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Abstract—The theory of sampling and recovery of bandlimited
graph signals has been extensively studied. However, in many
cases, the observation of a signal is quite coarse. For example,
users only provide simple comments such as “like” or “dislike”
for a product on an e-commerce platform. This is a particular
scenario where only the sign information of a graph signal
can be measured. In this paper, we are interested in how to
sample based on sign information in an online manner, by which
the direction of the original graph signal can be estimated.
The online signed sampling problem of a graph signal can be
formulated as a Markov decision process in a finite horizon.
Unfortunately, it is intractable for large size graphs. We propose
a low-complexity greedy signed sampling algorithm (GSS) as well
as a stopping criterion. Meanwhile, we prove that the objective
function is adaptive monotonic and adaptive submodular, so that
the performance is close enough to the global optimum with a
lower bound. Finally, we demonstrate the effectiveness of the
GSS algorithm by both synthesis and realworld data.

Index Terms—Graph signal processing, sign information,
Markov decision process, online sampling.

I. INTRODUCTION

IN practice, data is often distributed on irregular topologies,

such as transportation networks, social networks, and sen-

sor networks [2]–[5]. In order to analyze and process such

data in view of associated network topology, graph signal

processing (GSP) has gained increasing popularity in recent

years. It has been used in community mining, computer vision,

chemical and pharmaceutical industries, and other fields [6]–

[8]. Many GSP concepts are analogous to their counterparts

in traditional signal processing theory [9], [10]. For example,

like the traditional Fourier transform (FT), the graph Fourier

transform (GFT) establishes a relationship between the vertex-

domain and the frequency-domain of graph signals.

Sampling of graph signals is an important and fundamental

research topic in GSP [11], [12], whose purpose is to find a

subset of vertices sufficient to give full knowledge of graph
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signals with prescribed properties. In general, sampling of

graph signals can be divided into two categories. One is

deterministic sampling, which seeks to find a sampling set

that minimizes a predetermined metric function. The other

is random sampling, which examines the importance of each

vertex and assigns a corresponding sampling probability [13],

[14]. In many cases, random sampling needs more samples

than deterministic sampling to achieve the desired accuracy in

subsequent tasks [13].

Sampling of graph signals can also be categorized into

offline (batched) or online (sequential) manners. Offline sam-

pling solves the sampling set altogether according to the

prior information, and then conducts subsequent observations

on this sampling set. Related methods include [15], [16].

Sampling in an offline manner relies heavily on the prior

knowledge and designs the sampling set in advance using only

the information of graph topology and signal prior. Online

sampling selects samples one by one, which makes full use

of the information from historical observations during the

sampling process. Related works can be found in Section II-B.

In contrast, online sampling takes more information into

account for timely evaluation of the unsampled vertices and

makes more explicit choices, which may result in a smaller

sample size.

Signal recovery from sampled data is also a widely studied

problem [2], and our focus in this paper revolves around

reconstructing the signal’s direction, not the entire signal.

The ability to determine signal direction holds significant

relevance in numerous practical scenarios. For example, when

the amplitude of the signal in some situations is available, the

entire signal can be deduced by knowing only the direction of

the signal. A typical example is that in a power grid system,

where the total load can be measured, estimating the direction

of the signal becomes pivotal to knowing the specific signal

value assigned to each vertex [17]. Additionally, there exist

scenarios where the signal’s amplitude bears little importance.

For example, in a commodity network, if the purpose is to

determine the ranking of commodity scores, then the signal

amplitude is less relevant, and only estimating the signal

direction is sufficient [18].

In many practical scenarios, we only have coarse informa-

tion about the signal of interest. For example, in a goods rating

system, suppose we model the collection of all goods by a

graph, where edges connect similar goods. The scores of the

goods are viewed as the graph signal [18]. It is usually difficult

for customers to give accurate scores. Therefore, customers

usually only provide simple comments on the products after

consumption, such as “thumbs up”, “thumbs down” and “in-

http://arxiv.org/abs/2402.10493v2
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difference”.

Moreover, making comparisons is much easier than rating.

If customers are asked to choose between A and B in terms

of preference, then “A is better”, “B is better” and “A is about

the same as B” correspond to the score of A being higher,

lower and the same as that of B. In the above scenario, the

only information we have is whether the signal of a vertex is

higher than that of a neighbor.

Such quantized information above mentioned are two exam-

ples of “sign information”. It will be useful to make reliable

product recommendations if the signal can be estimated from

such partial sign information. Motivated by the example, in

this paper, we explore how to perform sampling and recover

the direction of a bandlimited graph signal based on sign

information of partial vertices and edges.

Sign information of vertices and edges reflects the signal

polarity on each vertex and the ordinal relations of signal

magnitude in each local neighborhood. On the other hand,

bandlimitedness encodes the variation pattern of the signal.

The combination of sign information and bandlimitedness

allows us to obtain a qualified estimation of an unknown signal

when the accuracy of the original signal is not very demanding.

Our main contributions are two folds. On the one hand,

we provide the performance analysis of the GSS algorithm by

giving a lower bound on model performance. On the other

hand, we develop a stopping criterion of the GSS algorithm

to avoid redundant samples.

The rest of this paper is organized as follows. In Section II,

we review some related work, mainly about: the recovery of 1-

bit quantized signals and online sampling of graph signals. In

Section III and Section IV, we describe the model setup and

formulate the problem. In Section V, we describe the GSS

algorithm and the recovery algorithm called unital projection

onto convex sets (UPOCS). In Section VI, we make theoretical

discussions. We interpret the online sampling process of a

graph signal as a Markov decision process (MDP). Taking the

size of the feasible region as the objective function, we prove

its adaptive monotonicity and adaptive submodularity, which

leads to a performance guarantee. We provide the stopping

criterion of the GSS algorithm, with theoretical analysis.

We verify the effectiveness of the GSS algorithm with both

synthetic and real datasets in Section VII and conclude in

Section VIII.

In order to present most frequently used concepts and

corresponding symbols more intuitively, we provide a notation

table, as shown in Table I.

II. RELATED WORKS

A. Recovery of Signals from 1-bit Quantization

Graph signal recovery using sign information is related to

the recovery of 1-bit quantized signals. Related literature can

be divided into two categories, random sensing, and direct

observation, according to the type of sensing matrix.

For the case of random sensing, combined with compressed

sensing, the bound of the required number of measurements

was investigated, with which universal exact recovery is pos-

sible for sparse signals with bounded dynamic range [19].

TABLE I
NOTATIONS

Notation Description

x a bandlimited graph signal

B bandwidth

h frequency coefficients

y sign information of samples

UB the GFT bases indexed by the passband

Ψ the joint sampling matrix

S a sampling set

a0:t the sampling sequence from time 0 to t
y0:t the sign information sequence of a0:t
At the set of all unsampled vertices and edges at

time t
Ot the observation sequence at time t
Jt the feasible region at time t

Ĵt the convex hull of Jt ∪ {0}, whose volume is

used to measure the size of Jt
Hat

a hyperplane determined by the sample at
Vol(·) the volume of the given body

ψ⊤
at

a row of Ψ corresponding to the sample at
Φ(·) the expected reward of a sampling sequence

Z the set of EVs

∆(· | ·) the conditional expected marginal benefit of a

sample given an observation sequence

P a projection matrix

δ the (average) error in angle

Beheshti et al. studied how to set the best adaptive threshold

for dictionary-sparse signals, and proposed an iterative opti-

mization method for recovery [20]. Jacques et al. propounded

a binary iterative hard threshold algorithm and discussed re-

covery error bounds for spectral sparse signals in the ideal case

[21]. Deep learning methods have also been advanced in recent

years, for example, Zeng et al. proposed a deep unfolded

network for the case where there is no priori information

about the sensing matrix to jointly optimize the sensing matrix

and the signal [22]. Tachella and Jacques formulated a self-

supervised framework that uses operator consistency as the

pretext, combined with measurement consistency to jointly

design the loss function [23]. Moreover, when dealing with

complex signals, there is a special class of problems, 1-bit

phase retrieval, which only considers whether the amplitude

of the signal exceeds the threshold. The effect of the number of

measurements on recovery is considered and a sub-conjugate

gradient method to iteratively recover the signal of interest

is presented [24]. Kishore and Seelamantula determined the

threshold according to the statistical prior knowledge and

proposed the Wirtinger Flow recovery algorithm based on the

gradient descent method [25].

For direct observation, the signal of interest at different

time steps can be estimated by ML approach using adaptive

thresholding [26]. Goyal and Kumar considered the AWGN

dithering and selected the vertices with the largest contribution

to the signal energy, then a recursive recovery algorithm was

developed which theoretically proved that the recovery error
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is bounded by the contraction mapping theorem [27]. As we

can see, these studies consider dithering or adaptive thresholds

with some prior knowledge to provide additional information

for signal recovery.

As for the recovery using sign information on edges, it

can be traced back to the studies on recovering signals from

zero crossings. The zero crossings of a signal, which indicate

sign changes of the signal value between adjacent sampling

points, reflect the oscillatory property of the signal. Logan

proved in 1977 that the direction vector of a traditional discrete

signal can be uniquely determined by its zero crossings if the

bandwidth is less than one octave [28]. Since then, plenty of

subsequent studies have extended this conclusion and applied

it to the field of image reconstruction in practice, such as

[29]. Similarly, the phase of a signal implicitly indicates the

variation pattern of a signal within its neighborhood [30]. In

[31], phase parameters of chirp signals are determined by

means of hypothesis testing, and theoretical results are given

for finite samples and asymptotics, respectively. In [32], a

novel subspace-based algorithm is proposed to decompose

the estimation of polynomial phases into subproblems and

to estimate the polynomial coefficients in conjunction with a

multiple signal classification approach. In contrast, the sign in-

formation on edges studied in this paper is more intuitive than

phase and more universal than zero crossings, generalizing to

non-Euclidean spaces.

The above works are mainly for traditional discrete signals

except [27]. However, only the sign information on vertices is

considered in [27]. Different from the above-mentioned works,

we consider the recovery problem of unital bandlimited graph

signals, with sign measurements on both vertices and edges.

At the same time, the impact of sampling on recovery is also

considered.

B. Online Sampling of Graph Signals

Online sampling is to select elements from a set sequen-

tially, where at each sampling step, we determine the next

sample based on known samples and historical observations.

In GSP, online sampling is widely used and always efficient

to solve the problem of sampling continuous graph signals.

A classical approach is based on minimizing the recovery

error covariance, including the average error and the worst-

case error [33], [34]. These methods are theoretically sup-

ported by submodularity or approximate submodularity. In

addition, the algorithms of maximizing cutoff frequency based

on the sampling theorem of bandlimited graph signals are also

studied, which are often greedily implemented to avoid high

complexity [35], [36]. Accordingly, some simplified versions

have been proposed, such as [37], [38].

There are also some approaches that treat graph signals as

stochastic models, often with certain probability assumptions,

such as active sampling algorithms based on uncertainty

criterion. These methods sequentially find the desired samples

by adding the vertex on which the signal is the most uncertain

[39], or the vertex that may cause the largest change in the

existing estimation to the sampling sequence step by step [40].

Although active sampling may be intuitively more efficient, it

is usually difficult to find theoretical support.

To the best of our knowledge, there is rare research concern-

ing online sampling based on sign information. Our previous

work [1] did a preliminary exploration without theoretical

analysis. Now we generalize this problem to jointly signed

sampling of vertices and edges, and not only propose an im-

proved online decision algorithm, but also provide theoretical

justification using the framework of adaptive submodularity.

III. GRAPH SIGNALS AND SIGN INFORMATION

In this section, we first describe the basic setup of the

central problem and then introduce a key concept to study

the problem.

A. System Model

Consider a connected and undirected graph G = {V , E ,W },
where V = {v1, v2, . . . , vN} is the set of vertices, E is the set

of edges, W ∈ R
N×N is the weighted adjacency matrix with

W ij > 0 if vi and vj are connected, and 0 otherwise. The

degree of a vertex vi is di =
∑

jW ij , and the degree matrix

D is defined as D = diag(d1, d2, . . . , dN ).
Recall that a graph signal can be described by a vector

x ∈ R
N with the i-th component corresponding to the

value assigned to vi. The signal x can be transformed to

the frequency-domain by the GFT: x̄ = U⊤x, and x̄ can

be transformed back to vertex-domain by the IGFT: x = Ux̄.

U can be any orthonormal matrix, and a common choice is

the eigenvector matrix of a graph shift operator, such as the

graph Laplacian L = D −W and the normalized Laplacian

matrix Ln =D− 1

2 (D −W )D− 1

2 [6].

A graph signal x is bandlimited if there exist indices

f1 < f2 < · · · < fB ≤ N such that x̄k = 0 for all

k 6∈ {f1, f2, . . . , fB}. The support of x̄, i.e., {f1, f2, . . . , fB},
is the passband of x, and B is the corresponding bandwidth.

It can be verified that such a bandlimited graph signal can be

represented as x = UBh, where UB is the N ×B submatrix

of U with columns indexed by the passband, and h is the

corresponding frequency coefficients.

As we all know, for a graph signal x ∈ R
N , the signal

value on vertex vi is the i-th element of x. Moreover, we

also introduce the notion of the signal value on an edge ei =
(vp, vq), which is defined as the difference of the p-th and q-th

element of x, i.e., xp − xq . For example, in a goods rating

system where the products are viewed as the vertices and the

scores are viewed as the graph signal, the signal value on an

edge can reflect the difference in customer preference for the

two products. In the paper, we specify that the difference on

the vertex-pair is made by subtracting the component of the

larger subscript from the component of the smaller subscript.

The signal value on all the edges can be expressed as

xE = Ξx,

where Ξ ∈ R
|E|×N is the incidence matrix with entries Ξip =

1, Ξiq = −1 if the i-th edge is ei = (vp, vq), and 0 otherwise.

Sampling of M1 vertices can be described as follows

xv = Ψvx.
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In the above formula, Ψv ∈ R
M1×N is the sampling matrix

in vertex-domain, with entries (Ψv )ij = 1 if the i-th sample

is vertex vj , and 0 otherwise. Ψv can be considered as the

result of row selection on the identity matrix IN . Sampling

of M2 edges can be defined similarly, which can be described

as

xe = Ψex.

In the above formula, Ψe ∈ R
M2×N has entries (Ψe)ip =

1, (Ψe)iq = −1 if the i-th sample is edge (vp, vq), and 0
otherwise. Similarly, Ψe can be considered as the result of

row selection on the incidence matrix Ξ. Intuitively, sampling

in the vertex-domain is to pick the elements in x to form the

sampled signal, while sampling in the edge-domain is to pick

the elements in xE to form the sampled signal.

In this paper, we consider the joint sampling of vertices

and edges, which means that sampling requires one to select

subsets of vertices and edges to form the sampling set S ⊂
(V ∪E). This simply involves concatenating samples from the

vertex-domain with samples from the edge-domain, which can

be expressed as

xS =

[

Ψv

Ψe

]

x.

Denote the sampling budget by M = M1 + M2, and the

sampling matrix by Ψ = [Ψ⊤
v ,Ψ

⊤
e ]

⊤, then the joint sampling

in vertex-domain and edge-domain of a bandlimited graph

signal can be rewritten as

xS = Ψx = ΨUBh.

The signed sampling is to obtain the sign information by

taking the sign of the sampled signal values, which can be

described as

y = sgn (xS) = sgn (ΨUBh) , (1)

where sgn(·) is

sgn(x) =







−1 x < 0
1 x > 0
0 otherwise.

The signed sampling is a map from R
B to {−1, 1, 0}M

according to (1).

Due to the fact that the sign information does not depend

on the magnitude of the signal, it only makes sense to recover

the direction of x1. Hence, we make the unital assumption

that ‖x‖2 = 1. Since the columns of UB are orthonormal,

we also have ‖h‖2 = 1. In this paper, we are interested in

recovering signal direction using sampled sign information.

As illustrated in Fig. 1, the central problem in this paper

is to determine a sampling sequence where we take sign

information, and subsequently recover the direction of the

original bandlimited signal using the sign information ac-

quired. This issue we are concerned with is abstracted from

real-life scenarios, but few relevant methods are available.

1In practice, we often have prior knowledge about the magnitude of the
signal, like in a goods rating system, where we know what the range of
scores is. Sometimes we do not need to know the exact magnitude of the
signal while knowing the ranking of the signal values on different vertices is
sufficient.
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Fig. 1. Sampling a signal on partial vertices and edges, the direction can be
recovered from the sign information of the samples. In the example shown,
the figure on the RHS only shows the signs of observed vertices and edges,
which are used to recover the normalized signal on the LHS.

B. Feasible Region

Denote the direction of the original graph signal by x∗ =
UBh

∗, the sampling matrix by Ψ, the set of samples by

S, the sign information by y, and the passband of x∗ by

{f1, f2, . . . , fB}. Since UB is known, it is equivalent to

recovering h∗ instead of x∗.

Suppose our estimation of h is ĥ. It is intuitive that ĥ should

be consistent, i.e., sgn(ΨUBĥ) = y. The condition is equiv-

alent to the following constraints on ĥ. For i = 1, 2, . . . ,M ,

we have
ψ⊤

i UBĥ < 0 if yi < 0,

ψ⊤
i UBĥ > 0 if yi > 0,

ψ⊤
i UBĥ = 0 if yi = 0,

(2)

where ψ⊤
i is the i-th row of Ψ. Define C as the intersection

of sets described by M constraints above, which is the finite

intersection of open half-spaces and hyperplanes, then (2) can

be written as ĥ ∈ C.

Note that C is not closed, and we enlarge C to include the

boundary points as

Ĉ =
M
⋂

i=1

{

w ∈ R
B | ψ⊤

i UBw S yi

}

, (3)

where x S a, a ∈ R is defined as a constraint on x depending

on the value of a as follows:

if a < 0, then x must satisfy x ≤ 0;

if a > 0, then x must satisfy x ≥ 0;

if a = 0, then x must satisfy x = 0.

The set Ĉ is a closed convex cone in R
B , as it is the finite

intersection of closed half-spaces and hyperplanes. By the

property of convex cones, when the number of half-spaces is

sufficient enough, any vector in Ĉ can be expressed as a linear

combination of unit norm extreme vectors with non-negative

coefficients [41], i.e., we have

Ĉ =

{

r
∑

i=1

kizi | ki ≥ 0, i = 1, 2, . . . , r

}

, (4)

where Z = {zi}ri=1 is the set of extreme vectors (EVs) of

unit norm in Ĉ.
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Recall that we have the extra condition ‖h∗‖2 = 1 from the

unital assumption. Hence, the feasible region is the intersection

of the convex cone Ĉ and the unit sphere, expressed as

J = Ĉ
⋂

{w ∈ R
B | ‖w‖2 = 1}.

To see an example with B = 3, suppose we have already

observed the sign information of 4 samples. By (3), Ĉ is

obtained from 4 constraints. Then the feasible region J is

the intersection of Ĉ and the unit sphere. Fig. 2(a) gives an

illustration of the feasible region in R
3, where J (the gray

region) is the intersection of 4 halfspaces and the unit sphere.

Key insight: We want to leverage the intuition that the

smaller the volume the feasible region J has, the smaller the

possible value range of the signal is. Hence, we have a better

chance to obtain an accurate recovery signal. Moreover, even

if all of the sign information is observed, a perfect recovery

is basically impossible. It is unlikely that the feasible region

relying on sign information alone can shrink to a single point.

IV. THE PROBLEM OF ONLINE SAMPLING

In Section III, we propose the definition of obtaining the

sign information of a graph signal with a given sampling set

and discuss how to describe the corresponding feasible region.

Through Section III, we convert the sign information of given

samples into the conditions that the signal needs to meet.

In this section, we focus on how to solve the sampling

problem. As mentioned earlier in Section I, there are generally

two ways to find a sampling set: offline and online. Offline

sampling determines the whole sampling set altogether, which

is based only on the objective function and prior information.

In other words, sampling in an offline manner cannot effec-

tively utilize historical observations of the samples. Online

sequential sampling can choose the next sample using the

information gathered from the acquired samples. In contrast,

online sampling takes into account more information and the

selection of each sample is more comprehensive. Therefore,

online sampling is more advantageous in terms of perfor-

mance, and we try to determine the sampling set in an online

manner.

A. Sequential Evolution of the Feasible Region

Suppose there are t observed samples a0, a1, . . . , at−1 with

each ai either a vertex or an edge of G. Suppose the associated

sampling matrix is Ψ = [ψa0
, . . . ,ψat−1

]⊤ ∈ R
t×N and the

feasible region is J . For a new sample at with sign yt, we

may update Ψ by attaching a new row ψ⊤
at

. If at is a vertex

vk, then ψ⊤
at

is the k-th row of the identity matrix IN ; while

if at is an edge ek, then ψ⊤
at

is the k-th row of the incidence

matrix Ξ. Correspondingly, the region J evolves as

J 7→ J
⋂

{

w ∈ R
B | ψ⊤

at
UBw S yt

}

. (5)

With each additional observed sample, the recovery signal

needs to satisfy one more consistency constraint. Equivalently,

selecting and observing a sample intersects a half-space or

a hyperplane with the current feasible region, causing the

feasible region to shrink once. A challenge is that for each

unsampled vertex or edge, we do not have access to its sign

and hence the exact knowledge of how J evolves, before

making the observation.

We illustrate with a specific example shown in Fig. 2 the

evolution of the feasible region for a new sample. Fig. 2(a) and

Fig. 2(b) are the visualizations of the feasible regions before

and after sampling at respectively. Fig. 2(c) is the top view of

Fig. 2(b). The gray region in Fig. 2(a) represents the current

feasible region J , and the points A to D represent the EVs

of Ĉ. The red line in Fig. 2(b) and Fig. 2(c) represents the

hyperplane H = {w ∈ R
B | ψ⊤

at
UBw = 0}. Suppose the

part of J on the left side of H corresponds to J ∩{w ∈ R
B |

ψ⊤
at
UBw ≤ 0}, while the other part corresponds to J ∩{w ∈

R
B | ψ⊤

at
UBw ≥ 0}, denoted by J 1, J 2 respectively. We

can see that J is separated by H, and the next feasible region

is uncertain, which could be J 1, J 2 or J ∩H, depending on

the sign of at. For each unsampled vertex or edge, we have

such a figure except that J is divided by different hyperplanes.

O

A

B
C

D

O

A

B C

D

E

F

ABCD

OABCD

A

B
C

D

E

F

ˆ
OABEF

OCDFE

1ˆ
2ˆ

1 2

OEF

CDFE

ABEF

1

2

(a) (b) (c)

Fig. 2. An example of J constructed by 4 halfspace constraints and the
unital constraint with at as the next sample in 3D space.

As we have pointed out, we want to minimize the “size” of

the feasible region. However, J has zero Euclidean volume.

As an alternative, we define

BB = {w ∈ R
B | ‖w‖2 ≤ 1}, (6)

and consider

Ĵ = Ĉ
⋂

BB. (7)

It is the convex hull of J ∪ {0}. There is a one-to-one

correspondence between J and Ĵ . For example, in Fig. 2,

J is the face ABCD, while Ĵ is the convex body OABCD,

with J as the base. We use Vol(Ĵ ), the volume of Ĵ in R
B ,

to measure the size of the feasible region.

Significantly, although the observations are generated in an

online manner, the feasible region according to (3) does not

depend on the time sequence. As long as the set of observation

samples is the same, the resulting feasible region is the same,

and the order of observations does not matter. This point will

continue to be mentioned in later sections.

B. The Online Sampling Decision Problem

The online sampling process can be modeled as an MDP

and we use terminologies such as “state”, and “action” from

MDP theory [42]. In our model, the convex set Ĵ at time step

t can be viewed as the state, constructed from the sampling

sequence a0:t−1 = {a0, a1, . . . , at−1} and the corresponding

sign information y0:t−1 = {y0, y1, . . . , yt−1}. Denote the
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observation sequence pair (a0:t−1, y0:t−1) by Ot. We introduce

the notation Ĵ (Ot) for the state at time step t or simply Ĵt
for convenience. Accordingly, denote the initial state as Ĵ (∅),
or Ĵ0. The action space At is the set of all unsampled vertices

and edges at time step t, i.e., the vertices and edges that are

not included in a0:t−1.

As discussed before, once taking an action at at state Ĵt,
the feasible region would randomly transit to a new one Ĵt+1.

Considering that any vector in Jt may be the original signal,

we can naturally define that the transition probability of the

feasible region is proportional to the size, i.e.,

Pat
(Ĵt, Ĵt+1) := P(Ĵt+1 | Ĵt, at) =

Vol(Ĵt+1)

Vol(Ĵt)
.

For example, in Fig. 2, the probability that the next feasible

region is J 1 is
Vol(Ĵ 1)

Vol(Ĵ )
. Note that H has 0 Lebesgue measure

in its ambient space, which means that it is almost impossible

for the next feasible region to be J ∩ H, compared to J 1

and J 2. Therefore, we ignore the case that the next feasible

region is J ∩ H during the analysis. If at is chosen as the

next sample and the sign of at is really observed to be 0, the

feasible region degenerates to a lower dimensional space, with

the dimension subtracted by one relative to the original space.

The subsequent sampling analysis remains unchanged and is

carried out in this low-dimensional space.

After observing yt, the state Ĵt+1 can be determined.

Moreover, by (5), Ĵt+1 only depends on Ĵt and (at, yt). The

transition relationship can be expressed as

Ĵ0
a0,y0

−−−→ Ĵ1
a1,y1

−−−→ . . .
at−1,yt−1

−−−−−−→ Ĵt
at,yt
−−−→ Ĵt+1 . . .

Besides, the reward Rat
(Ĵt, Ĵt+1) of taking an action

at at state Ĵt with next state Ĵt+1 can be defined as the

volume reduction from Ĵt to Ĵt+1, i.e., Rat
(Ĵt, Ĵt+1) =

Vol(Ĵt) − Vol(Ĵt+1). The reduction is uncertain during the

sample selection stage as the sign is unobserved, but we can

consider the expected reward. Note that Ĵt+1 can be written as

Ĵ (Ot ∪ {(at, yt)}), which varies with (at, yt). The expected

reward of at at state Ĵt can be written as

E[Rat
(Ĵt)]

=Vol(Ĵt)−
∑

yt=+,−

P(yt | Ot)Vol
(

Ĵ (Ot ∪ {(at, yt)})
)

,

where

P(yt | Ot) =
Vol
(

Ĵ (Ot ∪ {(at, yt)})
)

Vol(Ĵt)
. (8)

Taking Fig. 2 as an example, the expected reward of

sampling at is

E[Rat
(Ĵ )] = Vol(Ĵ )−

Vol(Ĵ 1)

Vol(Ĵ )
Vol(Ĵ 1)−

Vol(Ĵ 2)

Vol(Ĵ )
Vol(Ĵ 2).

Based on such a setting, given a finite sampling budget,

the sampling problem can be viewed as an online decision

problem and analyzed under the framework of MDP [42].

Assume that a total of T decisions are made. Similar to the

general MDP problem, we try to maximize the expectation of

the total reward produced by the online decisions, i.e.,

E

[

T−1
∑

t=0

Rat
(Ĵt, Ĵt+1) | Ĵ0

]

=E

[

T−1
∑

t=0

(

Vol(Ĵt)− Vol(Ĵt+1)
)

| Ĵ0

]

=Vol(Ĵ0)− E

[

Vol(ĴT ) | Ĵ0
]

.

Therefore, if the whole sampling budget is M , then our

sampling problem can be formulated as

max
a0:T−1

Φ(a0:T−1) = Vol(Ĵ0)− E

[

Vol(ĴT ) | Ĵ0
]

s.t. T ≤M,
(9)

where at ∈ At for each t, and ĴT is the final state,

depending on the sign information of a0:T−1. Symbol E[·] is

the conditional expectation over (a0:T−1, y0:T−1), conditioned

on the initial state.

Generally, an MDP problem in a finite horizon can be solved

by dynamic programming (DP), based on the idea of backward

induction. Typical methods include value iteration and policy

iteration [43]. Unfortunately, these methods are not suitable for

our problem, due to the high complexity of the state space. For

a graph with N vertices and |E| edges, the sign information

on each vertex and edge could be +,−, 0 or not yet observed.

Therefore, with each combination corresponding to a state,

there could be at O(4N+|E|) possible states. In the next section,

we describe an approach that is more tractable.

V. ONLINE SAMPLING AND RECOVERY ALGORITHMS

In this section, we turn to the problem of designing an online

sampling policy such that the recovery result is as accurate

as possible. Moreover, we provide the UPOCS algorithm to

recover the original signal using the sign information of the

selected samples.

A. The Sampling Policy and the GSS Algorithm

To be specific, we consider an online sampling scheme,

which can effectively determine the new sample using the

acquired sign information of the known samples.

Our policy is to choose the vertex or edge that makes the

current feasible region be divided as evenly as possible. In

other words, the feasible region is divided into two parts

of as equal size as possible. The purpose is to optimize

the worst-case scenario. To see an example (illustrated in

Fig. 3), the face ABCD is the feasible region J . Suppose

J is divided into CDFE and ABEF by hyperplane OEF,

and is divided into CDHG and ABGH by hyperplane OGH.

From Fig. 3, OCDFE and OABEF have approximately equal

volumes, while OCDHG and OABGH have a larger difference

in volume. For the two options, we prefer Fig. 3a.

However, the volume of a convex body in a high-

dimensional space is difficult to calculate exactly [44], so it is

necessary to apply efficient approximation methods.
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CDFE

ABEF

O

A

B C

D

E

F

A

B C

D

E

F
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1

2

(a) A sampling action that divides the feasible region
into two parts with approximately equal volumes.

CDHG

ABGH

O

A

B C

D

G

H

A

B C

D

G

H

1 2

1

2

(b) A sampling action that divides the feasible region
into two parts with a certain difference in volume.

Fig. 3. An example of the comparison of two sampling actions in 3D space.

We suggest an efficient approximation method, in the spirit

of our previous work [1]. Specifically, at time step t, consider

the feasible region with extreme vectors (EVs) Z = {zi}ri=1,

and a candidate sample at with the corresponding hyperplane

Hat
= {w ∈ R

B | ψ⊤
at
UBw = 0}. We calculate the distance

between each EV z and Hat
as:

d(z,Hat
) =

ψ⊤
at
UBz

‖ψ⊤
at
UB‖

. (10)

The sample is determined by

a∗t = argmin
at∈At

∣

∣

∣

∣

∣

∑

z∈Z

d(z,Hat
)

∣

∣

∣

∣

∣

. (11)

We explain the intuition using the example in Fig. 2. The

length of the dotted line in Fig. 2(c) is the distance from each

EV to Hat
, which can be calculated by (10). Note that A, B,

and C, D lie on different sides of Hat
, so the sign of d(z,Hat

)
for A, B and for C, D would be different. Summing them up

amounts to the difference in total distance between EVs from

both sides and the hyperplane. Therefore, we use (11) as an

approximation of the difference between the volumes of the

regions on the two sides of the hyperplane. The vertex or edge

with a smaller difference is preferred.

We want to use the greedy algorithm based on the above

policy. To start the process, we also need to determine the

initial state Ĵ0. The challenge is that there is not any EV for

less than B − 1 samples. For example, it is stated in [45,

Definition 4.2] that an extreme ray of a polyhedral cone in

R
B is generated from B−1 linearly independent inequalities.

Therefore, we need to initialize by finding the initial samples.

For this, we choose the indices of the linearly independent

rows with the maximum magnitude of [U⊤
B, (ΞUB)

⊤]⊤, to

form the initial sampling set. To be specific, we sort the mag-

nitudes of the row vectors of [U⊤
B, (ΞUB)

⊤]⊤ in descending

order, select the first B−1 linearly independent rows, and take

the corresponding vertices and edges as the initial samples.

After observing the B − 1 initial samples, only one EV can

be determined.

Although we are not yet able to use our approximation

method, it is possible in the selection of the B-th sample

to produce the effect of cutting the feasible region roughly

in half. As for the B-th sample, we search all the remaining

vertices and edges and choose the vertex or edge such that

the maximum angle between EVs is minimized, because

such a hyperplane would be approximately in the middle of

the feasible region. In this way, the feasible region can be

approximately equally cut, which results that the worst effect

of the B-th sample is not too bad. It needs to be acknowledged

that this is an intuitively valid method of initialization, and

other reasonable initialization methods are worth trying.

Once the initial B samples are observed, the initial feasible

region can be determined, and our greedy sampling process

(11) can be applied. Denote the set of initial samples by S0,

then the action space AB of our sampling decision process

at the initial state is (V ∪ E)\S0, including all the remaining

unsampled vertices and edges.

Algorithm 1 Greedy Signed Sampling (GSS).

Input: Sampling budget M , passband {f1, f2, . . . , fB}, graph

G
Output: Sampling sequence S

1: Get a list by sorting the magnitudes of row vectors of

[U⊤
B, (ΞUB)

⊤]⊤ in descending order.

2: Find the first B−1 indices in the list to construct S0 such

that the corresponding vectors are of full rank.

3: Observe S0, t← B − 1
4: for i not in S0 do

5: Calculate EVs Z1,Z2 for yi = +,−.

6: θi = min(minz1,z2∈Z1
〈z1, z2〉,minz1,z2∈Z2

〈z1, z2〉)
7: end for

8: a∗t = argmaxi θi, S0 ← S0 ∪ {a
∗
t}

9: Observe a∗t , and calculate EVs Z .

10: S ← S0, t← B
11: while t < M do

12: for at not in S do

13: Calculate d(z,Hat
) for each z ∈ Z using (10).

14: end for

15: if the stopping criterion (Section VI-B) is met then

16: return S
17: end if

18: Find a∗t as in (11).

19: S ← S ∪ {a∗t }, t← t+ 1
20: Observe a∗t , and update EVs Z .

21: end while

22: return S

In summary, the proposed GSS algorithm is presented in

Algorithm 1. Steps 1 to 8 are the initialization, and the

remaining steps form the online sampling process. To run the

GSS algorithm, make sure the following conditions are met.

1) The GSS algorithm should be applied on an undirected

and connected graph, with nonnegative edge weights.
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2) The target signal should be bandlimited, whose nonzero

expansion coefficients under some given orthonormal

matrix are concentrated in a passband.

3) The target signal should also be unital, because the

sign information of the output samples from the GSS

algorithm cannot be used to infer the amplitude of the

original signal and can only be used to estimate the

direction.

4) Generally, the sampling budget should be set to: B <
M < |V|+ |E|.

We shall further justify the GSS algorithm in Section VI-A,

and the superior performance of the GSS algorithm in sam-

pling sign information over existing methods would be con-

firmed in Section VII.

B. Signal Recovery Given Sign Information

In this subsection, we propose the signal recovery algorithm

UPOCS, given the acquired sign information of samples. Note

that the feasible region is the intersection of a convex cone and

the unit sphere. The idea is that we first get a solution that

satisfies the observation constraints, and then we normalize it

for the recovery signal.

For a convex cone Ĉ described by (3), we have the projection

operators onto Ĉ [46]. Suppose the i-th sample in S is vertex

vj , then the projection onto Ĉ can be defined as

Pw :=











w −
(UB)⊤j (UB)j
‖(UB)j‖2 w,

if vj ∈ S, sgn
(

(UB)jw
)

6= yi ;
w, otherwise.

(12)

where (UB)j is the j-th row of UB . Suppose the i-th sample

in S is edge ej = (vp, vq) and p < q, then the projection onto

Ĉ can be defined as

Pw :=











w − [(UB)p−(UB)q ]
⊤[(UB)p−(UB)q ]

‖(UB)p−(UB)q‖2 w,

if vj ∈ S, sgn
(

(UB)pw − (UB)q)w
)

6= yi ;
w, otherwise.

(13)

Intuitively, for any signal w and vertex vj ∈ S, if the sign

of (UBw)j is not consistent with the given sign information

(outside the constraint space), then projectw to the hyperplane

{w ∈ R
B | (UB)jw = 0}, which is the boundary of the

constraint space; otherwise, it is unchanged. Similarly, for any

edge ej = (vp, vq) ∈ S, if the sign of (UBw)p − (UBw)q is

not consistent with the given sign information, then project w

to {w ∈ R
B | (UB)pw− (UB)qw = 0}, otherwise, it keeps

unchanged. As can be seen later in Appendix C, the defined

projection operator is firmly non-expansive.

Based on the definitions of Ĉ, along with the projection op-

erator P , and inspired by the classical projections onto convex

sets algorithm (POCS) [47], we propose that the direction of

the original signal can be estimated by iteratively projecting

onto Ĉ. Specifically, starting from an arbitrary signal, then a

simple iterative projection process is applied. With enough

iterations, the output is close enough to Ĉ.

After the projections, we perform a normalization, then the

recovery signal is obtained. Formally, the UPOCS algorithm

can be described in Algorithm 2.

Algorithm 2 Unital Projection Onto Convex Sets (UPOCS).

Input: Samples S, an arbitrary random signal h0, maximum

iterations nmax

Output: a recovery signal ĥ

1: Observe S, and construct the projection operator P .

2: n← 0
3: while n < nmax do

4: hn+1 ← Phn

5: n← n+ 1
6: end while

7: return hn/‖hn‖

VI. ANALYSIS

A. Analysis of the GSS Algorithm

As mentioned in Section IV, signed sampling is a decision

process for a Markovian model. Starting from an initial state,

we decide on a sample with the aim of minimizing the size

of the feasible region in the long run, then the sign of the

sample is acquired and the next state is observed. This process

is repeated until the sampling budget is reached.

Consider an example illustrated by Fig. 4. Suppose the

volume of the current state Ĵt is 50. If Ĵt is divided into

two parts by a sample at, whose volumes are 20 and 30
respectively, as the transition probability is proportional to the

volume, there are 40% and 60% chances that the two parts

would be the next state Ĵt+1 respectively. Such a feasible

region segmentation and state transition process are repeated

at time step t + 1, t + 2. Fig. 4 shows various possible state

transitions of the sampling sequence {at, at+1, at+2}, where

the numbers in the boxes represent the volume of the state at

each time step; while the numbers on the arrows represent the

corresponding state transition probabilities.

Note that the last branch of the tree in Fig. 4 has probabil-

ities 0 and 1, which means the sign of at+2 is certain and the

next state is no longer random. It can also be explained that the

current feasible region would not be divided by the hyperplane

in Fig. 2. Therefore, in this case, at+2 is not selected, because

in the worst case, the feasible region does not have a volume

reduction for the next state.

+1 +2ˆ ˆ ˆ ˆ
+1 +2 +3

Fig. 4. An example of feasible region segmentation for a sampling sequence.

We call the structure in Fig. 4 the feasible region segmenta-

tion tree. For each different sampling sequence, we can draw
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a tree like this, and each complete path (from the root node

to some bottom leaf node) stands for a sign combination of

the sampling sequence. In such a binary tree, each node has

a number associated with the volume of a region. The sum

of the numbers of the children nodes equals that of the parent

node. The structure of the tree has important properties, which

we now study.

Consider the possible sign information of all elements in

A0 = V ∪ E , which is a random variable. Let Q be a

complete realization of A0. Each Q corresponds to a set of

(vertex/edge, sign) pairs, that specifies the sign information

of all elements in A0. A partial realization is a subset of

some Q, which can be viewed as a set of (vertex/edge, sign)

pairs, specifying the sign information of partial elements in

A0 (the elements we have already picked from A0). For

example, the observation sequence Ot can be viewed as a

partial realization. A partial realization Ot is consistent with a

complete realization Q if they are equal everywhere in a0:t−1.

If Ot1 = (a0:t1−1, y0:t1−1) and Ot2 = (a0:t2−1, y0:t2−1)
(t1 ≤ t2) are both consistent with a complete realization Q,

and each element in a0:t1−1 is also in a0:t2−1, then Ot1 is a

subrealization of Ot2 .

We illustrate with an example. Suppose for a given graph

signal, we have A0 = {a0, a1, . . . , a4}, where ai (i =
0, 1, . . . , 4) is an unsampled vertex or edge. Assume the

sign information of a0, a1, . . . , a4 is +,+,−,−,+ respec-

tively. We select and observe a0, a1, a2 sequentially, and

the observations are {(a0,+), (a1,+), (a2,−)}. In this ex-

ample, any {(a0, y0), . . . , (a4, y4)}(yi ∈ {+,−, 0}, i =
0, 1, . . . , 4) is a complete realization, which describes the

sign information of each element in A0. Among them,

{(a0,+), (a1,+), (a2,−), (a3,−), (a4,+)} is the complete

realization Q that is consistent with the true sign infor-

mation of the signal. {(a0,+), (a1,+), (a2,−)} is a par-

tial realization, which is consistent with Q. If we se-

lect a3 at the next time step and observe its sign, then

{(a0,+), (a1,+), (a2,−), (a3,−)} is also a partial realiza-

tion, which has a subrealization {(a0,+), (a1,+), (a2,−)}.
Although the observations are generated in an online man-

ner, we consider two observation sequences to be the same

partial realization as long as the samples in both observation

sequences are the same and the sign information is consistent.

For example, observation in the order of a0, a1, a2 produces

the same outcome as that in the order of a2, a0, a1.

Let O be the collection of all the partial realizations and

complete realizations. We introduce the following definitions.

Definition 1 (Monotonicity). A function π : O → R is mono-

tone if and only if π(Ot1 ) ≤ π(Ot2) for all Ot1 , Ot2 ∈ O,

where Ot1 is a subrealization of Ot2 .

For a function π : O → R≥0 and a given partial realization

Ot, the conditional expected marginal benefit for an element

at conditioned on having observed Ot is

∆(at | Ot) := E [π(Ot ∪ {(at, yt)})− π(Ot) | Ot] ,

where yt stands for the sign of at, and the expectation is taken

over yt [48]. Using this, we further introduce the following.

Definition 2 (Adaptive Monotonicity [48]). A function π :
O → R≥0 is adaptive monotone if the conditional expected

marginal benefit of any element is nonnegative, i.e., for all

Ot = (a0:t−1, y0:t−1) and at ∈ At, we have ∆(at | Ot) ≥ 0.

Definition 3 (Adaptive Submodularity [48]). A function

π : O → R≥0 is adaptive submodular if for all Ot1 =
(a0:t1−1, y0:t1−1), Ot2 = (a0:t2−1, y0:t2−1) (Ot1 is a subre-

alization of Ot2 ), and all a ∈ At2 , we have ∆(a | Ot1) ≥
∆(a | Ot2).

Back to our online sampling problem, let Ĵ0 be the corre-

sponding initial state. Based on the listed definitions, we have

the following findings.

Lemma 1. Let ϕ(Ot) = −Vol(Ĵ (Ot)), where Ĵ (Ot) is the

state described by Ot. Then ϕ is monotone.

Proof. See Appendix A for details.

It implies that each complete path of the feasible region

segmentation tree (cf. Fig. 4) satisfies monotonicity.

Lemma 2. Let φ(Ot) = Vol(Ĵ0)−Vol(Ĵ (Ot)), where Ĵ (Ot)
is the state described by Ot. Then φ is adaptive monotonic

and adaptive submodular.

Proof. See Appendix B for details.

As mentioned in Section V, our policy is to greedily select

the vertex or edge so that the current feasible region can be

divided into two parts with the smallest difference in size. The

policy can be expressed as

a∗t = argmin
at∈At

∣

∣

∣
Vol
(

Ĵ (O∗
t ∪ {(at,+)})

)

− Vol
(

Ĵ (O∗
t ∪ {(at,−)})

)
∣

∣

∣
, (14)

where a∗t is the sample to be determined by the above greedy

method at time step t. At is the set of all unsampled vertices

and edges at time step t, i.e., At = A0\a∗0:t−1. Moreover,

O∗
t is the observation sequence associated with a∗0:t−1, and

Ĵ (O∗
t ∪ {(at, yt)}) with yt = +,− is the state at time step

t+ 1.

Theorem 1. Suppose the sampling sequence solved from (14)

is a∗0:T−1, and the globally optimal sampling set of (9) with

the same size is aopt

0:T−1. Then we have

Φ(a∗0:T−1) ≥

(

1−
1

e

)

Φ(aopt

0:T−1).

Proof. See Appendix D for details.

Therefore, the sampling sequence solved in an online man-

ner by (14) can achieve the performance within (1 − 1
e
) of

the globally optimal solution of (9). This justifies the online

sampling process (Steps 11 to 21) of the GSS algorithm,

because (11) approximates the implementation of (14) using

the difference in the spatial distance instead of the difference

in volume.
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B. Stopping Criterion of the GSS Algorithm

This subsection discusses an early stopping criterion for

the GSS algorithm. Note that the online sampling process

is motivated by reducing the size of the feasible region. If

we search all the unsampled vertices and edges and find that

the feasible region would not change anymore, then we can

terminate the sampling process because there will be no more

reward. From another perspective, the sign information on

all the unsampled vertices and edges can be inferred with

certainty, and further sampling only adds redundant samples.

A

B C

D

1
a

2
a

3
a

4
a

Fig. 5. An example of feasible region segmentation during the sampling
process that can be terminated pre-maturely.

To see an example, in Fig. 5, the gray region depicts the

feasible region J (top view), and the red lines Ha1
, . . . ,Ha4

are the hyperplanes associated with the remaining unsampled

vertices and edges a1, . . . , a4. As we can see, Ha1
, . . . ,Ha4

make no contribution to the reduction of the size of the feasible

region because J (and Ĵ ) would not be separated. In this case,

the feasible region segmentation tree (cf. Fig. 4) degenerates

into a single chain, and the feasible region remains unchanged

for any subsequent samples. In general, we have the following

result.

Theorem 2. Let Ot = (a0:t−1, y0:t−1) be the historical

observations, and Jt, Ĵt be the respective feasible region and

state at time step t. If at some time step t1, for any at1 ∈ At1 ,

Vol(Ĵt1) = Vol(Ĵt1+1) holds, then Vol(Ĵt2) = Vol(Ĵt1) for

any Ot2 , where Ot1 is a subrealization of Ot2 .

In other words, if any unsampled vertex or edge does not

decrease the size of the feasible region, then the size of the

feasible region will remain the same no matter how many

additional samples are added.

Proof. Suppose at time step t1, the remaining candidate ver-

tices and edges are aj1 , . . . , ajm with the corresponding sign

information yaj1
, . . . yajm

. If any unsampled vertex or edge

does not cause the size of the feasible region to decrease,

referring to (5), we have

Jt1
⋂

{

w ∈ R
B | ψ⊤

aji
UBw S yaji

}

= Jt1 ,

for all i ∈ {1, 2, . . . ,m}. (15)

Through this condition, Jt1 is in the intersection of the

constraint spaces of the remaining unsampled vertices and

edges. So, the feasible region remains unchanged no matter

how many the samples in {aj1 , . . . , ajm} are added.

From the result, we can stop sampling if (15) holds. Without

loss of generality, suppose that some candidate sample aji has

sign yaji
= −1, then (15) can be rewritten as

Jt1
⋂

{

w ∈ R
B | ψ⊤

aji
UBw ≤ 0

}

= Jt1 ,

i.e.,

Jt1
⋂

{

w ∈ R
B | ψ⊤

aji
UBw > 0

}

= ∅.

In other words, the current feasible region Jt1
is located entirely on one side of the hyperplane
{

w ∈ R
B | ψ⊤

aji
UBw = 0

}

.

Therefore, it is time to terminate the sampling once the

current feasible region is on one side of each hyperplane of

the remaining unsampled vertices and edges. As each vector

in the feasible region is a linear combination of EVs with

non-negative coefficients, if all the EVs are on one side of

each hyperplane associated with the remaining unsampled

vertices and edges, so does the entire feasible region. The

stopping criterion is thus given as follows.

Stopping criterion. In the greedy selection stage of the

GSS algorithm, if at some time step t, d(z,Hat
) ≥ 0 for each

z ∈ Z and at ∈ At, or d(z,Hat
) ≤ 0, for each z ∈ Z and

at ∈ At, then the sampling process is terminated.

Using the stopping criterion, the GSS algorithm can be ter-

minated pre-maturely (even the sample size is smaller than the

budget M ); and by then, all the remaining unsampled vertices

and edges do not provide additional knowledge. Importantly,

once the stopping criterion is reached, the sampling sequence

solved by the GSS algorithm can theoretically result in the

same recovery performance as the case that all the vertices

and edges are observed.

C. Performance Analysis of the UPOCS Algorithm

In this subsection, we discuss a theoretical result associated

with the UPOCS algorithm. The following theorem about the

convergence properties of the UPOCS algorithm is derived,

through the study of the feasible region and the projection

operator.

Theorem 3. The iterative recovery sequence {hn} converges

linearly to some point ĥ in Ĉ, and the convergence rate is

independent of the choice of the initial point h0.

Proof. See Appendix C for details.

It is worth noting that the recovery result depends on h0,

though the convergence rate is independent of h0.

VII. EXPERIMENTS

In this section, we use numerical experiments to demon-

strate the effectiveness of our approach.

A. Recovery of Synthesis Graph Signals

In this experiment, we generate three graph topologies, with

the following parameters

1) Sensor graph: N = 40, |E| = 138.

2) Erdős–Rényi (ER) graph: N = 40, and the connection

probability p = 0.3, which results |E| = 98.

3) Watts-Strogatz (WS) graph: N = 40, average degree

k = 4, and the reconnection probability p = 0.25, which

results |E| = 160.
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(a) (b)

(c)

Fig. 6. The topologies of the (a) sensor graph, (b) ER graph, and (c) WS
graph.

The graph topologies are shown in Fig.6.

On these graph topologies, set B = 7 and f1, f2, . . . , fB =
29, 30, . . . , 35. The frequency coefficients are obtained from

a 0-1 uniform distribution, and the corresponding bandlimited

signals with unit norm are generated. Next, we examine the

recovery quality of different sampling methods.

We first obtain the sampling sequences by the GSS algo-

rithm and a few benchmarks, then acquire the corresponding

sign information. After this, we select K signals as the initial

signals to recover the direction of the original signal by the

UPOCS algorithm and compare the recovery performance of

each sampling algorithm using the average error with the

following metric

δ =
1

K

K
∑

i=1

arccos〈x∗, x̂i〉. (16)

x̂i is the normalized recovery signal using the UPOCS algo-

rithm for the i-th initial signal, and x∗ is the direction of the

original signal, which is also normalized. The arccos function

measures the angle between the input vectors of unit length.

The recovery has poor quality if δ is large.

We set K = 50 and the number of iterations in the UPOCS

algorithm is 104. We first consider the case that only vertices

are sampled. The results measured by δ are presented in Fig. 7.

In Fig. 7, “Delaunayn” refers to the method of simplex

subdivision to estimate the volume in (14) [49]. We use

the ’Delaunayn’ function in MATLAB. “GSS” is our greedy

sampling method presented in Algorithm 1, where the EVs

are calculated through pycddlib2. “Anis” is the sampling

framework of [35] for continuous graph signals. “Tzamarias”

is the method in [38], which is a novel sampling algorithm

for continuous signals based on the concept of uniqueness

set. “Goyal” is the sampling method in [27] of selecting the

indices corresponding to the row vectors in UB with the

2Link: https:// pycddlib. readthedocs. io/ en/ latest/
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Fig. 7. Comparison of recovery performance between sampling algorithms
for different sampling numbers when only vertices can be sampled on the (a)
sensor graph, (b) ER graph, and (c) WS graph.

largest lengths. Moreover, we averaged the recovery error over

50 random sampling sets, plotted in Fig. 7 with the label

“Random”. In addition, we also compare these methods with

full sampling, which can be viewed as the ideal case that all

the vertices are observed.

As shown in Fig. 7, the GSS algorithm outperforms most

benchmarks as the metric δ of the GSS algorithm is the lowest

compared with other benchmarks, except “Full sampling”. The

result is very close to that of “Full sampling” even if only

nearly half of the vertices are sampled and observed. We notice

that the recovery performance of “Anis” and “Tzamarias”

are even worse than random sampling, which indicates that

https://pycddlib.readthedocs.io/en/latest/
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Fig. 8. Comparison of δ between sampling algorithms for different sampling
numbers when both vertices and edges can be sampled on the (a) sensor graph,
(b) ER graph, and (c) WS graph.

these methods may not be suitable for signed sampling. Both

“Anis” and “Tzamarias” consider the sampling of continuous

values, focusing on the exact magnitude of the signal, while for

signed sampling, the focus is on whether the signal is above

a threshold rather than the exact magnitude.

On the other hand, we consider the case that both vertices

and edges can be sampled, which means there are |V| + |E|
samples to be selected. Fig. 8 shows the average error in

angle δ of the GSS algorithm, random sampling, and the ideal

case that all the vertices and edges are sampled and observed.

Similar to Fig. 7, the GSS algorithm has a better performance

than random sampling. Besides, with less than half of the total

sample size, the GSS algorithm achieves a very close result

to that of the ideal case (“Full sampling”).

In addition, another experiment is conducted to explore the
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(c)

Fig. 9. Comparison of δ between sampling algorithms for different band-
widths and fixed sampling budget when both vertices and edges can be
sampled on the (a) sensor graph, (b) ER graph, and (c) WS graph.

effect of bandwidth on recovery. We fix the sampling budget

to 50, and set several bandwidth values. For each bandwidth,

we generate 50 signals on each graph and then recover them.

The average results are presented in Fig. 9. It can be concluded

that the larger the bandwidth of a signal, the more difficult it is

to achieve satisfactory recovery with a given sampling budget.

To gain more intuition, the effect of bandwidth on the

recovery can be further analyzed. Notice that the bandwidth

determines the spatial dimension in which the sampling and

recovery algorithms work. Assuming that the expected recov-

ery error (error in angle) does not exceed δ, then the feasible

region needs to be narrowed down to within the surface of the

unit spherical cap with colatitude angle δ in R
B . As can be
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found in [50], on the unit sphere, the area of a spherical cap

in B-dimensional Euclidean space is

Acap

B =
1

2
ABIsin2 δ

(

B − 1

2
,
1

2

)

,

where AB is the area of the unit sphere, and Ix(a, b) is the reg-

ularized incomplete beta function. Intuitively, for bandwidth

B, the difficulty of having the recovery error within δ is

of the order O
(

I−1
sin2 δ

(

B−1
2 , 1

2

))

. By numerical experiments,

Ix(
B−1
2 , 12 ) is decreasing with respect to B for a certain range

of integers at 0 < x < 1, as shown in Fig. 10. Therefore, as

the bandwidth increases, the ratio of the ideal feasible region

becomes smaller, which requires more samples (constraints).

This is consistent with our experimental results in Fig. 9.
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Fig. 10. The ratio between the area of the hyperspherical cap and that of
the unit sphere under different bandwidths.

B. Recovery and Classification of Realworld Data

In this experiment, we consider the recovery and classifica-

tion tasks on a real dataset. Specifically, we collect a dataset

of ratings for movies and TV shows3 from Kaggle, where the

ratings are numbers between 0 and 10 with one decimal place.
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70
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Frequency

Fig. 11. Signal spectrum of the rating dataset in VII-B.

We construct a graph with 100 vertices and 4596 edges

where each vertex corresponds to a movie or a TV show.

The edge weights are generated according to the similarity

of attributes of the vertices, such as the release date, and ages

3Link: https:// www. kaggle. com/ code/ jyotmakadiya/ popular- movies-
and- tv- shows- data- analysis/ data

of the audience. We take these attributes as components of

attribute vectors, and then compute the inner product of these

vectors for each vertex pair as edge weights. To facilitate

calculation and analysis, edges are sparsified appropriately and

outliers are removed to ensure connectivity. The ratings are

regarded as the original graph signal, whose (GSP) spectrum

is shown in Fig. 11, which is concentrated in the low frequency

region. We round up the signal value of each vertex as the label

(ground truth), e.g., a vertex with a score of 4.8 is labeled 5.

Assume that the score range is known. Considering that

the original signal is only approximately bandlimited and is

positive on each vertex, to acquire the sign information, we

carry out the following processing.

(1) Remove the DC component (the component of 0 fre-

quency).

(2) Choose frequency components with the largest amplitude.

More specifically, we apply a bandpass filter to the signal, pre-

serving the frequency components with the largest amplitudes.

By choosing B = 13, the energy after filtering accounts for

about 75% of the original energy.

The estimation of the original signal is obtained as follows.

(1) Perform signed sampling of vertices and edges on the

resulting signal after the above pre-processing and recover it

using the UPOCS algorithm (K = 30 and nmax = 3000).

(2) The DC component is added to the recovery signal.

(3) Scale to the known score range.
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Fig. 12. Comparison of recovery performance in terms of δ among sampling
algorithms for different sampling numbers on the rating dataset in VII-B. In
(a), only vertices are sampled, and in (b), both vertices and edges are sampled.

The recovery quality can be evaluated by two metrics: δ in

(16) and classification accuracy. We consider top1 and top2

https://www.kaggle.com/code/jyotmakadiya/popular-movies-and-tv-shows-data-analysis/data
https://www.kaggle.com/code/jyotmakadiya/popular-movies-and-tv-shows-data-analysis/data
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classification cases. Top1 accuracy refers to the proportion of

test instances, whose respective classification category with the

highest confidence is consistent with the label. Top2 accuracy

refers to the proportion of test instances, whose respective two

classification categories with the highest confidence contain

the label.

As shown in Fig. 12, the GSS algorithm consistently out-

performs most benchmarks for the recovery task, in both cases

that only vertices can be sampled and that vertices and edges

can be sampled simultaneously. In addition, no matter the

whole sample size is |V| = 100 or |V| + |E| = 4696, our

approach has a good approximation of the ideal case (“Full

sampling”).
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Fig. 13. Comparison of recovery performance in terms of the classification
accuracy between sampling algorithms for different sampling numbers on the
rating dataset in VII-B.

On the other hand, for the case that both vertices and edges

can be sampled, the classification accuracy of our approach

is also evaluated. The results presented in Fig. 13 illustrate

that the GSS algorithm offers much better performance than

random sampling, and is comparable to the ideal case for a

much smaller number of samples.

VIII. CONCLUSION

In this paper, we consider the scenario in that only the

sign information of a bandlimited graph signal is observed.

To perform sampling and recovery of the direction, we treat

the sampling process as an online decision problem under

the framework of MDP. A greedy sampling algorithm and a

recovery algorithm are proposed, which provide an efficient

and novel technical route for handling the scenarios with sign

information. The methods are justified by theoretical results.

To demonstrate the effectiveness of the proposed methods,

We conduct experiments including recovery and classification

tasks with both synthetic and real datasets. In our future work,

we try to solve the signed sampling problem with noise.

APPENDIX A

PROOF OF THE LEMMA 1

Consider two partial realizations Ot1 = (a0:t1−1, y0:t1−1),
Ot2 = (a0:t2−1, y0:t2−1), where Ot1 is a subrealization of Ot2 .

By (3) and (7), Ĵ (Ot1) and Ĵ (Ot2) have the form

Ĵ (Ot1 ) =

(

t1
⋂

i=0

{w | ψ⊤
ai
UBw S yi}

)

⋂

BB,

Ĵ (Ot2 ) =

(

t2
⋂

i=0

{w | ψ⊤
ai
UBw S yi}

)

⋂

BB,

where BB is the unit ball in R
B as in (6), i.e. BB = {w ∈

R
B | ‖w‖2 ≤ 1}. Obviously, we have Ĵ (Ot2) ⊆ Ĵ (Ot1).

Therefore, ϕ(Ot2) ≥ ϕ(Ot1 ), which proves the monotonicity.

In other words, a shorter observation sequence corresponds to

a state with a larger volume, because the feasible region is

constructed from fewer constraints.

APPENDIX B

PROOF OF THE LEMMA 2

Firstly, we show that φ(Ot) ≥ 0. Note that Ĵ0 can be viewed

as Ĵ (∅). According to the monotonicity in Lemma 1, for any

partial realization Ot with a0:t−1 6= ∅, we have Vol(Ĵ0) ≥
Vol(Ĵ (Ot)), because Ĵ0 is constructed by fewer constraints.

So, φ(Ot) ≥ 0 holds.

For any partial realization Ot = (a0:t−1, y0:t−1) (already

observed), and a ∈ A\a0:t−1 with sign ya, the conditional

expected marginal benefit of a can be written as

∆(a | Ot)

=E [φ(Ot ∪ {(a, ya)})− φ(Ot) | Ot]

=E

[

Vol
(

Ĵ (Ot)
)

− Vol
(

Ĵ (Ot ∪ {(a, ya)})
)

| Ot

]

.

Whatever the sign of a is, according to the monotonicity in

Lemma 1, we have φ(Ot∪{(a, ya)}) ≥ φ(Ot) for all possible

ya. Thus, the expectation is non-negative, i.e., ∆(a | Ot) ≥ 0.

The adaptive monotonicity holds.

Take two partial realizations Ot1 = (a0:t1−1, y0:t1−1) and

Ot2 = (a0:t2−1, y0:t2−1) (Ot1 is a subrealization of Ot2 ). The

conditional expected marginal benefit ∆(a | Ot1) of some

a ∈ A\ a0:t2−1 can be further written as

∆(a | Ot1)

=E

[

Vol
(

Ĵ (Ot1)
)

− Vol
(

Ĵ (Ot1 ∪ {(a, ya)})
)

| Ot1

]

=Vol
(

Ĵ (Ot1 )
)

− E

[

Vol
(

Ĵ (Ot1 ∪ {(a, ya)})
)

| Ot1

]

.

According to the definition of the transition probability in

Section IV-B and the fact that Vol
(

Ĵ (Ot1 ∪ {(a,+)})
)

+
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Vol
(

Ĵ (Ot1 ∪ {(a,−)})
)

= Vol
(

Ĵ (Ot1)
)

, we have

∆(a | Ot1)

=Vol
(

Ĵ (Ot1)
)

− E

[

Vol
(

Ĵ (Ot1 ∪ {(a, ya)})
)

| Ot1

]

=Vol
(

Ĵ (Ot1)
)

−
Vol
(

Ĵ (Ot1 ∪ {(a,+)})
)2

Vol
(

Ĵ (Ot1)
)

−
Vol
(

Ĵ (Ot1 ∪ {(a,−)})
)2

Vol
(

Ĵ (Ot1)
)

=
2

1

Vol(Ĵ (Ot1
∪{(a,+)}))

+ 1

Vol(Ĵ (Ot1
∪{(a,−)}))

.

Similarly, ∆(a | Ot2) can be written as

∆(a | Ot2) =
2

1

Vol(Ĵ (Ot2
∪{(a,+)}))

+ 1

Vol(Ĵ (Ot2
∪{(a,−)}))

.

According to Lemma 1, since Ot1∪{(a,+)}, Ot1∪{(a,−)}
are a subrealization of Ot2 ∪{(a,+)}, Ot2 ∪{(a,−)} respec-

tively, we have

Vol
(

Ĵ (Ot1 ∪ {(a,+)})
)

≥ Vol
(

Ĵ (Ot2 ∪ {(a,+)})
)

,

Vol
(

Ĵ (Ot1 ∪ {(a,−)})
)

≥ Vol
(

Ĵ (Ot2 ∪ {(a,−)})
)

.

Thus, ∆(a | Ot1) ≥ ∆(a | Ot2). The adaptive submodular-

ity holds.

APPENDIX C

PROOF OF THE THEOREM 3

Lemma 3. P is a firmly non-expansive operator.

Proof. Combining (12) and (13), the projection can be written

in a unified form

Pw :=

{

w − uu
⊤

‖u‖2w, if some sign is inconsistent;

w, otherwise,

where u is a B×1 vector, corresponding to (UB)
⊤
j in (12) and

(UB)p−(UB)q in (13). Let P̃ = uu
⊤

‖u‖2 , then P = I−P̃ . Note

that P̃ is a standard projection operator in Euclidean space,

and so does P . Obviously, P has only eigenvalues of 0 and 1,

which means 2P − I has only eigenvalues of −1 and 1, i.e.,

‖2P −I‖ = 1. Then for any w ∈ R
B , ‖(2P −I)w‖ ≤ ‖w‖.

Therefore, (2P −I) is non-expansive, and P is firmly non-

expansive [47, Fact 1.3].

Lemma 4. {Ĉ} is boundedly linearly regular.

Proof. For Ĉ, it is a closed convex cone in a finite-dimensional

Hilbert space. By Proposition 5.4 and 5.9 in [47], we can

derive that the {Ĉ} is boundedly linearly regular.

In step 4 of Algorithm 2, each iteration is made up of a

firmly non-expansive operation. According to the algorithm

settings in [47], it is not difficult to verify that this algorithm

is cyclic, singular, and unrelaxed. Furthermore, referring to

Definition 4.8 in [47], the algorithm is linearly focusing.

With the help of Corollary 3.12 in [47], it is proved

that {hn} converges linearly to some point in Ĉ. According

to Theorem 5.7 in [47], we can further conclude that the

convergence rate is independent of h0.

APPENDIX D

PROOF OF THE THEOREM 1

Firstly, we show that the solution to Problem (9) can be

well approximated by the greedy algorithm.

Note that, the conditional expectation of φ over Ot in

Lemma 2 conditioned on Ĵ0 is exactly the objective function

in (9), i.e., E[φ(Ot) | Ĵ0] = E[φ(a0:t−1, y0:t−1) | Ĵ0] =
Φ(a0:t−1). By the adaptive monotonicity and adaptive sub-

modularity, the greedy approach can provide a solution to

Problem (9) that is comparable to the global optimum [48],

[51].

To be specific, we maximize the expected reward for each

step. Therefore, at each time step t, we can use the following

greedy sampling scheme to solve the sampling sequence as

a∗t = argmax
at∈At

∆(at | O
∗
t )

= argmax
at∈At

−E
[

Vol
(

Ĵ (O∗
t ∪ {(at, yt)})

)

| O∗
t

]

. (17)

In (17), the notations are consistent with (14). It has been

proved in [48] that the sampling sequence solved in an online

manner by (17) can achieve the performance within (1 − 1
e
)

of the globally optimal solution of (9).

Next, we show that (14) is equivalent to (17). Consider the

cases yt = + and yt = −, then we can rewrite (17) as

a∗t = argmin
at∈At

∑

yt=+,−

P(yt | O
∗
t )Vol

(

Ĵ (O∗
t ∪ {(at, yt)})

)

,

where P(yt | O∗
t ) is defined in (8). It is obvi-

ous that Vol(Ĵ (O∗
t )) = Vol

(

Ĵ (O∗
t ∪ {(at,+)})

)

+

Vol
(

Ĵ (O∗
t ∪ {(at,−)})

)

, we have

Vol
(

Ĵ (O∗
t ∪ {(at,+)})

)2

Vol(Ĵ (O∗
t ))

+
Vol
(

Ĵ (O∗
t ∪ {(at,−)})

)2

Vol(Ĵ (O∗
t ))

≥
Vol
(

Ĵ (O∗
t ∪ {(at,+)})

)

+ Vol
(

Ĵ (O∗
t ∪ {(at,−)})

)

2

=
Vol(Ĵ (O∗

t ))

2
.

The LHS of the above inequality has a minimum (RHS) that

is independent of at. For two real numbers with a constant

sum, the smaller their difference, the smaller their square

sum. So in order to minimize the LHS, we can minimize
∣

∣

∣
Vol
(

Ĵ (O∗
t ∪ {(at,+)})

)

− Vol
(

Ĵ (O∗
t ∪ {(at,−)})

)∣

∣

∣
.

Therefore, (17) can be replaced equivalently by (14).
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