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Causal Inference from Slowly Varying

Nonstationary Processes
Kang Du and Yu Xiang

Abstract—Causal inference from observational data following
the restricted structural causal model (SCM) framework hinges
largely on the asymmetry between cause and effect from the
data generating mechanisms, such as non-Gaussianity or non-
linearity. This methodology can be adapted to stationary time
series, yet inferring causal relationships from nonstationary time
series remains a challenging task. In this work, we propose
a new class of restricted SCM, via a time-varying filter and
stationary noise, and exploit the asymmetry from nonstationarity
for causal identification in both bivariate and network settings.
We propose efficient procedures by leveraging powerful estimates
of the bivariate evolutionary spectra for slowly varying processes.
Various synthetic and real datasets that involve high-order and
non-smooth filters are evaluated to demonstrate the effectiveness
of our proposed methodology.

Index Terms—Causal discovery, nonstationary processes, evo-
lutionary spectra, stationarity test.

I. INTRODUCTION

INFERRING causal relationships from observational data

has drawn much attention in recent years [2]–[5], following

the pioneering works on structural causal models (SCMs) by

Pearl [6]. The main theoretical challenge lies in the iden-

tifiability of the causal structure, which is not possible for

general SCMs. As a result, various classes of restricted SCMs

have been proposed including the linear non-Gaussian acyclic

model (LiNGAM) [2], the non-linear additive noise models

(ANMs) [3], [7], and the post-nonlinear causal model [4]. The

structure identifiability can be proved either exactly [2] or in

generic cases [3], [4], [7], and the key to this is to break the

symmetry between cause and effect via structural assumptions

such as non-Gaussianity or non-linearity.

In light of the ubiquity of time series data, it is appealing

to adapt the results for i.i.d. data to stationary time-dependent

data. The ANMs have been extended to stationary time series

data. In [8], the time series models with independent noise

(TiMINo) considers time-invariant functional relationships and

i.i.d. noise. Even though the processes generated according to

TiMINo are not necessarily stationary, the stationarity of the

data is required for the estimation procedure. The well-known

Granger causality is designed for vector autoregressive (VAR)

models [9] without considering instantaneous effects, while

LiNGAM-t [10] incorporates instantaneous effects and non-

Gaussian noise. A bivariate deterministic model via a linear

time-invariant filter is studied in [11]. The directed information
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rate [12], [13] from information theory is defined for bivariate

stationary processes (see [14] for its relationship with Granger

causality).

There are a few works on causal inference through the

lens of nonstationarity [15]–[17]. The time-dependent causal

model [15] (referred to as TCM in this paper) and CD-

NOD [17] model nonstationarity by introducing a surrogate

random variable to represent time. TCM deals with time-

dependent functional relationships, but the estimation proce-

dure becomes more challenging due to the nonstationarity of

the data. The authors in [16] study a linear model (where the

coefficients follow the autoregressive models) with additive

noise that are uncorrelated in time, and the estimation step

relies on nonlinear state-space model estimation procedures.

However, none of them is built on well-established frameworks

for slowly varying nonstationary processes such as evolu-

tionary spectra [18], Wigner-Ville spectral analysis [19], and

locally stationary processes [20] among others, from which

powerful estimation procedures could be borrowed to greatly

facilitate causal discovery tasks. In this work, we attempt to

bridge this gap by proposing a new class of restricted SCMs

that allows causal structure identification in generic cases and

can be reliably estimated leveraging the bivariate evolutionary

spectra framework [21], [22].

Our contribution is threefold. First, we focus on a class

of processes generated by linear time-varying filters along

with stationary Gaussian noise, and develop theoretical results

showing that the causal direction is identifiable in generic

cases by exploiting the nonstationarity of the data. It is worth

stressing that our framework can deal with instantaneous

effects, which is an appealing property in comparison with

Granger causality. Second, we extend these results to a net-

work setting via a directed acyclic graph (DAG), where the

processes are connected through time-varying linear relation-

ships and the root nodes are assumed to be stationary. The

identification result again relies on nonstationarity and this

is in contrast to existing works where non-Gaussianity [2]

or nonlinearity [7] is required for identification. Third, we

develop efficient estimation algorithms, leveraging a recent

variant of the evolutionary spectra estimate [23], that perform

well on a variety of synthetic and real datasets, including

challenging ones with non-smooth and high-order filters.

The paper is organized as follows. In Section II, we present

our main result on causal identification of a nonstationary

bivariate linear model with time-varying coefficients. Various

properties of the time-varying lag operator are discussed.

In Section III, we present our causal inference procedure,

building on the bivariate evolutionary spectra estimates and
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stationarity test. We extend these results to a network setting

in Section IV and report our experimental results in Section V.

A. Notation

Let Z, Z≥0, and C denote the integers, non-negative in-

tegers, and complex numbers, respectively. We use Z̄≥0 to

denote Z≥0∪{∞}. A sequence of random variables is denoted

by {Xt} , {Xt, t ∈ Z} with mean function µX,t = E[Xt]
and auto-covariance function γXX(r, s) = Cov(Xr, Xs). We

write {Xt} ⊥⊥ {Yt} to denote the (statistical) independence

between {Xt} and {Yt}, which requires the random vectors

(Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn) to be independent for any

n > 0 and any sequence t1, . . . , tn ∈ Z. Throughout this work,

stationary processes is referred to as wide-sense stationary

processes. We use the capital Greek letter (e.g., Φ,Ψ, H) for

polynomial function and the corresponding lower case (i.e.,

φ, ψ, η) for its coefficients. For a matrix A ∈ Cn×n, we use

|A| and ||A||p , maxx 6=0(||Ax||p/||x||p) , p ≥ 1, to denote

its determinant and the matrix norm induced by the lp norm,

respectively. We use ρ(A) , max1≤j≤n |λj | to denote the

spectral radius of the matrix A, where {λ1, . . . , λn} are the

eigenvalues of A.

II. MODEL IDENTIFIABILITY IN THE BI-VARIATE CASE

A. Linear time-varying filter with additive stationary noise

For a process {Xt}, we define the lag operator B as

B
jXt , Xt−j , j ∈ Z̄≥0. Let Φp

t (z) ,
∑p

j=0 φt,jz
j , z ∈ C,

denote a time-dependent polynomial function of finite degree

p. If Φp
t (z) is not constantly zero, we require φt,p 6= 0 for

some t. For infinite degree p = ∞, we define Φ∞
t (z) ,∑∞

j=0 φt,jz
j , with z ∈ C such that |z| ≤ 1, where the

coefficients of Φ∞
t (z) are assumed to be absolutely summable,

i.e.,
∑∞

j=0 |φt,j | <∞. Given a polynomial function Φp
t (z) of

degree p ∈ Z̄≥0, a time-varying (lag-polynomial) operator of

order p is defined as

Φp
t (B) ,

p∑

j=0

φt,jB
j . (1)

We call an operator time-invariant if it does not dependent on

t. For an operator Φp
t (B) of finite order p, if there exists an

operator Θr
t (B), r ∈ Z̄≥0, such that Θr

t (B)Φ
p
t (B) = 1, we call

Θr
t (B) the (left) inverse operator of Φp

t (B), which is denoted

by (Φp
t (B))

−1.

In this work, we start with a class of bivariate Gaussian

processes {Xt, Yt} that are trend free (µX,t = µY,t = 0) and

follow the following model

Yt = Φp
t (B)Xt +Nt, p ∈ Z≥0, {Nt} ⊥⊥ {Xt}, (2)

where the noise {Nt} is a stationary process, and we assume

that Φp
t (B) is invertible. The assumption that Φp

t (B) is invert-

ible (see Lemma 1 for details) implies that our model always

includes the instantaneous effects (i.e., φt,0 6= 0), which is

regarded as a more difficult case compared with the one

without instantaneous effects [10]. Also note that (2) can be

equivalently written as any invertible time-invariant operator

applied to its both sides (since the noise remains stationary).

We will thus focus on the representation in (2) for simplicity.

Remark 1: We do not specify the generating process of

{Xt}, which is in contrast to the bivariate version of SCMs

in [8], [10], [15], [16] where the cause is assumed to be a

noise variable. Our bivariate setting is more challenging in that

one could use a stationarity test to tell apart the cause from

effect if {Xt} is always stationary. In our network setting in

Section IV, however, we will have to assume the root nodes are

stationary, since the problem seems to be intractable otherwise.

We say a backward model exists if there exists Ψq
t (B), q ∈

Z̄≥0, and a stationary process {Ñt} such that

Xt = Ψq
t (B)Yt + Ñt, {Ñt} ⊥⊥ {Yt}. (3)

The causal direction x→ y is said to be identifiable if the joint

distribution of {Xt, Yt} does not admit a backward model (3).

Note that a valid backward model requires the coefficients of

Ψq
t (B), i.e., {ψt,i} to be absolutely summable.

B. Identifiability

Recall that for bivariate Gaussian processes, the backward

model defined in (3) has to satisfy two constraints: the

independence constraint ({Ñt} ⊥⊥ {Yt}) and the stationarity

constraint ({Ñt} is stationary). Our main theorem charac-

terizes two necessary conditions, corresponding to these two

constraints, regarding the existence of a backward model (3).

To illustrate that the constraints for a backward model to exist

are hard to be satisfied, we provide the identifiability results

for the i.i.d. setting in Corollary 1 and 2.

Theorem 1: Let {Xt, Yt} be a bivariate Gaussian process

following the model (2) such that

Yt = Φp
t (B)Xt +Nt, (4)

where we assume that Φp
t (B) is invertible. Then a backward

model of (4) exists only if the following two conditions are

satisfied.

(I) Condition for the independence constraint. The equation

γXX(t1, t2) = Hs
t2(B)α(t1, t2) with respect to Hs

t2(B),
where

α(t1, t2) = Φp
t2(B)γXX(t1, t2)

+ (Φp
t1(B))

−1γNN(t2 − t1),
determines a nonempty class of operators O such that

for any Hs
t (B) ∈ O, {Yt} ⊥⊥ {Xt − Hs

t (B)Yt}, and

{Hs
t (B)Yt} has a unique distribution.

(II) Condition for the stationarity constraint. Let Θr
t (B) ,

(Φp
t (B))

−1, then there exists an operator Hs
t (B) =∑s

j=0 ηt,jB
j in O such that

s∑

j=1

r∑

k=1

ηt,jθt−j,kγNN(k − j)

is time-invariant.

The proof of Theorem 1 is provided in Appendix A. As

shown in the proof of Theorem 1, the second condition is a

consequence of the first one. However, the second condition
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itself is quite strong in that a combination of time-varying

coefficients has to be time-invariant. As a result, Theorem 1

implies that the causal direction is likely to be identifiable in

generic cases, which is further supported by our experimental

results on both synthetic and real-world datasets in Section V.

Note that this is analogous to the identifiability results for

the nonlinear ANMs [3] where the backward model only

exists under strong conditions. Estimating the time-varying

coefficients remains a challenging task. Fortunately, reliable

estimation procedures are available for a class of slowly

varying processes, called bivariate evolutionary spectra pro-

cesses [21], [22], based on which we propose a natural causal

discovery procedure in Section III.

As a consequence of the two constraints, we have the

following corollary when both {Xt} and {Nt} are i.i.d.

Gaussian processes (see Appendix B for the proof).

Corollary 1: If {Xt} and {Nt} are two i.i.d. Gaussian

processes with E[X2
t ] = σ2

X and E[N2
t ] = σ2

N , and φt,p 6= 0
for all t, then the coefficients of the operator Ψq

t (B) in (3) are

determined by ψt,0 = 1/φt,0 and

ψt,i =
−1
φt−i,0




min(p,i)∑

j=1

ψt,i−jφt−i+j,j +
σ2
Nψt,i−p

σ2
Xφt+p−i,p


 (5)

for i ≥ 1. A backward model (3) exists only if {ψt,i} is abso-

lutely summable and Var(Ñt) =
∑min(s,r)

j=1 ψt,jθt−j,jγNN (0)
is time-invariant, where {θt,j} are the coefficients of the

inverse operator of Φp
t (B) (see equation (6) below).

Remark 2: As the SNR σ2
X/σ

2
N goes to infinity, the coeffi-

cients {ψt,i}, converges to θt,0 = 1/φt,0 and

θt,i = −
1

φt−i,0

min(p,i)∑

j=1

θt,i−jφt−i+j,j , i ≥ 1, (6)

which are the coefficients of Θr
t (B) , (Φp

t (B))
−1 (see the

derivation of (6) in [24, equation (4.10)]). Thus the invertibility

of Φp
t (B) is a necessary condition for a backward model to

exist when the SNR is sufficiently high. Since we assume

that Φp
t (B) is invertible, we thus focus on the cases when the

identifiability is more difficult to show.

In Corollary 1, we show that {ψt,i} can be solved iteratively,

and the variance of {Ñt} is written as a combination of {ψt,i}
and {θt,i}. In general, it could be hard to check whether {ψt,i}
is absolutely summable and whether {Ñt} is stationary. To get

a concrete sense of the identifiability result, we simplify the

setting by letting Φp
t (B) to be of zero order in the following

corollary (see Appendix C for the proof).

Corollary 2: Let {Xt} and {Nt} be i.i.d. Gaussian processes

with zero means and variances σ2
X and σ2

N , respectively.

Consider the following forward model with φ(t) 6= 0,

Yt = φ(t)Xt +Nt, {Nt} ⊥⊥ {Xt}. (7)

Then there exists a model as follows,

Xt =
φ(t)

φ2(t) + σ2
N/σ

2
X

Yt + Ñt, {Ñt} ⊥⊥ {Yt}, (8)

where {Ñt} is determined by Ñt =
σN√

φ2(t)+σ2

N
/σ2

X

Wt, where

{Wt} is an i.i.d. process with σ2
W = 1.

Remark 3: Due to the stationarity constraint on {Ñt}, a

backward model exists only if |φ(t)| is time-invariant. The

noise {Ñt} has the form of a stationary process multiplied

by a nonnegative function, which belongs to a class of

nonstationary processes call the uniformly modulated process

(UMP) [18] (see the definition of UMP in Section III).

If the stationary noise assumption is relaxed to be the UMP

noise, then a backward model always exists in the setting of

Corollary 2. But in the general setting, by replacing Yt in (3)

with (2), one can write

Ñt = (1−Ψq
t (B)Φ

p
t (B))Xt −Ψq

t (B)Nt,

which is a sum of two independent processes. In generic cases,

{Ñt} is not only nonstationary but non-UMP. Thus our model

is likely to be identifiable even if we consider the UMP noise.

This is also supported empirically by our experimental results

on synthetic data in Section V.

C. Time-varying operator

In order to establish the identifiability results of our model,

we need to first investigate some key properties of the time

varying operator. We say an operator Φp
t (B) is time-invariant

if φt,j = φt−1,j holds for all j ≥ 0 and t ∈ Z. By applying

the operator Φp
t (B) to {Xt}, we obtain

Φp
t (B)Xt =

p∑

j=0

φt,jXt−j . (9)

Since we focus on Gaussian processes and operators with

absolutely summable coefficients, we would like to have any

series of the form in (9) to converge even when p = ∞. To

address this technical issue, we present the following propo-

sition, and the proof of which is a straightforward extension

of the time-invariant case proved in [25] (and we include it in

Appendix D for completeness).

Proposition 1: Let {Xt} be a sequence of random variables

such that supt E[|Xt|] < ∞. If
∑∞

j=0 |ψt,j | < ∞, then the

series

Ψ∞
t (B)Xt =

∞∑

j=0

ψt,jXt−j (10)

converges absolutely with probability one. If supt E[|Xt|2] <
∞, the series converges in mean square to the same limit.

We now discuss the relationship between different operators.

First, we say two operators Φp
t (B) and Ψq

t (B), with p, q ∈
Z̄≥0, are equivalent if φt,j = ψt,j holds for all j ≥ 0 and

t ∈ Z, and we write Φp
t (B) = Ψq

t (B). Otherwise, we use 6= to

denote they are not equivalent. To facilitate the analysis, we

will make use of an equivalent definition for the rest of the

paper. We write Φp
t (B) = Ψq

t (B) if

Φp
t (z) = Ψq

t (z) (11)

holds for z in some open set E ⊆ C that contains 0 (see

Appendix E for the proof of equivalence).
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It can be easily verified that time-varying lag-polynomial

operators do not satisfy the commutative property of multipli-

cation in general, i.e.,

Φp
t (B)Ψ

q
t (B) 6= Ψq

t (B)Φ
p
t (B). (12)

Remark 4: For two operators Φp
t1(B) and Ψq

t2(B) such

that t1 and t2 do not depend on each other, we have

Φp
t1(B)Ψ

q
t2(B) = Ψq

t1(B)Φ
p
t2(B).

As a consequence of the non-commutative property in (12),

Φp
t (B) may not be the inverse operator of (Φp

t (B))
−1 in

general. It is known that, when Φp
t (B) is time-invariant, a

necessary and sufficient condition for Φp(B) to be invertible

is
p∑

j=0

φjz
j 6= 0, (13)

for |z| ≤ 1, which says that the roots of the polynomial in

(13) are strictly outside the unit circle. A similar statement

was proved in [25]. When Φp
t (B) is time-varying and φt,p 6= 0

for all t, a necessary and sufficient condition for the invert-

ibility of Φp
t (B) is provided in [26] using Green’s functions,

making the evaluation of the condition very challenging. In

the following, we provide two sufficient conditions and one

necessary condition on the existence of inverse operators that

are easy to check. Some examples will be discussed afterwards

to illustrate the conditions.

Lemma 1: Let Φp
t (B) be an operator of finite order p ≥ 1,

and we assume that φt,j 6= 0 for some j ≥ 0 for each t.

(I) Sufficient conditions for Φp
t (B) to be invertible.

The inverse operator (Φp
t (B))

−1 exists if either of the

following conditions holds,

(a) |φt,0| >
p∑

j=1

|φt+j,j | > 0, (14)

(b) φt,0 > φt+1,1 > . . . > φt+p,p ≥ 0. (15)

(II) Necessary condition for (Φp
t (B))

−1 to have a finite order.

Φp
t (B) has an inverse operator of finite order q only if

φt,0 6= 0 and
q∏

i=0

φt−i,p = 0. (16)

Remark 5: If Φp
t (B) is time-invariant, then (16) reduces

to φt,p = 0 for all t, which contradicts the definition of

Φp
t (B) since it requires that φt,p 6= 0 for some t. Thus the

inverse operator of Φp
t (B) cannot be of finite order in the

time-invariant case.

The proof of Lemma 1 is provided in Appendix G. In

Section III-D, we show that there is a close relationship

between condition (14) and a slowly varying condition on

the coefficients from the evolutionary spectra framework. The

necessary condition in Lemma 1 says that an inverse operator

of finite order exists only if φt,p = 0 for infinitely many t.
This condition characterizes a class of operators that could be

restrictive since it does not contain the time-invariant operators

(and recall that the inverse operator of a time-invariant operator

is of infinite order). We therefore consider the “complement”

of this class to be a more general class of operators.

Now we provide three examples to show that inverse

operators exist under the conditions in Lemma 1.

Example 1. Consider the first-order operator Φ1
t (B) , 1 +

φt,1B, where φt,1 = 1 when t is even, and φt,1 = 0 otherwise.

One can check that condition (16) holds for all q ≥ 1. Then

using (6), it is straightforward to find that

(1− φt,1B)(1 + φt,1B) = 1− φt,1φt−1,1B
2 = 1.

Example 2. Consider the first-order operator Ψ1
t (B) , 1 +

ψt,1B, with 0 < |ψt,1| < 1. One can check that condition

(16) does not hold for any q ≥ 1 while condition (14) holds

immediately. Then by (6), we obtain

(1 + ψt,1B)
−1 = 1 +

∞∑

j=1

(
(−1)j

j∏

k=1

ψt−k+1,1

)
B
j . (17)

Example 3. Consider the operator Ψ1
t (B) in Example 2. with

ψt,0 = 1 and ψt,1 = 0.5 cos(t/T ), T ∈ Z. Since t/T is a

rational number for any t ∈ Z, we have ψt,1 6= 0 and |ψt,1| <
1, which implies that (16) does not hold for any q ≥ 1. It

then follows from (14) in Lemma 1 that Ψ1
t (B) has an inverse

operator of the form (17). This operator was employed in [21]

as the transfer function for an open loop system.

III. MODEL ESTIMATION

A. Causal inference procedure

To simplify the presentation of the estimation procedure in

this section, we will adopt an alternative expression of the

model (2) without using the lag-polynomial operator. Consider

a bivariate process {Xt, Yt}, we say the causal direction

between {Xt} and {Yt} is x → y if the following model

holds,

Yt =

∞∑

u=0

dt(u)Xt−u +Nt, {Xt} ⊥⊥ {Nt}, (18)

where {Nt} is a stationary process, and {dt(u)} is called the

time-varying filter. Conversely, if {Xt, Yt} admits the model,

Xt =
∑∞

u=0 d̃t(u)Yt−u + Ñt, {Yt} ⊥⊥ {Ñt}, where {Ñt}
is a stationary process, then we say the causal direction is

y → x. The assumptions on model (18) that allow efficient

estimation of {dt(u)} are technical and will be deferred to

Section III-D, after a brief overview of the evolutionary spectra

framework. We now describe our causal inference procedure

in Algorithm 1 to test the null hypothesis H0 : x → y, and

the test for y → x can be done in the same manner. Let px→y
I

denotes the p-value from the independence test and qx→y
S = 1

if the residual is stationary and 0 if nonstationary. Similarly, we

obtain py→x
I and qy→x

S from the test for y → x. We accept or

reject H0 by checking the following conditions. For a prefixed

α, we accept H0 if px→y
I ≥ α and py→x

I < α. (Similarly, we

reject H0 if px→y
I < α and py→x

I ≥ α.) If px→y
I ≥ α and

py→x
I ≥ α, then we rely on the stationarity test: We accept

H0 if qx→y
S = 1 and qy→x

S = 0 (or reject H0 if qx→y
S = 0 and

qy→x
S = 1). The causal inference procedure remains undecided

for all the other cases.
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Here are some comments regarding the implementation

details in Algorithm 1. Given a window size NF , the maximal

order of model (18) considered by our estimation procedure

is ⌊NF /2⌋ (see Section V for details). The order p can be

selected using AIC [27] or BIC [28]. For a similar inde-

pendence test task, previous works [8], [15] have used a

kernel-based independence test developed for i.i.d. data [29]

(referred to as HSIC), which may suffer from high false

positive rates in certain cases [30]. The estimation of the filter

and the stationarity test are based on the evolutionary spectra

framework [31] by incorporating the multitaper method as in

the univariate case [23], [32] (see more details below).

B. Univariate nonstationary processes

To set the stage, we start with a brief review of the

evolutionary spectra framework [18]. Consider a class of non-

stationary processes {Xt}, with E[Xt] = 0 and E[|Xt|2] <∞
for t ∈ Z, such that

Xt =

∫ π

−π

φt(w)dZ(w), t ∈ Z, (19)

for some family F of functions {φt(w)} (defined on [−π, π]
indexed by t) and a measure µ(w), where Z(w) is an orthog-

onal increment process with E[|dZ(w)|2] = dµ(w). If there

exists a family of functions F = {φt(w) = eiwtAt(w)} such

that {Xt} can be represented as in (19) and for any fixed w,

the Fourier transform of hw(t) , At(w) (viewed as a function

of t), denoted by Hw(v), has an absolute maximum at the

origin, then {Xt} is called an oscillatory process with respect

to oscillatory functions {eiwtAt(w)}, and the evolutionary

spectrum at time t with respect to F is

dFt(w) = |At(w)|2dµ(w).
Note that hw(t) = 1 corresponds to the case when {Xt} is a

stationary process, which leads to Hw(v) = δ(v), where δ(·) is

the Dirac delta function. To estimate the evolutionary spectral

density, Priestley [18] proposed a double-window technique,

consisting of a short-time Fourier transform and smoothing.

Recently, the bias/variance/resolution tradeoff of a variant of

the evolutionary spectra estimate, incorporating the multitaper

method [33], is characterized [23]. Interesting methodologies

on neural processes can be found in [34].

It is hard to characterize characteristic widths [18], which

quantifies the length of a “stable” segment, exactly for semi-

stationary processes [35]. However, there is one important

class of processes whose characteristic widths can be bounded

from below. This class, termed as the uniformly modulated

processes (UMP) [18], is of the following form:

Xt = c(t)Yt, (20)

where Y (t) is a stationary process with zero mean and spectral

density fY (w), and the Fourier transform of c(t) has an abso-

lute maximum at the origin. Thus it follows straightforwardly

that

Xt =

∫ π

−π

c(t)eiwtdZ(w),

where E |dZ(w)|2 = dFY (w). The process introduced in (20)

is an oscillatory process since FY = {c(t)eiwt} is a family of

oscillatory functions. The evolutionary spectrum with respect

to F is ft(w) = c2(t)fY (w).

Algorithm 1 Causal inference procedure (bivariate)

Input: {(Xt, Yt)}Tt=1, window size NF

Output:

p-values from the independence tests and decisions

from the stationarity tests

procedure TEST(x→ y)

Estimation:

Estimate the filter d̂t(u)
Compute the residuals N̂t , Yt −

∑p
u=0 d̂t(u)Xt−u

Independence test:

Test whether {Xt} ⊥⊥ {N̂t}
Stationarity test:

Test the stationarity of {N̂t}
procedure TEST(y → x)

C. Bivariate nonstationary processes

Now we are ready to discuss bivariate processes {Xt, Yt},
consisting of two oscillatory processes,

Xt =

∫ π

−π

At,x(w)e
iwtdZx(w),

Yt =

∫ π

−π

At,y(w)e
iwtdZy(w),

where {Zx(w)} with E |dZx(w)|2 = dµx(w) and {Zy(w)}
with E |dZy(w)|2 = dµy(w) are two orthogonal increment

processes, and E[dZx(w)dZ
∗
y (w)] , dµxy(w). The evolution-

ary cross-spectrum [21] of {Xt, Yt} at time t with respect to

Fx and Fy is

dFt,xy(w) = At,x(w)A
∗
t,y(w)dµxy(w).

The cross-spectral density of {Xt, Yt} at time t is

ft,xy(w) = At,x(w)A
∗
t,y(w)

dµxy(w)

dw
.

For {Yt} , {Xt}, the cross-spectral density of {Xt, Yt} re-

duces to the auto-spectral density of {Xt}. Note that ft,xy(w)
is in general a complex function. In this work, we adopt the

multitaper method approach [23] for the estimation of the auto-

spectral densities ft,xx(w) and ft,yy(w) and the cross-spectral

density ft,xy(w).

D. Estimation of the filter

Following the model assumptions in [21], we assume {Xt}
and {Yt} are semi-stationary processes. The filter dt(u) is as-

sumed to satisfy the slowing-varying condition [22] described

as follows. Let Dt(w) denote the Fourier transform of dt(u)
with respect to u. For each w, consider Dt(w) as a function

of t, with (generalized) Fourier transform

Dt(w) =

∞∑

θ=−∞

eiθtLw(θ).

If |Lw(θ)| attains the maximum at θ = 0 for all w, i.e.,

|Lw(0)| ≥ |Lw(θ)| for θ 6= 0, we say the slowly varying
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condition is satisfied. Since t and u in dt(u) are discrete,

Lw(θ) is a periodic function of w and θ both with period

2π. It suffices to define the slowly varying condition in the

period −π < w, θ ≤ π. By leveraging the powerful estimation

procedure in [21], we estimate dt(u) by

d̂t(u) = F
−1
w {D̂t(w)} = F

−1
w

{
f̂t,yx(w)

f̂t,xx(w)

}
,

where F−1
w denotes the inverse Fourier transform.

It is thus natural to ask whether the slow varying condition

and either of the two sufficient conditions for invertibility in

Lemma 1 can be satisfied simultaneously. We provide two

classes of filters to show that this is indeed the case.

Example 4. Consider the filter dt(u) = δ(u) +∑l
k=1 1/2

k cos(Akt)δ(u − k), where Ak ∈ (−π, π), l ≥
1 and δ(u) is the unit impulse function1. Since we have∑l

k=1 1/2
k| cos(Ak(t+k))| <

∑l
k=1 1/2

k < 1, the invertibil-

ity condition (14) is satisfied. The functions Dt(w) and Lw(θ)
in the period −π < w, θ ≤ π are given as follows,

Dt(w) = 1 +

l∑

k=1

1

2k
cos(Akt)e

−ikw,

Lw(θ) = 2π

(
δ(θ) +

l∑

k=1

e−ikw

2k+1
(δ(θ −Ak) + δ(θ +Ak))

)
.

Since Lw(θ) is a linear combination of delta functions, it

is straightforward to see that the slowly varying condition is

satisfied.

Example 5. Consider the filter dt(u) with dt(0) = 1 and∑∞
−∞ |dt(u)| <∞ for 1 ≤ u ≤ p, for which we can assume

that condition (14) or condition (15) holds. Then, we have

Lw(θ) = 2πδ(θ) +

p∑

u=1

∞∑

t=−∞

dt(u)e
−iuwe−itθ

for −π < w, θ ≤ π, where
∣∣∣∣∣

p∑

u=1

∞∑

t=−∞

dt(u)e
−iuwe−itθ

∣∣∣∣∣ ≤
p∑

u=1

∞∑

t=−∞

|dt(u)| <∞.

For any −π < w, θ ≤ π, we have |Lw(θ)| < ∞ for θ 6=
0 and |Lw(0)| = ∞. Thus the slowly varying condition is

satisfied.

The examples are in fact more general than they seem to

be. Specifically, the filter dt(u) in the first example can be

generalized in different ways. For example, one can shift and

scale the cosine function kernels with some constants, and

modify the coefficient 1/2k. The zero-order term dt(0) = 1
for both examples can be replace by other function forms.

To see this, one can multiply a function a(t) with Fourier

transformA(w) to dt(u), then the function Lw(θ) is convolved

with A(w). If |A(w)| is highly concentrated around the

zero frequency, then the slowly varying condition on Lw(θ)
could be preserved after the convolution. Meanwhile, since

1The unit impulse function is referred to as either the Dirac delta function
δ(t) (with δ(0) = ∞) for t ∈ R or the unit sample function δ(n) (with
δ(0) = 1) for n ∈ Z.

a(t)dt(u) = |A(0)|dt(u) + (a(t) − |A(0)|)dt(u), where the

first term is dominating, the invertibility condition could hold

for a(t)dt(u).

E. Stationarity test

In order to verify the stationarity of the residual processes

N̂t , Yt−
∑p

u=0 d̂t(u)Xt−u as in Algorithm 1, we make use

of an improved version of the original Priestley and Subba Rao

stationary test (PSR test) [36] by incorporating the multitaper

method [23], [32] to obtain {f̂K
ti (wj), 1 ≤ i ≤ I, 1 ≤ j ≤ J}

in Algorithm 2. The null hypothesis H0 is “{Xt} is station-

ary”. Consider a semi-stationary process {Xt, 0 ≤ t ≤ T },
let ft(w) denote its evolutionary spectral density and f̂K

t (w)
denote the multitaper estimate with K tapers and N as

the length of the sample records. For i ∈ {1, . . . , I}, with

I = ⌊T/N⌋, and j ∈ {1, . . . , J}, with J = ⌊(N+1)/(K+1)⌋,
let Wij , log f̂K

ti (wj) + ψ(k) + logK , where ψ(·) is the

digamma function. The stationary test is based on applying

the two-way analysis of variance (ANOVA) test to {Wij}. Let

W·· = (1/IJ)
∑I

i=1

∑J
j=1Wij ,Wi· = (1/J)

∑J
j=1Wij , and

W·j = (1/I)
∑I

i=1Wij . The following statistics are needed:

between time variance ST = J
∑I

i=1(Wi· −W··)
2; between

frequencies variance SF = I
∑J

j=1(W·j −W··)
2; interaction

and residual variance SI+R =
∑I

i=1

∑J
j=1(Wij − Wi· −

W·j+W··)
2. The algorithm is described in Algorithm 2, where

testing SI+R/σ
2 ∼ χ2

(I−1)(J−1) is essentially a UMP test (see

details from [36]).

Algorithm 2 PSR stationarity test [36]

Input: {f̂K
ti (wj), 1 ≤ i ≤ I, 1 ≤ j ≤ J}

Output: accept or reject H0

Compute {Wij , 1 ≤ i ≤ I, 1 ≤ j ≤ J}
Test SI+R/σ

2 ∼ χ2
(I−1)(J−1)

if significant then

reject H0

else

Test ST /σ
2 ∼ χ2

(I−1)

if significant then

reject H0

else

accept H0

IV. EXTENSION TO THE NETWORK SETTING

Our bivariate model shows how nonstationarity can be used

for identifying the causal relation of a pair of processes.

A more general setting is to identify the causal relations

of a set of processes that corresponds to a DAG. In this

section, we continue to exploit nonstationarity for identifying

the underlying DAG of a set of Gaussian processes.

For a DAG G with nodes V = {1, . . . , N}, we use PA(j)
and ND(j) to denote the set of parents and set of non-

descendents of a node j ∈ V , respectively. The set of non-

descendents ND(j) is the set of all nodes in V such that

there is no path from j to any k ∈ND(j).
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A. Model identifiability

Consider a N dimensional Gaussian process {Xt} =
{{X1

t }, . . . , {XN
t }} generated by the following SCM corre-

sponding to a DAG G with nodes V = {1, . . . , N},

Xj
t =

∑

k∈PA(j)

Φk→j
t (B)Xk

t +N j
t , j ∈ V , (21)

where the noise processes {N j
t }, j ∈ V , are jointly inde-

pendent and stationary. The maximal order of the operators

Φk→j
t (B)’s is p.

Remark 6: Note that when N = 2, model (21) reduces to a

bivariate model with a stationary process as the cause. While

in our bivariate model (2), the generating process of the cause

{Xt} is not specified. Thus model (21) is the extension of a

special case of our bivariate model (2) to the network setting.

As a consequence of the time-varying operators in (21),

{Xt} is a set of stationary/nonstationary processes. Then a

natural question is: What kind of nonstationarity is needed for

identifying the DAG G? First, let us start with the following

example to show that the time-varying operators may not lead

to nonstationarity.

Example 6. Let Yt = Φ2
t (B)Xt, where {Xt} is i.i.d. and

Φ2
t (B) is defined by φt,0 = (−1)t and φt,1 = (−1)t−1. Then

{Yt} is stationary since E[Yt] = (−1)tµX + (−1)t−1µX = 0,

Cov(Yt, Ys) = 2σ2
X for t = s, Cov(Yt, Ys) = σ2

X for |t−s| =
1, and Cov(Yt, Ys) = 0 for |t− s| ≥ 2.

This example can be easily generalized by applying any

time-invariant operator to Yt. Thus, simply using time-varying

operators in (21) may not lead to nonstationarity in some

non-generic cases. In order for the complete graph G to be

identifiable, we need the following assumption.

Assumption 1: A process {Xj
t }, j ∈ V , remains nonstation-

ary if one conditions on {XS
t = 0}, where PA(j) 6⊆ S ⊆

ND(j) \ j.
In general, Assumption 1 is satisfied when all operators

in (21) are time-varying and chosen generically. In the i.i.d.

setting, the restricted ANMs [7] assume that the model Xj =
fj(XPA(j)) + Nj belongs to a bivariate identifiable class if

one conditions on XPA(j)\k = x for each k ∈ PA(j). In par-

ticular, for a model with Gaussian noise, the function fj needs

to remain nonlinear when XPA(j)\k = x are conditioned on,

which is similar to how we require the nonstationarity to exist

when {Xk
t = xS}, k ∈ S, are conditioned on.

Let R ⊆ V denote the set of root nodes in G (i.e., all nodes

j’s such that PA(j) = ∅). The identifiability of the graph G
is built on the following lemma and the definition of causal

ordering.

Lemma 2: A process {Xj
t }, j ∈ V , is stationary if and only

if j ∈ R.

Proof: =⇒: For any j ∈ R, the process {Xj
t } is deter-

mined by Xj
t = N j

t and thus it is stationary.⇐=: If no process

(i.e., the empty set) is conditioned on, then Assumption 1

implies that {Xj
t } is nonstationary if PA(j) 6= ∅ (i.e. j 6∈ R).

Therefore, any process {Xj
t }, j ∈ V , is stationary if and only

if j ∈ R.

Definition 1 (Causal ordering): A causal ordering of the

nodes V of a DAG G is an ordering of V such that there is

no path from a later node to any earlier node.

From the definition of causal ordering, the parents of

each node in V are contained in the previous nodes, which

motivates the proof the following theorem.

Theorem 2: The graph G entailed in (21) is identifiable.

Proof: First, we classify the nodes V to K classes

{V 1, . . . ,V K} as follows. Since the set of root nodes R

is identifiable by Lemma 2, let V 1 = R. For k ≥ 2, by

conditioning on the processes {Xj
t }, j ∈ V i−1, i ≤ k, to be

zeros, we define V k as the nodes in V \ ∪k−1
i=1 V

i such that

the corresponding processes are stationary. The iteration stops

if ∪ki=1V
i = V . The iteration will stop within K ≤ N steps

due to the existence of a (unknown) causal ordering.

By Assumption 1, the conditioning step implies that

PA(j) ⊆ ∪k−1
i=1 V

i for each j ∈ V k and 2 ≤ k ≤ K , which

means that the parents of each node are in previous classes.

Again, Assumption 1 implies that PA(j) of j ∈ V k is the

smallest set S ⊆ ∪k−1
i=1 V

i such that {Xj
t } is stationary when

the processes that correspond to S are conditioned on to be

zeros. Since the parents of each node j ∈ V are identified,

the graph G is identifiable.

B. Model estimation

In Section III-D, we described an estimation procedure of

the time-varying filter for the bivariate model (18), while

the estimation of time-varying filters for general multivari-

ate models remains an open problem. Our causal inference

procedure for the network setting is motivated by the fol-

lowing observation. By replacing each Xk
t in (21) with the

corresponding structural equation iteratively, we obtain an

equivalent representation of model (21),

Xj
t =

∑

k∈AN(j)

Ψk→j
t (B)Nk

t +N j
t , j ∈ V , (22)

where AN(j) denotes the set of ancestors of the node j (i.e.,

all nodes k’s such that there exists a path from k to j) and

each operator Ψk→j
t (B) is given by

Ψk→j
t (B) =

∑

(k,v1,v2,...,j)

Φk→v1
t (B)Φv1→v2

t (B) . . .Φvd→j
t (B),

where (k, v1, v2, . . . , j) denotes any path of any length d+ 1
from k to j. Note that the operator Ψk→j

t (B) in (22) and

the operator Φk→j
t (B) in (21) are equal for each j and

k ∈ PA(j). In our algorithm for the network setting, we

use dk→j
t (u) to denote Ψk→j

t (B) as in Algorithm 1. Since Xj
t

is written as a time-dependent linear combination of jointly

independent variables, we estimate each filter in (22) using

the pairwise procedure described in Section III-D, which turns

out to perform well empirically. While {Nk
t } is not observed

if k is not a root node, we will see later that our algorithm

naturally provides estimates of the residuals.

Based on model (22), our algorithm first identifies the

ancestors of a node j. Then the task is to identify the parents

of j given its ancestors. Implied by Assumption 1, PA(j) is
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the smallest set Q ⊆ AN(j) such that {Xj
t } is stationary

when {Xk
t }, k ∈ Q, are conditioned on to be zeros. But such

conditioning is hard to evaluate in practice. To introduce our

procedure for identifying PA(j) (i.e., Procedure 2), we need

the following assumption, which is again generally satisfied,

based on which we show the correctness of Procedure 2 in the

proposition below.

Assumption 2: For any Q ⊆ AN(j) such that Q 6= PA(j),
the equation

W j
t = Xj

t −
∑

k∈Q

Ψk→j
t (B)Xk

t (23)

determines a nonstationary process {W j
t }.

Proposition 2: For any Q ⊆ AN(j), the process {W j
t }

determined by (23) is stationary if and only if Q = PA(j)
It is straightforward to see that we obtain W j

t = N j
t

when Q = PA(j) in (23), using Ψk→j
t (B) = Φk→j

t (B)
and (21). Thus {W j

t } is stationary. The other direction is a

direct consequence of Assumption 2.

Algorithm 3 Causal inference procedure (network)

Input: N time series {xit}, i ∈ V , t = 1, . . . , T
Output: adjacency matrix A, estimated residuals {N̂ i

t}
Initialization: S = V , A = 0N×N , {N̂ i

t} = {xit}
while S 6= ∅ do

i∗ = MinStationary({N̂ i
t , i ∈ S})

if i∗ = ∅ then break

S ← S \ i∗
for j ∈ S do

Initialization: cjt = 0T×1, ANj = ∅

for k ∈ Sc do

Estimate the filter dk→j
t (u)

if {xjt} 6⊥⊥ {N̂k
t } then

ANj ← ANj ∪ k
cjt ← cjt +

∑
u d̂

k→j
t (u)N̂k

t−u

nj
t = xjt − cjt

j∗ = MinStationary({nj
t , j ∈ S})

if j∗ 6= ∅ then

{N̂ j∗

t } = {nj∗

t }
PAj∗ = SelectParents(ANj∗ , {xit}, {d̂k→j∗

t })
A(i, j∗) = 1, ∀i ∈ PAj∗

Our algorithm follows the main idea of Theorem 2. In each

iteration of the while loop, the task is to identify the ancestors

of one node in S and then select the parents from the ancestors,

where S contains the nodes whose parents are unknown and Sc

denotes the complement of S. The order that the nodes leave

the set S is a causal ordering. We will obtain an estimate of

the residuals {N j
t } if the ancestors of j are contained in Sc.

Later, the estimated residuals will be used for the estimation

of the filters. There are three places in the algorithm where we

need to select the time series that minimizes some stationarity

measure, which is carried out in Procedure 1. Specifically, we

use the UMP test (i.e., the interaction and residual variance

SI+R in Algorithm 2) as a prescreening step and then compute

the between time variance ST in Algorithm 2 to quantify the

stationarity of the time series.

For the independence test between {xjt} and {N̂k
t }, one can

use the kernel independence test for random processes [30],

which could be computationally demanding. An efficient ap-

proximation is to test whether (1/T )|µ| = |∑t d
k→j
t (u)| < a

for u = 1, . . . , q. In practice, when our model assumptions are

violated, one can test the joint independence of the estimated

residuals {N̂ i
t}, i ∈ V , at the end of the algorithm. In

Section V, this step is omitted since our algorithm is applied

to the data generated by model (21).

Procedure 1 MinStationary

Input: N time series {xjt}, j ∈ J
Output: j∗ ∈ J
U = {j ∈ J : {xjt} is a UMP}
if U 6= ∅ then

j∗ = argminj∈U ST ({xjt})
else j∗ = ∅

Procedure 2 SelectParents

Input: ANj , {xit}, {d̂k→j
t (u)}

Output: PAj

for each Q ⊆ ANj do

Ŵt(Q) = xjt −
∑

m∈Q

∑
u d̂

m→j
t (u)xkt−u

PAj = MinStationary({Ŵt(Q)})

Remark 7: From our experiments on synthetic data (i.e.,

Experiment 5 in Section V), the selected parents PAj in

Procedure 2 may be empty in certain cases, due to the

estimation procedure. In such cases, one could replace PAj

with ANj in Procedure 2, resulting in additional edges in the

inferred graph (which is a subgraph of the transitive closure

of G [37]). It is worth noting that the additional edges will not

affect the causal ordering of nodes.

V. EXPERIMENTS

For all data sets, we use x and y to denote the true cause

and effect, respectively. For the independence test, we use the

default configuration of HSICp [30]. The significance level is

denoted by α for the stationarity test, UMP test (i.e., the test on

SI+R in algorithm 2) and the independence test, and we take

α = 0.05 for the independence test throughout this section.

For the multitaper method, finding the optimal window size

is notoriously hard even for stationary processes. We thus set

the window size NF to be 128 for synthetic data, and the

robustness of NF is tested in Experiment 1 as well as the

real data simulations. In the synthetic experiments, since the

true order p is less than the maximum order ⌊NF /2⌋, i.e.,

the true model is in the model class, we adopt BIC for order

selection since it is consistent. For real data, we test both AIC

and BIC. The length of the processes N is fixed to 2048 for

all the synthetic data. We compare with TiMINo-linear [8],

TCM [15], LiNGAM-t [10] and Granger causality [9].
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Fig. 1: Synthetic data A1. The red lines denote x → y, and the blue lines
denote y → x. For the clarity of the figure, we present the results for NF =
64, 128, and 256.

A. Synthetic Data

Experiment 1: First-order Models. We consider first-order

models from [21],

Yt = Xt + a(t)Xt−1 +Nt, 0 ≤ t ≤ T − 1, (24)

where {Xt} is a UMP defined by Xt = b(t)Zt, with b(t)
being a Gaussian kernel N (µb, σ

2
b ). We choose µb = 0.5T

and σb = 0.2T , with the same ratios to T as in [21]. The

process {Zt} is defined by a second-order AR model, Zt =
0.8Zt−1 − 0.4Zt−2 + εt, in which {εt} is a white Gaussian

noise with εt ∼ N (0, 1002). The stationary noise process2

{Nt} is defined by Nt = 0.8Nt−1 − 0.16Nt−2 + et, where

{et} is a white Gaussian noise with et ∼ N (0, σ2
N ).

1) Different frequencies: We first test how the win-

dow size NF and the frequency of the cosine function

a(t) = 0.5 cos(t/L) affect the performance of our method.

Let σN = 25, L ∈ {25, 50, 100, 200, 400}, and NF ∈
{32, 64, 128, 256, 512}. For each set of parameters, we test

100 models. Fig. 1 shows that our method performs well for

cosine functions with low frequencies (L ≥ 100) regardless

of the choice of NF . For high frequencies (i.e., when L is

small), our method performs well only when NF is small.

This aligns with the intuition that small NF can help reveal

more high-frequency components.

2) Different SNRs: We now examine how sensitive our

method is with respect to the SNR level. We use the parameter

σN to control the SNR level. Let a(t) = 0.5 cos(t/200). For

each σN in {5, 10, 15, 20, 25, 40, 55, 70, 85, 100}, we test 100
models. For σN = 25, one can tell from Fig. 2a that the

residuals of x→ y is more likely to be nonstationary than the

residuals of y → x. Overall, the percentage of identifying the

correct directions is above 80% for different SNRs. Though,

Fig. 2b shows that the estimated cosine functions are noisier

when the SNR is lower (i.e., when σN is larger). Note that

even for a fixed σN , the SNR changes over time with σX(t)
(Fig. 2a). So the estimated functions are noisier at the start

and end of the time range. This suggests that our method is

relatively robust with respect to different SNR levels.

2The only difference between the model in (24) and that in [21] is that the
latter considers {Nt} to be a UMP process.
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Fig. 2: Synthetic data A2. (a-1) The standard deviation of {Xt}. (a-2) The
estimated residuals of x → y when σN = 25. (a-3) The estimated residuals
of y → x when σN = 25. (b) Estimated a(t)’s for different σN . The red
lines denote the ground truth, and the blue lines denote the estimate.

Experiment 2: High-order Models. In this experiment, we

focus on high-order models with smooth filters. We generalize

model (24) to incorporate higher orders p which is generate

from Unif{1, . . . , 5}. Specifically, we have

Yt = c(t)

p∑

k=0

ak(t)Xt−k +Nt, 0 ≤ t ≤ T − 1, (25)

where c(t) = 1 + A cos(t/L), A ∼ Unif[0.05, 0.2], L ∼
Unif[400, 800], a0(t) = 1, ak(t) = gk(f(P (t/T )) + S(t)),
k ≥ 1, in which S(t) = sinc((t − a)/b), sinc(t) ,

sin(πt)/(πt), a ∼ Unif[300, 1500], b ∼ Unif[400, 800], and

P (t) is a polynomial function of degree q ∼ Unif{1, . . . , 6}
with roots sampled from Unif[−1, 1]. The functions f
and gk’s are scaling functions defined as f(P (t)) ,

P (t)/maxt(|P (t)|) and gk(ak(t)) , ckak(t)/maxt(|ak(t)|),
with ck = (1/1.5)k. The process {Xt} is defined by

Xt = Zt +
∑2

k=1 bk(t)Zt−k, where bk(t)’s are generated

by the same way as ak(t)’s. The stationary processes {Zt}
and {Nt} are each generated by the ARMA model, Wt =
Φ2(B)Wt +Θ2(B)et, where Φ2(B) = (d1 + d2)B − d1d2B2,

Θ2(B) = 1 + (d3 + d4)B + d3d4B
2, and d1, d2, d3, d4 ∼

Unif[−0.6,−0.1]∪ [0.1, 0.6]. Note that 1/d1 and 1/d2 are the

roots of the polynomial 1−Φ2(z), and 1/d3 and 1/d4 are the

roots of the polynomial Θ2(z). Since the roots are all strictly

outside the unit circle, the randomly generated ARMA model

has a unique stationary solution that is causal [25]. The white

Gaussian noise {et} has variances σ2
Z = 1002 and σ2

N = 252

for {Zt} and {Nt}, respectively. For α = 0.01 and α = 0.05,

we test 1000 randomly generated models.

In Table I, we classify the undecided cases into three

categories: (1) The independence tests are significant for both

directions; (2) The independence tests are not significant and

the residual processes are stationary; (3) The independence

tests are not significant and the residual processes are non-

stationary. Both TiMINo [8] and TCM [15] remain undecided

since the p-values are too small for both directions. Granger

causality infers the correct (or wrong) direction for 41% (or

2.8%) of the models. LiNGAM-t infers the correct (or wrong)

direction for 69% (or 31%) of the models.
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Table I: Experiment 2 results (%)

α for the stationarity test 0.01 0.05

x→ y 84.1 82.8

y → x 0.6 0.9

both not independent 11.7 10.8

both stationary 1.0 0.4

both nonstationary 2.6 5.1

Experiment 3: High-order Models with Gaussian/non-

Gaussian UMP noise. We replace the noise process in

Experiment 2 with a UMP defined as Nt = g(t)Wt, where

g(t) = exp((t−T/2)2/(2σ2
g)), σg ∼ Unif[0.4T, 0.8T ]. {Wt}

is simulated from the following three models: (1) the randomly

generated ARMA model in Experiment 2 (i.e., {Zt}) with

σe = 25; (2) i.i.d. uniform with Wt ∼ Unif[−30, 30]; (3)

Wt = 15Vt, with {Vt} being a sequence of i.i.d. variables

following the student’s t-distribution with degrees of freedom

5. We use of a variant of Algorithm 1 that replaces the

stationarity test by a UMP test. We sample 1000 models from

(25) for each case of the UMP noise. Our method works well

for the three cases (see Table II). In particular, the percentage

of inferring the wrong direction is below 1%. LiNGAM-t tends

to infer more wrong directions and Granger causality performs

worse than a random guess (i.e., 50%). TCM and TiMINo-

linear remain mostly undecided.

Table II: Experiment 3 results (%)

Gaussian Ours LiNGAM-t Granger

x → y 84.1 64.4 39.2

y → x 0.7 35.6 2.5

undecided 15.2 0 58.3

uniform

x → y 84.2 66.1 29.9

y → x 0.7 33.9 4.4

undecided 15.1 0 65.7

student’s t

x → y 80.8 70.7 30.9

y → x 0.3 29.3 3.5

undecided 18.9 0 65.6

Experiment 4: Models with Non-smooth Functions. We

have demonstrated the performance of our method for a large

class of smooth filters in Experiment 2, and we now examine

a class of non-smooth functions. Consider model (24) with

a(t) = 0.5 tri(t/200; b), 0 ≤ b < 1, which is a triangle wave

function. The function tri(t; b) in one of its period [0, 2π] is

defined as

tri(t; b) =






1− t
2π , 0 ≤ t ≤ 2π, b = 0

t
2πb , 0 ≤ t ≤ 2πb, b 6= 0

t
2πb−2π + 1

1−b , 2πb < t ≤ 2π, b 6= 0

,

where (2πb, 1) is a vertex of the triangle function that changes

with b. The function tri(t; b) is a right triangle when b = 0,

which leads to a discontinuous point at t = 0. Let σN = 25.

For each b in {0, 0.125, 0.25, 0.375, 0.5}, we test 100 models.

Table III shows that our method performs well except for the

case when the triangle wave function has discontinuous points.

Table III: Experiment 4 results (%)

b x→ y y → x
0 33 4

0.125 89 2

0.25 86 2

0.375 86 2

0.5 87 3

Experiment 5: Network Setting. We consider randomly

generated DAGs with number of nodes NG ∼ Unif{2, . . . , 5}.
Each edge is included with probability 0.6. In model (22),

let {N j
t } be an i.i.d. Gaussian process with zero mean and

variance σ2
j ∼ Unif[5, 10]. Each time-varying filter is defined

in the same way as the bivariate model (25), where ak(t) has

order 2, c(t) = 1 + A cos(t/L), with A ∼ Unif[0.5, 2] and

L ∼ Unif[400, 800]. We test Algorithm 3 with α = 0.01 and

α = 0.05 for the UMP test, respectively. To approximately test

the independence between {xjt} and {N̂k
t } in Algorithm 3,

we test whether |µ| = (1/T )|∑t d
k→j
t (u)| < a, a = 0.15,

for u = 1, . . . , 3. We test the sensitivity of our method with

respect to parameter a for a = {0.1, 0.125, 0.15, 1.75} when

α = 0.05.

The results are classified into three categories: (1) the

inferred graph is correct; (2) the inferred graph is a proper

subgraph of the correct graph (i.e., correct graph with missing

edges); (3) all other cases (i.e., correct graph with additional

edges or correct graph with both missing edges and additional

edges). We refer to the proper subgraph as p-subgraph in

Table IV. When a proper subgraph is inferred, it means that

our method tends to remain conservative. Our method mostly

infers either the correct graph or a proper subgraph of the

correct graph. Both Granger causality and LiNGAM-t give

a large percent of wrong graphs that include wrong edges.

TiMINo remains mostly undecided. Overall, our method is

relatively robust with respect to a since the results mainly fall

into the first two categories (see Table V). Our method infers

more cases of wrong edges as a gets smaller, thus we suggest

using a ≥ 0.1.

Table IV: Experiment 5 results (%)

Ours
Granger LiNGAM-t

0.01 0.05

correct graph 91.6 81.7 32.4 13.0

p-subgraph 5.4 14.2 14.1 9.5

others 3.0 4.1 53.5 77.5

Table V: Sensitivity test of a (%)

a 0.1 0.125 0.15 0.175

correct graph 74.7 77.2 81.7 82.6

p-subgraph 14.2 16.5 14.2 13.6

others 11.1 6.3 4.1 3.8

B. Real Data

Let α = 0.05. The only preprocessing needed for our

method is detrending. Since the first two data sets are too short
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in length for HSICp, we infer the causal directions using HSIC.

In all experiments, we fix NF = 64 but the p-values remain to

be similar for NF = 32 or 128. It turns out that the p-values

are similar under AIC or BIC. We set the maximum order

for the compared methods (i.e., TiMINo, TCM, LiNGAM-t,

Granger causality) to be 10. In all three experiments below,

TCM [15] remains undecided.

Experiment 6: Input Gas Rate vs. Output CO2. The Gas

Furnace data set [38] has two variables: the input gas rate (x)

and the output CO2 (y). Our method with HSIC yields the

correct direction with p-values px→y = 0.0895 and py→x =
5.511 · 10−11. TiMINo and Granger causality correctly infer

the direction x→ y [8], whereas LiNGAM-t gives the wrong

direction.

Experiment 7: Duration vs. Time Interval. The Old Faithful

data set [39], [40] contains two variables observed from the

Old Faithful geyser: the duration of an eruption (x) and the

time interval before the next eruption (y). As mentioned in [8],

the data is not collected with fixed time resolution, but we

treat the data as time series. Our method equipped with HSIC

leads to p-values px→y = 0.0777 and py→x = 9.364 ·
10−10. TiMINo and LiNGAM-t infer the correct direction [8].

Granger causality gives the wrong direction.

Experiment 8: Breathing Pattern vs. Heart Rate. The

modulation of heart rate by the breathing pattern is known

as the respiratory sinus arrhythmia (RSA) [41]. This phe-

nomenon is widely observed, especially among young and

healthy individuals. We use the data from [42] to verify the

causal relationship between breathing pattern and heart rate.

Specifically, this data set contains two variables: chest volume

(x) and heart rate (y). Since the mechanism of respiratory sinus

arrhythmia is understood to be the synchronization of heart

rate to breathing rhythm [44], we consider x as a cause for y.

The challenging parts of the data are the nonstationarity and

the seasonality of the data. Taking a segment of length 2048
from the data (i.e., samples 2000 ∼ 4047 of data set B1), our

method yields p-values px→y = 0.0610 and py→x = 0.004.

Since the stationarity tests are always significant, we conclude

the causal directions based only on HSICp. The results show

that our method gives the correct direction. TiMINo remains

undecided due to small p-values (< 10−10) for both directions,

and this might because it requires the stationarity of the data

for the estimation procedure. Granger causality infers the

correct direction, while LiNGAM-t gives the wrong direction.
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APPENDIX A

PROOF OF THEOREM 1

Proof: Suppose there exists a backward model of the form

Xt = Ψq
t (B)Yt + Ñt, {Ñt} ⊥⊥ {Yt}, q ∈ Z̄≥0, (26)

where {Ñt} is stationary.

(I) First, we show the condition for the independence

constraint. Let O denote the class of operators such that

{Yt} ⊥⊥ {Xt−Hs
t (B)Yt} for any Hs

t (B) ∈ O, s ∈ Z̄≥0. Note

that O is nonempty since Ψq
t (B) ∈ O. For any Hs

t (B) ∈ O,

we obtain the model

Xt = Hs
t (B)Yt +Wt, (27)

where {Wt} is defined by Wt = Xt −Hs
t (B)Yt. We replace

Yt in (27) by that in (4), and have

Wt = (1−Hs
t (B)Φ

p
t (B))Xt −Hs

t (B)Nt. (28)

Now, we prove that the Gaussian process {Hs
t (B)Yt} has

the same distribution for any Hs
t (B) ∈ O, which is equivalent

to prove that {Hs
t (B)Yt} and {Ψq

t (B)Yt} have the same

covariance function. According to the independence constraint,

we know that both {Wt} and {Ñt} are independent of {Yt},
which implies that {Wt − Ñt} ⊥⊥ {Yt}. Then, subtracting

(26) from (27) yields Wt − Ñt = (Ψq
t (B) − Hs

t (B))Yt.
It follows from Lemma 4 that the covariance function of

{(Ψq
t (B) − Hs

t (B))Yt} is zero. Thus, we have shown that

{Hs
t (B)Yt} has the same distribution for any Hs

t (B) ∈ O.

Moreover, we provide an explicit characterization of the

operators in O as follows. Since two Gaussian processes

are independent if and only if their cross-covariance function

equals to zero, from (4) and (28), we have

Cov(Yt1 ,Wt2)

= Cov(Φp
t1(B)Xt1 +Nt1 ,

(1 −Hs
t2(B)Φ

p
t2 (B))Xt2 −Hs

t2(B)Nt2)

= Φp
t1(B)(1 −Hs

t2(B)Φ
p
t2(B))γXX(t1, t2)

−Hs
t2(B)γNN (t2 − t1) = 0. (29)

Since we assume Φp
t (B) is invertible, (29) can be written as

(1−Hs
t2(B)Φ

p
t2(B))γXX(t1, t2)

= Hs
t2(B)(Φ

p
t1 (B))

−1γNN (t2 − t1), (30)

which can be further simplified as

γXX(t1, t2) = Hs
t2(B)(Φ

p
t2 (B)γXX(t1, t2)

+ (Φp
t1(B))

−1γNN (t2 − t1)). (31)

Therefore we have shown that (31) determines a class of

operators in O, simply because that (31) is equivalent to the

independence of {Yt} and {Wt}.
(II) Now we move on to prove the condition for the

stationarity constraint. Since when Hs
t (B) = Ψq

t (B), we obtain

{Wt} = {Ñt} in (27). Thus there exists Hs
t (B) ∈ O such

that {Wt} = {Xt −Hs
t (B)Yt} is stationary. The stationarity

of {Wt} implies that its covariance function is a function of

t2 − t1. From (28) and (30), we have

Cov(Wt1 ,Wt2)

= (1−Hs
t1(B)Φ

p
t1(B))(1 −Hs

t2(B)Φ
p
t2(B))γXX(t1, t2)

+Hs
t1(B)H

s
t2 (B)γNN (t2 − t1)

= Hs
t2(B)(Φ

p
t1 (B))

−1γNN (t2 − t1). (32)

Let t1 = t2 = t in (32) and Θr
t (B) , (Φp

t (B))
−1, we obtain

the variance of {Wt} as

Var(Wt) =

s∑

j=1

r∑

k=1

ηt,jθt−j,kγNN (k − j), (33)
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which is time-invariant.

APPENDIX B

PROOF OF COROLLARY 1

Proof: Note that E[XtXs] = σ2
X1t=s since {Xt} is

an i.i.d. process. We solve for the coefficients of Ψq
t (B) by

computing E[XtYt+p−i], i ≥ 0. Using model (4), we derive

E[XtYt+p−i] =

p∑

j=0

φt+p−i,j E[XtXt+p−i−j ]

= φt+p−i,p−iσ
2
X ,

for i ≥ 0. Using the backward model of (4), E[XtYt+p−i] can

be computed alternatively as

E[XtYt+p−i] = E

[
Yt+p−i

( q∑

j=0

ψt,jYt−j + Ñt

)]

=

q∑

j=0

ψt,j E[Yt+p−iYt−j ]

=

i∑

j=max(0,i−2p)

ψt,j E[Yt+p−iYt−j ],

where the last equality holds since |t+ p− i− (t− j)| ≤ p is

equivalent to i − 2p ≤ j ≤ i. Thus, we obtain the following

relationship for i ≥ 0,

i∑

j=max(0,i−2p)

ψt,j E[Yt+p−iYt−j ] = φt+p−i,p−iσ
2
X .

This can be written explicitly for i = 0 and i > 1 as follows,

ψt,0 E[Yt+pYt] = φt+p,pσ
2
X , for i = 0

and for i ≥ 1,

ψt,i E[Yt+p−iYt−i] = φt+p−i,p−iσ
2
X

−
i−1∑

j=max(0,i−2p)

ψt,j E[Yt+p−iYt−j ]. (34)

To further simplify the expression, we now show that

E[Yt+p−iYt−i] 6= 0. First observe that

E[YtYs] = E

[( p∑

j=0

φt,jXt−j +Nt

)( p∑

k=0

φs,kXs−k +Ns

)]

= σ2
X

p∑

j=0

φt,jφs,s−t+j + σ2
N1t=s,

and E[YtYs] = 0 when |t− s| > p. Thus we have, for i ≥ 0,

E[Yt+p−iYt−i] = σ2
X

p∑

j=0

φt−i,jφt+p−i,p+j

= σ2
Xφt+p−i,pφt−i,0 6= 0,

which follows from the fact that φt+p−i,p+j = 0 for j ≥ 1.

As a result, we can divide E[Yt+p−iYt−i] on both sides of (34)

and obtain the solution

ψt,i =−
σ2
Nφt,i−p

σ2
Xφt+p−i,pφt−i,0

+
φt+p−i,p−i

φt+p−i,pφt−i,0

−
i−1∑

j=max(0,i−2p)

ψt,j

∑p
k=0 φt+p−i,kφt−j,i−j+p

φt+p−i,pφt−i,0
(35)

for i ≥ 1. Similarly, we obtain ψt,0 = 1/φt,0 for i = 0.

To obtain equation (5), we will need a technical lemma

(postponed to be presented in Lemma 3 below), which shows

that Ψq
t (B) is simply the inverse operator of Φp

t (B) if σ2
N = 0.

Thus the last two terms in (35) can be replaced by the

coefficent of the inverse operator of Φp
t (B) according to (6).

Therefore, the coefficients of Ψq
t (B) can be solved iteratively

for all i ≥ 0 using (5).

Now, we move on to the condition for the stationarity

constraint. In Theorem 1, if {Nt} is an i.i.d. process, then (33)

can be written as Var(Wt) =
∑min(s,r)

j=1 ηt,jθt−j,jγNN (0),

which in turn equals to γNN(0)
∑min(q,r)

j=1 ηt,jθt−j,j . Since

the operator Hs
t (B) in the backward model (27) is uniquely

determined by (5), we have {Wt} = {Ñt} and {ηt,j} =

{ψt,j}. Thus, Var(Ñt) =
∑min(s,r)

j=1 ψt,jθt−j,jγNN (0). The

rest follows by invoking equation (6).

It remains to show the following technical lemma.

Lemma 3: Let {Xt} and {Nt} be i.i.d. processes. If σ2
N = 0

and σ2
X 6= 0, then Ψq

t (B) is the inverse operator of Φp
t (B).

Proof: By replacing Yt in the backward model (3) with

the forward model (2), we obtain

Xt = Ψq
t (B)Φ

p
t (B)Xt +Ψq

t (B)Nt + Ñt, (36)

where {Xt} and {Nt} are i.i.d. processes. By multiplying Xt

and taking expectation to both sides of (36), we obtain

E[X2
t ] = ψt,0φt,0 E[X

2
t ] + E[XtÑt]

= ψt,0φt,0 E[X
2
t ] + E[Ñ2

t ],

where the last equality is obtained using the backward model.

By same argument leading up to (35), we have ψt,0φt,0 = 1,

which implies E[Ñ2
t ] = 0. It follows that E[ÑtÑt−k] = 0

for any k ∈ Z by the Cauchy-Schwarz inequality. Let

Θr
t , Ψq

t (B)Φ
p
t (B). Similarly, by multiplying Xt−k, k ≥ 1,

and taking expectation to both sides of (36), we obtain

0 = E[XtXt−k] = θt,k E[X
2
t−k],

which implies that θt,k = 0 for all k ≥ 1. Then Θr
t =

Ψq
t (B)Φ

p
t (B) = 1. Therefore, Ψq

t (B) is the inverse operator

of Φp
t (B).

APPENDIX C

PROOF OF COROLLARY 2

Proof 1: We solve for the operator Ψq
t (B) by comput-

ing E[XtYt−j ] in two ways using the forward model (7)

and the backward model (3), respectively. Using model (7)

we have E[XtYt−j ] = φ(t)σ2
X1j=0, while model (3) leads

to E[XtYt−j ] = ψt,j

(
φ2(t− j)σ2

X + σ2
N

)
. Thus we obtain

ψt,0 = φ(t)/(φ2(t) + σ2
N/σ

2
X) and ψt,j = 0 for j ≥ 1, which

gives the coefficient of Yt in (8).

Then, by substituting (7) into (8), we obtain

Ñt =
σ2
N/σ

2
X

φ2(t) + σ2
N/σ

2
X

Xt −
φ(t)

φ2(t) + σ2
N/σ

2
X

Nt,
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which shows that {Ñt} is a sequence of independent random

variables. The rest is followed by computing the variance of

{Ñt} and write Ñt =

√
Var(Ñt)Wt, where {Wt} is an i.i.d.

process with σ2
W = 1.

APPENDIX D

PROOF OF PROPOSITION 1

Proof: By the monotone convergence theorem and the

finiteness of
∑∞

j=0 |ψt,j | and supt E[|Xt|], we have

E

[ ∞∑

j=0

|ψt,j ||Xt−j|
]
= lim

n→∞
E

[ n∑

j=0

|ψt,j ||Xt−j |
]

≤ lim
n→∞

( n∑

j=0

|ψt,j |
)
sup
t

E[|Xt|] <∞,

which shows that
∑∞

j=0 |ψt,j||Xt−j | is finite with probability

one. If supt E[|Xt|2] <∞ and n > m > 0, then

E

[∣∣∣∣
∑

m<j≤n

ψt,jXt−j

∣∣∣∣
2]

=
∑

m<j≤n

∑

m<k≤n

ψt,jψ̄t,k E[Xt−jX̄t−k]

≤
( ∑

m<j≤n

|ψt,j |
)2

sup
t

E[|Xt|2]→ 0,

as n,m → ∞. Thus, by Cauchy criterion, the series∑∞
j=0 ψt,jXt−j converges in mean square. Finally, let S

denote the mean square limit and by Fatou’s lemma,

E[|S −Ψ∞
t (B)Xt|2] = E

[
lim inf
n→∞

∣∣∣∣S −
n∑

j=0

ψt,jXt−j

∣∣∣∣
2]

≤ lim inf
n→∞

E

[∣∣∣∣S −
n∑

j=0

ψt,jXt−j

∣∣∣∣
2]

= 0,

which shows that the mean square limit S and Ψ∞
t (B)Xt are

equal with probability one.

APPENDIX E

EQUIVALENT DEFINITIONS

To show the equivalence of the two definitions, it suffices

to prove the following direction since the other direction is

trivial.

Proposition 3: For two operators Φp
t (B) and Ψq

t (B), with

p, q ∈ Z̄≥0, if

Φp
t (z) = Ψq

t (z) (37)

holds for z in some open set E ⊆ C that contains 0, then

Φp
t (B) = Ψq

t (B).

Proof: We prove that φt,j = ψt,j for all j ≥ 0 by

induction. Let z = 0 in (37), we obtain φt,0 = ψt,0 and∑∞
k=1 φt,kz

k =
∑∞

k=1 ψt,kz
k. Assume that φt,k = ψt,k for

k ≤ j. Then, for any z ∈ E, we have
∑∞

k=j+1(φt,k − ψt,k)z
k

= zj+1
∞∑

k=0

(φt,k+j+1 − ψt,k+j+1)z
k = 0.

It follows that, we have
∑∞

k=0(φt,k+j+1 − ψt,k+j+1)z
k = 0

for any z ∈ E \ 0. Finally, taking limz→0 on both sides of

the last equality yields φt,j+1 = ψt,j+1. Therefore, we have

proved that φt,j = ψt,j for all j ≥ 0 as claimed.

APPENDIX F

TECHNICAL LEMMAS

Lemma 4: For a Gaussian process {Yt} and a lag operator

Φp
t (B), p ∈ Z̄≥0, we have that {Yt} is independent of

{Φp
t (B)Yt} only if the covariance function of {Φp

t (B)Yt} is

zero.

Proof: The claim is trivial when Φp
t (B) = 0. Suppose

that {Yt} and {Φp
t (B)Yt} are independent, which implies that

Cov(Yt1 ,Φ
p
t2(B)Yt2 ) = Φp

t2(B)γY Y (t1, t2) = 0. (38)

By applying Φp
t1(B) to (38), we have that

Φp
t1(B)Φ

p
t2 (B)γY Y (t1, t2) = 0,

where the left-hand side is simply the covariance function of

{Φp
t (B)Yt}.
The following technical lemma contains a list of basic

properties of matrix norms (see proofs in [45]).

Lemma 5: For A ∈ Cn×n and x ∈ Cn×1, we have

(1) ||Ax||p ≤ ||A||p||x||p.

(2) ||A1A2 . . . Ak||p ≤ ||A1||p||A2||p . . . ||Ak||p, where

A1, A2, . . . , Ak ∈ Cn×n.

(3) For any two matrix norms, there exists a constant 0 <
Cαβ < ∞ such that ||A||α ≤ Cαβ ||A||β for any matrix

A ∈ Cn×n.

(4) For any δ > 0, there exists a matrix norm || · ||∗ such that

0 ≤ ||A||∗ − ρ(A) ≤ δ.

The last two lemmas focus on a particular form of matrix

called the companion matrix [46]. For a product of companion

matrices, the following lemma provides a condition for its

spectral radius to be bounded by an exponentially decreasing

sequence.

Lemma 6 ( [46]): Let Ai ∈ Rn×n, 1 ≤ i ≤ k, be companion

matrices of the form

Ai =




0
...

0

In−1

−ai,n −ai,n−1 . . . −ai,1


 , (39)

where In denotes the n × n identity matrix. If ai,0 , 1 >
ai,1 > . . . > ai,n−1 > ai,n ≥ 0 for each i, then there exists

ε = max
1≤i≤k,1≤j≤n

ai,j
ai,j−1

< 1

such that ρ(AkAk−1 . . . A1) ≤ εk < 1.

Finally, we establish the following lemma on a product of

companion matrices inspired by [47].

Lemma 7: Let Ai ∈ Rn×n, 1 ≤ i ≤ n, be companion

matrices of the form in (39). If

0 <

n∑

j=1

|ai,j | < 1 (40)
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for 1 ≤ i ≤ n, then there exists some 0 < ε < 1 such that

||AnAn−1 . . . A1||∞ ≤ ε. Moreover, for companion matrices

Ai with 1 ≤ i ≤ Nn and N ≥ 1, if (40) hold for 1 ≤ i ≤ Nn,

then

||ANnANn−1 . . . A1||∞ ≤ εN

for some 0 < ε < 1.

Proof: Let Ti , AiAi−1 . . . A1, 1 ≤ i ≤ n, and let

t
(i)
j , 1 ≤ j ≤ n, denote the jth row of Ti. We first claim that

||t(i)j ||1
{

= 1, 1 ≤ j ≤ n− i,
< 1, n− i+ 1 ≤ j ≤ n, (41)

for 1 ≤ i ≤ n− 1, and

||t(n)j ||1 < 1, 1 ≤ j ≤ n, (42)

which implies that ||Tn||∞ ≤ ε < 1 for some 0 < ε < 1.

Now, we prove this claim by induction. For i = 1, the

statement follows directly from the assumption that 0 <∑n
j=1 |a1,j| < 1. For any 1 ≤ i ≤ n − 1, if (41) holds,

then following from the structure of Ai in (39), we obtain

||t(i+1)
j ||1 =

{
1, 1 ≤ j ≤ n− i− 1,

||t(i)j+1||1 < 1, n− i ≤ j ≤ n− 1,

and

||t(i+1)
n ||1 ≤

n∑

k=1

|ai+1,k|||t(i)n−k+1||1
(a)

≤
n∑

k=1

|ai+1,k| < 1,

where (a) is due to ||t(i)n−k+1||1 ≤ 1 from (41) and (42). Thus,

we have proved the first part of the lemma by induction.

For the second part, by Lemma 5.(3) combined with the

first part, we find that

||ANnANn−1 . . . A1||∞

≤
N∏

k=1

||AknAkn−1 . . . Akn−n+1||∞ ≤ εN

for some 0 < ε < 1, as claimed.

APPENDIX G

PROOF OF LEMMA 1

According to [24, equation (4.10)]), φt,0 6= 0 is a necessary

condition for Φp
t (B) to be invertible and the coefficients of the

inverse operator Θr
t (B) can be solved iteratively by

θt,i =





1/φt,0, i = 0,

−(1/φt−i,0) ·
i∑

j=1

θt,i−jφt−i+j,j , 1 ≤ i ≤ p− 1,

−(1/φt−i,0) ·
p∑

j=1

θt,i−jφt−i+j,j , i ≥ p. (43)

For a fixed t, we take {θt,i, 0 ≤ i ≤ p−1} as the initial value,

then (43) is a homogeneous linear difference equation, which

can be represented in a multi-dimensional form

xt,n =

{
At,nxt,n−1, n ≥ 1,

xt,0, n = 0,
(44)

where xt,n = [θt,n, . . . , θt,n+p−1]
T and

At,n =




0
...

0

Ip−1

−at,n,p −at,n,p−1 . . . −at,n,1


 (45)

with at,n,j , (φt−(n+p−1)+j,j)/(φt−(n+p−1),0) for 1 ≤ j ≤
p. By the Leibniz formula of determinant [45], we obtain

|At,n| = (−1)p+1at,n,p.

Given the initial value xt,0, the solution of equation (44) is

given by

xt,n = At,nAt,n−1 . . . At,1xt,0 , Tt,nxt,0,

where xt,0 is constantly non-zero due to φt,0 6= 0.

Proof of Lemma 1: (I) We start with the sufficient condi-

tions. Recall the condition (14) |φt,0| >
∑p

j=1 |φt+j,j | > 0 in

Lemma 1. Note that φt,0 6= 0, for all t, follows directly from

this sufficient condition. We will show that if (14) holds, then

an inverse operator Θr
t (B) exists. It suffices to prove that the

coefficients of Θr
t (B) are absolutely summable. This is trivial

when r is finite. The remainder of the proof is thus devoted

to the case when r =∞.

First, since condition (14) implies that
∑p

j=1 |at,n,j| < 1,

for matrix At,n in (45), we have ||At,n||∞ ≤ 1 for all

n ≥ 1. It follows that ||Tt,n||∞ = ||At,nTt,n−1||∞ ≤
||At,n||∞||Tt,n−1||∞ ≤ ||Tt,n−1||∞, where the first inequality

is from Lemma 5.(1). We thus observe that ||Tt,n||∞, for

n ≥ 1, is a non-increasing sequence in n.

Note that the sequence of companion matrices At,n satisfies

condition (40) in Lemma 7, thus there exists 0 < ε < 1
such that ||Tt,jp+k||∞ ≤ ||Tt,jp||∞ ≤ εj , for any j ≥ 0 and

1 ≤ k ≤ p.

Now we show that the coefficients of Θ∞
t (B) are absolutely

summable. Note that
∑∞

i=0 |θt,i| ≤ ||xt,0||1+ 1
p

∑∞
i=1 ||xt,i||1

due to the additional non-negative terms. We can upper bound
1
p

∑∞
i=1 ||xt,i||1 as follows,

1

p

∞∑

i=1

||xt,i||1 ≤
||xt,0||1

p

∞∑

i=1

||Tt,i||1 (46)

≤ ||xt,0||1C
p

∞∑

i=1

||Tt,i||∞ (47)

=
||xt,0||1C

p

∞∑

j=0

p∑

k=1

||Tt,jp+k||∞

≤ ||xt,0||1C
∞∑

j=0

εj <∞,

where (46) and (47) use Lemma 5.(1) and Lemma 5.(3),

respectively. Therefore we have
∑∞

i=0 |θt,i| < ∞. This com-

pletes the proof of the sufficient condition (14) in Lemma 1.

Recall the second sufficient condition in (15) φt,0 >
φt+1,1 > . . . > φt+p,p ≥ 0. Note again that φt,0 6= 0, for

all t, follows directly from this sufficient condition. Similar

to the first sufficient condition, we focus on the case when
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r = ∞, and show that if (15) holds, then the coefficients of

Θ∞
t (B) are absolutely summable. Since (15) implies that

at,n,0 = 1 > at,n,1 > . . . > at,n,p−1 > at,n,p ≥ 0,

it follows from Lemma 6 that there exists 0 < ε < 1 such that

ρ(Tt,n) ≤ εn. Then by Lemma 5.(4), there exists a matrix

norm || · ||(n) such that ||Tt,n||(n) ≤ ρ(Tt,n) + 2−n for each

n ≥ 1. Hence there exists 0 < Cn < ∞ and 0 < ε < 1 such

that

||Tt,n||1 ≤ Cn||Tt,n||(n)
≤ Cn

(
ρ(Tt,n) + 2−n

)
≤ Cn

(
εn + 2−n

)
,

where the first inequality follows from Lemma 5.(3). Using

equation (46) again, we find that the coefficients of Ψ∞
t (B)

are absolute summable since

||xt,0||1
p

∞∑

i=1

||Tt,i||1 ≤
||xt,0||1

p

∞∑

i=1

Ci(ε
i + 2−i)

(d)

≤ ||xt,0||1C
p

∞∑

i=1

(εi + 2−i) <∞,

where (d) is due to 0 < C , maxi≥1 Ci < ∞. Putting

together the pieces yields the two sufficient conditions.

(II) Now we move on to the necessary condition. Assume

that Θq
t (B) exists for finite q, then φt,0 6= 0 [24]. Recall xt,n =

[θt,n, . . . , θt,n+p−1]
T and note that we have xt,q+1 = 0 due

to the finiteness of q. This leads to xt,q+1 = Tt,q+1xt,0 = 0,

where the only solution of this homogeneous linear system

is zero if Tt,q+1 is nonsingular [45]. However, since xt,0 is

non-zero, we must have that Tt,q+1 is singular, i.e.,

|Tt,q+1| =
q+1∏

i=1

|At,i| = 0.

This implies that
∏q

i=0 φt−i,p = 0. Combined with φt,0 6= 0,

we have shown the necessary condition (16) in Lemma 1, as

claimed.
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