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Abstract—This paper presents a personalized graph federated
learning (PGFL) framework in which distributedly connected
servers and their respective edge devices collaboratively learn
device or cluster-specific models while maintaining the privacy of
every individual device. The proposed approach exploits similari-
ties among different models to provide a more relevant experience
for each device, even in situations with diverse data distributions
and disproportionate datasets. Furthermore, to ensure a secure
and efficient approach to collaborative personalized learning,
we study a variant of the PGFL implementation that utilizes
differential privacy, specifically zero-concentrated differential
privacy, where a noise sequence perturbs model exchanges.
Our mathematical analysis shows that the proposed privacy-
preserving PGFL algorithm converges to the optimal cluster-
specific solution for each cluster in linear time. It also shows
that exploiting similarities among clusters leads to an alternative
output whose distance to the original solution is bounded, and
that this bound can be adjusted by modifying the algorithm’s
hyperparameters. Further, our analysis shows that the algorithm
ensures local differential privacy for all clients in terms of zero-
concentrated differential privacy. Finally, the performance of the
proposed PGFL algorithm is examined by performing numerical
experiments in the context of regression and classification using
synthetic data and the MNIST dataset.

Index Terms—Federated learning, personalized learning,
graph federated architecture, differential privacy, zero-
concentrated differential privacy.

I. INTRODUCTION

The rise of internet-of-things (IoT) and cyber-physical sys-

tems has led to exponential growth in data collection from

distributed devices. However, transferring this massive amount

of data to a centralized processing point for inference and

decision-making is often impractical due to resource con-

straints and privacy concerns. To overcome these challenges,

distributed learning, with its on-device processing, is an attrac-

tive alternative, enabling efficient data analysis without moving

the raw data out of the edge devices. Federated learning (FL) is

a distributed learning framework that facilitates collaborative

model training across edge devices or clients without exposing

the underlying data [2]–[4]. In particular, using its local

data, each client refines a global model shared by a server,
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and subsequently transfers the updated model back to the

server which then aggregates all updated client models before

sending an update back to clients for further refinements.

To date, research on FL mostly uses a single-server ar-

chitecture, which is susceptible to communication and com-

putation bottlenecks and scales poorly with the number and

geographical dispersion of participating clients. To address

these concerns, some alternatives to the single-server archi-

tecture have been proposed, see, e.g., [5]–[8], such as client-

edge-server hierarchical learning [6] and the graph feder-

ated architecture [5], [8]. In client-edge-server hierarchical

learning, edge servers perform partial aggregation with their

associated clients and communicate their results to a single

cloud server that performs the global aggregation. However,

using a single cloud server is susceptible to bottlenecks and

can only accommodate up to a limited number of edge servers.

In contrast, the graph federated architecture uses a server

network in which each server aggregates the information from

its associated clients and shares its model with its neighbors.

Therefore, the graph federated architecture is highly scalable

with the number of clients and easier to implement, thanks to

its distributed nature.

One of the main challenges in FL is data heterogeneity,

which means there can be substantial differences in the

underlying statistical distributions among clients’ data [9]–

[11]. Consequently, a unique globally shared model can be

inadequate for such settings, and personalized models must

be learned instead [12]–[14]. For example, autonomous vehi-

cles need to maintain vehicle-specific models of their highly

dynamic environment while collaborating with nearby vehicles

and/or smart city IoT devices [10]. This requirement can be

met by personalized FL, where clients, or groups of clients

(clusters), learn client- or cluster-specific models [15]–[17].

These personalized models typically share some similarities

[18]. As an example, the environment of an autonomous vehi-

cle could be shared with other connected objects. Leveraging

the similarities between cluster-specific models can, therefore,

improve performance [18], [19], a process known as inter-

cluster learning, which is particularly important when some

clients or clusters have insufficient data [20], [21].

Personalized FL has received considerable attention lately

due to its ability to improve learning performance in settings

where clients are required to observe device-specific behaviors,

see, e.g., [18], [20]–[24]. It is used in many applications

such as healthcare, electrical load forecasting, biometrics,

drone swarms, and autonomous vehicles [10], [11], [25]–[27].

However, all those works are limited to single-server cases.
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For example, although [8] extends personalized FL to a multi-

server architecture, it assumes that all the clients associated

with a given server learn the same model. Under this as-

sumption, each server maintains a single model trained via

conventional FL and the model is refined by communicating

with other servers about their models. However, the general

case where each distributed server needs to enable the learning

of personalized models and collaborate with its neighbors to

refine those, is yet to be studied.

In the context of graph FL, many devices take part in the

training process, and ensuring the privacy and security of client

data is crucial. The risk of eavesdropping attacks on the client-

server channels increases with the number of devices in the

system, and not all devices can be trusted. Even if data is not

explicitly shared among clients, repeated message exchanges

could reveal sensitive information to curious devices or ex-

ternal eavesdroppers [28], [29]. In order to reduce this risk,

differential privacy (DP) has been introduced to protect client

privacy by ensuring that the inclusion or exclusion of an indi-

vidual data sample does not significantly affect the algorithm

output. In other words, DP limits the ability of attackers to

infer information about individual data samples by adding

controlled noise to the data before sharing it with the server

[30]–[34]. In particular, the zero-concentrated DP (zCDP)

variant is well-suited for iterative implementations, as it allows

the privacy budget to be adjusted dynamically based on the

number of iterations [35]–[40]. Therefore, this paper considers

zCDP in the graph FL architecture where the privacy of client

data is of utmost importance. By employing zCDP, clients

perturb their local model estimates with a noise sequence of

known variance that decreases progressively throughout the

computation to ensure privacy without compromising model

accuracy.

This manuscript tackles the general case of personalized

graph federated learning (PGFL) in both a conventional and

privacy-preserving manner. Specifically, we consider a multi-

server architecture with distributed clients grouped into clus-

ters, irrespective of their associated servers, for the decen-

tralized training of cluster-specific personalized models. The

proposed algorithms, within the considered PGFL architecture,

leverage similarities between clusters to mitigate data scarcity

and improve learning performance. The local training in the

proposed framework uses the alternating direction method of

multipliers (ADMM), well-suited for distributed applications

[41]–[43] and demonstrating fast, often linear [44], [45],

convergence. The main contributions of this manuscript are

summarized as follows.

• A PGFL framework is proposed to improve learning per-

formance in a distributed learning setting. Our approach

employs inter-cluster learning to improve the accuracy of

local models by leveraging information from other clus-

ters. The graph FL problem is formulated as a constrained

optimization problem and solved in a distributed manner

using ADMM.

• We design a privacy-preserving variant of the PGFL algo-

rithm, where clients perturb their local models to achieve

local differential privacy using the zCDP framework.

The privacy loss is quantified per iteration as well as

throughout the computation.

• Mathematical analysis is given to show that the privacy-

preserving implementation of the PGFL algorithm con-

verges to the optimal solution for each cluster in linear

time. Additionally, our analysis shows that utilizing inter-

cluster learning leads to an alternative output whose

distance to the original solution is bounded and that the

bound depends on cluster similarity and can be adjusted

with hyperparameter selection.

The paper is organized as follows. Section II introduces the

problem and presents the PGFL algorithm along with its zCDP

variant. Sections III and IV are dedicated to the convergence

and privacy analyses of the proposed algorithm. In Section V,

we demonstrate the effectiveness of the algorithm through a

series of experiments involving regression and classification

tasks. Section VI concludes the paper.

Mathematical notations: Matrices, column vectors, and

scalars are denoted by bold uppercase, bold lowercase, and

lowercase letters, respectively. The notation AT denotes trans-

pose of the matrix A, the identity matrix is denoted by I, and

a null vector by 0. The exclusion of an element a from set A
is denoted A\a. The notation 〈a, b〉 denotes the inner product

between vectors a and b. The statistical expectation operator

is represented by E[·], and N (µ,Σ) and U(a, b) respectively

denote the normal distribution with mean µ and covariance

matrix Σ and the uniform distribution on an interval (a, b).
Finally, the gradient of a function a(·) is denoted by ∇a(·).

II. PROBLEM FORMULATION AND PROPOSED METHOD

The proposed PGFL framework solves a personalized opti-

mization problem in a graph federated architecture and utilizes

the similarities among clusters to enhance learning perfor-

mance. For this purpose, we consider a distributed network

of S servers associated with a total of K clients. The server

network is modeled as an undirected graph G = (S, E), where

S is the set of servers and E is the set of edges so that two

servers s and p can communicate if and only if (s, p) ∈ E .

The set of neighbors to a server s is denoted Ns, and contains

s, we denote N−
s = Ns\s. Each server s is associated with a

set of clients, denoted Cs, with
⋃

s∈S Cs = C and Cs
⋂
Cp =

∅, ∀s 6= p. Every client k ∈ C has access to a local dataset Dk

of cardinality |Dk| = Dk, which is composed of a data matrix

Xk = [xk,1 . . .xk,Dk
]⊺, where xk,i, i ∈ {1, . . . , Dk} is a

vector of size L, and a response vector yk = [yk,1, . . . , yk,Dk
]⊺

that is subject to white observation noise. Each client k ∈ C
aims to learn a personalized, client-specific model wk.

The learning task for each client is defined by the set

{Dk, ℓk}, which represents its local data and loss function.

All clients connected to distributed servers, regardless of their

associated servers, are grouped into Q clusters. These clusters

are formed by clients with similar learning tasks, such as

F -similar tasks [46], with the aim of collectively learning

a shared model. It is assumed that there is a degree of

relationship among the learning tasks across clusters, which

can manifest in various ways. For example, clusters may

share the same loss and regularizer functions while having

different data distributions, or they may have the same data
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distribution but distinct objective functions. For instance, in

healthcare, clusters can represent various patient diagnostics,

independent of their respective associated hospitals, with a

hospital functioning akin to a server. We denote the set of

clusters as Q = {1, . . . , Q}. The clients belonging to a specific

cluster q ∈ Q form the set C(q) aiming to learn the model w∗
q .

Additionally, the set of clients associated with server s within

cluster q is denoted as Cs,(q), with Cs,(q) = Cs
⋂
C(q).

A. Personalized Graph Federated Learning

To address task variations, personalized (cluster) models are

preferable. However, despite these differences, the underlying

relationship among tasks, or equivalently, clusters, can still

be exploited in decentralized learning. Here, we consider a

modified regularized empirical risk minimization problem to

leverage similarities among the clusters. For this purpose,

we introduce an additional regularizer function that enforces

similarity among the cluster-specific personalized models. This

additional regularizer function corresponds to inter-cluster

learning and is controlled by the inter-cluster learning parame-

ter τ ∈ (0, 1). The resulting optimization problem for a cluster

q is formulated as:

min
wq

∑

k∈C(q)

1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;wq) + λR(wq)

+ τ
∑

r∈Q\q

||wr −wq||
2
2, (1)

where ℓk(·), R(·), and λ denote the client loss function, the

global regularizer function, and the regularization parameter,

respectively. The larger the τ value is, the more the similarities

among cluster-specific personalized models are exploited.

The centralized optimization problem above relies on

the global variable wq . In a multi-server architecture, the

servers maintain local cluster-specific models and communi-

cate among neighbors to reach a consensus for each cluster.

The equivalent distributed optimization problem for a server

s and cluster q is

min
wq,s

∑

k∈Cs,(q)

1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;wq,s) + λR(wq,s)

+ τ
∑

r∈Q\q

∑

p∈Ns

||wr,p −wq,s||
2
2, (2)

s.t. wq,s = zs,p,wq,p = zs,p; ∀(s, p) ∈ E ,

where wq,s denotes the model of server s for cluster q and con-

sensus is enforced by the auxiliary variables {zs,p; ∀(s, p) ∈
E}. From (2), the augmented Lagrangian with penalty param-

Algorithm 1 PGFL

Initialization: w
(0)
k = 0 and w

(0)
q,s = 0, ∀k, q, s

– Procedure at client k ∈ Cs –

For iteration n = 1, 2, . . .
Update w

(n)
k as in (4)

Share w
(n)
k and ϕ

(n−1)
k with server s

Receive w
(n)
q,s from server s

Update ϕ
(n)
k as in (5)

EndFor

– Procedure at server s –

For iteration n = 1, 2, . . .
Receive {w̃

(n)
k ,ϕ

(n−1)
k ; ∀k ∈ Cs}

Update w̃
(n)
q,s as in (8)

Share w̃
(n)
q,s , ∀q with each server p in N−

s

Receive w̃
(n)
q,p , ∀q from each server p in N−

s

Aggregate ŵ
(n)
q,s as in (9)

Compute w
(n)
q,s as in (10)

Share w
(n)
q,s with clients in Cs

EndFor

eter ρ can be derived as

Lρ,q(Vq,M,Z) =
∑

s∈S

[
∑

k∈Cs,(q)

ℓk(Xk,yk;wq,s)

Dk

+ λR(wq,s)

+ τ
∑

r∈Q\q

∑

p∈Ns

||wr,p −wq,s||
2
2

+
∑

p∈N−

s

(
µ⊺

s,p(wq,s − zs,p) +ψ
⊺

s,p(wq,p − zs,p)
)

+
ρ

2

∑

p∈N−

s

(
||wq,s − zs,p||

2
2 + ||wq,p − zs,p||

2
2

)]
, (3)

with the set of primal variables Vq = {wq,s; s ∈ S},

Lagrange multipliers M = ({µs,p}, {ψs,p}), and auxiliary

variables Z = {zs,p}. Given that the Lagrange multipliers are

initialized to zero, using the Karush-Kuhn-Tucker conditions

of optimality and setting ψs = 2
∑

p∈N−

s
ψs,p, it can be

shown that the Lagrange multipliers µs,p and the auxiliary

variables Z are eliminated [47]. From (3), it is possible to

derive the local update steps of the ADMM for clients and

servers. For client k ∈ Cs,(q), the primal and dual updates are

given by

Client primal update:

w
(n)
k =argmin

w

1

Dk

ℓk(Xk,yk;w) +
λ

|Cs|
R(w) (4)

−
〈
ϕ

(n−1)
k ,w−w(n−1)

q,s

〉
+

ρ

2
||w −w(n−1)

q,s ||22,

Client dual update:

ϕ
(n)
k = ϕ

(n−1)
k + ρ(w(n)

q,s −w
(n)
k ), (5)

where the superscript n denotes the iteration number. Further,

the primal and dual updates for a server s ∈ S are given by:
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w(n)
q,s =

1

1 + τ (n) + ρ|N−
s |

[
1

|Cs,(q)|

∑

k∈Cs,(q)

w
(n)
k

−
1

ρ|Cs,(q)|

∑

k∈Cs,(q)

ϕ
(n−1)
k

−
1

2
ψ(n−1)

q,s +
ρ

2

∑

p∈N−

s

(w(n−1)
q,s −w(n−1)

q,p )

+ τ (n)
1

Q− 1

1

|Ns|

∑

r∈Q\q

∑

p∈Ns

w(n−1)
r,p

]
, (6)

ψ(n)
q,s = ψ(n−1)

q,s + ρ
∑

p∈N−

s

(
w(n)

q,p −w(n)
q,s

)
, (7)

where τ (n), the inter-cluster learning parameter, is iteration-

dependent. Since inter-cluster learning may degrade perfor-

mance toward the end of the computation, it may be necessary

for τ (n) to follow a decreasing sequence.

The computation in (6) performs local aggregation (first

two lines), inter-server aggregation (third line), and inter-

cluster learning (fourth line) in a single step. This presents the

major drawback of using the models of the previous iteration

for inter-server aggregation, i.e., w
(n−1)
q,p , and inter-cluster

learning, i.e., w
(n−1)
r,p [48], [49]. A multi-step mechanism

addresses this issue by replacing the primal and dual updates

of the server as follows:

• Server aggregation

w̃(n)
q,s =

1

|Cs,(q)|

∑

k∈Cs,(q)

w
(n)
k −

1

ρ|Cs,(q)|

∑

k∈Cs,(q)

ϕ
(n−1)
k .

(8)

• Inter-server aggregation

ŵ(n)
q,s =

1

|Ns|

∑

p∈Ns

w̃(n)
q,p . (9)

• Inter-cluster learning

w(n)
q,s =

(
1− τ (n)

)
ŵ(n)

q,s +
τ (n)

Q− 1

∑

r∈Q\q

ŵ(n)
r,s . (10)

The above multi-step mechanism has two main advantages.

First, performing server aggregation prior to inter-server ag-

gregation enables the servers to maintain models composed

of the last available client estimates. Second, the fact that

inter-cluster learning is performed at the end of the multi-

step mechanism ensures that model similarities are leveraged

evenly; that is, the same weight is given to any two clients’

estimates within the server neighborhood. The resulting PGFL

algorithm is summarized in Algorithm 1.

B. Privacy Preservation in PGFL

We propose a privacy-preserving variant of the PGFL algo-

rithm that implements zero-concentrated differential privacy

(zCDP). The motivation for using zCDP, as opposed to the

conventional (ǫ, δ)-DP, is that it provides better accuracy for

identical privacy loss under the worst-case scenario that an

Algorithm 2 Privacy-preserving PGFL

Initialization: w
(0)
k = 0 and w

(0)
q,s = 0, ∀k, q, s

– Procedure at client k ∈ Cs –

For iteration n = 1, 2, . . .
Update w

(n)
k as in (4)

Perturb w
(n)
k into w̃

(n)
k as in (11)

Share w̃
(n)
k and ϕ

(n−1)
k with server s

Receive w
(n)
q,s from server s

Update ϕ
(n)
k as in (5) using w̃

(n)
q,s and w̃

(n)
k .

EndFor

– Procedure at server s –

For iteration n = 1, 2, . . .
Receive {w̃

(n)
k ,ϕ

(n−1)
k ; ∀k ∈ Cs}

Update w̃
(n)
q,s as in (12)

Share w̃
(n)
q,s , ∀q with each server p in N−

s

Receive w̃
(n)
q,p , ∀q from each server p in N−

s

Aggregate ŵ
(n)
q,s as in (9)

Compute w
(n)
q,s as in (10)

Share w
(n)
q,s with clients in Cs

EndFor

eavesdropper aggregates all the exchanged messages [35],

[50]. Instead of sharing the exact local estimate w
(n)
k , a client

k shares with its server the perturbed estimate w̃
(n)
k , given by

w̃
(n)
k = w

(n)
k + ξ

(n)
k , (11)

where the perturbation noise follows a Gaussian mechanism,

ξ
(n)
k ∼ N (0, δ

2(n)
k I), with δ

2(n)
k being the variance of the

perturbation noise at iteration n.

In the context of zCDP, privacy protection is governed by

φ
(0)
k and ζ. The parameter φ

(0)
k represents the initial privacy

leakage, indicating the desired level of privacy at the start

of the algorithm. On the other hand, ζ ∈ (0, 1) denotes the

exponential decay factor of the noise variance, determining

how the privacy budget diminishes over successive iterations.

As shown later in Section IV, the privacy parameter at iteration

n, φ
(n)
k , is inversely proportional to the variance of the

perturbation noise, δ
2(n)
k . In other words, the privacy parameter

decreases as the noise variance increases, providing a stronger

privacy guarantee. Conversely, the privacy parameter increases

as the noise variance decreases, implying a weaker privacy

guarantee. Here, for each client, k ∈ C, the initial variance

δ
2(0)
k is fixed, and subsequently, the variance at iteration n is

updated according to the relationship δ
2(n)
k = ζδ

2(n−1)
k . This

recursive update ensures a decreasing privacy budget as the

algorithm progresses.

The server aggregation (8) and client dual update (5) are

affected by the noise perturbation (11). The server aggregation

becomes

w̃(n)
q,s =

1

|Cs,(q)|

∑

k∈Cs,(q)

w̃
(n)
k −

1

ρ|Cs,(q)|

∑

k∈Cs,(q)

ϕ
(n−1)
k ,

(12)

and in the client dual update, we substitute w
(n)
q,s with w̃

(n)
q,s

and w
(n)
k with w̃

(n)
k .



5

The resulting privacy-preserving algorithm is summarized in

Algorithm. 2. In the following sections, we provide a detailed

study of the privacy protection and convergence properties of

the proposed privacy-preserving PGFL algorithm.

III. CONVERGENCE ANALYSIS

This section studies the convergence behavior of the pro-

posed privacy-preserving PGFL algorithm. Sections III-A and

III-B study the algorithm without inter-cluster learning and

show that it converges to the optimal solution of (2) with τ = 0
in linear time. Section III-C bounds the distance between

the cluster-specific solutions obtained with and without inter-

cluster learning by a function of the inter-cluster learning

parameter sequence.

A. Problem Reformulation

We consider the server update steps with τ (n) = 0. Then, the

minimization problem solved at a client k ∈ Cs,(q) becomes

min
wk

1

Dk

ℓk(Xk,yk;wk) +
λ

|Cs|
R(wk)

s.t. wk = ŵq,s, (13)

where ŵq,s is the result of inter-server aggregation (9), defined

as the average model for cluster q in Ns. To simplify the

analysis, we reformulate (13) as

min
wk

fk(wk)

s.t. wk = ek,l,wl = ek,l, ∀l ∈
∑

p∈Ns

Cp,(q), (14)

where fk(wk) is given by

fk(wk) =
1

Dk

ℓk(Xk,yk;wk) +
λ

|Cs|
R(wk), (15)

and the auxiliary variables {ek,l}, ∀k, l ∈
∑

p∈Ns
Cp,(q) en-

force consensus. To reformulate (14) further, we introduce the

following:

w = [w⊺

1 , . . . ,w
⊺

k , . . .w
⊺

|C|]
⊺,

w̃ = [w̃⊺

1 , . . . , w̃
⊺

k , . . . w̃
⊺

|C|]
⊺ = w + ξ

ϕ = [ϕ⊺

1 , . . . ,ϕ
⊺

k, . . . ,ϕ
⊺

|C|]
⊺,

F (w) =
∑

k∈C

fk(wk), (16)

where ξ is the concatenation of the noise added to the local

models to ensure privacy. In addition, we introduce the vector

e ∈ R
2Md concatenating the vectors ek,l, el,k, ∀(k, l) ∈

{1, . . . ,K} : k 6= l, where d is the dimension of the models

and M is the number of constraints in (14). We can then

reformulate (14) as

min
w

F (w)

s.t. Aw+Be = 0. (17)

where A = [A1,A2] and B = [−I2Md,−I2Md]. The matrices

A1,A2 ∈ R
2Md×|C|d are composed of d × d-sized blocks.

Given a couple of connected clients (k, l), their associated

auxiliary variable ek,l, and its corresponding index in e, q; the

blocks
(
A1

)
q,k

and
(
A2

)
q,l

are equal to the identity matrix

Id, all other blocks are null.

From the above definitions, one can express∑
ek,l∈e

‖wk − ek,l‖
2

+ ‖wl − ek,l‖
2

= ‖Aw +Be‖2

and, for λ ∈ R
4Md,

∑
k∈C

∑
l∈Nk

(〈wk − ek,l,λq〉 + 〈wl −
ek,l,λ2e+q〉) = 〈Aw +Be,λ〉.

Therefore, the Lagrangian can be rewritten as

Lρ(Vq,M) = F (w) + 〈Aw +Be,λ〉+
ρ

2
‖Aw +Be‖2 .

(18)

B. Convergence Proof

We make the following assumptions to continue the analysis.

Assumption 1. The functions fk(·), k ∈ {1, . . . ,K}, are

convex and smooth. Consequently, they are also differentiable.

Using (18), and under Assumption 1, the steps of the PGFL

algorithm without inter-cluster learning can be expressed as

follows:

∇F (w(n+1)) +ATλ(n) + ρAT

(
Aw(n+1) +Be(n)

)
= 0,

BTλ(n) + ρBT

(
Aw̃(n+1) +Be(n+1)

)
= 0,

λ(n+1) − λ(n) + ρ
(
Aw̃(n+1) +Be(n+1)

)
= 0.

(19)

Similarly to [44], we introduce the following to simplify (19):

H+ = AT

1 +AT

2 ,

L+ =
1

2
H+H

T

+,

α = HT

−w,

H− = AT

1 −AT

2 ,

L− =
1

2
H−H

T

−,

M =
1

2
(L+ + L−).

Then, as derived in [44, Section II.B], (19) becomes

∇F (w(n+1)) +α(n) + 2ρMw(n+1) − ρL+w̃
(n) = 0,

α(n+1) −α(n) − ρL−w̃
(n+1) = 0. (20)

As in [51, Lemma 1], the equations in (20) can be combined

to obtain

w(n+1) =
M−1∇F (w(n+1))

2ρ
+

M−1L+w̃
(n)

2

−
M−1L−

2

n∑

s=0

w̃(s). (21)

Similarly to [51], by introducing the following:

Q =
√
L−/2,

q(n) =

(
r(n)

w̃(n)

)
,

r(n) =

n∑

s=0

Qw̃(s),

G =

[
ρI 0
0 ρL+/2

]
,

(21) can be reformulated using [51, Lemma 2] as

∇F (w(n+1))

ρ
+ 2Qr(n+1) + L+

(
w(n+1) − w̃(n)

)
= 2Mξ(t+1).

(22)
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Theorem I. Under Assumption 1, if τ (n) = τ = 0, ∀n, the

proposed PGFL algorithm converges to the optimal solution

of (2) in linear time for each cluster.

Proof. Under Assumption 1, F (w) is convex and smooth by

composition and, therefore, differentiable. Using [38, Lemma

6] and [38, Theorem V] with a convex and smooth function

F (w) demonstrates that the proposed PGFL algorithm, with-

out inter-cluster learning (τ = 0 ), converges to the optimal

solution of (2) in linear time for any given cluster.

C. Impact of Inter-Cluster Learning

In situations with limited data, as demonstrated in Section

V, employing inter-cluster learning (τ 6= 0) can enhance

performance compared to τ = 0. This section establishes an

upper bound on the disparity between the resulting cluster-

specific personalized models obtained in scenarios with and

without inter-cluster learning. It is worth noting that this bound

can be controlled by properly choosing the sequence τ(n).
To do so, it is necessary to reformulate the client primal

update using Assumption 1. The primal update for client k ∈
Cs,(q) is expressed as follows:

w
(n+1)
k =argmin

w

fk(w) −
〈
ϕ

(n)
k ,w −w(n)

q,s

〉

+
ρ

2
||w −w(n)

q,s ||
2, (23)

which, under Assumption 1, is equivalent to

∇fk(w
(n+1)
k )−ϕ

(n)
k + ρ

(
w

(n+1)
k −w(n)

q,s

)
= 0. (24)

Further reformulation leads to the following:

w
(n+1)
k = w(n)

q,s +
1

ρ
ϕ

(n)
k −

1

ρ
∇fk(w

(n+1)
k ). (25)

By replacing w
(n+1)
k with (25) in (8), we obtain

ŵ(n)
q,s =

1

|Ns|

∑

p∈Ns

1

|Cp,(q)|

∑

k∈Cp,(q)

(
w(n−1)

q,p −
1

ρ
∇fk(w

(n)
k )
)
.

(26)

Next, we investigate the effect of inter-cluster learning by

comparing the performance of models obtained using the

PGFL algorithm with and without inter-cluster learning. We

shall prove that the difference between the resulting models

is bounded and depends on both the inter-cluster learning

parameter and the similarity of models between clusters.

Theorem II. Given a sufficiently large penalty parameter ρ,

for all iterations, server s ∈ S and cluster q ∈ Q, the impact

of inter-cluster learning after n iterations is bounded by

E

[
||w̄(n)

q,s −w(n)
q,s ||

2
2

]
6

n∑

i=1

( n∏

j=i+1

(
1− τ (j)

))
τ (i)η, (27)

where the expectation is taken with respect to the privacy-

related noise added in (11) and the data observation noise,

w̄
(n)
q,s denotes the model obtained by the algorithm without

inter-cluster learning, and η is the maximum cluster model

distance, defined as:

η = max
q,r∈Q

∥∥w∗
q −w∗

r

∥∥2
2
, (28)

with the models w∗
q , q ∈ Q being the cluster-specific solutions

of (2) with τ = 0.

Proof. We prove this theorem by induction. With initial values

w
(0)
q,s = 0 and w̄

(0)
q,s = 0, one can write.

w(1)
q,s =

(
1− τ (1)

)
ŵ(1)

q,s +
τ (1)

Q − 1

∑

r∈Q\q

ŵ(1)
r,s ,

w̄(1)
q,s =

1

|Ns|

∑

p∈Ns

1

|Cp,(q)|

∑

k∈Cp,(q)

(
w̄(0)

q,p −
1

ρ
∇fk(w̄

(1)
k )
)
,

(29)

where, given that w̄
(0)
q,p = w

(0)
q,p and w̄

(0)
k = w

(0)
k , and using

(26), we have ŵ
(1)
q,s = w̄

(1)
q,s . Hence,

w̄(1)
q,s −w(1)

q,s =
τ (1)

Q− 1

∑

r∈Q\q

(
w̄(1)

q,s − ŵ(1)
r,s

)
. (30)

Taking the expectation with respect to the privacy-related

and observation noises, we can express this difference as

a function of the inter-cluster learning parameter and the

maximum cluster model distance.

E[||w̄(1)
q,s −w(1)

q,s ||
2
2] 6 τ (1)η. (31)

Further, we assume that (27) is satisfied for all iterations up

to iteration n− 1. For iteration n, we have

w(n)
q,s =

(
1− τ (n)

)
ŵ(n)

q,s +
τ (n)

Q− 1

∑

r∈Q\q

ŵ(n)
r,s ,

w̄(n)
q,s =

1

|Ns|

∑

p∈Ns

1

|Cp,(q)|

∑

k∈Cp,(q)

(
w̄(n−1)

q,p −
1

ρ
∇fk(w̄

(n)
k )
)
,

(32)

where ŵ
(n)
q,s 6= w̄

(n)
q,s since

ŵ(n)
q,s =

1

|Ns|

∑

p∈Ns

1

|Cp,(q)|

∑

k∈Cp,(q)

(
w(n−1)

q,p −
1

ρ
∇fk(w

(n)
k )
)
.

(33)

The difference is given by

w̄(n)
q,s−w(n)

q,s =
(
1− τ (n)

)(
w̄(n)

q,s − ŵ(n)
q,s

)

+
τ (n)

Q− 1

∑

r∈Q\q

(
w̄(n)

q,s − ŵ(n)
r,s

)
, (34)

with

w̄(n)
q,s − ŵ(n)

q,s =
1

|Ns|

∑

p∈Ns

1

|Cp,(q)|

∑

k∈Cp,(q)

(
w̄(n−1)

q,p

−w(n−1)
q,p −

1

ρ
∇fk(w̄

(n)
k ) +

1

ρ
∇fk(w

(n)
k )
)
.

(35)

We note that the expectation of ||w̄
(n−1)
q,p − w

(n−1)
q,p ||22 with

respect to the privacy-related and observation noises is iden-

tical for all servers. Therefore, since (27) is satisfied for

iteration n−1 for all servers, given a sufficiently large penalty
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parameter ρ, and taking the expectation with respect to the

privacy-related and observation noises, we have

E||w̄(n)
q,s − ŵ(n)

q,s ||
2
2 6 E||w̄(n−1)

q,s −w(n−1)
q,s ||22. (36)

Combining (34) and (36), we will have

E||w̄(n)
q,s −w(n)

q,s ||
2
2 6 (1− τ (n))E||w̄(n−1)

q,s −w(n−1)
q,s ||22

+
τ (n)

Q− 1

∑

r∈Q\q

E||w̄(n)
q,s − ŵ(n)

r,s ||
2
2, (37)

which, using the maximum cluster model distance, yields

E||w̄(n)
q,s −w(n)

q,s ||
2
2 6

(
1− τ (n)

)
E||w̄(n−1)

q,s −w(n−1)
q,s ||22

+ τ (n)η. (38)

Given (27) for iteration n− 1, we have

E||w̄(n)
q,s −w(n)

q,s ||
2
2 6

(
1− τ (n)

) n−1∑

i=1

( n−1∏

j=i+1

(1 − τ (j))
)
τ (i)η

+ τ (n)η,

6

n∑

i=1

( n∏

j=i+1

(1 − τ (j))
)
τ (i)η. (39)

That is, (27) is satisfied for iteration n.

By the principle of induction, (27) is satisfied for all

iterations, server s ∈ S and cluster q ∈ Q.

Corollary. If τ (i) = 0, ∀i < n and τ (n) 6= 0, the impact of a

single iteration of inter-cluster learning is bounded by

E||w̄(n)
q,s −w(n)

q,s ||
2
2 6 τ (n)η, (40)

where w̄
(n)
q,s denotes a model obtained without inter-cluster

learning, η is as defined in Theorem II, and the expectation

is taken with respect to the privacy-related and observation

noises.

Theorem II bounds the difference in the resulting models

with and without inter-cluster learning. Combining Theorems

I and II, the resulting models obtained by the algorithms are

guaranteed to reside within a neighborhood of the optimal

solution of (2) with τ = 0. The size of this neighborhood can

be adjusted by selecting the sequence τ (n). When ample data

is available, the algorithm converges to a satisfactory solution

within this neighborhood. However, in cases of limited data,

the solution of (2) with τ = 0 may be inadequate. In such

situations, inter-cluster learning becomes crucial, allowing the

proposed algorithm to achieve higher accuracy, as demon-

strated in Section V. By exploiting inter-cluster learning, the

algorithm effectively overcomes the limitations imposed by

scarce data, leading to improved performance.

IV. PRIVACY ANALYSIS

This section focuses on quantifying the local privacy

protection provided by the proposed PGFL algorithm. To

achieve this, we begin by calculating the l2-norm sensitivity,

which quantifies the variation in output resulting from a

change in an individual data sample. Once we have established

the l2-norm sensitivity, we proceed to adjust the noise variance

added to the primal variables, ensuring satisfactory protection.

Definition 1. The l2-norm sensitivity is defined by

∆
(n)
k,2 = max

Dk,Dl

∥∥∥w(n)
k,Dk

−w
(n)
k,Dl

∥∥∥ (41)

where w
(n)
k,Dk

and w
(n)
k,Dl

denote the local primal variables

obtained from two neighboring data sets Dk and Dl, which

differ in only one data sample.

Assumption 3. The functions ℓk(·), k ∈ C, have bounded

gradients. That is, for k ∈ C there exists a constant Ck such

that ||∇ℓk(·)|| 6 Ck.

Lemma 1. Under Assumption 3, the l2-norm sensitivity for a

client k is given by

∆
(n)
k,2 = max

Dk,Dl

||w
(n)
k,Dk

−w
(n)
k,Dl

|| =
2Ck

ρDk

. (42)

Proof. We consider two neighboring data sets for a client k,

Dk and Dl, both of cardinality Dk. For simplicity, we assume

that they differ on the last data sample. We denote w
(n)
k,Dk

the

model obtained using the initial data set, and w
(n)
k,Dl

the model

obtained using the alternative data set. Those are obtained,

according to (4), by:

w
(n)
k,Dk

= argmin
w

1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;w) +
λ

|Cs|
R(w)

−
〈
ϕ

(n−1)
k ,w −w(n−1)

q,s

〉
+

ρ

2
||w −w(n−1)

q,s ||2,

w
(n)
k,Dl

=argmin
w

λ

|Cs|
R(w)

+
1

Dk

(Dk−1∑

i=1

ℓk(xk,i, yk,i;w) + ℓk(x
′
k,Dk

, y′k,Dk
;w)

)

−
〈
ϕ

(n−1)
k ,w −w(n−1)

q,s

〉
+

ρ

2
||w −w(n−1)

q,s ||2.

Using (25), that we recall:

w
(n)
k = w(n−1)

q,s +
1

ρ
ϕ

(n−1)
k −

1

ρ
∇fk(w

(n)
k ), (43)

we can derive:

||w
(n)
k,Dk

−w
(n)
k,Dl

|| = (44)∥∥∥∥
1

ρDk

(∇ℓk(xk,Dk
, yk,Dk

;wk)−∇ℓk(x
′
k,Dk

, y′k,Dk
;wk))

∥∥∥∥ ,

which, under Assumption 3, provides a value for the l2-norm

sensitivity:

max
Dk,Dl

||w
(n)
k,Dk

−w
(n)
k,Dl

|| =
2Ck

ρDk

. (45)

With the l2-norm sensitivity, we can establish the relation

between the noise variance added in (11) and the privacy

parameter φ
(n)
k as well as prove the privacy guarantee of the

algorithm in terms of zCDP.
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Theorem III. Under Assumption 3, PGFL satisfies dynamic

φ
(n)
k -zCDP with the relation between the privacy parameter

and the perturbation noise variance given by

δ
2(n)
k =

∆
(n)2
k,2

2φ
(n)
k

. (46)

Proof. For any client k and iteration n, the perturbed primal

update is obtained with (11). That is, it is equivalent to

w̃
(n)
k ∼ N (w

(n)
k , δ

2(n)
k I). Hence, for two neighboring data

sets Dk and Dl, we have w̃
(n)
k,Dk

∼ N (w
(n)
k,Dk

, δ
2(n)
k I) and

w̃
(n)
k,Dl

∼ N (w
(n)
k,Dl

, δ
2(n)
k I)

Using [36, Lemma 17], which states

Dα(N(µ, vId)||N(ν, vId)) =
α||µ−ν||22

2v , ∀α ∈ [1,∞);
we obtain, ∀α ∈ [1,∞), the following Kullback-Leibler-

divergence:

Dα(w̃
(n)
k,Dk

||w̃
(n)
k,Dl

) =
α||w

(n)
k,Dk

−w
(n)
k,Dl

||22

2δ
2(n)
k

. (47)

Using Lemma 1, we can bound the KL-divergence by

Dα(w̃
(n)
k,Dk

||w̃
(n)
k,Dl

) 6
α∆

(n)2
k,2

2δ
2(n)
k

. (48)

Further, we consider the privacy loss of w̃
(n)
k at output λ:

z
(n)
k (w̃

(n)
k,Dk

||w̃
(n)
k,Dl

) = log
P (w̃

(n)
k,Dk

= λ)

P (w̃
(n)
k,Dl

= λ)
. (49)

Using the definition of the KL-divergence with (48), we

obtain

E(e(α−1)z
(n)
k

(λ)) 6 e
(α−1)Dα(w̃

(n)
k,Dk

||w̃
(n)
k,Dl

)

6 e
(α−1)

α∆
(n)2
k,2

2δ
2(n)
k . (50)

Thus, the PGFL algorithm satisfies the dynamic φ
(n)
k -zCDP

with φ
(n)
k =

∆
(n)
k,2

2δ
2(n)
k

.

Theorem III gives the relationship between the noise pertur-

bation variance and the privacy protection at a given iteration.

Given that the proposed algorithm is an iterative process

and several estimates are exchanged, one needs to consider

the total privacy loss throughout the learning process. The

total privacy loss after n iterations can be computed using

[38, Theorem 3] and is given in terms of (ǫ, δ)-DP for any

ζ ∈ (0, 1) and δ ∈ (0, 1) by

ǫ = max
k∈C

(
φ
(1)
k (1− ζn)

ζn−1 − ζn
+ 2

√
φ
(1)
k (1 − ζn) ln 1/δ

ζn−1 − ζn

)
. (51)

V. NUMERICAL SIMULATIONS

This section illustrates the performance of the proposed

PGFL algorithm for solving regression and classification tasks.

A. Experiments for Regression

We consider a graph federated network consisting of |S| =
10 servers, each having access to |Cs| = 15 clients, for

a total of |C| = 150 clients. The set of servers and their

communication channels form a random connected graph

where the average node degree is three. Each client has access

to a random number of noisy data samples between Dk = 2
and Dk = 9, each composed of a vector xk,i of dimension

d = 60 and a response scalar yk,i. Doing so, each cluster

is globally observable but not locally at any given client or

set Cs, s ∈ S. The servers implement random scheduling of

clients to reduce the communication load [52]. In particular, at

every global iteration, each server randomly selected a subset

of three clients to participate in the learning process.

The clients of the network are randomly split between

Q = 3 clusters. Clients of a given cluster solve the ridge

regression problem with data generated from an original model

w∗
q , obtained with w∗

q = w∗
0+γw∗

0 with γ ∼ U(−0.15, 0.15),
where w∗

0 is a base model. In doing so, the learning tasks of the

different clusters share the same objective functions but have

different, related data distributions. The loss and regularizer

functions are given by

ℓk(Xk,yk;wk) = ||yk −Xkwk||
2,

R(wk) = ||wk||
2. (52)

Performance is evaluated by computing the normalized

mean squared deviation (NMSD) of the local models with

respect to the corresponding cluster-specific original model

used to generate the data, w∗
q for k ∈ C(q). It is given by:

γ(n) =
1

|C|

|Q|∑

q=1

∑

k∈C(q)

∥∥∥w(n)
k −w∗

q

∥∥∥
2

2∥∥w∗
q

∥∥2
2

, (53)

where the result is averaged over several Monte Carlo itera-

tions. To ensure a fair comparison, the algorithms are set to

observe the same initial convergence rate whenever possible.

For most experiments, we display the learning curve, that is,

the NMSD against the iteration index.

We first consider an ideal setting wherein all algorithms

are evaluated without privacy considerations (ξ(n) = 0, ∀n))

and client scheduling. Then, for comparison purposes, we

adapted the conventional federated averaging (FedAvg) al-

gorithm [52], learning a single global model, to the graph

federated architecture. In this scenario, the inter-cluster param-

eter τ (n) of the PGFL algorithm was kept fixed throughout

the learning, specifically, τ (n) = 0 and τ (n) = 0.4, and

did not employ inter-server communication when E = ∅.

Figure 1 shows the learning curves for the PGFL and FedAvg

implementations above. The results illustrate the superiority of

the proposed PGFL algorithm over FedAvg, as cluster-specific

learning tasks benefit significantly from personalized models

tailored to each cluster. We also see that incorporating inter-

cluster learning results in improved convergence speed and

steady-state accuracy. Furthermore, the performance of the

PGFL algorithm is notably poor in the absence of inter-server

communication, emphasizing the importance of using the

graph federated architecture. Leveraging the model similarities
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Fig. 1: Learning curves of the PGFL algorithm with a fixed

inter-cluster learning parameter and the FedAvg algorithm,

without client scheduling or privacy.

improves learning speed and accuracy by compensating for

data scarcity. In addition, isolated servers whose clients lack

sufficient data to achieve satisfactory accuracy independently

reinforce the necessity of the graph federated architecture.

Next, we modify the setting to incorporate client scheduling

and evaluate the aforementioned algorithms with reduced

communication load. Figure 2 shows the learning curves for

the PGFL and FedAvg with client scheduling. We observe that

the PGFL algorithm exhibits slower convergence and higher

steady-state NMSD when utilizing client scheduling. And we

note that FedAvg performs better with client scheduling. The

performance degradation for the PGFL algorithm is due to

the lower client participation resulting in a smaller quantity

of data being utilized. The better performance of FedAvg in

this setting is due to the imbalance of cluster representation

in the universal model, which benefits the participating clients

on average.

Finally, we evaluate the aforementioned algorithms in a

setting with client scheduling and privacy protection. All

of the algorithms utilize zCDP with the noise perturbation

presented in (11). Figure 3 shows the learning curves for the

PGFL and FedAvg with client scheduling and privacy. We

observe that the noise perturbation associated with differential

privacy significantly reduces the convergence speed of all

the simulated algorithms. However, we note that the NMSD

after 300 iterations is nearly identical to the one in Fig. 2.

This behavior is explained by the use of zCDP, in which the

variance of the noise perturbation starts high and decreases

linearly throughout the learning process.

Further, we illustrate the importance of carefully choosing

the value of the inter-cluster learning parameter. In Fig. 4,

we simulated the proposed PGFL algorithm for various fixed

τ (n) values and displayed the NMSD after 200 iterations.

For instance, the NMSD for τ (n) = 0.4 corresponds to the

result obtained in Fig. 3. This figure confirms that inter-cluster

learning has the potential to increase learning performance

by alleviating data scarcity, as the PGFL algorithm achieves

lower NMSD with τ (n) ∈ (0.1, 0.5) than with τ (n) = 0. It

0 50 100 150 200 250 300
-50

-45

-40

-35

-30

-25

-20

Fig. 2: Learning curves of the PGFL algorithm with a fixed

inter-cluster learning parameter and the FedAvg algorithm,

considering client scheduling and without privacy.
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Fig. 3: Learning curves of the PGFL algorithm with a fixed

inter-cluster learning parameter and the FedAvg algorithm,

considering client scheduling and privacy.
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PGFL

Fig. 4: NMSD after 200 iterations vs. fixed inter-cluster

learning parameter τ (n) values for the PGFL algorithm with

client scheduling and privacy .
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also shows that the inter-cluster learning parameter must be

carefully selected, as a value too large for the setting leads to

performance degradation.

We then illustrate an alternative use of inter-cluster learning.

For this experiment, the difference between the data distribu-

tion of the different clusters has been increased. Precisely,

the datasets were simulated with the models obtained by

wq = w0 + γw0 with γ ∼ U(−0.5, 0.5). The learning

curves are presented in Fig. 5. We observed that, because of

the higher cluster dissimilarity, inter-cluster learning degrades

steady-state NMSD; this is observed in the learning curves for

PGFL with τ (n) = 0 and τ (n) = 0.4. However, by mitigating

data scarcity within a cluster, inter-cluster learning improves

the initial convergence rate. To benefit from an improved

initial convergence rate and avoid steady-state performance

degradation, it is possible to reduce the inter-cluster learn-

ing parameter progressively. Doing so, the PGFL algorithm

with time-varying τ (n) = 0.4 × 0.98n has the same initial

convergence rate as the PGFL algorithm with fixed τ = 0.4
and attains near-identical steady-state NMSD as the PGFL

algorithm with fixed τ = 0.

Finally, we study the impact of privacy protection on the

steady-state NMSD of the PGFL algorithm. Fig. 6 shows

the NMSD after 200 iterations versus the initial value of the

privacy parameter φ0. Note that, as seen in Theorem III, a

lower value of φ0 ensures more privacy. We observe that for

smaller values of φ0, the steady-state NMSE of the PGFL

algorithm is higher. In fact, a lower total privacy loss bound

leads to higher perturbation noise variance and diminishes the

learning performance of the algorithm.

B. Experiments for Classification on the MNIST Dataset

The following experiments were conducted on the MNIST

handwritten digits dataset [53]. In those experiments, the

learning tasks of the clients associated with different clusters

share the same data but have different, related, objective

functions. The structure of the server network, as well as the

number of clients per server, are identical to the experiments

for regression. In the following experiments, the clients of

a given cluster use the ADMM for logistic regression to

differentiate between two classes. The loss function for the

logistic regression is given by

log[ℓk(Xk,yk;wk)] =
−1

Dk

Dk∑

i=1

(
yk,i log[y

′
k,i]

+ (1 − yk,i) log[1− y′k,i]
)
, (54)

with

y′k,i =
1

1 + exp(−w
⊺

kxk,i)
. (55)

We simulated the PGFL algorithm in the context of clas-

sification with client scheduling, privacy, a fixed inter-cluster

learning parameter τ (n) = τ = 0.4, and without inter-cluster

learning τ (n) = 0. Figure 7 shows the test accuracy versus

iteration index in a setting the clients of a given cluster must

differentiate between two classes composed of a single digit.
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-30

-25

-20

PGFL - (n) = 0

PGFL - (n) = 0.4

PGFL - (n) = 0.4  0.98n

Fig. 5: Learning curves of the PGFL algorithm with fixed and

time-varying inter-cluster learning parameter τ (n) in a setting

with low cluster similarity, considering client scheduling and

privacy.
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Fig. 6: Privacy-accuracy trade-off of the PGFL algorithm

with a fixed inter-cluster learning parameter, considering client

scheduling.
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Fig. 7: Test accuracy curve of the PGFL algorithm with a fixed

inter-cluster learning parameter, considering client scheduling

and privacy, with low cluster similarity.
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Each client receives between Dk = 2 and Dk = 4 data

samples composed of two MNIST images. The clients of

cluster 1 have access to images of the digits {1} and {8}.

The clients of clusters 2 and 3 have access to images of

the digits {1} and {9}, and {7} and {8}, respectively. Given

that the clients of different clusters must differentiate between

different digits, the similarity between the learning task is

limited. Nevertheless, we observe that inter-cluster learning

does improve the accuracy of the PGFL algorithm in this

setting.

Further, we modified the setting so that the clusters exhibit

more similarity. Figure 8 shows the test accuracy versus

iteration index in a setting where the clients of a given cluster

must differentiate between two classes composed of triplets of

digits. Each client receives between Dk = 6 and Dk = 12 data

samples, each composed of two triplets of MNIST images.

The clients of cluster 1 must differentiate between the classes

{1, 2, 3} and {6, 7, 8}, the clients of cluster 2 between {1, 2, 3}
and {7, 8, 9}, and the clients of cluster 3 between {1, 2, 3} and

{6, 8, 9}. We observe that, in this setting, inter-cluster learning

significantly improves the accuracy of the PGFL algorithm.

Finally, we utilize the previous setting and evaluate the

impact of the value of the inter-cluster learning parameter

τ (n) on the accuracy achieved by the PGFL algorithm in

the context of classification. Figure 9 displays the accuracy

achieved by the PGFL algorithm after 100 iterations versus the

value of the inter-cluster learning parameter in the context of

the classification task of Fig. 8. We observe that, in this setting

where the similarity among the learning tasks is high, medium

and large fixed values for τ (n) lead to significant accuracy

improvement. However, very large values lead to performance

degradation, similar to Fig. 4.

VI. CONCLUSIONS

This paper proposed a framework for personalized graph

federated learning in which distributed servers collaborate with

each other and their respective clients to learn cluster-specific

personalized models. The proposed framework leverages the

similarities among clusters to improve learning speed and

alleviate data scarcity. Further, this framework is implemented

with the ADMM as a local learning process and with local

zero-concentrated differential privacy to protect the partici-

pants’ data from eavesdroppers. Our mathematical analysis

showed that this algorithm converges to the exact optimal

solution for each cluster in linear time and that utilizing inter-

cluster learning leads to an alternative output whose distance to

the original solution is bounded by a value that can be adjusted

with the inter-cluster learning parameter sequence. Finally,

numerical simulations showed that the proposed method is

capable of leveraging the graph federated architecture and

the similarity between the clusters learning tasks to improve

learning performance.
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