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Proportionate Adaptive Graph Signal Recovery
Razieh Torkamani, Hadi Zayyani, and Mehdi Korki

Abstract—This paper generalizes the proportionate-type adap-
tive algorithm to the graph signal processing and proposes two
proportionate-type adaptive graph signal recovery algorithms.
The gain matrix of the proportionate algorithm leads to faster
convergence than least mean squares (LMS) algorithm. In this
paper, the gain matrix is obtained in a closed-form by minimizing
the gradient of the mean-square deviation (GMSD). The first
algorithm is the Proportionate-type Graph LMS (Pt-GLMS)
algorithm which simply uses a gain matrix in the recursion
process of the LMS algorithm and accelerates the convergence
of the Pt-GLMS algorithm compared to the LMS algorithm. The
second algorithm is the Proportionate-type Graph Extended LMS
(Pt-GELMS) algorithm, which uses the previous signal vectors
alongside the signal of the current iteration. The Pt-GELMS
algorithm utilizes two gain matrices to control the effect of the
signal of the previous iterations. The stability analyses of the
algorithms are also provided. Simulation results demonstrate the
efficacy of the two proposed proportionate-type LMS algorithms.

Index Terms—Graph signal recovery, Adaptive, Laplacian
matrix, least mean-squares, Proportionate.

I. INTRODUCTION

Graph Signal Processing (GSP) [1]- [3] is a new research

paradigm in signal processing. In GSP, the signal is defined

over a graph with irregular domains. It can better represent the

inherent structure of the signals defined over nodes. The po-

tential application of GSP includes wireless sensor networks,

biological network, social networks, financial networks, and

vehicular networks [3], to name a few. Because of the shift

of signal processing to GSP, the available tools in classical

signal processing such as shifting, sampling, Fourier trans-

form, filters, etc. is generalized to the graph domain. We can

refer to graph sampling, graph signal recovery, graph topology

learning, and graph spectral representation as problems within

GSP framework. Graph Signal Recovery (GSR) is a basic

problem in GSP which aims to recover the whole graph signal

by observing signal over only a subset of graph nodes [4].

GSR uses the inherent relationship between the signal values

defined over connecting nodes in the graph. This relationship is

defined by matrices called weighted adjacency and Laplacian

matrix of the graph which will be introduced in sequel.

There are two types of GSR algorithms. The first type

is the non-adaptive GSR [4]- [11] which often uses some

optimization problems to solve GSR problems in a non-

adaptive manner and in a batch-based framework. There is

usually a great deal of complexity involved in these algorithms,
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especially in the large scale graph networks. The second type

of GSR algorithms are adaptive GSR algorithms [12]- [14],

which similar to adaptive filter counterparts in classical signal

processing, require lower computational complexity and have

the potential to perform well in the time-varying nature of the

graph signal and noise. Hence, in this paper, we focus on the

adaptive GSR algorithms.

Adaptive GSR algorithms first appeared in the literature

in 2016. As a pioneering work, a graph Least Mean Square

(LMS) algorithm has been developed in [12], which gener-

alizes the well-known adaptive LMS algorithm to the graph

domain. In sequel, [13] suggested a distributed LMS algorithm

for learning the graph signal over a network. Moreover, an

LMS and a Recursive Least Square (RLS) algorithm have been

developed to recover the graph signals from randomly time-

varying subset of nodes [14]. Also, in [15], the LMS algorithm

has been developed for the dynamic graphs in which there

is a small perturbation in the Laplacian matrix. In addition,

a joint graph weighted adjacency matrix learning and graph

signal recovery has been suggested using a Kalman filter for

auto-regressive graph signals [16]. To provide scalability and

privacy in networks, an online kernel-based graph-adaptive

learning algorithm has been suggested in [17]. Besides, [18]

proposed a distributed adaptive learning of graph signals us-

ing in-network subspace projections. Moreover, a Normalized

LMS (NLMS) graph signal estimation algorithm has been

proposed in [19], which has faster convergence than LMS

algorithm and has less computational complexity than RLS

algorithm. Also, [20] proposed two adaptive GSR algorithms

which are Extended LMS (ELMS) algorithm and Fast ELMS

(FELMS) algorithm, in which the signal vectors of previous

iterations are reused alongside the signal available at the

current iteration. In addition, a Single-Kernel Gradraker (SKG)

algorithm has been suggested for GSR which uses a Gaussian

kernel and it specifies how to find a suitable variance for

the kernel [21]. For adaptive estimation of the graph filter

of a graph signal, a graph kernel RLS algorithm has been

developed for a different but related problem [22].

In this paper, we focus on adaptive graph LMS algorithms

for GSR. We generalize the proportionate adaptive filter con-

cept used in adaptive filtering application [23]- [24], and

used in distributed estimation framework [25]- [26] to the

graph domain. Hence, we propose adaptive proportionate GSR

algorithm in which a gain matrix is used in the update of the

adaptive algorithm. When we have a sparse representation of

the graph signal in the domain of Graph Fourier Transforms

(GFT), the proposed algorithm can be faster to converge. For

determining the gain matrix, the GMSD criterion is used and

a closed-form formula is obtained for the gain matrix. The

stability analyses of the Graph Proportionate LMS (GPLMS)

algorithm are also provided. Finally, simulation results corrob-

orate the efficacy of the proposed algorithm in comparison to
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some state-of-the-art algorithms in the literature.

This paper is organized as follows. Section II presents

the essential background on GSP and problem formulation.

Section III presents the proposed proportionate-type LMS

algorithm for GSR. The extended proportionate-type LMS

algorithm is presented in section IV. Section V provides some

theoretical aspects of the proposed algorithms. In Section VI,

the simulation results are discussed. We conclude the paper in

in Section VII.

We denote vectors by boldface lowercase letters and matri-

ces by boldface uppercase letters. The operators (·)T and (·)H

represent the transpose and Hermition transpose, respectively.

E[·] represents expectation. diag(·) represents a diagonal ma-

trix with its arguments. The mth element of the vector a

is written as am. The (m, q)th element of the matrix A is

written as amq. The identity matrix of dimension N is written

as IN and the vector 0N is a length N vector of all zeros.

0M×N is an M × N matrix with all entries being zero.

The spectral radius of the square matrix A is denoted by

ρ(A) , max{|λ(A)|}.

II. PROBLEM FORMULATION AND BACKGROUND

Consider an undirected, connected, weighted graph G =
(V , E) with N vertices indexed by V= {v1, v2, ..., vN} and

connected together according to the set of edges E . The

weighted adjacency matrix W ∈ R
N×N is the collection of

all edge weights such that Wij > 0 if (i, j) ∈ E , and Wij = 0
otherwise. Let di be the degree of node i which is defined

as di =
∑N

j=1 Wij . The degree matrix D is a diagonal matrix

with the node degrees as its diagonals. Hence, graph Laplacian

matrix is defined as L = D−W.

For undirected graphs, the graph Laplacian is a symmetric

and positive semi-definite matrix. The eigendecomposition for

Laplacian matrix is

L = UΛUH , (1)

where U ∈ R
N×N is the matrix containing all the eigenvectors

of L as its columns, and Λ ∈ R
N×N is the diagonal matrix

of eigenvalues of L.

Analogous to the classical signal processing, the graph

Fourier transform (GFT) of a graph signal x ∈ R
N is defined

as its projection onto an orthogonal set of vectors {ui}i=1,...,N ,

i.e.

s = U
Hx. (2)

The basis vector {ui} are usually assumed to be the eigen-

vector set of Laplacian matrix [12], [20], or the adjacency

matrix [27]- [28]. Thus, the frequncy-domain representation

of the graph signal conveys the intrinsic information of the

graph topology. In this paper, we follow the definition of GFT

basis vector based on the Laplacian matrix, but the result can

be extended to the approach based on the adjacency matrix.

The inverse graph Fourier transform (IGFT) can be defined for

reconstruction of the graph signal x from its frequency domain

s as

x = Us. (3)

In this paper, we utilize the intrinsic sparsity of bandlimited

signals and we assume that the frequency domain representa-

tion of the graph signal, i.e. s, is sparse. Thus, we can use

the compressive sensing (CS) theory and assume the under-

sampling of the s as observations. Moreover, we assume that

the observation are sampled noisy versions of the graph signal.

Thus, using the notations xo and so for the original graph

signal and its Fourier transform, respectively, we can write

the observed signal at time n as

y[n] = B[n]D[n]xo + e[n] = B[n]D[n]Uso + e[n], (4)

where B is the CS sensing matrix, and D is the sampling

matrix. The above equation can be rewritten as

y[n] = A[n]so + e[n], (5)

where A[n] = B[n]D[n]U.

III. PROPORTIONATE-TYPE GRAPH LMS ALGORITHM

The LMS algorithm is one of the most popular algorithms

in adaptive filtering, and is employed in graph signal recovery

[12]- [15]. Based on the graph-LMS approach, the optimal

estimation for the original graph signal can be found by the

following recursive procedure

s[n+ 1] = s[n] + µAT [n](y[n]− A[n]s[n]), (6)

where µ is the step-size parameter. The proportionate-type

LMS (Pt-LMS) algorithm [23] was introduced as an alter-

native to the conventional LMS algorithm, which is proved

to converge faster than the LMS algorithm by assigning a

different gain to each coefficient. This gain is proportional

to the magnitude of the coefficient at the current iteration. In

this paper, we propose to use this Pt-LMS algorithm in graph

signal recovery problem, which results in proportionate-type

graph LMS (Pt-GLMS) algorithm. The update equation for the

proposed Pt-GLMS algorithm is

s[n+ 1] = s[n] + µG[n]AT [n](y[n]− A[n]s[n]), (7)

where G[n] is the gain matrix. This gain matrix, distinguishes

the Pt-LMS from conventional LMS algorithm, and is diag-

onal, i.e., G[n] = diag(g1[n], ..., gN [n]), where gi[n] is the

gain factor of the signal of the i’th node at time n, and is

proportional to the magnitude of the graph signal at node i, i.e.,

gi[n] ∝ |si[n]|. If gi[n] = 1, ∀i = 1, ..., N , i.e., G[n] = IN×N ,

the Pt-GLMS and GLMS algorithms are equivalent. In the

literature [29], the weights gi[n] are calculated as

gi[n] =
γi[n]

1
N

∑N
j=1 γj [N ]

, (8)

where

γi[n] = max{ργmin[n], F [|si[n]|]}, (9)

γmin[n] = max{δ, F [|s1[n]|], ..., F [|sN [n]|]}, (10)

where δ is the initialization parameter, and the parameter ρ
prevents the inactive coefficients from stalling. For F [|si[n]|],
different functions have been used in the literature [29].

From (7), the factor µgi[n] implies the effective step-size

at node i, and indicates that in the case of large magnitude
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Algorithm 1 Proposed Proportionate-type Graph LMS (Pt-

GLMS) Algorithm

Input Observations y; Fourier basis functions U; Sensing

matrix B; Sampling matrix D; µ; ρ; δ; number of time

instances T .

Initialize s = 0, G = 0, n = 1.

repeat

• A[n] = B[n]D[n]U
• Update {gi[n]}

N
n=1 using (8) or (13)

• G[n] = diag(g1[n], ..., gN [n])
• s[n+ 1] = s[n] + µG[n]AT [n](y[n]− A[n]s[n])
• n←− n+ 1

until n ≤ T

of current graph signal, i.e., |si[n]|, the value of gi[n] is also

large, and, thus, the effective step-size µgi[n] is large, which

speed up the convergence of large coefficients. Conversely,

for small magnitude of current coefficients, the effective step-

size is also small. The resulting proportionate-type graph LMS

algorithm is summarized in Algorithm 1.

A. Gain Matrix Calculation for Pt-GLMS

In this subsection, we calculate an optimal gain matrix in

order to further speed up the convergence of the proposed

Pt-GLMS algorithm. To this end, we compute the gradient

mean-square deviation (GMSD), and find the optimal gains

by minimizing the GMSD at time n. The GMSD is defined

as [20]

∆[n] = E||̃s[n+ 1]||2Q − E||̃s[n]||2Q, (11)

where s̃[n] = so−s[n] is the error signal at time n, Q = AHA,

and ||t||2P = tHPt. The GMSD of the i′th node at time n can

be written as

∆i[n] = E
[

||̃si[n+ 1]||2Q

]

− E
[

||̃si[n]||
2
Q

]

. (12)

The optimum gain for node i at time instant n (i.e., gi[n]),
by setting the derivative of ∆i[n] with respect to gi[n] equal

to zero, is written as

gi[n] =
µ
[

ê
T [n]Ai[n]A

T
i [n]ê[n]− Ai[n]CeAT

i [n]
]

m2
i [n]

∑N

j=1 a
2
ji[n]

, (13)

where

ê[n] = y[n]− A[n]s[n], (14)

and

mi[n] = µAT
i [n](y[n]− A[n]s[n]). (15)

Proof. See Appendix A.

Computing the values of gi[n] using (13)-(15), and substi-

tuting G[n] = diag(g1[n], ..., gN [n]), the graph signal can be

recovered by (7), which yields the minimum GMSD.

As an example, consider a graph with N = 50 nodes. The

spectral content of the graph signal is limited to the first 15
eigenvectors of the graph Laplacian matrix. The observation

noise is drawn from a zero-mean Gaussian distribution with a

0 200 400 600 800
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Pt-LMS
Pt-LMS with proposed gain

Fig. 1. Transient NMSD versus iteration index when estimating a synthetic
data with N = 50 nodes.

diagonal covariance matrix. Fig. 1 shows the normalized MSD

(NMSD), which is calculated as follows

NMSD[n] =
||so − s[n]||2

||so||2
. (16)

As can be seen, using proportionate-type algorithm for the

reconstruction of graph signals increases the convergence rate

of the algorithm. Moreover, the GMSD of the Pt-GLMS using

the proposed gain matrix is smaller than that of the others.

IV. PROPORTIONATE-TYPE GRAPH EXTENDED LMS

ALGORITHM

In this subsection, we propose an algorithm to enhance the

estimation performance of the Pt-GLMS algorithm proposed

in previous section. The proposed algorithm is based on

the extended LMS (ELMS) algorithm proposed in [20] and

speeds up the convergence of the Pt-GLMS algorithm by

using the observations of previous times as well as the current

observation. In this work, we propose the proportionate-type

of the ELMS algorithm in GSR framework, which assigns

the gain matrix to the graph signal estimation process. The

resulting algorithm is proportionate-type graph ELMS (Pt-

GELMS) algorithm. The update equation for the proposed Pt-

GELMS algorithm is

s[n+ 1] =s[n] + µG[n]AT [n](y[n]− A[n]s[n])

+ µH[n]
K−1
∑

j=1

AT [n− j]
(

y[n− j]− A[n− j]s[n]
)

,

(17)

where K is the number of previous time instants used for

estimating the graph signal at the current iteration, G[n] and

H[n] are diagonal gain matrices assigned to the current and

previous observations, respectively. Similar to the previous

sections, we have G[n] = diag(g1[n], ..., gN [n]) and H[n] =
diag(h1[n], ..., hN [n]). Obviously, when H[n] = 0N×N , the

Pt-GELMS algorithm is equivalent to the Pt-GLMS algorithm,

and when G[n] = H[n] = 0N×N , the Pt-GELMS algorithm

reduces to the GLMS algorithm. The resulting proportionate-

type graph extended LMS algorithm is summarized in Algo-

rithm 2.
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A. Gain Matrix Calculation for Pt-GELMS

In this subsection, similar to the process in section III-A,

we find an optimal value for the gain matrices by computing

and minimizing the GMSD at time n. To calculate the GMSD

of the i′th node at time n, the update equation (17) for the

i′th node can be written as

si[n+ 1] = si[n] + gi[n]m1[n] + hi[n]m2[n], (18)

where

m1[n] = µAT
i [n](y[n]− A[n]s[n]), (19)

m2[n] = µ

K−1
∑

j=1

AT
i [n− j](y[n− j]− A[n− j]s[n]). (20)

Similar to section III-A, computing the GMSD of the i′th
node at time n, i.e. ∆i[n], and setting

∂∆i[n]
∂gi[n]

= 0 and
∂∆i[n]
∂hi[n]

=
0 yields

gi[n] =
r3[n]

r4[n]
, (21)

and

hi[n] =
r5[n]

r6[n]
, (22)

where

r3[n] =− hi[n]m1[n]m2[n]

K−1
∑

j=1

a2ji[n]− µAi[n]CeAT
i [n]

+ µ(y[n]− A[n]s[n])T Ai[n]A
T
i [n](y[n]− A[n]s[n]),

(23)

r4[n] =m2
1[n]

K−1
∑

j=1

a2ji[n], (24)

r5[n] =− gi[n]m1[n]m2[n]
K−1
∑

j=1

a2ji[n]

− µAi[n]Ce

K−1
∑

j=1

AT
i [n− j] + µ(y[n]− A[n]s[n])T

× Ai[n]A
T
i [n]

K−1
∑

j=1

(y[n− j]− A[n− j]s[n]), (25)

r6[n] =m2
2[n]

K−1
∑

j=1

a2ji[n]. (26)

Proof. See Appendix B.

Obviously, gi[n] and hi[n] are interdependent, and, thus,

should be updated in a repetitive manner.

V. THEORETICAL ANALYSIS

In this section, some theoretical analysis of the proposed

algorithms are provided. Since the Pt-GLMS is a special case

of Pt-GELMS, we only discuss the theoretical analysis of Pt-

GELMS, and the analysis for the Pt-GLMS can be achieved

by setting H[n] = 0N×N .

Algorithm 2 Proposed Proportionate-type Graph extended

LMS (Pt-GELMS) Algorithm

Input Observations y; Fourier basis functions U; Sensing

matrix B; Sampling matrix D; µ; K; number of time

instances T .

Initialize s = 0, G = 0, H = 0, n = 1.

repeat

• A[n] = B[n]D[n]U
• Update {gi[n]}

N
n=1 and {hi[n]}

N
n=1 using (21) and (22),

respectively

• G[n] = diag(g1[n], ..., gN [n]) and H[n] =
diag(h1[n], ..., hN [n])

• s[n+ 1] = s[n] + µG[n]AT [n](y[n]− A[n]s[n])

+µH[n]
∑K−1

j=1 AT [n− j]
(

y[n− j]− A[n− j]s[n]
)

• n←− n+ 1

until n ≤ T

A. Mean-Square Analysis

In this subsection, we study the mean-square behavior of

the proposed algorithms. To compute MSD, note that using

the definition s̃[n] = so − s[n], and subtracting both sides of

(17) from so, we obtain

s̃[n+ 1] =
[

I− µB1[n]
]

s̃[n] + µB2[n] + µB3[n], (27)

where

B1[n] = G[n]AT [n]A[n] +H[n]

K−1
∑

j=1

AT [n− j]A[n− j],

(28)

B2[n] = G[n]AT [n]e[n], (29)

B3[n] = H[n]

K−1
∑

j=1

AT [n− j]e[n− j]. (30)

Proposition 1. Assume that the noise samples at different

times are independent. Then, for any bounded initial condition,

the proposed Pt-GELMS algorithm asymptotically converges

in the mean-square error sense if

0 < µ <
2

λmax (B1)
, (31)

where λmax(.) denotes the maximum eigenvalue of the matrix

therein.

Proof. See Appendix C.

B. Mean Performance

In this subsection, we study the steady-state mean per-

formance of the proposed Pt-GELMS algorithm. Taking the

expectation of both sides of (27) yields

E
[

s̃[n+ 1]
]

=
[

I− µB1[n]
]

E
[

s̃[n]
]

. (32)

As the algorithm reaches the steady-state, we have E
[

s̃[n+

1]
]

−→ E
[

s̃[n]
]

. Thus, to guarantee the convergence in the
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Fig. 2. Adaptive algorithms performance versus iteration index for K = 8,
M = 30, and |S| = 20.
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Fig. 3. Transient NMSD versus iteration index for M = 30, |S| = 20, and
different values of K .

mean sense, the condition ρ(I − µB1[n]) < 1 should be

satisfied, which implies

0 < µ <
2

λmax (B1)
. (33)

C. Steady-State Performance

Taking the limit of (60) as n→∞ yields

lim
n→∞

E
[

||̃s[n]||2(I−Q)φ

]

= µ2vec(P)Tφ.

To evaluate the steady-state MSD of the proposed Pt-

GELMS algorithm (see (17)), we can set φ = (I−Q)−1vec(I)
and obtain

MSD = lim
n→∞

E||x̃[n]||2 = lim
n→∞

E||̃s[n]||2

= µ2vec(P)T (I−Q)−1vec(I). (34)

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

algorithms via some numerical results on synthetic and real

data.

In the first scenario, we consider a synthetic graph with

N = 50 nodes. Similar to [30], the edge weights are drawn

randomly from a uniform distribution Wij ∼ U(0, 1), and

the weighted adjacency matrix is derived as W = (W +
W

T )/2. The graph Laplacian matrix is calculated as L = D−
W, where D is the diagonal degree matrix with the diagonal

elements as di =
∑N

j=1 Wij . The spectral content of the graph

is limited to the first 15 eigenvectors of the graph Laplacian

matrix. The observation noise in (5) is drawn from a zero-

mean Gaussian distribution with a diagonal covariance matrix

Ce = σ2
eI with σ2

e = 0.01. We compare the results of our

proposed algorithms with that of the graph LMS algorithm

[12], and extended proportionate-type LMS [20]. Fig. 2 shows

the transient behavior of the NMSD in (16) versus the iteration

index for the number of previous time instants K = 8, number

of CS measurements M = 30, number of samples |S| = 20,

and step-size µ = 0.01. Each point in the curves is the result

of ensemble average over 50 independent simulations. It can

be seen that the proposed proportionate-type LMS algorithms

converge faster than the conventional LMS. Moreover, using

the proposed algorithm for estimation of gain matrices lead to

a further increase in the convergence rate.

In Fig. 3, the transient behaviour of the NMSD versus the

iteration index are shown for M = 30, step-size µ = 0.01,

and for different values of K . The curves are averaged over

50 independent trials. It can be seen that increasing the value of

the parameter K , which incorporates further previous signals

in estimating the current signal, results in higher convergence

speed of the algorithms.

Fig. 4 depicts the transient behaviour of the NMSD for

LMS, FELMS, Pt-GLMS (with the proposed gain matrix),

and Pt-GELMS algorithms, considering different number of

CS measurements, i.e., different values of M , and K = 8,

|S| = 20, and the step-size µ = 0.01. The results are

averaged over 50 independent trials. As can bee seen from

the curves, increasing the number of CS measurements, which

means increasing the number of linear combination of signal

ensembles in hand, leads to an increase in convergence rate

and decrease in NMSD. Moreover, with the same number

of measurements, the proposed Pt-GLMS and Pt-GELMS

algorithms outperform their peer algorithms, i.e., LMS and

FELMS, respectively.

In Fig. 5, the transient behaviour of the NMSD for LMS,

FELMS, Pt-GLMS (with the proposed gain matrix), and Pt-

GELMS algorithms are presented, considering three different

values of bandwidth, |F |, and K = 8, |S| = 20, M = 30,

and the step-size µ = 0.01. The results are averaged over 50

independent trials. As can bee seen from the curves, increasing

the bandwidth of the signal spectrum, leads to an increase in

convergence rate and decrease in NMSD.

In Fig. 6, the transient behaviour of the NMSD for LMS,

FELMS, Pt-GLMS (with the proposed gain matrix), and Pt-

GELMS algorithms are presented, considering three different

number of samples selected, |S|, and K = 8, |F | = 15,

M = 30, and the step-size µ = 0.01. The results are averaged

over 50 independent trials. As can bee seen from the curves,

increasing number of nodes selected in the sampling proce-

dure, leads to an increase in convergence rate and decrease

in NMSD. As seen, both the proposed Pt-GELMS and Pt-

GLMS algorithms outperforms their non-proportionate type

peers, i.e., FELMS and LMS. Furthermore, in all cases, the Pt-

GLMS with the proposed gain matrix perform better than the

Pt-GLMS with conventional gain matrix used in the literature.

In the second scenario, for assessing the performance of
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Fig. 4. Transient NMSD behaviour for K = 8, |S| = 20, and different values of M .
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Fig. 5. Transient NMSD of the adaptive algorithms for K = 8, |S| = 20, M = 30, and different values of |F |.
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Fig. 6. Transient NMSD of the adaptive algorithms versus iteration index for K = 8, |F | = 15, M = 30, and different values of |S|.

the adaptive algorithms with real-world data, we consider the

temperature graph signal. In this case, we use the dataset

downloaded from the Intel Berkeley Research lab (refer to

[31], [10], [11]), in which the temperature values from a

total of N = 54 sensors are acquired. We aim to estimate

the temperature values using the competing adaptive methods.

Similar to the first case, we add an observation noise which

is a zero-mean Gaussian noise with a diagonal covariance

matrix Ce = σ2
eI with σ2

e = 3 (which yields SNR ∼ 25dB).

The transient NMSD versus the iteration index is depicted in

Fig. 7 for three different numbers of selected nodes (M =
30, 40, 54), where we have used K = 6. The figures show the

superiority of the proposed algorithm in comparison to the

other adaptive algorithms.

VII. CONCLUSION

In this paper, we formulated the proportionate adaptive

graph signal recovery algorithm. Hence, the proportionate

adaptive filtering algorithm in the classical signal processing is

generalized to proportionate adaptive GSR algorithm in GSP.

Two proportionate-type algorithms are proposed for adaptive

GSR, of which the first is the Pt-GLMS algorithm and the

second is the Pt-GELMS algorithm. In two algorithms, the

gain matrix (or matrices) are obtained optimally in a closed

form via minimizing the GMSD. Some theoretical analysis

of the proposed algorithms such as mean-square convergence

analysis, mean performance analysis, and steady-state perfor-

mance analysis are also presented. Simulation results in both

synthetic and real data, demonstrate the faster convergence of

the proposed proportionate-type algorithms in comparison to

non-proportionate-type counterparts.

APPENDIX A

PROOF OF GAIN MATRIX FOR PT-GLMS

The GMSD of the i′th node at time n can be written as

∆i[n] = E
[

||̃si[n+ 1]||2Q

]

− E
[

||̃si[n]||
2
Q

]

. (35)

Moreover, from (7), we have

si[n+ 1] = si[n] + µgi[n]A
T
i [n](y[n]− A[n]s[n]), (36)

where Ai is the i′th column of matrix A. We rewrite the above

equation in terms of the signal errors as

s̃i[n+ 1] = s̃i[n]− gi[n]mi[n], (37)
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Fig. 7. Adaptive algorithms performance when estimating the temperature data from [31].

where

mi[n] = µAT
i [n](y[n]− A[n]s[n]). (38)

Thus, we have

||s̃i[n+ 1]||2Q = ||s̃i[n]− gi[n]mi[n]||
2
Q

=
[

(s̃i[n]− gi[n]mi[n])
2

N
∑

j=1

a2ji[n]
]

+ 2
[

(s̃i[n]− gi[n]mi[n])

N
∑

j=1

N
∑

k=1
k 6=i

s̃k[n]aji[n]ajk[n]
]

=
[

s̃2i [n]

N
∑

j=1

a2ji[n]
]

+
[

g2i [n]m
2
i [n]

N
∑

j=1

a2ji[n]
]

− 2
[

s̃i[n]gi[n]mi[n]

N
∑

j=1

a2ji[n]
]

+ 2
[

s̃i[n]
N
∑

j=1

N
∑

k=1
k 6=i

s̃k[n]aji[n]ajk[n]
]

− 2
[

gi[n]mi[n]
N
∑

j=1

N
∑

k=1
k 6=i

s̃k[n]aji[n]ajk[n]
]

.

It can be shown that the sum of the first and fourth terms

in the above equation is ||s̃i[n]||
2
Q. Moreover, the sum of the

third and fifth terms is −2gi[n]mi[n]s̃
T [n]AT [n]Ai[n]. Thus,

we have

∆i[n] = f1[n]− 2f2[n], (39)

where

f1[n] = E
[

g2i [n]m
2
i [n]

N
∑

j=1

a2ji[n]
]

(40)

f2[n] = E
[

gi[n]mi[n]s̃
T [n]AT [n]Ai[n]

]

. (41)

It can be seen that we can calculate the GMSD if f1[n]
and f2[n] are given. On the other hand, since the signal error

vector s̃ is not available, we can not compute f2[n] directly.

To solve this problem, we rewrite f2[n] as

f2[n] = E
[

gi[n]mi[n](A[n]̃s[n])T Ai[n]
]

= E
[

gi[n]mi[n](A[n](so − s[n]))T Ai[n]
]

= E
[

gi[n]mi[n](y[n]− e[n]− A[n]s[n])T Ai[n]
]

. (42)

Assuming that the noise e[n] is independent of the other

processes, we have

f2[n] =µE
[

gi[n](y[n]− A[n]s[n])T Ai[n]A
T
i [n](y[n]− A[n]s[n])

]

− µE
[

gi[n]Ai[n]CeAT
i [n]

]

. (43)

Thus, the GMSD becomes as

∆i[n] = E
[

g2i [n]m
2
i [n]

N
∑

j=1

a2ji[n]
]

− 2µE
[

gi[n](y[n]− A[n]s[n])T Ai[n]A
T
i [n](y[n]− A[n]s[n])

]

+ 2µE
[

gi[n]Ai[n]CeAT
i [n]

]

. (44)

The optimum gain for node i at time instance n (i.e., gi[n])
can be found by setting the derivative of ∆i[n] with respect

to gi[n] to zero and obtain

gi[n] =
µ
[

ê
T [n]Ai[n]A

T
i [n]ê[n]− Ai[n]CeAT

i [n]
]

m2
i [n]

∑N
j=1 a

2
ji[n]

, (45)

where ê[n] = y[n]− A[n]s[n].

APPENDIX B

PROOF OF GAIN MATRIX FOR PT-GELMS

From (18), the signal errors are

s̃i[n+ 1] = s̃i[n]− gi[n]m1[n]− hi[n]m2[n], (46)
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where m1[n] and m2[n] are given by (19). Thus, we have

E||s̃i[n+ 1]||2Q = E||s̃i[n]− gi[n]m1[n]− hi[n]m2[n]||
2
Q

=E
[

s̃2i [n]

K−1
∑

j=1

a2ji[n]
]

+ E
[

g2i [n]m
2
1[n]

K−1
∑

j=1

a2ji[n]
]

+ E
[

h2
i [n]m

2
2[n]

K−1
∑

j=1

a2ji[n]
]

+ 2E
[

gi[n]hi[n]m1[n]m2[n]

K−1
∑

j=1

a2ji[n]
]

− 2E
[

s̃i[n]gi[n]m1[n]
K−1
∑

j=1

a2ji[n]
]

− 2E
[

s̃i[n]hi[n]m2[n]

K−1
∑

j=1

a2ji[n]
]

+ 2E
[

s̃i[n]

K−1
∑

j=1

K−1
∑

k=1
k 6=i

s̃k[n]aji[n]ajk[n]
]

− 2E
[

gi[n]m1[n]

K−1
∑

j=1

K−1
∑

k=1
k 6=i

s̃k[n]aji[n]ajk[n]
]

− 2E
[

hi[n]m2[n]

K−1
∑

j=1

K−1
∑

k=1
k 6=i

s̃k[n]aji[n]ajk[n]
]

.

Therefore, the GMSD becomes as

∆i[n] = E||s̃i[n+ 1]||2Q − E||s̃i[n]||
2
Q

= E
[

(g2i [n]m
2
1[n] + 2gi[n]hi[n]m1[n]m2[n]

+ h2
i [n]m

2
2[n])

K−1
∑

j=1

a2ji[n]
]

− 2E
[

s̃i[n](gi[n]m1[n] + hi[n]m2[n])

K−1
∑

j=1

a2ji[n]
]

− 2E
[

(gi[n]m1[n] + hi[n]m2[n])

×

K−1
∑

j=1

K−1
∑

k=1
k 6=i

s̃k[n]aji[n]ajk[n]
]

= r1[n]− 2r2[n],

where

r1[n] =E
[

(g2i [n]m
2
1[n] + 2gi[n]hi[n]m1[n]m2[n]

+ h2
i [n]m

2
2[n])

K−1
∑

j=1

a2ji[n]
]

,

r2[n] =E
[

(gi[n]m1[n] + hi[n]m2[n])̃s
T [n]AT [n]Ai[n]

]

.

(47)

Similar to section III-A, the signal error vector s̃[n] is not

available, and thus, r2[n] is not computable. Thus, we solve

this problem using the following relations

As̃[n] = A(so − s[n]) = y[n]− e[n]− A[n]s[n], (48)

which yields

r2[n] =E
[

(A[n]̃s[n])T Ai[n](gi[n]m1[n] + hi[n]m2[n])
]

=µE
[

gi[n](y[n]− A[n]s[n])T Ai[n]A
T
i [n](y[n]− A[n]s[n])

]

+ µE
[

hi[n](y[n]− A[n]s[n])T Ai[n]

K−1
∑

j=1

AT
i [n− j]

]

− µE
[

gi[n]Ai[n]CeAT
i [n]

]

− µE
[

hi[n]Ai[n]Ce

K−1
∑

j=1

AT
i [n− j]

]

. (49)

Substituting the above equation in (47) and setting
∂∆i[n]
∂gi[n]

=

0 and
∂∆i[n]
∂hi[n]

= 0 yields

gi[n] =
r3[n]

r4[n]
, (50)

and

hi[n] =
r5[n]

r6[n]
, (51)

where

r3[n] =− hi[n]m1[n]m2[n]

K−1
∑

j=1

a2ji[n]− µAi[n]CeAT
i [n]

+ µ(y[n]− A[n]s[n])T Ai[n]A
T
i [n](y[n]− A[n]s[n]),

(52)

r4[n] =m2
1[n]

K−1
∑

j=1

a2ji[n], (53)

r5[n] =− gi[n]m1[n]m2[n]
K−1
∑

j=1

a2ji[n]

− µAi[n]Ce

K−1
∑

j=1

AT
i [n− j] + µ(y[n]− A[n]s[n])T

× Ai[n]A
T
i [n]

K−1
∑

j=1

(y[n− j]− A[n− j]s[n]), (54)

r6[n] =m2
2[n]

K−1
∑

j=1

a2ji[n]. (55)

APPENDIX C

PROOF OF PROPOSITION 1

.

Let Φ ∈ R
N×N be an arbitrary matrix. Then, Φ−weighted

norm of both sides of (27) yields

E
[

||̃s[n+ 1]||2
Φ

]

= E
[

||̃s[n]||2
Φ′

]

+ µ2E
[

eT [n]A[n]GT [n]ΦG[n]AT [n]eT [n]
]

+ µ2E
[

K−1
∑

j=1

eT [n− j]A[n− j]HT [n]Φ

×H[n]

K−1
∑

j=1

AT [n− j]e[n− j]
]

, (56)
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where

Φ
′ = (I − µB1[n])

T
Φ(I− µB1[n]). (57)

and

B1[n] = G[n]AT [n]A[n] +H[n]
K−1
∑

j=1

AT [n− j]A[n− j],

Let φ = vec(Φ), where the operator vec(.) aggregates the

columns of the matrix therein on top of each other; then, we

have

E
[

||̃s[n+ 1]||2φ

]

= E
[

||̃s[n]||2Qφ

]

+ µ2Tr
[

ΦG[n]AT [n]CeA[n]GT [n]
]

+ µ2Tr
[

ΦH[n]

K−1
∑

j=1

AT [n− j]CeA[n− j]HT [n]
]

,

(58)

where Tr(.) is the trace operator, and we have

Q = (I− µB1[n])⊗ (I− µB1[n]). (59)

In (58), we have used the independency assumption among

noise samples at different times. Exploiting the trace property

Tr(ΦX) = vec(XH)T vec(Φ) in the above equation, we obtain

E
[

||̃s[n+ 1]||2φ

]

= E
[

||̃s[n]||2Qφ

]

+ µ2vec
[

G[n]AT [n]CeA[n]GT [n]
]

φ

+ µ2vec
[

H[n]
K−1
∑

j=1

AT [n− j]CeA[n− j]H[n]
]

φ

=E
[

||̃s[n]||2Qφ

]

+ µ2vec(P)Tφ, (60)

where

P =G[n]AT [n]CeA[n]GT [n]

+H[n]

K−1
∑

j=1

AT [n− j]CeA[n− j]H[n]. (61)

It is proved in [12] that the above convergence satisfies if

0 < µ <
2

λmax (B1)
(62)

where λmax(.) denotes the maximum eigenvalue of the matrix

therein.
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