
1

Explainability and Graph Learning from Social
Interactions

Valentina Shumovskaia∗, Konstantinos Ntemos∗, Stefan Vlaski†, and Ali H. Sayed∗

∗ École Polytechnique Fédérale de Lausanne (EPFL)
† Imperial College London

Abstract—Social learning algorithms provide models for the
formation of opinions over social networks resulting from local
reasoning and peer-to-peer exchanges. Interactions occur over
an underlying graph topology, which describes the flow of
information among the agents. To account for drifting conditions
in the environment, this work adopts an adaptive social learning
strategy, which is able to track variations in the underlying
signal statistics. Among other results, we propose a technique
that addresses questions of explainability and interpretability of
the results when the graph is hidden. Given observations of the
evolution of the beliefs over time, we aim to infer the underlying
graph topology, discover pairwise influences between the agents,
and identify significant trajectories in the network. The proposed
framework is online in nature and can adapt dynamically to
changes in the graph topology or the true hypothesis.

Index Terms—Graph learning, explainability, inverse model-
ing, online learning, social learning.

I. INTRODUCTION

This work focuses on the social learning paradigm [2]–
[11], where agents react to streaming data and information
shared with their neighbors. Social learning refers to the
problem of distributed hypothesis testing, where each agent
aims at learning an underlying true hypothesis (or state)
through its own observations and from information shared
with its neighbors. Social learning studies can be categorized
into Bayesian [10], [11] and non-Bayesian [2]–[9]. Non-
Bayesian approaches have gained increased interest due to
their appealing scalability traits. In these approaches, agents
follow a two-stage process at every time instant. First, every
agent updates its belief (a probability distribution over the
possible hypotheses) based on its currently received private
observation from the environment. Then, it fuses the shared
beliefs from its neighbors. The main focus of these studies is to
prove that agents’ beliefs across the network converge to the
true hypothesis after sufficient repeated interactions. We are
interested in studying a dynamic setting where both the graph
topology and the true hypothesis can change over time. For
these reasons, we adopt the general adaptive social learning
protocol from [6].

In this work, we aim at revealing the underlying influ-
ence pattern over a social learning network. By doing so,
we discover the influences that drive opinion formation in

Emails: {valentina.shumovskaia, konstantinos.ntemos, ali.sayed}@epfl.ch,
s.vlaski@imperial.ac.uk. This work was supported in part by SNSF grant
205121-184999. A preliminary version of this work without proofs appeared
in [1].

the network and identify the most significant trajectories for
information propagation as well as the most relevant nodes. We
propose techniques that enable the designer to address useful
questions related to explainability and interpretability [12]–
[15] over graphs.

The explainability problem is relevant for multi-agent net-
works and it has been receiving increased attention [16]–[18].
While cooperation is beneficial over such networks, leading to
more stable performance, it nevertheless makes interpretability
of the results more challenging especially when the underlying
topology is unknown to the observer. It therefore becomes
critical to learn which agents contribute to learning the most
and to estimate how agents influence each other. Motivated by
these considerations, in this work we examine the problem of
explainability over graphs driven by social interactions. While
we focus on social learning as a model for social interactions
in this work, some of the ideas and results can be extended to
other settings, such as estimation, optimization, or multi-agent
reinforcement learning [19]–[22].

While the effect of observations in (non-)Bayesian inference
is fairly well-understood, the effect of the network on decision
making is less understood. Even more, the topology itself
is generally unknown. Full understanding and, hence, inter-
pretability of the social network’s decision requires learning
the graph topology as a key step. For this purpose, we will
devise an online algorithm for recovering the weights over
the edges that determine the graph. In the context of social
learning, recovering the graph helps provide important insight
into the decision-making process.

A number of solutions for graph learning [23]–[38] have
already been proposed in the literature, where algorithms for
graph inference have been developed for particular models,
describing the relationship between observations and graphs.
For instance, graph learning for the heat diffusion process
is studied in [25], [27], [28], [39], while learning under
structural constraints, such as connectivity [24] and sparsity,
appears in [24], [29], [34], and approaches based on examining
the precision matrix appear in [40], [41]. Most of these
works consider static graphical models. This is in contrast to
graphs with dynamic properties [25] where the connectivity
among agents can change over time. The approach pursued in
this work is applicable to dynamic scenarios. Moreover, and
importantly, it does not require knowledge of the true state.
Once the graph is learned, we will then devise a procedure for
identifying the most influential agents and trajectories.

ar
X

iv
:2

20
3.

07
49

4v
2

 [
ee

ss
.S

P]
 1

6
N

ov
 2

02
2

2

The manuscript is organized as follows. We describe the
system model in Section II, and derive the online graph
learning algorithm in Section III. In Section IV, we discuss
explainability and interpretability and propose a technique to
quantify pairwise influences and trajectories. In Section V, we
provide experiments to illustrate the robustness of the graph
learning method against dynamic changes to the topology and
the true hypothesis, and to reveal how influences are identified.

II. SOCIAL LEARNING MODEL

We consider a setN of agents connected by a directed graph
G = (N , E), where E represents the links between agents. An
agent k ∈ N can share the information directly with another
agent ` ∈ N when the link (`, k) is present in the set E . The
set of neighbors of an agent k ∈ N including itself, is denoted
by Nk.

All agents aim at learning the true hypothesis θ?, belonging
to a finite set of possible hypotheses denoted by Θ (whose
cardinality is at least two). To this end, each agent k receives
streaming observations ζk,i ∈ Zk at every time i ≥ 1, where
Zk is a compact set. Agent k also has access to the likelihood
functions Lk(ζk,i|θ), for all θ ∈ Θ. The signals ζk,i are
independent over both time and space, and are also identically
distributed (i.i.d.) over time. We will use the notation Lk(θ)
instead of Lk(ζk,i|θ) for brevity. At each time i, agent k keeps
a belief vector µk,i, which is a probability distribution over
the possible states. The belief component µk,i(θ) quantifies
the confidence by agent k that θ is the true state. Therefore,
at time i, each agent’s true state estimator is computed as
follows:

θ̂
◦
k,i = arg max

θ∈Θ
µk,i(θ). (1)

To avoid technicalities and to ensure well-posedness and
identifiability, we need to impose certain common conditions
on the graph topology and on the initial beliefs. For instance,
the following statement ensures that agents would not discard
any particular state a-priori.

Assumption 1 (Positive initial beliefs). For all hypotheses
θ ∈ Θ, all agents k ∈ N start with positive initial beliefs,
µk,0(θ) > 0. �

At every time instant i, every agent k updates its belief by
using a two-stage process. First, it incorporates information
from the received observation ζk,i and then it fuses the
information from its neighbors. More specificially, in this
work we consider the adaptive social learning rule [6], which
has been shown to have favorable transient and steady-state
performance in terms of convergence rate and probability of
error for dynamic environments. Under this protocol, agents
update their beliefs in the following manner:

ψk,i(θ) =
Lδk(ζk,i|θ)µ1−δ

k,i−1(θ)∑
θ′∈Θ L

δ
k(ζk,i|θ′)µ1−δ

k,i−1(θ′)
, k ∈ N (2)

µk,i(θ) =

∏
`∈Nk

ψa`k`,i (θ)∑
θ′∈Θ

∏
`∈Nk

ψa`k`,i (θ′)
, k ∈ N (3)

where a`k denotes the combination weight assigned by agent k
to neighboring agent `, satisfying 0 < a`k ≤ 1, for all ` ∈ Nk,
a`k = 0 for all ` /∈ Nk, and

∑
`∈Nk

a`k = 1. The algorithm
is called “adaptive” due to the parameter δ ∈ (0, 1), which
allows it to track changes in the true hypothesis θ?. Observe
that the numerator in (3) is the weighted geometric mean of
the priors ψ`,i(θ) at time i with weights given by the scalars
{a`k}. We further assume that information is able to flow
throughout the network by requiring strong-connectedness in
the manner defined next [21], [22].

Assumption 2 (Strongly-connected network). The communi-
cation graph is strongly connected. That is, there exists a path
with positive weights linking any two agents, and at least one
agent in the graph has a self-loop, meaning that there is at
least one agent k ∈ N with akk > 0. �

The agents run recursions (2)–(3) continually. However, the
observer can only track the shared beliefs {ψk,i(θ)}. The
graph and its combination weights are not known. Thus, let
A? = [a`,k] denote the true (yet unknown) left-stochastic
combination matrix consisting of all combination weights a`k.
It is known that the power matrix (AT

?)t converges to 1uT at
an exponential rate governed by the second largest-magnitude
eigenvalue of A?, as t→∞ [42], where u denotes the Perron
eigenvector, i.e., A?u = u, with entries satisfying

∑
` u` = 1

and u` > 0 for ` ∈ N . The following property holds for such
matrices [43].

Property 1 (Closeness to Perron entries). Let β2 be the
second largest-magnitude eigenvalue of A?. Then, for any
positive β such that |β2| < β < 1, there exists a positive
constant σ (depending only on A? and β), such that, for all
`, k ∈ N , and for all t = 1, 2, . . . , we have that:∣∣[At?]`,k − u`∣∣ ≤ σβt. (4)

�

In addition, for well-posedness, we will assume that the agents
can collectively identify the underlying true hypothesis [6],
[44]. In other words, agents are able to distinguish collectively
any hypothesis θ ∈ Θ from θ?. This requirement amounts to
the following identifiability condition.

Assumption 3 (Identifiability assumption). For each wrong
hypothesis θ 6= θ?, there is at least one agent k ∈ N that has
strictly positive KL-divergence DKL (Lk (θ) ||Lk (θ?)) > 0.

�

We also discard degenerate situations by imposing a bounded-
ness condition on the likelihood functions, in a manner similar
to [7].

Assumption 4 (Bounded likelihoods). There exists a finite
constant b > 0 such that, for all k ∈ N :∣∣∣∣∣ log

Lk(ζ|θ)
Lk(ζ|θ′)

∣∣∣∣∣ ≤ b (5)

for all θ, θ′ ∈ Θ, and ζ ∈ Zk. �

This assumption implicitly assumes that the likelihood models

3

Lk(θ) have a common support for different hypotheses θ ∈ Θ,
and that their positive values are bounded away from zero [3].

III. INVERSE MODELING PROBLEM

A. Problem Statement

In our study, we assume that the graph is completely hidden.
The assumption is motivated by the fact that in real-world
settings, the pattern of interactions among agents is usually
unknown to an external observer. In addition, in the social
learning paradigm, it is common [8], [44] to assume that the
local observations ζk,i are private and external observers do
not have access to them. On the other hand, beliefs (i.e.,
ψk,i(θ)) are public and exchanged over edges across the
network. For this reason, our goal is to infer the graph topology
by observing the exchanged beliefs among the agents.

Formally, we assume that at each time step i ≥ 1 we observe
the beliefs of the agents in the network, collected into the set:

Di =
{
ψk,i(θ), k ∈ N

}
(6)

The problem of interest is to recover the combination matrix
A? based on knowledge of {Di}i≥1.

B. Likelihood and Beliefs Ratios

We introduce two matrices Λi and Li of size |N |×(|Θ|−1),
where each element in these matrices is a relative measure of
log beliefs and likelihood ratios as follows:

[Λi]k,j , log
ψk,i(θ0)

ψk,i(θj)
(7)

[Li]k,j , log
Lk(ζk,i|θ0)

Lk(ζk,i|θj)
. (8)

In these expressions, we have chosen some arbitrary θ0 ∈ Θ
as a reference state, while θj 6= θ0.

Observe that both matrices in (7)–(8) vary with the time
index i. Based on the definitions (7)–(8), some algebra (see
Appendix A) will show that we can transform (2)–(3) into an
update relating these matrices:

Λi = (1− δ)AT
?Λi−1 + δLi. (9)

Due to Assumption 4, Li and Λi have bounded entries at each
iteration i and in the limit as i→∞.

Lemma 1 (Asymptotic properties of log-belief matrix).
Under Assumptions 1-4, the random matrices Λi converge to
the following random variable Λ in distribution as i→∞:

Λ , δ
∞∑
i=0

(1− δ)i (Ai?)
TLi. (10)

Moreover, for every i ≥ 1, Λi is elementwise bounded (in
absolute value) by a matrix Λ̄i, written as follows:

|Λi| � Λ̄i (11)

where

Λ̄i , (1− δ)i
(
AT
?

)i |Λ0|+ δb

i−1∑
t=0

(1− δ)t (At?)
T11T. (12)

In the limit,

Λ̄ , lim
i→∞

Λ̄i = δb

∞∑
t=0

(1− δ)t (At?)
T11T. (13)

Proof. See Appendix B. �

At every iteration i, the quantities {Λi,Λi−1} are known
based on knowledge of the beliefs Di from (6). On the other
hand, the quantity Li is not known because the observations
{ζk,i} are private. We wish to devise a scheme that allows
us to estimate A? in (9) from knowledge of {Λi,Λi−1} and
from a suitable approximation for Li. Before discussing the
learning algorithm, however, we establish the following useful
property. For simplicity of notation, we will write

E[·] , Eζk,t∼Lk(θ?),k∈N ,t≤i[·] (14)

where the expectation is relative to the randomness in all local
observations up to time i.

Proposition 1 (Mean likelihood matrix). The random matri-
ces Li are i.i.d. over time and space, and their mean matrix
L̄ = ELi is independent of time and finite with individual
entries:

[L̄]k,j = DKL (Lk (θ?) ||Lk (θj))

−DKL (Lk (θ?) ||Lk (θ0)) . (15)

Proof. Since the private data ζk,i is i.i.d. and follows dis-
tribution Lk(θ?), the expectation of Li does not depend on i
and is equal to:

[L̄]k,j = E logLk(ζk,i|θ0)− E logLk(ζ|θj)
= DKL (Lk (θ?) ||Lk (θj))

−DKL (Lk (θ?) ||Lk (θ0)) . (16)

Under Assumption 4, the entries of L̄ are bounded.
�

C. Algorithm Development

To motivate the algorithm, we assume first for the sake of
the argument that the observer knows the true state θ?, and
we remove this assumption further ahead.

The linear nature of the update for Λi in (9) motivates the
following instantaneous quadratic loss function for finding A?:

Q′(A; Λi,Λi−1) =
1

2
‖Λi − (1− δ)ATΛi−1 − δLi‖2F, (17)

where ‖ · ‖F is the Frobenius norm. Computation of Li

requires knowledge of ζk,i, k ∈ N , which is private for
each agent and is therefore hidden from the observer. For this
reason, we will assume instead knowledge of L̄, which still
requires knowledge of the true hypothesis θ?. We explain in
the sequel how to circumvent this latter requirement. Using
L̄, we replace (17) by

Q(A; Λi,Λi−1, L̄) =
1

2
‖Λi − (1− δ)ATΛi−1 − δL̄‖2F.

(18)

4

and use this loss function to introduce an optimization problem
over a horizon of N time instants for the recovery of A? as
follows:

min
A
J(A) ,

1

N

N∑
i=1

Ji(A), (19)

Ji(A) , EQ(A; Λi,Λi−1, L̄). (20)

The statistical properties of Λi vary with time, and this
explains why we are averaging over a time-horizon in (19).
We will apply stochastic approximation to solve (19) and use
a recursion of the form:

AT
i = AT

i−1 + µ(1− δ)

×
(
Λi − (1− δ)AT

i−1Λi−1 − δL̄
)

ΛT
i−1 (21)

Lemma 2 (Risk function properties). Each risk function
Ji(A) defined by (20) is strongly convex and has Lipschitz
gradient with corresponding constants νi and κi defined in
terms of the smallest and largest eigenvalues of the second-
order moment matrix EΛi−1Λ

T
i−1:

νi = (1− δ)2λmin

(
EΛi−1Λ

T
i−1

)
(22)

κi = (1− δ)2λmax

(
EΛi−1Λ

T
i−1

)
(23)

Also, A? is the unique minimizer for Ji(A).
Proof. See Appendix C. �

In order to examine the steady-state performance of recur-
sion (21), we introduce an independence assumption that is
common in the study of adaptive systems [21].

Assumption 5 (Separation principle). Let Ãi = A?−Ai de-
note the estimation error. Assume the step-size µ is sufficiently
small so that ‖Ãi‖2F reaches a steady state distribution and Ãi

is independent of the observation Λi in the limit, conditioned
on the history of past observations prior to time i. �

We also assume positive-definite second-order moments for
the matrices Li, which are i.i.d. over time.

Assumption 6 (Positive-definite second moments). At any
moment i ≥ 0 and for any chosen θ0 ∈ Θ, the second
order moment of matrix Li in (8) is uniformly positive-definite,
ELiLT

i � τI for some τ > 0 for any i. �

Since the observations ζk,i are independent among agents, and
are also identically distributed (i.i.d.) over time, the above
assumption holds if the variances for each individual agent
k ∈ N satisfies:∑

j

Var ([Li]k,j) =
∑
j

Var
(

log
Lk(ζi,k|θj)
Lk(ζi,k|θ0)

)
≥ τ > 0.

(24)

Using these conditions, we can establish the following
steady-state result, which shows that the mean-square error
approaches O(µ).

Theorem 1 (Steady-state performance). Under Assumptions
1-6, the mean-square deviation (MSD) converges exponentially

fast with

lim sup
i→∞

E‖Ãi‖2F ≤
µ2γ

1− α
= O(µ), (25)

where

α = 1− 2µν +O(µ2)

γ = δ2κ|N |λmax(RL)

ν = (1− δ)2λmin

(
lim
i→∞

EΛiΛ
T
i

)
κ = (1− δ)2λmax

(
lim
i→∞

EΛiΛ
T
i

)
(26)

and RL , E(Li − L̄)(Li − L̄)T is independent of i.
Proof. See Appendix E. �

D. True State Learning

In the previous section, we assumed knowledge of the true
state θ?, which is needed to evaluate L̄. We now relax this
condition and generalize the algorithm.

Typically, at each time step i ≥ 1, every agent k ∈ N
estimates the true state using (1). It was shown in [6, The-
orem 2]) that the probability of error tends to zero, i.e.,
P(θ̂
◦
k,i 6= θ?)→ 0 as i→∞ and δ → 0. The same conclusion

continues to hold if we replace (1) and estimate the underlying
hypothesis based on the intermediate belief vectors (which are
the quantities that are assumed to be observable):

θ̂k,i = arg max
θ∈Θ

ψk,i(θ). (27)

The result is summarized in Lemma 3.

Lemma 3 (True state learning error). The error probability
for all agents k ∈ N converges to zero as i→∞ and step-size
δ → 0:

lim
δ→0

P(lim
i→∞

θ̂k,i 6= θ?) = 0. (28)

Proof. See Appendix F. �

In order to agree on a single estimate for θ? among the agents,
we will estimate a common θ̂i by using a majority vote rule.
Then, the following conclusion holds.

Lemma 4 (True state learning error: majority vote).

lim
δ→0

P
(

lim
i→∞

θ̂i 6= θ?
)

= 0. (29)

Proof. Consider

P
(
θ̂i 6= θ?

)
≤

|N |∑
n=d |N|2 e

P
(
∃k1, . . . , kn ∈ N : θ̂k1,i 6= θ?, . . . , θ̂kn,i 6= θ?

)

=

|N |∑
n=d |N|2 e

(
|N |

k1 . . . kn

)
P
(
θ̂k1,i 6= θ?

)
. . .P

(
θ̂kn,i 6= θ?

)
(30)

5

Using the result of Lemma 3, we finish the proof.
�

We now introduce a revised optimization problem, where
the loss function is based on the estimated hypothesis through
the majority vote:

min
A
Ĵ(A) ,

1

N

N∑
i=1

EQ(A; Λi,Λi−1, L̄i) (31)

where the original L̄ is replaced by L̄i = Eθ̂i
Li with the

expectation now computed relative to the distribution of θ̂i :
ζk,i ∼ Lk(ζk,i|θ̂i).

We summarize the recursions of the proposed method in
Algorithm 1, referred to as the Online Graph Learning (OGL)
algorithm. The listing includes three steps: true state estimation
for each agent, majority vote on the true state, and the graph
update. We obtain the following steady-state performance for
the algorithm.

Algorithm 1: Online Graph Learning (OGL)
Data: At each time i, . . . , N

{Di, δ, DKL(Lk(θ)||Lk(θ′)), k ∈ N , θ, θ′ ∈ Θ}

Result: Estimated combination matrix AN

initialize A0

i = 1
repeat

for k ∈ N do
Every agent estimates the true state

individually:

θ̂k,i = arg max
θ∈Θ

ψk,i(θ)

A majority rule is applied across agents:

θ̂i = arg max
θ

∑
k∈N

1
{
θ̂k,i = θ

}
Compute matrices Λi, L̄i:
for k ∈ N , j = 1, . . . , |Θ| do

[Λi]k,j = log
ψk,i(θ0)

ψk,i(θj)

[L̄i]k,j = DKL

(
Lk(θ̂i)||Lk (θj)

)
−DKL

(
Lk(θ̂i)||Lk (θ0)

)
Combination matrix update:

Ai = Ai−1 + µ(1− δ)Λi−1

×
(
ΛT
i − (1− δ)ΛT

i−1Ai−1 − δL̄i

)
.

i = i+ 1

until sufficient convergence;

Theorem 2 (Steady-state performance). Under Assumptions
1-6, after large enough number of social learning iterations

with δ → 0 and for sufficiently small µ, the mean-square
deviation (MSD) converges exponentially fast with:

lim sup
i→∞

E‖Ãi‖2F ≤
µ2γ

1− α
= O(µ). (32)

Proof. According to Lemma 3, when δ → 0 and i → ∞,
Eθ̂i

Li → L̄. Repeating the argument used in the proof of
Theorem 1, we finish the proof.

�

IV. AGENT INFLUENCE AND EXPLAINABILITY

Now that we have devised a procedure to learn the graph
topology, we can examine a useful question relating to how
information flows over the network. Typically, there might
exist more than one combination of edges leading from a node
` ∈ N to some other node k ∈ N . In the following, we
describe one approach to measure path influence and find the
most influential path between two nodes based on the extracted
information about the graph A?.

According to the combination step (3), the combination
weight a`k 6= 0 of the edge linking node ` to k reflects
the direct (one-hop) influence of node ` on node k for the
belief construction. We can generalize the notion of the one-
hop influence to any chosen path of length r ≥ 0. We say
that a sequence of edges ((`, v1), . . . , (vj , vj+1), . . . , (vr, k))
defines a path from ` to k if the corresponding product of
combination weights a`v1 ·· · ··avrk is positive. In other words,
if these edges are present in the network.

It is reasonable to expect that the influence of the path
((`, v1), . . . , (vr, k)) on the flow of information from ` to k is
proportional to the product of the combination weights along
the path: ∏

(`′,k′)∈((`,v1),...,(vr,k))

a`′,k′ . (33)

We justify this statement as follows.
One popular technique in problems related to explainability

and interpretability is sensitivity analysis [12], [13]. We adapt
this approach to our graph model. We treat the received
observations ζk,i at each individual agent k ∈ N as data
available to the network. One way to measure the influence of
a node ` ∈ N on some other node k ∈ N is to assess how the
belief vector ψk,i changes in response to variations at location
`. To do so, we find it convenient to examine how the entries
of Λi change with Lt. Thus, consider the following partial
derivative expression (derived in Appendix H):

∂[Λi]k,j
∂[Lt]`,j

= δ(1− δ)i−t
∑

((`,v1),...,(vi−t−1,k))

a`,v1 . . . avi−t−1,k.

(34)

This expression is measuring how entries on the k−th row of
Λi (which depend on ψk,i) vary in response to changes in the
entries on the `−th row of Lt for any t ≤ i (which depend on
the data ζ`,t). To avoid confusion, we clarify the case when

6

i = t:

∂[Λi]k,j
∂[Li]`,j

=

{
δa`,`, if ` = k,

0, otherwise.

Observe that the derivative in (34) depends only on the time
difference i − t, and the observations Λi, Li are considered
fixed. Result (34) accommodates all paths of length i − t
leading from ` to k and penalizes each one of them by
(1−δ)i−t. Since combination weights lie in [0, 1], and the step
size 0 < δ < 1, the influence drops as the length of the path
grows. Thus, to measure the influence of ` on k, we will limit
the path length by some hyperparameter d. It is reasonable
to consider d larger or equal to the shortest path length from
node ` to k, or the average shortest path between all nodes in
the network. In the next section, we will empirically confirm
that a relatively small d is enough because the influence of
past data reduces with time drastically.

Motivated by (34), we will employ the following influence
measure between the agents ` and k:

ηd(`, k) ,
|Θ|−1∑
j=1

d∑
r=0

∂[Λd]k,j
∂[Lr]`,j

= (|Θ| − 1)δ

d∑
r=0

(1− δ)r
∑

v1,...,vr−1∈N
a`,v1 . . . avr−1,k. (35)

We derive the expression for ηd(`, k) in Appendix G. As a
result, we observe that the influence of agent ` on agent k is
proportional to the sum of the products (33) of paths leading
from node ` to k. We therefore associate with each path from
` to k an influence measure that depends on the product of
the weights over the path and a second factor that depends on
the length of the path, namely,

I
(

((`, v1), . . . , (vr, k))
)

, (|Θ| − 1)δ(1− δ)r
∏

a`′,k′∈((`,v1),...,(vr,k))

a`′,k′ , (36)

so that

ηd(`, k) =
∑
p∈Pd

`,k

I (p) , (37)

where Pd`,k is the set of all paths leading from node ` to node
k with the lengths of these paths less than or equal to d.

The influence formulation in terms of individual paths sheds
light on how information flows in the network. First, the
influences are not necessarily symmetric, ηd(`, k) 6= ηd(k, `),
since the combination matrix A? is assumed to be only left-
stochastic. This observation provides an opportunity to explore
in the future the question of causality [45] and to examine
questions related to the causal effect on node k.

The next question we discuss is how to identify the most
significant paths from ` to k, denoted by p?`,k. To do so, we
search for the path that contributes the most to ηd(`, k) – see
Appendix H:

p?`,k = arg max
p∈Pd

`,k

{I (p)}

= arg min
p∈Pd

`,k

{
−

∑
(`′k′)∈p

(
log a`′k′ + log (1− δ)

)}
.

(38)

In practice, this optimization problem can be solved using the
Dijkstra algorithm [46], [47] for searching for the shortest path
between nodes over a weighted graph, taking − log(a`′k′) −
log(1− δ) as edge weights in places where a`′k′ is positive.

V. COMPUTER SIMULATIONS

The experiments that follow help illustrate the ability of
the proposed algorithm to identify edges and to adapt to
situations where the graph topology is dynamic, as well as
the hypothesis.

A. Setup

We consider a network of 30 agents with |Θ| = 10 states,
where the adjacency matrix is generated according to the
Erdos-Renyi model with edge probability p = 0.2. We set
Zk to be a discrete sample space with |Zk| = 2 for k ∈ N .
The step-size of the model is set to δ = 0.1. We define the
likelihood functions Lk(θ), k ∈ N , θ ∈ Θ, as follows:

Lk(ζ|θ) =
∑
z∈Zk

I[ζ = z]βk,z(θ),

βk,z(θ) ≥ 0, z ∈ Zk∑
z∈Zk

βk,z(θ) = 1, (39)

where the parameters βk,z(θ) are generated randomly. During
the graph learning procedure, we use µ = 0.1.

B. Graph learning

We provide a comparison between the true combination
matrix and the estimated combination matrix. We plot the com-
bination matrices in Fig. 1 and the graphs in Fig. 2, where the
width of an edge corresponds to the value of the combination
weight. The experiment shows the ability of the algorithm
to identify the graph: the recovered combination weights are
close to the actual weights. In no-edge places, we observe
reasonably small weights on the recovered matrix. These can
be removed in post-processing by simple thresholding or more
elaborate schemes, such as the k-means algorithm [48].

Additionally, in Fig. 3a we plot how the deviation from
the true matrix A? evolves. The deviation is computed as the
following quantity:

‖Ãi‖2F = ‖A? −Ai‖2F. (40)

We provide the error rates for both algorithm variants with
known true state θ? and estimated true state θ̂i. We see that
there is a negligible gap in the learning performance.

The proposed algorithm is robust to changes in the true
state and graph topology. From Fig. 3a we can see that
changes to the true state have almost no impact on the learning
performance. In Fig. 3b, we regenerate edges at time 7000.
The algorithm adapts and converges to the new combination
matrix at a linear rate. A more challenging scenario is shown

7

(a) True graph.

(b) Learned graph.

Fig. 1: True combination matrix and the learned matrix using
the Online Graph Learning (OGL) algorithm.

in Fig. 3c, where we change the graph topology such that
each edge changes (appears or disappears) with probability
0.5% on a regular basis. Nevertheless, the graph learning
algorithm is able to adapt and accurately recover the true
combination matrix. Thus, we have experimentally illustrated
that the algorithm is stable to dynamic network changes, which
is a natural setting to consider in practice. These properties
hold because the algorithm is online and processes data one
by one with a constant learning rate µ > 0.

Remark 1. The closest algorithm to compare with is the
online algorithm for the heat diffusion process [25]. That
work formulates the problem of graph identification based on
streaming realizations of a vector signal si. The recursion for
the centered signal s̄i = si− 1

|N |11
T obeys a recursion similar

to (9)

s̄i = W s̄i−1 + p̄i, (41)

and the combination matrix can be deduced from the matrix
W . It is important to note that Ep̄i = 0, while in our model,
ELi is unknown. This difference plays a significant role in our
analysis. If we omit the assumption that θ? is unknown, our
algorithm can be viewed as a variant of [25]. The experimental

(a) True graph.

(b) Learned graph.

Fig. 2: True combination graph and the learned graph using
the Online Graph Learning (OGL) algorithm. Since graphs are
bidirectional, each edge width is proportional to the sum of
the weights on the edges.

comparison of known and unknown true state variants is
already provided in the current section.

C. Agent Influence

The following experiments illustrate how to identify influ-
ences over the recovered graph. In Fig. 4, we search for the
most influential path p?`,k. We observe that the algorithm finds
the shortest path with the densest edges.

In the next series of experiments shown in Fig. 5, we
illustrate how the influences ηd(`, k) are distributed for a fixed
node k ∈ N for different d. As we already noted in the
previous section, ηd(`, k) sums influences along all paths of
length from 0 to d. Thus, we expect a relatively small d to be
enough for practical reasons. We experimentally verify that
d = 2 is optimal for our size graph since Figs. 5b and 5c
show a very similar behavior. In the experiment, however, the
network is relatively dense, and the nearest neighbors become
the most influential ones. Fig. 6 illustrates a case where the
most influential node is not a direct neighbor.

8

(a) Algorithm performance when the true state changes.

(b) Algorithm performance when the graph edges are regenerated.

(c) Algorithm performance when the graph regularly changes. Every
element of the adjacency matrix change its state with probability 0.5%.

Fig. 3: Algorithm performances.

Fig. 4: The red path illustrates the most influential path from
the red node to the green node.

VI. CONCLUSIONS

In this paper, the problem of graph learning through observ-
ing social interactions by means of an adaptive social learning
protocol is investigated. We develop an online algorithm that
learns the agents’ influence pattern via observing agents’
beliefs over time. We prove that the proposed algorithm
successfully learns the underlying combination weights and
demonstrate its performance through analysis and computer
simulations. In this way, we are able to discover the pattern
of information flow in the network. A distinct feature of the
proposed algorithm is the fact that it can track changes in the
graph topology as well as in the true hypothesis.

As future work, we may investigate the partial information
setting, where the algorithm has access only to the beliefs of
a subset of the network agents.

APPENDIX A

Consider a generic entry of [Λi]k,j . In view of (2)–(3), we
can write:

[Λi]k,j = log
ψk,i(θj)

ψk,i(θ0)
= log

Lδk(ζk,i|θj)µ1−δ
k,i−1(θj)

Lδk(ζk,i|θ0)µ1−δ
k,i−1(θ0)

= log
Lδk(ζk,i|θj)

(∏
`ψ

a`k
`,i−1(θj)

)1−δ

Lδk(ζk,i|θ0)
(∏

`ψ
a`k
`,i−1(θ0)

)1−δ

= (1− δ)
∑
`

a`k log
ψ`,i−1(θj)

ψ`,i−1(θ0)
+ δ log

Lk(ζk,i|θj)
Lk(ζk,i|θ0)

= (1− δ)
∑
`

[A?]`,k[Λi−1]`,j + δ[Li]k,j (42)

APPENDIX B
PROOF OF LEMMA 1

Iterating (9) we get:

Λi = (1− δ)i
(
Ai?
)T

Λ0 + δ

i−1∑
t=0

(1− δ)t (At?)
TLi−t, (43)

9

(a) d = 1 (b) d = 2 (c) d = 3

Fig. 5: For different choice of d, the plots illustrate influences ηd(`, k) on the target green node by all other agents in the
network. The color intensity reflects the value of influence. The influences are normalized to [0, 1].

Fig. 6: The plot shows influences η3(`, k) on the target green
node by all other agents in the network. The color intensity
reflects the value of influence. The influences are normalized
to [0, 1]. In this example, a non-direct connection has more
influence on the target node than the neighbors.

where the entries of the initial matrix Λ0 are given by:

[Λ0]k,j = log
ψk,0(θ0)

ψk,0(θj)
. (44)

The first term in (43) dies out as i→∞ since the eigenvalues
of A? are bounded by one in magnitude. Thus, in distribution,
Λi converges to the following random matrix:

Λ , lim
i→∞

δ

i−1∑
t=0

(1− δ)t (At?)
TLi−t

d
= lim
i→∞

δ

i−1∑
t=0

(1− δ)t (At?)
TLt = δ

∞∑
t=0

(1− δ)t (At?)
TLt,

(45)

where in the second equality we interchange Lt by Li−t

because Li are i.i.d. and where the notation X d
= Y means

that the variables X and Y are equally distributed.
Using Assumption 4 we can upper-bound the elements of

|Λi| as follows:

[|Λi|]k,j ≤ (1− δ)i
∑
`∈N

[Ai?]`,k[|Λ0|]`,j

+ δ

i−1∑
t=0

(1− δ)t
∑
`∈N

[At?]
T
`,k[|Li−t|]`,j

≤ (1− δ)i
∑
`∈N

[Ai?]`,k[|Λ0|]`,j

+ δb

i−1∑
t=0

(1− δ)t
∑
`∈N

[At?]
T
`,k. (46)

Therefore, we can write

|Λi| � (1− δ)i
(
AT
?

)i |Λ0|+ δb

i−1∑
t=0

(1− δ)t (At?)
T11T

, Λ̄i. (47)

In the limit, Λ̄i converges to:

Λ̄ = δb

∞∑
t=0

(1− δ)t (At?)
T11T. (48)

which has bounded entries. Indeed, using Property 1 we have:

[Λ̄]k,j = bδ

∞∑
t=0

(1− δ)t
∑
`∈N

[At?]`,k

≤ bδ
∞∑
t=0

(1− δ)t
∑
`∈N

(u` + σβt)

= bδ

∞∑
t=0

(1− δ)t
∑
`∈N

u` + bδ

∞∑
t=0

(1− δ)t
∑
`∈N

σβt

= bδ

∞∑
t=0

(1− δ)t + bδσ|N |
∞∑
t=0

((1− δ)β)
t

= b

(
1 +

δσ|N |
1− β(1− δ)

)
. (49)

Similarly, a lower bound for [Λ̄]k,j is given by:

[Λ̄]k,j ≥ b
(

1− δσ|N |
1− β(1− δ)

)
(50)

10

and we conclude that Λ̄ has bounded entries.

APPENDIX C
PROOF OF LEMMA 2

Assuming that technical conditions from the dominated
convergence theorem are met, we exchange the expectation
and gradient operations (see [22, ch. 3]). In that case, the
gradient of Ji(A) relative to A is given by:

(∇Ji(A))
T

= −(1− δ)
× E

(
Λi − (1− δ)ATΛi−1 − δL̄

)
ΛT
i−1. (51)

For any matrices A1, A2:

Tr
(

(∇Ji(A1)−∇Ji(A2))
T

(A1 −A2)
)

= (1− δ)2Tr
(

(A1 −A2)TEΛi−1Λ
T
i−1(A1 −A2)

)
≤ (1− δ)2λmax(EΛi−1Λ

T
i−1)‖A1 −A2‖2F. (52)

In Appendix D we show that EΛiΛ
T
i and its limit are finite

positive semi-definite matrices, and therefore their eigenvalues
are finite. Result (52) justifies (23). Likewise, we can establish
a lower bound with λmax replaced by λmin and arrive at (22).

Next, by evaluating the gradient of Ji(A) at A? we find:

∇ (Ji(A?))
T

= −(1− δ)E(Λi − (1− δ)AT
?Λi−1 − δL̄)ΛT

i−1

= −(1− δ)δ(L̄− L̄)EΛT
i−1 = 0. (53)

where we used (9) and the fact that Li are independently
distributed w.r.t. time i due to i.i.d. local observations ζk,i.
We conclude that A? is a minimizer for Ji(A). Since Ji(A)
is strictly convex, A? is the unique minimizer.

APPENDIX D

It is obvious from (43) that

lim
i→∞

EΛi = δ

∞∑
t=0

(1− δ)t(At?)TL̄, (54)

whereas we verify next that

lim
i→∞

EΛiΛ
T
i = δ2

∞∑
t=0

(1− δ)2t
(At?)

TELtLT
t A

t
?

+ δ2
∞∑

t1,t2=0,t1 6=t2

(1− δ)t1+t2 (At1?)TL̄L̄T
At2? . (55)

is a finite positive-definite matrix with

lim
i→∞

EΛiΛ
T
i � τδ2I. (56)

Proof. Note first, with an appropriate change of variables,
that

ΛiΛ
T
i

= (1− δ)2i
(
Ai?
)T

Λ0ΛT
0A

i
?

+ δ2
i∑
t=1

(1− δ)2i−2t
(Ai−t?)TLtLT

t A
i−t
?

+ δ2
i∑

t1,t2=1,t1 6=t2

(1− δ)2i−t1−t2 (Ai−t1?)TLt1L
T
t2A

i−t2
?

+ δ(1− δ)i(Ai?)TΛ0

i∑
t=1

(1− δ)i−tLT
t A

i−t
?

+ δ(1− δ)i
(

i∑
t=1

(1− δ)i−t (Ai−t1?)TLt

)
ΛT

0A
i
?.

(57)

Taking expectation, we obtain:

EΛiΛ
T
i

= (1− δ)2i(Ai?)
TΛ0ΛT

0A
i
?

+ δ2
i−1∑
t=0

(1− δ)2t
(At?)

TELtLT
t A

t
?

+ δ2
i−1∑

t1,t2=0,t1 6=t2

(1− δ)t1+t2 (At1?)TL̄L̄T
At2?

+ δ(1− δ)i(Ai?)TΛ0

i−1∑
t=0

(1− δ)t L̄T
At?

+ δ(1− δ)i
i−1∑
t=0

(1− δ)i−t (At?)
TL̄ΛT

0A
i
?. (58)

Therefore, in the limit:

lim
i→∞

EΛiΛ
T
i

= δ2
∞∑
t=0

(1− δ)2t
(At?)

TELtLT
t A

t
?

+ δ2
∞∑

t1,t2=0,t1 6=t2

(1− δ)t1+t2 (At1?)TL̄L̄T
At2? . (59)

Under Assumption 4, for any k1, k2 ∈ N :∣∣E[LtLT
t]k1,k2

∣∣ ≤∑
j

∣∣E[Lt]k1,j [Lt]k2,j
∣∣

≤

{∑
j E[|Lt|]k1,jE[|Lt|]k2,j , if k1 6= k2,∑
j E[|Lt|]2k1,j , if k1 = k2

≤ b2(|Θ| − 1) (60)

and ∣∣[L̄L̄T
]k1,k2

∣∣ ≤ b2(|Θ| − 1). (61)

Thus,∣∣ lim
i→∞

EΛiΛ
T
∣∣ ≤ δ2b2(1− |Θ|)

×
∞∑
t1=0

∞∑
t2=0

(1− δ)t1+t2(AT
?)t1+t211TAt1+t2

?

= δ2b2(1− |Θ|)

[∞∑
t=0

(1− δ)t(AT
?)t11TAt?

]2

(62)

In view of Property 1, consider

[(AT
?)t11TAt?]k1,k2 = [(AT

?)t1]k1 [(AT
?)t1]k2

≤
∑
`

[A?]`k1
∑
`

[A?]`k2 ≤

[∑
`

(
u` + σβt

)]2

11

=
(
1 + σβt|N |

)2
. (63)

Therefore, (62) has bounded entries:∣∣ lim
i→∞

EΛiΛ
T
i

∣∣
k1,k2

≤ δ2b2(1− |Θ|)

[∞∑
t=0

(1− δ)t
(
1 + σβt|N |

)2]2

= δ2b2(1− |Θ|)
[

1

δ
+

2σ|N |
1− β(1− δ)

+
δ2|N |2

1− β2(1− δ)

]2

.

(64)

Next, let us show that limi→∞ EΛiΛ
T
i is positive-definite.

Under Assumption 6, ELtLt � τI for any t. Consider
the square root Bt, such that ELtLT

t = BtB
T
t . Then, (55)

becomes

lim
i→∞

EΛiΛ
T
i = δ2EL0LT

0

+ δ2
∞∑
t=1

(1− δ)2t
(BT

t A
t
?)

TBT
t A

t
?

+ δ2
∞∑

t1,t2=0,t1 6=t2

(1− δ)t1+t2 (L̄T
At1?)TL̄T

At2? . (65)

The equation above is a sum of a positive-definite matrix
δ2EL0LT

0 � τδ2I and positive semi-definite matrices. There-
fore,

lim
i→∞

EΛiΛ
T
i � τδ2I. (66)

�

APPENDIX E
PROOF OF THEOREM 1

Each step of the graph learning procedure (21) has the
following form:

Ai = Ai−1 + µ(1− δ)Λi−1

×
(
ΛT
i − (1− δ)ΛT

i−1Ai−1 − δL̄
T
)

= Ai−1 + µ(1− δ)Λi−1

×
(

(1− δ)ΛT
i−1A? + δLT

i − (1− δ)ΛT
i−1Ai−1

− δL̄T
)

= Ai−1 + µ(1− δ)2Λi−1Λ
T
i−1Ãi−1

+ µδ(1− δ)Λi−1(Li − L̄)T (67)

where in the second equality we used (9) and introduced

Ãi−1 = A? −Ai−1. (68)

Subtracting A? from both sides we get

Ãi =
(
I − µ (1− δ)2

Λi−1Λ
T
i−1

)
Ãi−1

− µδ (1− δ) Λi−1(Li − L̄)T

=
(
I − µ (1− δ)2 E

[
Λi−1Λ

T
i−1

])
Ãi−1

+ µ(1− δ)2
(
E
[
Λi−1Λ

T
i−1

]
−Λi−1Λ

T
i−1

)
Ãi−1

− µδ (1− δ) Λi−1(Li − L̄)T, (69)

where I stands for the identity matrix. Next, using the squared
Frobenius norm, computing the conditional expectation rel-
ative to the filtration F i−1 = {ζk,j , j < i, k ∈ N}, and
appealing to the separation principle from Assumption 5 we
get:

E
[
‖Ãi‖2F

∣∣F i−1

]
(a)
= ‖

(
I − µ(1− δ)2E

[
Λi−1Λ

T
i−1

])
Ãi−1‖2F

+ µ2‖(1− δ)2
(
E
[
Λi−1Λ

T
i−1

]
−Λi−1Λ

T
i−1

)
Ãi−1‖2F

+ µ2E
[
‖δ(1− δ)Λi−1(Li − L̄)T‖2F

∣∣F i−1

]
+ 2µ(1− δ)2 Tr

((
I − µ(1− δ)2E

[
Λi−1Λ

T
i−1

])
Ãi−1

× Ã
T

i−1

(
E
[
Λi−1Λ

T
i−1

]
−Λi−1Λ

T
i−1

))
≤ ρ2

(
I − µ(1− δ)2E

[
Λi−1Λ

T
i−1

])
‖Ãi−1‖2F

+ µ2‖(1− δ)2
(
E
[
Λi−1Λ

T
i−1

]
−Λi−1Λ

T
i−1

)
‖2F‖Ãi−1‖2F

+ µ2E
[
‖δ(1− δ)Λi−1(Li − L̄)T‖2F

∣∣F i−1

]
+ 2µ(1− δ)2 Tr

((
I − µ(1− δ)2E

[
Λi−1Λ

T
i−1

])
Ãi−1

× Ã
T

i−1

(
E
[
Λi−1Λ

T
i−1

]
−Λi−1Λ

T
i−1

))
, (70)

where ρ(·) refers to the spectral radius of its matrix argument.
In (a), only one cross-term in the form of a trace remains,
since the other terms are zero under conditional expectation.
Denoting

αi−1 , ρ2
(
I − µ(1− δ)2E

[
Λi−1Λ

T
i−1

])
+ µ2‖(1− δ)2

(
E
[
Λi−1Λ

T
i−1

]
−Λi−1Λ

T
i−1

)
‖2F,

(71)

we get

E
[
‖Ãi‖2F

∣∣F i−1

]
≤ αi−1‖Ãi−1‖2F

+ µ2E
[
‖δ(1− δ)Λi−1(Li − L̄)T‖2F

∣∣F i−1

]
+ 2µ(1− δ)2 Tr

((
I − µ(1− δ)2E

[
Λi−1Λ

T
i−1

])
Ãi−1

× Ã
T

i−1

(
E
[
Λi−1Λ

T
i−1

]
−Λi−1Λ

T
i−1

))
. (72)

Consider:

ρ2
(
I − µ(1− δ)2EΛi−1Λ

T
i−1

)
= max

{(
1− µ(1− δ)2λmin

(
EΛi−1Λ

T
i−1

))2

,(
1− µ(1− δ)2λmax

(
EΛi−1Λ

T
i−1

))2 }
= max{(1− µνi)2, (1− µκi)2} ≤ 1− 2µνi + µ2κ2

i . (73)

second term in (71) can be bounded as

µ2‖(1− δ)2
(
EΛi−1Λ

T
i−1 −Λi−1Λ

T
i−1

)
‖2F

≤ 2µ2‖(1− δ)2EΛi−1Λ
T
i−1‖2F + 2µ2‖(1− δ)2Λi−1Λ

T
i−1‖2F

≤ 2µ2‖(1− δ)2EΛi−1Λ
T
i−1‖2F + 2µ2‖(1− δ)2Λ̄i−1Λ̄T

i−1‖2F
(74)

12

where we use Lemma 1. To clarify, consider each squared
element

[Λi−1Λ
T
i−1]2k,`

=
(∑

j

[Λi−1]k,j [Λi−1]`,j

)2

≤
(∑

j

[|Λi−1|]k,j [|Λi−1|]`,j
)2

≤
(∑

j

[Λ̄i−1]k,j [Λ̄i−1]`,j

)2

= [Λ̄i−1Λ̄T
i−1]2k,`. (75)

Thus,

αi−1 ≤ 1− 2µνi + µ2κ2
i + 2µ2‖(1− δ)2EΛi−1Λ

T
i−1‖2F

+ 2µ2‖(1− δ)2Λ̄i−1Λ̄T
i−1‖2F

= 1− 2µνi +O(µ2). (76)

When µ is small enough, αi−1 is bounded away from one.
For simplicity of notations, consider next

αi−1 , 1− 2µνi +O(µ2). (77)

Returning to the other remaining terms in (72) we have:

µ2E
[
‖δ(1− δ)Λi−1(Li − L̄)T‖2F

∣∣F i−1

]
= µ2δ2(1− δ)2Tr

(
Λi−1RLΛT

i−1

)
, (78)

whereRL = E
(
Li − L̄

) (
Li − L̄

)T
is independent of i since

Li are i.i.d. By the law of total expectations, we rewrite (72)
using (78) and the fact that the last cross-term has zero mean:

E‖Ãi‖2F ≤ αi−1E‖Ãi−1‖2F
+ µ2δ2(1− δ)2Tr

(
E
[
Λi−1RLΛT

i−1

])
, (79)

where the following bound holds:

Tr
(
EΛi−1RLΛT

i−1

)
≤ |N |λmax(RL)λmax(EΛi−1Λ

T
i−1).

(80)

Let

γi = δ2κi|N |λmax(RL). (81)

Then, using (79) and (80) we get

E‖Ãi‖2F ≤ αi−1E‖Ãi−1‖2F + µ2γi. (82)

From Appendix D it follows that limi→∞ EΛiΛ
T
i is

positive-definite and convergent. Therefore,

ν , lim
i→∞

νi,

κ , lim
i→∞

κi (83)

are positive and finite. Thus, according to (77) and (81),

α , lim
i→∞

αi = 1− 2µν +O(µ2),

γ , lim
i→∞

γi = δ2κ|N |λmax(RL) (84)

are both positive, and α is bounded away from one. By
the definition of a sequence limit, ∀ε1, ε2 > 0, there exist
N(ε1, ε2) ∈ N such that ∀n ≥ N(ε1, ε2):

|αn − α| ≤ ε1,

|γn − γ| ≤ ε2. (85)

In the following, we will consider ε1 and ε2 bounded from
above:

ε1 < max{α, 1− α}
ε2 < γ (86)

so that (α − ε1, α + ε1) ⊂ (0, 1) and γ − ε2 > 0. We fix
n ≥ N(ε1, ε2) and take i > n. Then, (82) becomes

E‖Ãi‖2F ≤ αi−1E‖Ãi−1‖2F + µ2γi

≤ (α+ ε1)i−nE‖Ãn‖2F + µ2 (γ + ε2)

i−n∑
j=0

(α+ ε1)j . (87)

Since n is fixed and α + ε1 ∈ (0, 1), the steady-state
performance can be characterized by

lim sup
i→∞

E‖Ãi‖2F ≤
µ2(γ + ε2)

1− α− ε1
. (88)

The derived upper bound is independent of n, and the analysis
applies restrictions on ε1 and ε2 (85) only from above. Thus,
ε1 and ε2 can be chosen arbitrary small. Finally,

lim sup
i→∞

E‖Ãi‖2F <
µ2γ

1− α
. (89)

APPENDIX F
PROOF OF LEMMA 3

Consider the probability

pk,i = P(arg max
θ∈Θ

ψk,i(θ) 6= θ?) (90)

of choosing the wrong hypothesis for each agent k ∈ N at
time instant i ≥ 1. Without loss of generality, suppose that we
construct Λi (7) with θ0 = θ?. Then, clearly,

pk,i = P (∃j : [Λi]k,j ≤ 0) ≤
|Θ|−1∑
j=1

P ([Λi]k,j ≤ 0) . (91)

As i→ 0, the above inequality is transformed to:

pk ≤
∑
j

P ([Λ]k,j ≤ 0) , (92)

where pk , limi→∞ pk,i, and Λ = limi→∞Λi is given by
Lemma 1. Each element of Λ has the following form:

[Λ]k,j = δ

∞∑
t=0

(1− δ)t
∑
`

[At?]`,k[Lt]`,j =
∑
`∈Nk

s(`,k)(θj)

(93)

with

z
(`)
t (θj) , [Lt]`,j

α
(`,k)
t , [At?]`,k

s(`,k)(θj) = δ

∞∑
t=0

(1− δ)tα(`,k)
t z

(`)
t (θj). (94)

Since limi→∞(AT
?)i = 1uT, where u is the Perron eigenvec-

tor [21], the sequence α(`)
t converges to 0 < limt→∞ α

(`)
t ≤ 1.

The random variables z(`)
t (θj) are i.i.d. w.r.t. time t, and

their expectations are non-negative with at least one positive

13

element (Assumption 3). To finish the proof, we refer to the
original theorem [6, Theorem 2]) proof, where the behavior
of partial sums s(`,k)(θj) of form (94) is studied.

APPENDIX G

Iterating (9) we have:

Λi = (1− δ)i
(
Ai?
)T

Λ0 + δ

i−1∑
t=0

(1− δ)t (At?)
TLi−t. (95)

Each element is represented by:

[Λi]k,j = (1− δ)i
∑
k′∈N

[Ai?]k′,k[Λ0]k′,j

+ δ

i−1∑
t=0

(1− δ)t [At?]k′,k[Li−t]k′,j . (96)

For t < i, consider the derivative

∂[Λi]k,j
∂[Lt]`,j

= δ(1− δ)i−t
∑

p`,k(v1,...,vi−t−1)

a`,v1 . . . avi−t−1,k
,

(97)

where the sum is taken over all possible paths of length it′

from node ` to node k. To avoid confusion, we clarify the case
when i = t:

∂[Λi]k,j
∂[Li]`,j

=

{
δa`,`, if ` = k,

0, otherwise.

Thus, the influence ηd(`, k) has the following representation:

ηd(`, k) =

|Θ|−1∑
j=1

d∑
r=1

∂[Λd]k,j
∂[Lr]`,j

= (|Θ| − 1)δ

d−1∑
r=0

(1− δ)r
∑

v1,...,vr∈N
a`,v1 . . . avr,k . (98)

APPENDIX H

We rewrite the optimization problem using the definition of
path influence (36):

p?`,k = arg max
p∈Pd

`,k

{I (p)}

= arg max
p∈Pd

`,k

{
log

(
(|Θ| − 1)δ(1− δ)r

∏
(`′,k′)∈p

a`′k′

)}

= arg min
p∈Pd

`,k

{
− log(|Θ| − 1)− log δ − r log(1− δ)

−
∑

(`′,k′)∈p

log a`′k′

}

= arg min
p∈P`,k

{
−

∑
(`′,k′)∈p

(
log a`′k′ + log (1− δ)

)}
,

(99)

where r is the length of a particular path p.

REFERENCES

[1] V. Shumovskaia, K. Ntemos, S. Vlaski, and A. H. Sayed, “Online graph
learning from social interactions,” in Proc. Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, 2021, pp. 1263–
1267.

[2] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
bayesian social learning,” Games and Economic Behavior, vol. 76, no. 1,
pp. 210–225, 2012.

[3] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates
for distributed non-bayesian learning,” IEEE Transactions on Automatic
Control, vol. 62, no. 11, pp. 5538–5553, 2017.

[4] P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie, “Foundations of non-
bayesian social learning,” Columbia Business School Research Paper,
no. 15-95, 2017.

[5] ——, “A theory of non-bayesian social learning,” Econometrica, vol. 86,
no. 2, pp. 445–490, 2018.

[6] V. Bordignon, V. Matta, and A. H. Sayed, “Adaptive social learning,”
IEEE Transactions on Information Theory, vol. 67, no. 9, pp. 6053–
6081, 2021.

[7] ——, “Social learning with partial information sharing,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 2020, pp. 5540–5544.

[8] A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and distributed
hypothesis testing,” IEEE Transactions on Information Theory, vol. 64,
no. 9, pp. 6161–6179, 2018.

[9] X. Zhao and A. H. Sayed, “Learning over social networks via diffusion
adaptation,” in 2012 Conference Record of the Forty Sixth Asilomar
Conference on Signals, Systems and Computers (ASILOMAR). IEEE,
2012, pp. 709–713.

[10] D. Gale and S. Kariv, “Bayesian learning in social networks,” Games
and Economic Behavior, vol. 45, no. 2, pp. 329–346, 2003.

[11] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian
learning in social networks,” The Review of Economic Studies, vol. 78,
no. 4, pp. 1201–1236, 2011.

[12] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and
K.-R. Müller, “How to explain individual classification decisions,” The
Journal of Machine Learning Research, vol. 11, pp. 1803–1831, 2010.

[13] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey
on explainable artificial intelligence (XAI),” IEEE Access, vol. 6, pp.
52 138–52 160, 2018.

[14] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in Proc. IEEE Intern. Conference on Data Science and
Advanced Analytics (DSAA),. Turin, Italy: IEEE, 2018, pp. 80–89.

[15] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82–115, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1566253519308103

[16] A. Heuillet, F. Couthouis, and N. Dı́az-Rodrı́guez, “Collective explain-
able AI: Explaining cooperative strategies and agent contribution in
multiagent reinforcement learning with shapley values,” IEEE Compu-
tational Intelligence Magazine, vol. 17, no. 1, pp. 59–71, 2022.

[17] J. J. Ohana, S. Ohana, E. Benhamou, D. Saltiel, and B. Guez, “Ex-
plainable AI (XAI) models applied to the multi-agent environment of
financial markets,” in International Workshop on Explainable, Transpar-
ent Autonomous Agents and Multi-Agent Systems. Springer, 2021, pp.
189–207.

[18] J. Ho and C.-M. Wang, “Explainable and adaptable augmentation in
knowledge attention network for multi-agent deep reinforcement learn-
ing systems,” in 2020 IEEE Third International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE), 2020, pp. 157–161.

[19] S. Vlaski, S. Kar, A. H. Sayed, and J. M. F. Moura, “Networked signal
and information processing,” arXiv:2210.13767, 2022.

[20] T. Wang, J. Wang, Y. Wu, and C. Zhang, “Influence-based multi-agent
exploration,” arXiv preprint arXiv:1910.05512, 2019.

[21] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends® in Machine Learning, vol. 7, no. 4-5, pp. 311–
801, 2014. [Online]. Available: http://dx.doi.org/10.1561/2200000051

[22] ——, Inference and Learning from Data. Cambridge University Press,
2023, vols. 1–3.

[23] V. Kalofolias, “How to learn a graph from smooth signals,” in Artificial
Intelligence and Statistics. PMLR, 2016, pp. 920–929.

https://www.sciencedirect.com/science/article/pii/S1566253519308103
http://dx.doi.org/10.1561/2200000051

14

[24] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data
under laplacian and structural constraints,” IEEE Journal of Selected
Topics in Signal Processing, vol. 11, no. 6, pp. 825–841, 2017.

[25] S. Vlaski, H. P. Maretić, R. Nassif, P. Frossard, and A. H. Sayed,
“Online graph learning from sequential data,” in Proc. IEEE Data
Science Workshop (DSW), Lausanne, Switzerland, 2018, pp. 190–194.

[26] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Processing
Magazine, vol. 36, no. 3, pp. 44–63, 2019.

[27] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat,
“Characterization and inference of graph diffusion processes from
observations of stationary signals,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 4, no. 3, pp. 481–496, 2017.

[28] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat diffu-
sion graphs,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 3, no. 3, pp. 484–499, 2017.

[29] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero, “Learning sparse graphs
under smoothness prior,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2017, pp. 6508–6512.

[30] R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, “Network
topology inference from non-stationary graph signals,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017, pp. 5870–5874.

[31] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network
topology identification from spectral templates,” in IEEE Statistical
Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 2016,
pp. 1–5.

[32] I. Viola, H. P. Maretic, P. Frossard, and T. Ebrahimi, “A graph learning
approach for light field image compression,” in Applications of Digital
Image Processing XLI, vol. 10752. International Society for Optics and
Photonics, 2018, p. 107520E.

[33] S. Sardellitti, S. Barbarossa, and P. Di Lorenzo, “Graph topology
inference based on transform learning,” in IEEE Global Conference on
Signal and Information Processing (GlobalSIP), Greater Washington,
D.C., USA, 2016, pp. 356–360.

[34] H. P. Maretic, D. Thanou, and P. Frossard, “Graph learning under
sparsity priors,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp.
6523–6527.

[35] S. Shi, G. Bottegal, and P. M. Van den Hof, “Bayesian topology
identification of linear dynamic networks,” in IEEE European Control
Conference (ECC), Naples, Italy, 2019, pp. 2814–2819.

[36] S. Shahrampour and V. M. Preciado, “Reconstruction of directed net-
works from consensus dynamics,” in IEEE American Control Confer-
ence, Washington, DC, 2013, pp. 1685–1690.

[37] S. Hassan-Moghaddam, N. K. Dhingra, and M. R. Jovanović, “Topol-
ogy identification of undirected consensus networks via sparse inverse
covariance estimation,” in IEEE Conference on Decision and Control
(CDC), Las Vegas, NV, 2016, pp. 4624–4629.

[38] C. Liu, J. He, S. Zhu, and C. Chen, “Dynamic topology inference
via external observation for multi-robot formation control,” in Pacific
Rim Conference on Communications, Computers and Signal Processing
(PACRIM), Auckland, New Zealand, 2019, pp. 1–6.

[39] H. Ma, H. Yang, M. R. Lyu, and I. King, “Mining social networks
using heat diffusion processes for marketing candidates selection,” in
Proceedings of the 17th ACM conference on Information and knowledge
management, 2008, pp. 233–242.

[40] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–
441, 2008.

[41] V. Matta, A. Santos, and A. H. Sayed, “Graph learning with partial
observations: Role of degree concentration,” in IEEE International
Symposium on Information Theory (ISIT), Paris, France, 2019, pp. 1312–
1316.

[42] A. H. Sayed, “Diffusion adaptation over networks,” in Academic Press
Library in Signal Processing, R. Chellapa and S. Theodoridis, Eds.
Academic Press, Elsevier, 2014, vol. 3, pp. 323–454.

[43] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, NY, 2013.

[44] A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and distributed
hypothesis testing,” IEEE Transactions on Information Theory, vol. 64,
no. 9, pp. 6161–6179, 2018.

[45] A. Michotte, The perception of causality. Routledge, 2017, vol. 21.
[46] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[47] J.-C. Chen, “Dijkstra’s shortest path algorithm,” Journal of formalized

mathematics, vol. 15, no. 9, pp. 237–247, 2003.

[48] V. Matta, A. Santos, and A. H. Sayed, “Graph learning under partial
observability,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2049–
2066, 2020.

	I Introduction
	II Social Learning Model
	III Inverse Modeling Problem
	III-A Problem Statement
	III-B Likelihood and Beliefs Ratios
	III-C Algorithm Development
	III-D True State Learning

	IV Agent Influence and Explainability
	V Computer Simulations
	V-A Setup
	V-B Graph learning
	V-C Agent Influence

	VI Conclusions
	Appendix A
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Lemma 2
	Appendix D
	Appendix E: Proof of Theorem 1
	Appendix F: Proof of Lemma 3
	Appendix G
	Appendix H
	References

