Axh)
◦2) + 2μpIN . (33)

The first term (w ◦Axh)(w ◦Axh)
� is a rank-one matrix with

one non-zero eigenvalue 2||w ◦Axh||2 and N − 1 zero eigen-
values. The second matrix is a diagonal matrix with eigenvalues
{−2(w1[Axh]1)

2, . . . ,−2(wN [Axh]N )2}. The third matrix is
also diagonal but with each eigenvalue 2μp. The Hessian is
the sum of a rank one matrix and two diagonal matrices. Its
eigenvalues are the sum of the eigenvalues of these matrices [52].
By the semi-definite convexity condition [53], each of these
eigenvalues now must be greater than or equal to zero. The
condition

μp ≥ max
i

(wi[Axh]i)
2 − ||w ◦Axh||22 (34)

is sufficient in this case. Since all wi ≤ wh from the constraint
set [cf. (10)], we get (13) by substituting the them with the upper-
bound. �

APPENDIX C

Proof of Proposition 2: The ESSE cost is

ESSE(p,w) = E
[
(SG+

(a+)− SG+
(a�+))

2
]
. (35)

Substituting expression (14) for SG+
(·) in (35), we get

ESSE(p,w) = E[(a�x̂+ SG(x)− a�+
�x̂− SG(x))

2]

= E
[
(x̂�(a+ − a�+)(a+ − a�+)

�x̂)
]

(36)

where x̂ = x◦2 − 2x�
+x− x�2

+ 1. Taking the expectation opera-
tor inside, (36) becomes

ESSE(p,w) = x̂�
(

E[a+a
�
+]− (w ◦ p)a�+�

− a�+(w ◦ p)� + a�+a
��
+

)
x̂ (37)

where we utilized E[a+] = w ◦ p. The term E[a+a
�
+] is re-

lated to the covariance matrix of a+ as Σ+ = E[a+a
�
+]−

(w ◦ p)(w ◦ p)� = diag(w◦2 ◦ p ◦ (1− p)) [cf.(3)]. Thus, by
direct substitution we get (15). �

APPENDIX D

For the proof, we will need the following lemma.
Lemma 1: Consider a cost function C(s) in some variable

s ∈ RN satisfying Assumption 1. Let variable s be constrained
to the convex set S = [sl, sh]

N . Let also sk and sk+1 be the
kth and the (k + 1)th iterations of a projected gradient descent
approach on s for cost C(·) and let s̃k+1 be the output of the
gradient update step

s̃k+1 = sk − λ∇sC(sk) (38)

with λ > 0. Then, for the projected vector update sk+1 =
Π
S
(s̃k+1), the following holds:

||sk+1 − sk|| ≤ 2λ||∇sC(sk)||. (39)

Proof of Lemma 1: Consider vectors sk, sk+1, and s̃k+1 as
points in RN and ||sk+1 − sk||, ||sk+1 − s̃k+1||, and ||s̃k+1 −
sk|| denote the Euclidean distances between them. The triangle
inequality gives

||sk+1 − sk|| ≤ ||sk+1 − s̃k+1||+ ||sk − s̃k+1||. (40)
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Since sk+1 is the Euclidean projection of s̃k+1, we have ||sk+1 −
s̃k+1|| ≤ ||sk − s̃k+1|| and inequality (40) becomes

||sk+1 − sk|| ≤ 2||sk − s̃k+1|| = 2|λ|||∇sC(sk)||. �
Note that the lemma holds for s being p or w given the other

is fixed, λ being λp or λw and S being [0, 1]N or [wl, wh]
N ,

respectively.
Proof of Proposition 3:
Claim 1. Non-increasing cost: Let C(pk+1,wk) be the cost

function evaluated at pk+1 and wk [cf. step 5, Algorithm 1].
Taking the Taylor expansion at this point, we get

C(pk+1,wk) = C(pk,wk) +∇�
pC(pk)(pk+1 − pk)

+
1

2
(pk+1 − pk)�∇2

pC(pk,wk)(pk+1 − pk).

(41)

Under Assumption 1 the Hessian is upper bounded as
∇2

pC(p,w) 
 LpI, thus we have

C(pk+1,wk) ≤ C(pk,wk) +∇�
pC(pk)(pk+1 − pk)

+
Lp

2
||pk+1 − pk||2. (42)

We then substitute ∇pC(pk,wk) = −λ−1
p (p̃k+1 − pk) for the

gradient step to write (42) as

C(pk+1,wk)≤C(pk,wk)− 1

λp
(p̃k+1−pk)�(pk+1−pk)

+
Lp

2
||pk+1 − pk||2. (43)

Next, we use the cosine rule identity

(p̃k+1−pk)�(pk+1−pk) =
1

2

(
||p̃k+1 − pk||2

+ ||pk+1 − pk||2 − ||pk+1 − p̃k+1||2
)

(44)

in the second term of (43) to get

C(pk+1,wk) ≤ C(pk,wk)− 1

2λp
||p̃k+1 − pk||2

− 1

2λp
||pk+1 − pk||2 + 1

2λp
||pk+1 − p̃k+1||2

+
Lp

2
||pk+1 − pk||2 (45)

The second term on the RHS of (45) is lesser than or equal
to zero, so we drop it. Since pk+1 is the Euclidean projection
of p̃k+1 onto the constraint set, we have ||pk+1 − p̃k+1||2 ≤
||p̃k+1 − pk||2. Then, we write (45) as

C(pk+1,wk) ≤ C(pk,wk) +

(
Lp

2
− 1

2λp

)
||pk+1 − pk||2

+
1

2λp
||p̃k+1 − pk||2. (46)

Using Lemma 1, we substitute ||p̃k+1 − pk||2 ≤
4λ2

p||∇pC(pk,wk)||2 in (46) and obtain

C(pk+1,wk) ≤ C(pk,wk) + α||∇pC(pk,wk)||2 (47)

where α = ((
Lp

2 − 1
2λp

)4λ2
p +

λp

2 ) = 2λ2
pLp − 3λp

2 . For α ≤ 0,

the cost reduces inp, i.e.,C(pk+1,wk) ≤ C(pk,wk), thus, the
step size must satisfy 0 < λp ≤ 3

4Lp
. Hence, the cost is non-

increasing with each update in p and wk fixed.
For the w update, we follow the same approach but we

perform the Taylor expansion around the point (pk+1,wk).
Following similar derivations, it can be shown that

C(pk+1,wk+1) ≤ C(pk+1,wk) + β||∇wC(pk+1,wk)||2
(48)

where β = ((Lw

2 − 1
2λw

)4λ2
w + λw

2 ), and C(pk+1,wk+1) ≤
C(pk+1,wk) if the step size satisfies 0 < λw ≤ 3

4Lw
. Then,

combining the two inequalities we have

C(pk+1,wk+1) ≤ C(pk,wk) (49)

which shows the alternating projected gradient descent step has
a non-increasing cost. �

Claim 2. Local minima: Let least one local minima (p�,w�)
exists in S . Substituting (47) in (48) gives

C(pk+1,wk+1) ≤ C(pk,wk) + α||∇pC(pk,wk)||2

+ β||∇wC(pk+1,wk)||2. (50)

We denote ∇pC(pk,wk) and ∇wC(pk+1,wk) as ∇pC(pk)
and ∇wC(wk) to further ease the notation. We denote by
C(p�,w�) the cost at the local minima. Due to the non-
increasing cost, after k iterations, we have a condition where
the algorithm will be near the feasible local optima. Using then
the first order Taylor expansion at this point

C(pk,wk) = C(p�,w�)−∇�
pC(pk)(p� − pk)

−∇�
wC(wk)(w� −wk). (51)

and substituting it in (50), we get

C(pk+1,wk+1)− C(p�,w�) ≤ ∇�
pC(pk)(pk − p�)

+ α||∇pC(pk)||2+∇�
wC(wk)(wk−w�)

+ β||∇wC(wk)||2. (52)

We then substitute the cosine rule

∇�
pC(pk)(pk − p�) =

λp

2
||∇pC(pk)||2

+
1

2λp
||pk − p�||2 − 1

2λp
||pk − p� − λp∇pC(pk)||2

(53)

and its equivalent form in w in (52) to get

C(pk+1,wk+1)−C(p�,w�)≤
(

λp

2
+α

)
||∇pC(pk)||2+

(λw

2

+ β
)
||∇wC(wk)||2 + 1

2λp
(||pk − p�||2 − ||p̃k+1 − p�||2)

+
1

2λw
(||wk −w�||2 − ||w̃k+1 −w�||2). (54)
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Now, if (
λp

2 + α) ≤ 0 and ( λw

2 + β) ≤ 0, we can ignore the
first two terms in the RHS of (54). Substituting for α and
β in these conditions, we get λp ≤ 1

2Lp
and λw ≤ 1

2Lw
. To

prove convergence to the local minima (p�,w�) we utilize the
inequality ||pk+1 − p�||2 ≤ ||p̃k+1 − p�||2, i.e., the gradient
update is closer to the optima than the projection update, which
holds under the assumption of the local minima being feasible.
By using this inequality for both variables, we get

C(pk+1,wk+1)− C(p�,w�) ≤ 1

2λp
(||pk − p�||2

−||pk+1−p�||2) + 1

2λw
(||wk−w�||2−||wk+1−w�||2).

(55)

Summing from k = 0 to K, we get a telescoping sum and can
write

K∑
k=0

(
C(pk+1,wk+1)− C(p�,w�)

)
≤ 1

2λp
(||p0 − p�||2

−||pK+1−p�||2)+ 1

2λw
(||w0−w�||2−||wK+1−w�||2).

(56)

We divide both sides of (56) by (K + 1) and use the inequality
C(pK+1,wK+1) ≤ 1

K+1

∑K
k=0 C(pk+1,wk+1) which holds

because C(pK+1,wK+1) is lesser than or equal to all the terms
from k = 0, . . .K and get

C(pK+1,wK+1)− C(p�,w�)

≤ 1

2(K + 1)λp
(||p0 − p�||2 − ||pK+1 − p�||2)

+
1

2(K + 1)λw
(||w0 −w�||2 − ||wK+1 −w�||2). (57)

As iteration index K → ∞, C(pK+1,wK+1) → C(p�,w�).
Thus, convergence to a local minima is possible with rate of
convergence O(1/K). �

APPENDIX E

Proof of Proposition 4: The perturbation between the real-
ization adjacency matrix A+ and its nominal A+, �A+ =
A+ −A+ is

�A+ =

[
0 w ◦ (S(p)− 1)

w ◦ (S(p)− 1)� 0

]
. (58)

Invoking Assumption 3, we substitute �A+ and ui in (24) to
get

�γi = u�
i

[
0 w ◦ (S(p)− 1)

w ◦ (S(p)− 1)� 0

]
ui. (59)

Then, denoting by [ui]1:N the vector containing the first N
elements of ui, (59) can be written as

�γi = (2[ui]N+1[ui]1:N )�w ◦ (S(p)− 1). (60)

Now, we apply the Cauchy-Schwartz inequality on (60) and
square both sides to get

�2γi ≤ 4||[ui]N+1[ui]1:N ||2||w ◦ (S(p)− 1)||2 (61)

By taking the expectation, we get

E[�2γi] ≤ E
[
4||[ui]N+1[ui]1:N ||2||w ◦ (S(p)− 1)||2

]
(62)

which writes as

E[�2γi] ≤ c1E[||w ◦ (S(p)− 1)||2] (63)

The expectation operates on the sum
∑N

i=1 w
2
i (S(pi)− 1)2.

Given wi is fixed, and utilizing E[S(pi)2] = pi, and E[S(pi)] =
pi, the result of the expectation is

∑N
i=1 w

2
i (1− pi), which

writes as p�
+Σ+p+, where Σ+ is the covariance matrix of a+,

and [p+]i = 1/
√
pi, if pi �= 0, and zero otherwise. The same

steps hold for the perturbed nominal Laplacian L+ and its ith
eigenvector vi to prove (26). �
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