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Spline-Like Wavelet Filterbanks with Perfect
Reconstruction on Arbitrary Graphs

Junxia You and Lihua Yang

Abstract—In this work, we propose a class of spline-like
wavelet filterbanks for graph signals. These filterbanks possess
the properties of critical sampling and perfect reconstruction.
The analysis filters are localized in the graph domain because
they are polynomials in the normalized adjacency matrix of the
graph. We generalize the spline-like filters in the literature so that
the lowpass filter and the highpass filter can respectively remove
the s highest frequency components and the r lowest frequency
components of the signal, where r and s are hyperparameters
specified by the users. Optimization models are formulated
for the analysis filters to approximate the desired responses.
Experimental results demonstrate the good locality and denoising
ability of the proposed filterbanks.

Index Terms—Graph signal processing, graph wavelet filter-
bank, spline-like filters

I. INTRODUCTION

In recent years, complex data analysis is widely concerned.
In many applications, data structures such as social networks,
sensor networks and biological networks can be modelled as
graphs, and the data residing on these graphs are called graph
signals. With the rise of big data science, theoretical and
applied research on graph signal processing (GSP) becomes
increasingly important. Researchers are working to extend the
theory and methods in classical signal processing to GSP.
Theories about graph Fourier transform, graph filters, graph
wavelets and Multiresolution analysis (MRA) on graph signals
are developed [22], [27], [8], [23]. In terms of application, GSP
methods are also widely used in such as point clouds analysis
[12], [14], deep neural networks and computer vision [15].
However, due to the irregularity of graph structure, there are
still many challenges in this field.

Wavelet analysis of graph signals is an important topic
in GSP. Researchers have developed different types of graph
wavelets. In [5], Crovella and Kolaczyk constructed a series of
compactly supported simple functions on each neighbourhood
of every vertex as graph wavelet functions. Coifman and Mag-
gioni proposed the concept of diffusion wavelets in [4]. Gavish
et al. [8] first constructed multiscale wavelet-like orthonormal
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bases on hierarchical trees. Hammond et al. [11] constructed
wavelet transforms in the graph domain based on the spectral
graph theory. In follow-up work, they designed an almost tight
wavelet frame based on the polynomial filters [26]. In [23],
Shuman et al. proposed a modular framework–a multiscale
pyramid transform for graph signals. All these wavelets are
not critically sampled, the output has more components than
the input signal, which leads to the waste of space for storing
redundant information. Critically sampled wavelet filterbanks
have also been proposed in many works. Narang and Ortega
developed the two channel filterbanks composed of graph
quadrature mirror filters and the compact support biorthogonal
filterbanks in [20], [18]. Ekambaram et al. proposed the spline-
like filterbanks in [7]. The exponential spline filterbanks on
circulant graphs are proposed by Kotzagiannidis and Dragotti
in [13], and the modified spline filterbanks are proposed by
Miraki et al. in [16] and [17]. Especially, the shceme proposed
in [17] utilizes the spectral domain sampling method proposed
in [25].

The classical wavelets can capture local information of
signals in the time domain, i.e., each sample of the transformed
signal is computed by using the samples from a small neigh-
bourhood of the original signal. This property enables wavelets
to capture the details of the signal. Thus, we are interested in
the spline-like filterbanks proposed in [7], since the analysis
filters are polynomials in the normalized adjacency matrix of
the graph, which leads to the locality of filters in the graph
domain.

The authors of [7] provide results on the perfect recon-
struction property of their proposed spline-like filterbanks,
and formulate optimization models to obtain the desired fil-
ter responses. The filterbanks have the advantage of critical
sampling, and the analysis filters are well localized in the
graph domain. However, the lowpass filter they designed
cannot remove the highest frequency component of the signal
unless it is a degree-1 polynomial in the normalized adjacency
matrix and the graph is bipartite, as discussed later in Section
II-C. This will impair the denoising ability of the filterbanks.
Therefore, we extend their work to enable the filterbanks with
better denoising capability. The novelty and main contributions
of this paper are summarized as follows.

We propose a class of spline-like filterbanks in which the
lowpass (highpass) filter can remove more than one high-
frequency (low-frequency) components of the signals. A per-
fect reconstruction theorem is established where the sampling
pattern is required to meet some mild conditions and an
algorithm is proposed to obtain the effective sampling pattern.
Similarly, optimization problems are formulated for the anal-
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ysis filters to approximate the desired frequency responses.
We also construct filterbanks based on the non-normailzed
adjacency matrices, which is useful in some applications that
require the highpass filter to eliminate the direct current (DC)
signal. Besides, through a counterexample we point out a small
flaw in the perfect reconstruction theorem in [7] and give a
correction.

This paper is organized as follows: in Section II, we
introduce some basic concepts related to the graph filterbanks
and introduce the design in [7] to motivate our work. In
Section III, we describe the proposed generalized spline-like
filterbanks, and provide sufficient conditions for the filterbanks
to be perfectly reconstructed. Besides, we give an algorithm to
obtain sampling patterns that satisfy the perfect reconstruction
conditions and formulate optimization models for the filters
to approximate desired responses. In Section IV, experiments
are conducted to demonstrate the effectiveness of the proposed
filterbanks compared to the related work. Finally, we make
a conclusion and discuss the limitation and future work in
Section V.

II. PRELIMINARY

A. Notations

We use bold letters for matrices and vectors, calligraphic
capital letters for sets, and normal letters for scalars.

The i-th entry of a vector x is denoted by xi or x(i). The
(i, j)-th entry of a matrix A is denoted by A(i, j). Assume that
I1, I2 are two subsets of {1, ..., N}, then A(I1, I2) denotes
the submatrix consisting of entries of A whose row indices
are in I1 and column indices are in I2. Let IN represent the
identity matrix of order N and 1,0 respectively represent the
all-ones vector and the null vector whose sizes can be seen
from the context.

The superscript > denotes transposition. diag(·) maps a vec-
tor to a diagonal matrix, or a matrix to its main diagonal vector.
The infinity norm and 2-norm of a vector x ∈ RN are defined
as ‖x‖∞ = max1≤i≤N |xi| and ‖x‖2 = (

∑N
i=1 |xi|2)

1
2 ,

respectively. x > (≥)0 means that all entries of x are positive
(non-negative). The 2-norm of a matrix, denoted by ‖A‖2, is
defined as the largest singular value of A. The cardinality of
a set V is written as |V|.

B. Graph and Graph Fourier Transform

A graph can be denoted as G = (V, E ,A) with vertex
set V = {1, ..., N}, edge set E = {(i, j)| i ∼ j} and
adjacency matrix A, where i ∼ j means that vertices i and
j are connected. We only consider connected, undirected and
weighted graphs without self-loops or multiple edges in this
paper. The elements of A indicate the adjacency relationship
of pairs of vertices such that A(i, j) > 0 if (i, j) ∈ E and
A(i, j) = 0 otherwise. Let D = diag(d1, ..., dN ) denote the
degree matrix of A, where di =

∑N
j=1 A(i, j) is the degree

of vertex i.
Due to the connectivity of G, D is non-singular. Thus,

we can define the symmetric normalized adjacency matrix as
AS = D−

1
2 AD−

1
2 . Correspondingly, the symmetric normal-

ized Laplacian matrix of G is defined as LS = IN − AS

[3]. Since LS is real symmetric and positive semi-definite,
there exists a set of orthonormal eigenvectors {ul}Nl=1 and
real eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λN such that LS =
UΛU>, where U = (u1, ...,uN ) and Λ = diag(λ1, ..., λN ).
Obviously, the eigendecomposition of AS can be written as
AS = Udiag(ξ1, ..., ξN )U> with ξi = 1 − λi. In the rest of
the paper, {ui}Ni=1 and U will always denote the eigenvectors
and the corresponding eigenmatrix of LS, and ui is called the
i-th Fourier basis vector of frequency λi which increases as
i goes from 1 to N .

A graph signal x : V → R is a function defined on the
vertices of the graph. If the labels of the vertices are fixed,
the signal can also be written as a vector x ∈ RN . In this
paper, we define the graph Fourier transform (GFT) of signal
x as x̂ = U>x [24]. Thus, x can be represented as x =∑N
l=1 x̂(l)ul, and x̂(l)ul is referred to as the component of x

with frequency λl.

C. Two-Channel Filterbanks and Related Work

A two-channel filterbank is shown in Figure 1. It is a
collection of filters and samplers. The filters HL,HH are
called analysis filters and the filter HINV is called synthesis
filter, where the subscript L represents lowpass (LP) and H

represents highpass (HP). The downsampler and the upsampler
are denoted by ↓ and ↑ respectively.

x
HL ↓L process ↑L

HH ↓H process ↑H
H

INV
y

Fig. 1. A two-channel filterbank.

Given a graph signal x ∈ RN , the analysis filters HL,HH

attenuate the high and low frequency components of x re-
spectively. After that, the filtered signal in each channel will
be downsampled to produce signals yL = (↓L)HLx and
yH = (↓H)HHx. If the sum of lengths of yL and yH equals
N , the filterbank is said to be critically sampled. In this case,
we can define a sampling matrix K = diag(k1, ..., kN ) with
ki ∈ {1,−1},∀i = 1, .., N such that yL is a subvector of HLx
with indices in {i|ki = 1} and yH is a subvector of HHx with
indices in {i|ki = −1}.

After downsampling, the signals may be encoded for trans-
mission or storage, which may result in loss of information.
To construct a perfect reconstruction filterbank such that
y = x, we omit the processing stage, i.e., upsample the signals
immediately after downsampling. Thus, we have

y = HINV

[1
2
(IN + K)HL +

1

2
(IN −K)HH

]
x. (1)

The filterbank is perfectly reconstructed if and only if (iff)

HINV

[1
2
(IN + K)HL +

1

2
(IN −K)HH

]
= IN . (2)
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Inspired by the classical first-order spline filters, the authors
of [7] designed a class of spline-like analysis filters for the
two-channel filterbanks on graphs, which are

HS
L =

1

2

(
IN +

J∑
l=1

wl(A
S)l
)
,

HS
H =

1

2

(
IN −

J∑
l=1

wl(A
S)l
)
,

(3)

where the weights w1, ..., wJ are positive scalars. The corre-
sponding filter responses are given as

hS
L(i) =

1

2

(
1 +

J∑
l=1

wlξ
l
i

)
,

hS
H(i) =

1

2

(
1−

J∑
l=1

wlξ
l
i

)
,

i = 1, ..., N. (4)

The weights give us the flexibility to optimize the filter re-
sponses to the desired responses. Degree J is a hyperparameter
to be specified. The smaller J is, the better the locality of filters
in the graph domain (vertex domain). Let us take an example
to illustrate the locality of filters in the graph domain. When
J = 1, we have

(HS
Lx)(i) =

1

2

(
xi + w1

∑
AS(i,j)>0

xjA
S(i, j)

)
. (5)

It is clear that (HS
Lx)(i) is determined by the entries

of x located on the one-hop neighbourhood of vertex
i. A k-hop neighbourhood of vertex i is defined as
{j|

[∑k
l=1(A

S)l
]
(i, j) > 0}.

The authors of [7] provided sufficient conditions for perfect
reconstruction of the filterbanks with analysis filters defined
in (3).

Theorem 1. [7] For any connected graph, the spline filters
defined in (3) form a critically-sampled, perfect reconstruction
filterbank for any downsampling pattern, as long as the
weights satisfy one of the following properties:{

wl > 0, l = 1, ..., J,∑J
l=1 wl = 1,

or
∣∣∣ J∑
l=1

wlξ
l
i

∣∣∣ > 1, (6)

for any i = 1, ..., N , where {ξi}Ni=1 are the eigenvalues of AS.

We point out that the theorem is not mathematically accurate
in the extreme case where J = 1 and K = IN , i.e., the down-
sampling pattern does not retain any highpass components.
A counterexample is given below. When J = 1, there holds
w1 = 1 and thus HS

L = 1
2 (IN + AS). If −1 is an eigenvalue

of AS (i.e., the graph is bipartite [2]), then 0 is an eigenvalue
of HS

L. In this case,

1

2
(IN + K)HS

L +
1

2
(IN −K)HS

H = HS
L, (7)

and HS
L is irreversible. Consequently, there is no matrix HS

INV

satisfying the perfect reconstruction equation (2). However, the
conclusion of the theorem can be proven correct if the down-
sampling pattern preserves at least one lowpass component
and one highpass component, i.e., K 6= ±IN .

By Theorem 1, one can formulate an optimization model
to optimize the weights w1, ..., wJ to obtain the desired
filter responses while satisfying the conditions for perfect
reconstruction. For example, a least-square formulation is as
follows [7]:

min
w∈RJ

‖Hdes −HS
L‖2

s.t. w>1J = 1,

w > 0,

(8)

where w = [w1, ..., wJ ]
> and Hdes is a desired lowpass

filter. Figure 6 in [7] shows an example of lowpass and
highpass spline-like filter responses on the Tapir dataset, where
J = 10 and Hdes is an ideal lowpass filter. We notice that
the filter responses in the figure have a wide range from 0
to 1015 and the lowpass response approaches 0 near zero
frequency, making it a bandpass filter instead of a lowpass
filter. In addition, the presented “highpass” filter is not actually
highpass since the filter response has high amplitude in the
low frequency region and low amplitude in the high frequency
region.

We find that under the first set of conditions of Theorem
1, the highpass filter HS

H has a zero response to the lowest
frequency Fourier basis vector u1 (while the second set of
conditions does not guarantee this), but the lowpass filter
HS

L has a non-zero response to uN , the highest frequency
Fourier basis vector, unless J = 1 and the graph is bipartite.
This is because under the first set of conditions, the LP filter
response hS

L(i) = 0 iff
∑J
l=1 wlξ

l
i = −1, which can only be

achieved when J = 1 and ξi = −1. However, there exists
an eigenvalue ξi = −1 iff the graph is bipartite. This fact
weakens the denoising ability of the analysis filters for non-
bipartite graphs. In Section III, we improve their design so that
the LP filter has zero responses to the s Fourier basis vectors
{ui}Ni=N−s+1 with the highest frequencies and the HP filter
has zero responses to the r Fourier basis vectors {ui}ri=1 with
the lowest frequencies, where r, s ≥ 1 are hyperparameters
specified by the users.

III. GENERALIZATION

A. Main Theorem

Hereafter, we consider analysis filters of the form:{
HL = 1

2 (IN +
∑J
l=1 wl(A

S)l−1)

HH = 1
2 (IN −

∑J
l=1 wl(A

S)l−1)
, (9)

where w = [w1, ..., wJ ]
> ∈ RJ and J ≥ 2. Recall that AS =

Udiag(ξ1, ..., ξN )U>. For simplicity, denote

G =

J∑
l=1

wl(A
S)l−1, γi =

J∑
l=1

wlξ
l−1
i ,

Γ = diag(γ1, ..., γN ).

Then G = UΓU>. Similar to the scheme proposed in [7], we
will optimize the weights w for the desired filter responses
while maintaining the perfect reconstruction property of the
filterbank.
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There are some discussions before giving the formulation.
Given a sampling matrix K and analysis filters HL,HH,
the filterbank is perfectly reconstructed iff the synthesis filter
HINV exists such that (2) holds. A simple calculation shows
that

1

2
(IN + K)HL +

1

2
(IN −K)HH =

1

2
(IN + KG). (10)

Thus, HINV exists iff IN + KG is invertible, in which case
HINV = 2(IN + KG)−1. Next, we will design K and G so
that the following two conditions are satisfied:

(1◦) IN + KG is invertible;
(2◦) HLui = 0, i = N − s + 1, ..., N and HHui = 0, i =

1, ..., r, where r ≥ 1, s ≥ 1 are hyperparameters.

Since G = UΓU>, we actually need to determine Γ
and K. The entire process is as follows: first, we provide
Theorem 2 which states the sufficient conditions for Γ and
K to satisfy (1◦) and (2◦). Second, according to the theorem,
we formulate optimization models in Section III-B to compute
the weights w, which determines Γ, and provide an algotithm
in Section III-C to partition the vertex set V into two disjoint
subsets {A,B}, which gives K. The process of constructing
the proposed filterbank is shown in Figure 2.

Specify the hyperparameters
(r, s, J)

Solve the optimization
models to obtain w

Compute a partition {A,B}
by Algorithm 1 and

obtain the corresponding K

Calculate the synthesis
filter as

HINV = 2(IN + KG)−1

Fig. 2. The diagram of the whole process of constructing the proposed
filterbank.

In the following, let Ir = {1, ...r}, Is = {N+1−s, ..., N}.
U(A, Ir) denotes the submatrix consisting of entries of U
with row indices in A and column indices in Ir. U(B, Is)
has a similar meaning.

Theorem 2. Given r ≥ 1, s ≥ 1 satisfying r+s ≤ N . Assume
that the eigenvalues of G satisfy

γ1 = · · · = γr = 1, γN+1−s = · · · = γN = −1 (11)

and one of the following two sets of conditions:

|γi| < 1, ∀r < i < N + 1− s,
or

|γi| > 1, ∀r < i < N + 1− s.
(12)

Then

(IN −G)ui = 0, ∀i = 1, ..., r,

(IN + G)ui = 0, ∀i = N − s+ 1, ..., N.
(13)

Furthermore, if the vertex set V = {1, ..., N} can be par-
titioned into two disjoint subsets A,B such that both the
submatrices U(A, Ir) and U(B, Is) are of full column rank,

then IN + KG is invertible, where K is a diagonal matrix
satisfying

K(i, i) =

{
1, i ∈ A,
−1, i ∈ B.

(14)

Proof. 1) By G = UΓU>, it is easy to prove (13).
2) Suppose x ∈ RN lies in the null space of IN +KG, i.e.,

(IN + KUΓU>)x = 0. Let y = U>x, then

0 = ‖x‖22 − ‖KUΓU>x‖22

= ‖y‖22 − ‖Γy‖22 =

N∑
i=1

(1− γ2i )y2i .
(15)

The second equality holds because the orthogonal transfor-
mation preserves the 2-norm of a vector and both K,U are
orthogonal matrices.

Since γ2i < 1 or γ2i > 1 for all r < i < N + 1 − s, all
corresponding yi are 0. Thus,

x = Uy =

r∑
i=1

yiui +

N∑
i=N+1−s

yiui, (16)

and

Gx = UΓy =

r∑
i=1

yiui −
N∑

i=N+1−s
yiui. (17)

Denote x1 =
∑r
i=1 yiui and x−1 =

∑N
i=N+1−s yiui. Com-

bining (16) and (17) with (IN + KG)x = 0 gives

x1 + x−1 + Kx1 −Kx−1 = 0. (18)

Premultiplying K on both sides of (18) gives

x1 − x−1 + Kx1 + Kx−1 = 0. (19)

Calculating the sum and difference of (18) and (19) shows that

(IN + K)x1 = (IN −K)x−1 = 0. (20)

According to the definition of K, there must hold

x1(i) = 0, ∀i ∈ A, x−1(i) = 0, ∀i ∈ B. (21)

Since x1 =
∑r
i=1 yiui and U(A, Ir) has full column rank,

there holds y1 = · · · = yr = 0. Similarly, yN+1−s = · · · =
yN = 0. Therefore, x = x1 + x−1 = 0, and IN + KG is
invertible.

Remark: Note that if both r and s are too large, there may
not exist a partition {A,B} of vertices such that both U(A, Ir)
and U(B, Is) are of full column rank. But in practice, we
usually set r and s to be numbers much smaller than N , in
which case finding such a partition is generally not difficult
and even full of options.

Next, consider a special case where the intrinsic graph
Gb = {Vb, Eb,Ab} is bipartite, that is, the vertex set Vb can
be partitioned into two disjoint subsets A,B (which are called
two parts of Gb) such that connections exist only between A
and B. Then a natural sampling pattern is to keep one of the
two parts in the lowpass channel and the other in the highpass
channel [20], [18]. We will provide sufficient conditions for
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the filterbank to be perfectly reconstructed under this sampling
pattern.

We first introduce some notations. Suppose Gb is connected.
Let AS

b be the normalized adjacency matrix of Gb whose eigen-
decomposition is AS

b = Ubdiag(ξ
b
1, ..., ξ

b
N )U>b . The eigenval-

ues {ξbi }Ni=1 are assumed to be in descending order. Similarly,
define Gb =

∑J
l=1 wl(A

S
b )
l−1. It can also be written as

Gb = Ubdiag(γ
b
1, ..., γ

b
N )U>b , where γbi =

∑J
l=1 wl(ξ

b
i )
l−1,

∀i = 1, ..., N .

Proposition 3. If 1 ≤ r, s ≤ 1
2 rank(A

S
b ), then both Ub(A, Ir)

and Ub(B, Is) are full column rank. Define Kb as a diagonal
matrix with

Kb(i, i) =

{
1, i ∈ A,
−1, i ∈ B.

(22)

If the eigenvalues {γbi }Ni=1 of Gb satisfy the conditions (11)
and (12) in Theorem 2, then IN + KbGb is invertible.

Proof. Since Gb is bipartite, we can label the vertices so
that

AS
b =

(
0 R

R> 0

)
,

where R ∈ R|A|×|B|. Denote vi the i-th column of Ub and
write vi as vi = [v>iA,v

>
iB]
>, where viA and viB are the

subvectors of vi whose indices are respectively in A and B.
Since Gb is bipartite, it is known that if [v>iA,v

>
iB]
> is

an eigenvector of AS
b associated with eigenvalue ξbi , then

[v>iA,−v>iB]
> is an eigenvector of AS

b associated with eigen-
value −ξbi [3]. Suppose {ξbi }Ni=1 has p positive terms, then it
also has p negative terms. Hence, rank(AS

b ) = 2p.
For any 1 ≤ i ≤ N satisfying ξbi 6= 0, we have

AS
b

[
viA
viB

]
= ξbi

[
viA
viB

]
, AS

b

[
viA
−viB

]
= ξbi

[
−viA
viB

]
. (23)

Adding or subtracting these two equations gives

AS
b

[
viA
0

]
= ξbi

[
0

viB

]
, AS

b

[
0
−viB

]
= ξbi

[
viA
0

]
, (24)

which implies that viA = 0 if and only if viB = 0. Since
‖viA‖22 + ‖viB‖22 = ‖vi‖22 = 1, we conclude that viA and
viB are both non-zero.

Now we turn to prove that Ub(A, Ir) has full column rank.
For any i < j ≤ r ≤ p, since {ξbi }Ni=1 are in descending order,
we have ξbi , ξ

b
j > 0. Therefore, as discussed above, both viA

and vjA are non-zero vectors. Considering ξbi > 0, we know
that −ξbi < 0 is also an eigenvalue of AS

b whose associated
eigenvector is v−i = [v>iA,−v>iB]

>. Thus,

v>i vj = v>iAvjA + v>iBvjB = 0,

v>−ivj = v>iAvjA − v>iBvjB = 0,
(25)

which implies that v>iAvjA = 0. Consequently, Ub(A, Ir) has
full column rank.

Similarly, we can show that Ub(B, Is) also has full column
rank. The invertibility of IN +KbGb is a direct consequency
of Theorem 2.

Proposition 3 shows that we can employ the commonly used
sampling pattern when the graph is bipartite. Besides, other

sampling patterns can also be chosen as long as the conditions
proposed in Proposition 3 are met. This is useful when the
bipartite graph has an unbalanced partition of vertices, i.e.
the sizes of the two parts |A|, |B| differ a lot in which case
the natural sampling pattern may lead to a low compression
ratio (keep the larger part in LP channel) or a great loss of
information (keep the smaller part in LP channel). Then we
can search for other sampling patterns to produce a balanced
partition that satisfy the conditions.

B. Formulating the Optimization Problems

By definition, G is determined by the weights w ∈ RJ
when the graph is given. In order to obtain the desired filter
responses, optimization models will be formulated to compute
w. For example, we can minimize ‖HL − Hideal‖2 to make
HL approximate the ideal lowpass filter Hideal whose response
is given as:

hideal(k) =

{
1, ξk ≥ ξ0,
0, otherwise,

, k = 1, ..., N (26)

where ξ0 ∈ [ξN , ξ1] is a pre-determined threshold and {ξk}Nk=1

are the eigenvalues of AS in descending order.
We will list the constraints of the optimization model to

meet the conditions in Theorem 2. Without loss of generality,
assume that the eigenvalues {ξi}Ni=1 of AS are distinct. For
a fixed J ≥ 2, let C ∈ RN×J be the Vandermonde matrix
generated by {ξi}Ni=1, i.e.,

C =


1 ξ1 · · · ξJ−11

1 ξ2 · · · ξJ−12
...

...
. . .

...
1 ξN · · · ξJ−1N

 ,
recall that G =

∑J
l=1 wl(A

S)l−1 = UΓU>, then Γ =
diag(Cw). Thus, the analysis filter responses are given as

hL =
1

2
(1 + Cw), hH =

1

2
(1−Cw). (27)

Let Cr,Cs and Cm respectively denote the submatrices
formed by the first r rows, the last s rows and the rest rows
of C. Consider the first set of conditions in Theorem 2:

γ1 = · · · = γr = 1, γN+1−s = · · · = γN = −1,
γi ∈ (−1, 1), i = r + 1, ..., N − s,

and construct such a convex optimization problem:
min
w∈RJ

‖hideal − 1
2 (1 + Cw)‖∞

s.t. Crw = 1r

Csw = −1s

|Cmw| < 1N−r−s

. (28)

Note that the objective function is actually equivalent to
‖Hideal −HL‖2.

When r = s = 1, the problem (28) is always feasible for
any J ≥ 2, since

w = [−ξN + 1

1− ξN
,

2

1− ξN
, 0, ..., 0] ∈ RJ
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is in the feasible domain (note that ξ1 = 1). While in
other cases, one should pay close attention to the feasibility
of the problem since we cannot guarantee that the feasible
domain is non-empty for all settings of r, s, J . Therefore, it
is recommended to take r = s = 1 if you do not want to test
the feasibility of the problem with r, s, J in other settings.

Recall that the spline-like filters are localized in the graph
domain, and the smaller J is, the better the locality. However,
low-order polynomials may not provide a good approximation
of the ideal lowpass filter, as shown in the left of Figure
3, unexpected peaks and valleys may appear in the middle
section of the polynomial filter response. For this rationale, we
would like to add a regularization term R(hL) to the original
objective function to improve the smoothness of hL. Denote
pL the polynomial associated with hL, i.e.,

pL(x) = 1 +

J∑
l=1

wlx
l−1, x ∈ [ξN , ξ1].

Consider the 2-norm of function pL:

‖pL‖2 =

∫ ξ1

ξN

∣∣p′L(x)∣∣2dx =

∫ ξ1

ξN

∣∣∣ J−1∑
l=1

wl+1lx
l−1
∣∣∣2dx. (29)

Let R(hL) be the discrete version:

R(hL) =

N∑
i=1

|p′L(ξi)|2 = ‖C0diag(0, ..., J − 1)w‖2, (30)

where

C0 =


0 1 ξ1 · · · ξJ−21

0 1 ξ2 · · · ξJ−22
...

...
...

. . .
...

0 1 ξN · · · ξJ−2N

 ∈ RN×J .

Then, the regularized optimization problem is
min
w∈RJ

‖hideal − 1
2 (1 + Cw)‖∞ + αR(hL)

s.t. Crw = 1r

Csw = −1s

|Cmw| < 1N−r−s

, (31)

where α ≥ 0 is a parameter that controls the importance of
the regularization term.

For simplicity, we refer to the proposed two optimization
models (28) and (31) as oriOpt and regOpt respectively, and
the model (8) proposed in [7] as literOpt. Figure 3 shows
an example of the lowpass filter responses determined by
these three models, where the parameters are taken to be
(r, s, J, α) = (2, 3, 8, 0.5), and the desired filter responses are
all hideal. In this work, we always use CVX, a package for
specifying and solving convex programs [10], [9], to solve the
optimization problems.

It is shown that regularized method outperforms the other
two methods. As we have expected, oriOpt produces an oscil-
latory solution, which is less ideal than the smooth solution
produced by regOpt. It is worth mentioning that for literOpt,
we have done a lot of experiments with various values of J
on a lot of random sensor graphs, it always gave a linear filter
response.

C. Determining the Partition {A,B}
According to Theorem 2, the sampling matrix K is de-

termined by the partition {A,B} of V . Given a normalized
adjacency matrix AS, Algorithm 1 outputs a partition {A,B}
of V that makes the matrices U(A, Ir) and U(B, Is) have full
column rank. The symbol “�” means “much smaller than”,
and the operation V\A computes the difference between two
sets.

Algorithm 1 Search for {A,B}
Input: Normalized adjacency matrix AS, 1 ≤ r, s� N

1: Initialization: Set V = {1, ..., N},A = ∅,B = ∅, Ur =
U(V, Ir),Us = (V, Is)

2: Compute the row echelon form of Ur to obtain r linearly
independent rows, and add their indices to A

3: if Us(V\A, Is) is not full column rank then
4: Throw an error, quit and reset r and s
5: else
6: Compute the row echelon form of Us(V\A, Is) to

obtain s linearly independent rows, and add their indices
to B

7: Partition the rest row indices into two balanced sets
based on some criterion, and assign them to A and B
respectively

8: end if
Output: A,B

Next, we discuss how the partition {A,B} will affect the
approximation error of the filterbank. Let K be the sampling
matrix defined by (14). If we only use the LP output yL of
the analysis stage for reconstruction, the reconstructed signal
would be y′ = 1

2HINV(IN +K)yL. Thus, the approximation
error of y′ to the original signal is ‖x − y′‖2. Since the
filterbank is perfectly reconstructed, there holds y = x, where
y is the total reconstruction defined by (1). Consequently, the
approximation error of the filterbank is defined as

er = ‖y − y′‖2

= ‖1
4
HINV(IN −K)(IN −G)x‖2

≤ 1

4
‖HINV‖2‖(IN −K)‖2‖(IN −G)‖2‖x‖2

= 2‖(IN + KG)−1‖2‖x‖2

=
2

σmin(IN + KG)
‖x‖2,

(32)

where σmin represents the smallest singular value of a matrix.
Here we exploit the facts that HINV = 2(IN + KG)−1 and
‖(IN − K)‖2 = ‖(IN − G)‖2 = 2. Although σmin(IN +
KG) 6= 0 can be guaranteed by Theorem 2, a small value
may also lead to poor approximation. Considering that r, s
are usually set to be small, the method of partitioning the rest
vertices in Step 7 of Algorithm 1 is the major factor affecting
the value of σmin(IN + KG).

We conduct experiments to compare two strategies. One is
to partition the rest vertices according to the polarity of entries
of uN [23]: if uN (i) < 0 then i is added to B; otherwise it
is added to A. Another strategy is a random method which
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Fig. 3. From left to right are the filter responses produced respectively by the three optimization models: oriOpt, regOpt and literOpt, blue for
lowpass and red for highpass. The horizontal axis represents the eigenvalues of LS, in which the duplicate eigenvalues have been removed
before solving the optimization problems.

randomly partitions the rest vertices into two balanced sets A
and B. Other strategies can also be employed as needed.

Experiments are performed on 100 randomly generated
bipartite graphs and 100 random sensor graphs respectively.
All graphs have 100 vertices, and each bipartite graph has two
parts of size (20, 80). We solve the regOpt with (r, s, J, α) =
(1, 1, 3, 0.5) to obtain the weights w and thus G. Figure 4 and
Figure 5 show the smallest singular values σmin(IN + KG)
using the first strategy and the second strategy respectively. It
shows that the first one is better. In fact, a random strategy
is not reasonable, because we need to reconnect the down-
sampled vertices to obtain a new graph for multi-resolution
analysis. Therefore, we want the vertices within each set of
{A,B} to be connected by edges with low weights. The first
strategy performs better because it is closely related to the
nodal domain theory. For more details, please refer to [1],
[23]. Besides, other methods such as k-means clustering on
uN [23], or sovling the max-cut problem to obtain the partition
can also be used [19].

Figure 6 shows the approximation errors of the proposed
filterbanks on 10 random sensor graphs. For each graph, we
synthesize 100 signals, each with unit norm. Only the LP
output is used for reconstruction and the approximation error
is computed according to the definition (32). We solve the
regOpt with (r, s, J, α) = (1, 1, 3, 0.5). The upper bounds

2
σmin(IN+KG) associated with each graph are also calculated,
all of which are in the order of thousands, much greater than
the approximation errors in the experiment.

D. Annihilating the DC Signal

In applications where the intrinsic graphs are located in
the physical space, a constant signal (called DC signal) may
have a physical interpretation, and the highpass filter should
be able to annihilate the DC signal. However, the spline-
like filterbanks proposed in Section III-A are based on the
normalized adjacency matrix AS. Thus, the highpass filter
HH = 1

2 (IN −G) has a zero response to u1, the eigenvector
of LS associated with λ1 = 0, which is not a constant vector
unless G is a regular graph (i.e., all vertices have the same
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Fig. 4. The smallest singular values σmin(IN + KG) on random
graphs using the first strategy and their average avgσmin. Left: σmin

of random bipartite graphs; Right: σmin of random sensor graphs.
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Fig. 5. The smallest singular values σmin(IN + KG) on random
graphs using the second strategy.

degree). In this case, filtering the DC signal with HH may
produce a non-zero result. Since u1 = D1/21, this problem
can be addressed by pre-multiplying the input signal x with
D1/2, and post-multiplying the filtered signal with D−1/2

[18]. Define the zero-DC analysis filters as:{
H0

L = D−1/2HLD1/2

H0
H = D−1/2HHD1/2

. (33)
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Fig. 6. The approximation errors of the proposed filterbanks on 10
random sensor graphs. Each line represents the approximation errors
resulting from the decomposition of 100 signals on a graph.

Then the whole transform of the filterbank becomes

y = H0
INV

[1
2
(IN + K)H0

L +
1

2
(IN −K)H0

H

]
x

= H0
INV

[1
2
(IN + K)D−1/2HLD1/2

+
1

2
(IN −K)D−1/2HHD1/2

]
x

= H0
INV

[1
2
(IN + KD−1/2GD1/2)

]
x,

(34)

where H0
INV represents the synthesis filter. Since D and K

are commutative, IN +KD−1/2GD1/2 is invertible iff IN +
KG is invertible. Therefore, as long as K and G satisfy the
conditions proposed in Theorem 2, the synthesis filter exists
and is given as

H0
INV = 2D−1/2(IN + KG)−1D1/2. (35)

IV. EXPERIMENTS

In this section, we will evaluate the performance of the
proposed filterbanks and compare them with related works.
All experiments are done with Matlab and the GSP toolbox
[21].

First, we specify the hyperparameters (r, s, J, α) and solve
the optimization problems to obtain the weights w and thus
G. Second, implement Algorithm 1 to compute a partition
A,B according to the polarity of the entries of uN , then
construct the sampling matrix K by (14). We will employ
the zero-DC filters H0

L,H
0
H,H

0
INV defined in Section III-D to

form the proposed filterbanks. Multi-resolution analysis will
be performed on the graph signals, thus, after downsampling,
the Kron reduction scheme [6] is used to reconnect the vertices
in A to produce a reduced graph, further decomposition will
be recursively performed on the lowpass channel.

A. Locality of the Proposed Filterbanks

We use GSP toolbox to generate a bipartite ring graph
with N = 512 vertices. The corresponding graph signal x is
piecewise constant, i.e., the first half of x are all ones, and the
second half are all zeros, as shown in the left top of Figure
7. We solve the regOpt (31) with (r, s, J, α) = (1, 1, 4, 1).

Fig. 7. Multi-resolution analysis of the graph signal located on a
bipartite ring graph. Left Top: the original signal; Right Top: the LP
output in the 1st layer; Left Bottom: the LP output in the 2nd layer;
Right Bottom: the reconstructed signal using only the LP output from
the 2nd layer decomposition.

Fig. 8. Multi-resolution analysis of the graph signal located on a
sensor graph. Left Top: the original signal; Right Top: the LP output
in the 1st layer; Left Bottom: the LP output in the 2nd layer; Right
Bottom: the reconstructed signal using only the LP output from the
2nd layer decomposition.
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Fig. 9. Left: the original signal; Right: the noisy signal.

Figure 7 shows the LP outputs in each layer decomposition
and the reconstructed signal using only the LP output of the
last layer. It can be seen that there is no significant Gibbs effect
near the discontinuity points of the LP outputs, indicating that
the analysis filters are well localized in the graph domain.

We also compute the relative error of each LP output and
the reconstructed signal. Let yi be the LP output of i-th layer
and xi be the corresponding ideal output, i.e., xi is a subvector
of x whose element indices are in the downsampled subset A
of i-th layer. The relative error of yi with respect to (w.r.t.)
xi is defined as ei = ‖yi−xi‖2

‖xi‖2 . Let y be the reconstructed

signal, then the relative error of y w.r.t. x is e = ‖y−x‖2
‖x‖2 . In

the experiment, we get

e1 = 0.032, e2 = 0.067, e = 0.063.

Besides, the same experiment is conducted on a random
sensor graph with 512 vertices, which is not bipartite. The
results are shown in Figure 8 and the relative errors are

e1 = 0.057, e2 = 0.081, e = 0.166.

B. Comparison with Related Work

In this section, we perform MRA on graph signals to
compare the proposed model with related works in terms of
approximation ability of the coarsened signals and denoising
ability. The related shemes are literOpt [7] and two other
state-of-the-art spline-like graph filterbanks: MSGFB [16] and
SGFBSS [17]. MSGFB is an improved model of literOpt
which relaxes the constraints of the optimization problem (8)
for better solution. Unlike regOpt, literOpt and MSGFB, which
sample in the vertex domain, SGFBSS adopts the spectral
domain sampling method proposed in [25].

1) Approximation: We generate the gspLogo graph with
N = 1130 and synthesize a signal x0 which is a linear
function of the x-coordinates of the vertices. Then x0 is
contaminated with Gaussian noise of zero mean and 1/16
standard deviation to produce a noisy signal x, as shown
in Figure 9. A 1-layer decomposition is performed on the
graph signal, where the hyperparameters are specified as
(r, s, J, α) = (1, 4, 5, 0.01) for regOpt (31) and J = 5 for
literOpt, MSGFB and SGFBSS.

In each layer decomposition of MRA, the LP output and the
corresponding reduced graph serve as a coarser approximation
of the original signal and graph. Figure 10 depicts the LP out-
put of each model. It can be seen that the proposed filterbank
outperforms the others. We also compute the corresponding
relative errors. Let yi and xi have the same definitions as

in Section IV-A. Then the relative errors of yi w.r.t. xi
are 0.02, 0.04, 0.5, 1.67 for regOpt, literOpt, MSGFB and
SGFBSS, respectively.

To be mentioned, the model SGFBSS cannot preserve signal
values in the vertex domain due to the spectral sampling
scheme, which makes the LP output differ a lot from the
original signal, as shown in the right bottom image of Figure
10.

2) Denoising: Next, let us compare the denoising ability
of the proposed method regOpt with the related methods.
Experiments are performed on the ring graph with 64 vertices,
the Comet graph with 64 vertices and the gspLogo graph with
1130 vertices. The synthetic graph signals x are presented re-
spectively in the vertex domain and the spectral domain in Fig-
ure 11. We contaminate the signals with Gaussian noise of zero
mean and different standard deviations σ = 1/16, 1/8, 1/4. In
the experiment, all the LP outputs are retained and HP outputs
are hard-thresholded with the value T = 3σ for reconstruction.

Fig. 10. The LP outputs of each model.

We perform a 2-layer decomposition for the ring graph and
the Comet graph, and a 1-layer decomposition for the gspLogo
graph because SGFBSS requires N to be even and there
are 565 vertices in the 2nd layer. The hyperparameters are
specified as (r, s, J, α) = (2, 3, 6, 0.01) for regOpt and J = 6

for the other models. The relative error ‖y−x‖2‖x‖2 between the
original signal x and the reconstructed signal y is computed,
as shown in Figure 12. The results show that the proposed
model regOpt outperforms the other models in most cases.
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Fig. 11. The synthetic graph signals in the vertex domain and the
spectral domain.
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Fig. 12. The average relative errors of 10 runs using different models.
Left: Ring graph; Middle: Comet graph; Right: gspLogo graph.

V. CONCLUSION AND FUTURE WORK

This paper describes a class of critically sampled and per-
fectly reconstructed spline-like filterbanks for graph signals.
The analysis filters are polynomials in the normalized adja-
cency matrix, which allows the performance of local analysis
in the vertex domain. Besides, the lowpass filters can remove
the s highest frequency components of the signals, and the
highpass filters can remvoe the r lowest frequency components
of the signals, where r and s are hyperparameters specified
by the users. When r, s ≥ 1, the proposed filterbanks will
outperform the filterbanks proposed in the related work on
denoising tasks.

The main limitation of the proposed filterbank is that
the synthesis filter is usually not well localized. It can be
challenging but rewarding to design localized synthesis filters
in future work. We also mentioned that the approximation error
of the filterbank is bounded by the multiple of the largest

singular value of (IN + KG)−1. Empirically, we adopt a
sampling pattern that prevents the smallest singular value of
IN + KG from being too small, but it may occasionally fail.
In fact, this upper bound is too loose to effectively reflect
the approximation error of the filterbank. As presented in the
experiments on random graphs and random signals, the largest
singular value of (IN + KG)−1 is always much greater than
the approximation errors. Thus, the future research should
consider finding a tighter upper bound.
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