
1

Distributed Optimisation with Linear Equality and Inequality
Constraints using PDMM

Richard Heusdens Senior Member and Guoqiang Zhang Member

Abstract—In this paper, we consider the problem of distributed
optimisation of a separable convex cost function over a graph, where
every edge and node in the graph could carry both linear equality and/or
inequality constraints. We show how to modify the primal-dual method of
multipliers (PDMM), originally designed for linear equality constraints,
such that it can handle inequality constraints as well. The proposed
algorithm does not need any slack variables, which is similar to the recent
work [1] which extends the alternating direction method of multipliers
(ADMM) for addressing decomposable optimisation with linear equality
and inequality constraints. Using convex analysis, monotone operator
theory and fixed-point theory, we show how to derive the update equations
of the modified PDMM algorithm by applying Peaceman-Rachford
splitting to the monotonic inclusion related to the lifted dual problem.
To incorporate the inequality constraints, we impose a non-negativity
constraint on the associated dual variables. This additional constraint
results in the introduction of a reflection operator to model the data
exchange in the network, instead of a permutation operator as derived
for equality constraint PDMM. Convergence for both synchronous and
stochastic update schemes of PDMM are provided. The latter includes
asynchronous update schemes and update schemes with transmission
losses. Experiments show that PDMM converges notably faster than
extended ADMM of [1].

I. INTRODUCTION

In the last decade, distributed optimisation [2] has drawn increasing
attention due to the demand for either distributed signal processing
or massive data processing over a pear-to-pear (P2P) network of
ubiquitous devices. Its basic principle is to first formulate an optimi-
sation problem from the collected or manually allocated data in the
devices, and then performing information spreading and fusion across
the devices collaboratively and iteratively until reaching a global
solution of the optimisation problem. Examples include training a
machine learning model, target localisation and tracking, healthcare
monitoring, power grid management, and environmental sensing.
In general, the typical challenges faced by distributed optimisation
over a network, in particular ad-hoc networks, are the lack of
infrastructure, limited connectivity, scalability, data heterogeneity
across the network, data-privacy requirements, and heterogeneous
computational resources [3], [4].

Depending on the applications, various methods have been de-
veloped for addressing one or more challenges in the considered
network. For instance, the work [5], [6] proposed a pairwise gossip
method to allow for asynchronous message-exchange in the net-
work, while [7] describes a combination of gossip and geographic
routing. In [8], the authors proposed a broadcast-based distributed
consensus method to save communication energy. Alternatively, [9],
[10] describes a belief propagation/message passing approach and
[11], [12], [13] considers signal processing on graphs. The work
in [14] considered distributed optimisation over a directed graph. A
special class of distributed optimisation, called federated learning,
focuses on collaboratively training of a machine learning model over
a centralised network (i.e., a server-client topology) [15], [16].

R. Heusdens is with the Netherlands Defence Academy (NLDA), the
Netherlands, and with the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, Delft, the Netherlands
(email: r.heusdens@{mindef.nl,tudelft.nl}).

G. Zhang is with the University of Exeter, Exeter, United Kingdom (email:
g.z.zhang@exeter.ac.uk)

A method of particular interest to this work is to approach the
task of distributed signal processing via its connection with convex
optimisation since it has been shown that many classical signal
processing problems can be recast in an equivalent convex form [17].
Here we model the problem at hand as a convex optimisation problem
and solve the problem using standard solvers like dual ascent,
method of multipliers or ADMM [2] and PDMM [18], [19]. The
solvers ADMM and PDMM, although at first sight suggested to be
different due to their contrasting derivations, are closely related [19].
The derivation of PDMM, however, directly leads to a distributed
implementation where no direct collaboration is required between
nodes during the computation of the updates. For this reason we
will take the PDMM approach to derive update rules for distributed
optimisation with linear equality and inequality constraints.

PDMM was originally designed to solve the following separable
convex optimisation problem

minimise
∑
i∈V

fi(xi)

subject to Aijxi +Ajixj = bij , (i, j) ∈ E ,
(1)

in a synchronous setting, where the undirected graph G = (V, E)
represents a P2P network from practice. The recent work [20] shows
theoretically that PDMM can also be implemented asynchronously,
and that it is resilient to transmission losses. In [21], PDMM is
modified for federated learning over a centralised network, where it
is found that PDMM is closely related to the SCAFFOLD [16] and
FedSplit [22] algorithm. In addition, PDMM can be used for privacy-
preserving distributed optimisation where a certain amount of privacy
can be guaranteed by exploiting the fact that the (synchronous)
PDMM updates take place in a certain subspace so that the orthogonal
complement can be used to obfuscate the local (private) data, a
method referred to a subspace perturbation [23], [24], [25], [26].
Moreover, it has been shown in [27] that PDMM is robust against data
quantisation, thereby making it a communication efficient algorithm.

For the special case of consensus problems, where the constraints
in (1) are given by xi = xj for all (i, j) ∈ E , a large number of algo-
rithms have been proposed in the literature. Typical methods include
decentralized gradient descent (DGD) [28], exact first-order algorithm
(EXTRA) [29], distributed stochastic gradient tracking [30], and
push-sum distributed dual averaging (PS-DDA) [31]. One major
difference between PDMM and the above mentioned methods is
that PDMM can be derived straightforwardly by applying Peaceman-
Rachford splitting, a well-known technique for decomposable opti-
misation. Accordingly, the convergence analysis of PDMM can be
conveniently carried out by using the existing convergence theory of
Peaceman-Racheford splitting (see [32], [19] and the analysis in this
paper).

A. Related work

In recent years, a number of research works (e.g., [33], [34], [35])
have considered applying ADMM for distributed optimisation with
linear inequality constraints. The basic idea is to introduce slack
variables and to reformulate the inequality constraints into equality

ar
X

iv
:2

30
9.

12
89

7v
2

 [
cs

.D
C

]
 1

7
Fe

b
20

24

2

ones. The most recent work [1] is an exception and tackles the linear
inequality constraints differently. The authors of [1] avoid introducing
slack variables in extended ADMM to handle both equality and
inequality constraints via a prediction-correction updating strategy.
The prediction step in extended ADMM follows a similar update
structure as the one in conventional ADMM and the correction
step is newly introduced to ensure algorithmic convergence. In
this work, we revisit PDMM for dealing with both equality and
inequality constraints by applying Peaceman-Racheford splitting to
the monotonic inclusion related to the lifted dual problem. Similar
to [1], no slack variables are introduced in PDMM to avoid any
additional transmission or computation overhead between neighbours
in a P2P network. The main difference between extended ADMM and
PDMM is that no additional correction step is required in PDMM
to handle the inequality constraints, resulting in significant faster
convergence and lower computational complexity, as is demonstrated
in Section VII. The convergence of PDMM is essentially guaranteed
by the convergence theory of Peaceman-Racheford splitting.

Another related branch of work is distributed optimisation with
nonlinear inequality constraints. For instance, the work [36] proposed
an effective algorithm for minimising an objective function subject
to a set of nonlinear inequality constraints. The algorithm can be
implemented in a parallel manner if both the objective function and
the nonlinear constraints are properly decomposable. The authors of
[37] further extended the work of [36] by considering additional
equality constraints by combining three algorithms, where each one
is designed for a particular type of constraints.

B. Main contribution

In this work, we consider applying PDMM for distributed optimi-
sation with both linear equality and inequality constraints. To this
purpose, we make two main contributions. Firstly, to incorporate
the inequality constraints, we impose nonnegativity constraints on
the associated dual variables and then, inspired by [19], derive
closed-form update expressions for the dual variables via Peacheman-
Rachford splitting of the monotonic inclusion related to the lifted
dual problem. As mentioned earlier, no additional correction step is
needed in PDMM while extended ADMM in [1] must introduce an
additional correction step to guarantee convergence. Secondly, we
perform a convergence analysis for both synchronous and stochastic
PDMM. The latter is based on stochastic coordinate descent and
includes asynchronous update schemes and update schemes with
transmission losses. In addition, we give convergence conditions that
are less restrictive than the ones given in [19] and [20] for equality
constrained PDMM, where strong convexity and differentiability of
the objective function is assumed.

C. Organisation of the paper

The remainder of this paper is organized as follows. Section II
introduces appropriate nomenclature and reviews properties of mono-
tone operators and operator splitting techniques. Section III describes
the problem formulation while Section IV introduces a monotone
operator derivation of PDMM with inequality constraints and demon-
strates its relation with ADMM. In Section V we derive convergence
results of the proposed algorithm and in Section VI we consider a
stochastic updating scheme, which includes asynchronous PDMM
and PDMM with transmission losses as a special case. Finally,
Section VII describes experimental results obtained by computer
simulations to verify and substantiate the underlying claims of the
document and the final conclusions are drawn in Section VIII.

II. BACKGROUND

There exist many algorithms for iteratively minimising a convex
function. It is possible to derive and analyse many of these algorithms
in a unified manner, using the abstraction of monotone operators. In
this section we will review some properties of monotone operators
and operator splitting techniques that will be used throughout this
paper. For a primer on monotone operator methods, the reader is
referred to the self-contained introduction and tutorial [38]. For a
detailed discussion on the topic the reader is referred to [32].

A. Notations and functional properties

In this work we will denote by N the set of nonnegative integers,
by R the set of real numbers, by Rn the set of real column vectors of
length n and by Rm×n the set of m by n real matrices. The symbols
≻,⪰,≺ and ⪯ denote generalised inequality; between vectors it
represents component wise inequality. We will denote by ∥x∥ the
standard Euclidean norm of x ∈ Rn induced by the inner product
xTx. When x is updated iteratively, we write x(k) to indicate the
update of x at the kth iteration. When we consider x(k) as a
realisation of a random variable, the corresponding random variable
will be denoted by X(k) (corresponding capital). The expectation
operator is denoted by E. Let X ,Y ⊆ Rn. A set valued operator
T : X → 2Y is defined by its graph gra(T) = {(x, y) ∈
X × Y | y = T (x)}, where 2Y is the power set of Y . We define
dom(T) = {x ∈ X |T (x) ̸= ∅}. If T (x) is a singleton or empty for
any x, then T is a function or single-valued, usually denoted by f .
The notion of the inverse of T , denoted by T−1, is also defined
through its graph, gra(T−1) = {(y, x) ∈ Y × X | y = T (x)}.
We denote by JcT = (I + cT)−1, c > 0, the resolvent of an
operator T and CcT = 2JcT − I the associated Cayley operator,
sometimes referred to as the reflected resolvent. The composition
of two operators T1 : X → 2Y and T2 : Y → 2Z is given by
T2 ◦ T1 : X → 2Z . The set of fixed points of T is denoted by
fix(T) = {x ∈ X |T (x) = x}.

Functional transforms make it possible to investigate problems
from a different perspective and sometimes simplify the analysis.
In convex analysis, a suitable transform is the Legendre transform,
which maps a function to its Fenchel conjugate. The Fenchel con-
jugate of a function f is defined as f∗(y) = supx

(
yTx− f(x)

)
.

The function f and its conjugate f∗ are related by the Fenchel-
Young inequality f(x) + f∗(y) ≥ yTx [32, Proposition 13.15].
Furthermore, the set of all closed, proper, and convex (CCP) functions
f : Rn → R ∪ {+∞} is denoted by Γ0(Rn) and we denote by ∂f
the subdifferential of f . If f ∈ Γ0(Rn), then f = f∗∗. Moreover,
we have y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y) ⇔ f(x) + f∗(y) = yTx.
If f ∈ Γ0(Rn), the proximity operator proxcf is defined as
proxcf (x) = argminu∈Rn

(
f(u) + 1

2c
∥x− u∥2

)
and is related to

the resolvent of ∂f by proxcf (x) = Jc∂f (x) [32, Proposition 16.44].
If IC is the indicator function on a closed convex subset C of Rn,
then proxIC

= ΠC , the projection operator onto C.
We denote an undirected graph as G = (V, E), where V is

the set of vertices representing the nodes in the network and
E = {(i, j) | i, j ∈ V} is the set of undirected edges in the graph
representing the communication links in the network. We use Ed
to denote the set of all directed edges (ordered pairs). Therefore,
|Ed| = 2|E|. We use Ni to denote the set of all neighbouring nodes of
node i, i.e., Ni = {j | (i, j) ∈ E}. Hence, given a graph G = (V, E),
only neighbouring nodes are allowed to communicate with each other
directly.

B. Monotone operators and operator splitting

The theory of monotone set-valued operators plays a central role
in deriving iterative convex optimisation algorithms. A prominent

3

example of a monotone operator is the subdifferential of a convex
function, and the problem at hand is expressed as finding a zero of a
monotone operator (monotone inclusion problem) which, in turn, is
transformed into finding a fixed point of its associated resolvent. The
fixed point is then found by the fixed point (Banach-Picard) iteration,
yielding an algorithm for the original problem. In this section we
give background information about monotone operators and operator
splitting to support the remainder of this paper.

Definition 1 (Monotone operator). Let T : Rn → 2R
n

. Then T is
monotone iff for all x, y ∈ dom(T)

(T (y)− T (x))T (y − x) ≥ 0.

The operator is said to be strictly monotone iff strict inequality holds.
The operator is said to be uniformly monotone with modulus ϕ :
R+ → [0,+∞) if ϕ is increasing, vanishes only at 0, and

(T (y)− T (x))T (y − x) ≥ ϕ(∥y − x∥).

The operator is said to be strongly monotone with constant m > 0,
or m-strongly monotone, if T −mI is monotone, i.e.,

(T (y)− T (x))T (y − x) ≥ m∥y − x∥2.

The operator is said to be maximal monotone iff for every (x, u) ∈
Rn × Rn,

(x, u) ∈ gra(T) ⇔
(
∀(y, v) ∈ gra(T)

)
(v − u)T (y − x) ≥ 0.

In other words, there exists no monotone operator S : Rn → 2R
n

such that gra(S) properly contains gra(T).

It is clear that strong monotonicity implies uniform monotonicity,
which itself implies strict monotonicity.

Definition 2 (Nonexpansiveness). Let T : Rn → 2R
n

. Then T is
nonexpansive iff for all x, y ∈ dom(T)

∥T (y)− T (x)∥ ≤ ∥y − x∥.

T is called strictly nonexpansive, or contractive, if strict inequality
holds. The operator is firmly nonexpansive iff for all x, y ∈ dom(T)

∥T (y)− T (x)∥2 ≤ (T (y)− T (x))T (y − x).

Note that when T is (firmly) nonexpansive, it is single valued and
continuous.

Definition 3 (Averaged nonexpansive operator). Let T : dom(T)→
Rn be nonexpansive and let α ∈ (0, 1). Then T is averaged with
constant α, or α-averaged, if there exists a nonexpansive operator
S : dom(T)→ Rn such that T = (1− α)I + αS.

It can be shown that if T is maximally monotone, then the resolvent
JcT is firmly nonexpansive [32, Proposition 23.8] and the Cayley
operator CcT = 2JcT − I is nonexpansive [32, Corollary 23.11 (ii)].
We have

0 ∈ T (x)⇔ x ∈ (I+cT)(x)⇔ (I+cT)−1(x) ∋ x⇔ x = JcT (x),

where the last relation holds since JcT is single valued. Therefore,
we conclude that a monotone inclusion problem is equivalent to
finding a fixed point of its associated resolvent. Moreover, since
JcT = 1

2
(CcT + I) is 1/2-averaged, we have, by the Krasnosel’skii-

Mann algorithm, that the sequence generated by the Banach-Picard
iteration x(k+1) = JcT (x

(k)) is Fejér monotone [32, Definition
5.1] and converges weakly1 to a fixed point x∗ of JcT for any
x(0) ∈ dom(JcT) [32, Theorem 5.15], and thus to a zero of T .

1In the work here we only consider finite-dimensional Hilbert spaces so
that weak convergence does imply strong convergence.

A prime example of this procedure is the case where T is the
subdifferential of a convex function. In that case the Banach-Picard
iteration x(k+1) = Jc∂f (x

(k)) results in the well known proximal
point method [32, Theorem 23.41].

For many maximal monotone operators T , the inversion operation
needed to evaluate the resolvent may be prohibitively difficult. A
more widely applicable alternative is to devise an operator splitting
algorithm in which T is decomposed as T = T1 + T2, and the
operators T1 and T2 are employed in separate steps. Examples of pop-
ular splitting algorithms are the forward-backward method, Tseng’s
method, and Peaceman-Rachford and Douglas-Rachford splitting,
where the first two methods require T1 (or T2) to be single valued
(for example the gradient of a differentiable convex function). The
Peaceman-Rachford splitting algorithm is given by the iterates [32,
Proposition 26.13]

x(k) = JcT1(z
(k),

v(k) = JcT2(2x
(k) − z(k)), (2)

z(k+1) = z(k) − 2(v(k) − x(k)).

When T1 is uniformly monotone, x(k) converges strongly to x∗

(notation x(k) → x∗), where x∗ is the solution to the monotonic
inclusion problem 0 ∈ T1(x) + T2(x). The iterates (2) can be
compactly expressed using Cayley operators as

x(k) = JcT1(z
(k)),

z(k+1) = CcT2 ◦ CcT1(z
(k)).

If either CcT1 or CcT2 is contractive, then CcT2 ◦CcT1 is contractive
and the Peacman-Rachford iterates converge geometrically. Note
that since CcT2 ◦ CcT1 is nonexpansive, without the additional
requirement of T1 being uniformly monotone, there is no guarantee
that the iterates will converge. In order to ensure convergence without
imposing conditions like uniform monotonicity, we can average the
nonexpansive operator. In the case of 1/2-averaging, the z-update is
given by

z(k+1) =
1

2
(I + CcT2 ◦ CcT1) (z

(k)),

which is called the Douglas-Rachford splitting algorithm. This
method was first presented in [39], [40] and converges under more or
less the most general possible conditions. A well known instance of
the Douglas-Rachford splitting algorithm is the alternating direction
method of multipliers (ADMM) [41], [42], [43], [44] or the split
Bregman method [45].

III. PROBLEM SETTING

To simplify the discussion, we will first consider the minimisation
of a separable convex cost function subject to a set of inequality
constraints of the form Ax ⪯ b, and later generalise this to include
equality constraints as well. That is, we first consider the following
problem

minimise
∑
i∈V

fi(xi)

subject to Aijxi +Ajixj ⪯ bij , (i, j) ∈ E ,
(3)

where fi : Rni 7→ R ∪ {∞} are (CCP) functions, Aij ∈ Rmij×ni

and bij ∈ Rmij . We can compactly express (3) as

minimise f(x)

subject to Ax ⪯ b,
(4)

where x = (xT
1 , . . . , x

T
|V|)

T ∈ Rn, f(x) =
∑

i∈V fi(xi), A ∈
Rm×n, b ∈ Rm with n =

∑
i ni and m =

∑
(i,j) mij . More

specifically, we have A = (a1, . . . , a|V|), ai ∈ Rm×ni , where

4

ai(l) = Aij and b(l) = bij if and only if el = (i, j) ∈ E . Assuming
the graph is connected and m ≥ n, A has full column rank. With
(4), the dual problem is given by

minimise f∗(−ATλ) + bTλ,

subject to λ ⪰ 0,
(5)

with optimisation variable λ ∈ Rm, where λ = (λij)(i,j)∈E and
λij ∈ Rmij denotes the Lagrange multipliers associated to the
constraints on edge (i, j) ∈ E . At this point we would like to
highlight that the only difference between inequality and equality
constraint optimisation is that with inequality constraint optimisation
we have the additional requirement that λ ⪰ 0. In the case the
constraints are of the form Ax = b, the dual problem is simply
an unconstrained optimisation problem.

IV. OPERATER SPLITTING OF THE LIFTED DUAL FUNCTION

Let A = (a1, a2, . . . , a|V|), where ai ∈ Rm×ni . Since

f(x) =
∑
i∈V

fi(xi) ⇔ f∗(y) =
∑
i∈V

f∗
i (yi),

that is, the conjugate function of a separable CCP function is itself
separable and CCP, we have

f∗(−ATλ) =
∑
i∈V

f∗
i (−aT

i λ) =
∑
i∈V

f∗
i

(
−

∑
j∈Ni

AT
ijλij

)
. (6)

By inspection of (6) we conclude that every λij , associated to edge
(i, j), is used by two conjugate functions: f∗

i and f∗
j . As a conse-

quence, all conjugate functions depend on each other. We therefore
introduce auxiliary variables to decouple the node dependencies. That
is, we introduce for each edge (i, j) ∈ E two auxiliary node variables
µi|j and µj|i, one for each node i and j, respectively, and require
that at convergence µi|j = µj|i = λij . Collecting all auxiliary
variables µi|j and µj|i into one vector µ ∈ R2m and introducing
C = (c1, c2, . . . , c|V|), ci ∈ R2m×ni , where ci(l) = Aij and
µ(l) = µi|j if and only if el = (i, j) ∈ E and i < j, and
ci(l+m) = Aij and µ(l+m) = µi|j if and only if el = (i, j) ∈ E
and i > j, we can reformulate the dual problem as

minimise f∗(−CTµ) + dTµ

subject to µ = Pµ,

µ ⪰ 0,

(7)

where C ∈ R2m×n, d = 1
2
(bT bT)T ∈ R2m and P ∈ R2m×2m is a

symmetric permutation matrix exchanging the first m with the last m
rows. That is, if η = Pµ, then ηi|j = µj|i. We will refer to (7) as the
lifted dual problem of (4). Let M = {µ ∈ R2m |µ = Pµ, µ ⪰ 0}.
Hence M is closed and convex. With this, we can reformulate the
dual problem as

minimise f∗(−CTµ) + dTµ+ IM (µ), (8)

where IM denotes the indicator function on M . Again, by comparing
inequality vs. equality constraint optimisation, the difference is in the
definition of the set M ; for equality constraint optimisation the set
M reduces to M = {µ ∈ R2m |µ = Pµ}. The optimality condition
for problem (8) is given by the inclusion problem

0 ∈ −C∂f∗(−CTµ) + d+ ∂IM (µ). (9)

In order to apply Peaceman-Rachford splitting to (9), we define
T1(µ) = −C∂f∗(−CTµ) + d and T2(µ) = ∂IM (µ). To show that
both operators are maximally monotone, we have

(T1(µ)− T1(η))
T(µ− η)

= −
(
∂f∗(−CTµ)− ∂f∗(−CT η)

)T

CT (µ− η) ≥ 0, (10)

since ∂f∗ is monotone. Similarly,

(T2(µ)− T2(η))
T(µ− η) = (∂IM (µ)− ∂IM (η))T (µ− η) ≥ 0,

and we conclude that both T1 and T2 are monotone. Maximality
follows directly from the maximality of the subdifferential [32,
Theorem 20.25]. As a consequence, Peaceman-Rachford splitting to
(9) yields the iterates

µ(k) = JcT1(z
(k)), (11a)

z(k+1) = CcT2 ◦ CcT1(z
(k)). (11b)

We will first focus on the Cayley operator CcT2 in (11), which
carries the inequality constraints encapsulated by M . To do so, we
introduce an intermediate vector y(k), such that

y(k) = CcT1(z
(k)),

z(k+1) = CcT2(y
(k)).

Since M is a closed convex subset of Rn, we have JcT2(y) =
proxcIM

(y) = ΠM (y), the projection of y onto M . As a conse-
quence, CcT2 is given by CcT2 = 2ΠM−I , the reflection with respect
to M , which we will denote by RM . We can explicitly compute
ΠM (y), and thus RM (y).

Lemma 1.

JcT2(y) =

[
1

2
(I + P)y

]+

,

where [·]+ denotes the orthogonal projection onto the non-negative
orthant.

Proof: We have

JcT2(y) = arg min
u∈M

∥u− y∥2. (12)

The corresponding Lagrangian is given by L(u, η, ξ) = ∥u− y∥2 +
ηT (Pu − u) − ξTu. Let ũ denote the optimal point of (12) and
let ξ̃ and η̃ denote the optimal dual variables. With this, the KKT
conditions are given by

1. ũ = Pũ, ũ ⪰ 0, (13a)

2. ξ̃ ⪰ 0, (13b)

3. ξ̃ ⊙ ũ = 0, (13c)

4. 2(ũ− y) + (P − I)T η̃ − ξ̃ = 0, (13d)

where ⊙ denotes component-wise multiplication. Combining (13a)
and (13d) we obtain ũ = 1

2
(I + P)y + 1

4
(I + P)ξ̃ so that for ℓ =

1, . . . ,m : ũℓ = ũℓ+m = 1
2
(yℓ + yℓ+m) + 1

4
(ξ̃ℓ + ξ̃ℓ+m). Hence, if

1
2
(yℓ + yℓ+m) > 0, then ũℓ > 0 by (13b) and thus ξ̃ℓ = 0 by (13c).

If 1
2
(yℓ+yℓ+m) < 0, then ξ̃ℓ > 0 by (13a) and thus ũℓ = 0 by (13c).

If 1
2
(yℓ + yℓ+m) = 0, then ũℓ ≥ 0 by (13b). However, if ũℓ > 0,

then ξ̃ℓ = 0 by (13c), and thus ũℓ = 0, which is a contradiction.
Hence ũℓ = 0. This completes the proof.

Recall that CcT2 = 2ΠM − I = RM . To get some insight in
how to implement RM , note that RM (y) = [(I + P)y]+ − y where
the orthogonal projection onto the non-negative orthant is due to
the non-negativity constraint of λ (and thus of µ). Without this
constraint, we have JcT2(y) = 1

2
(I + P) and thus CcT2 = P ,

which is simply a permutation operator. This permutation operator
represents the actual data exchange in the network. That is, we
have for all (i, j) ∈ E : zi|j ← yj|i, zj|i ← yi|j . In the case of
inequality constraints, however, we only exchange data whenever2

2In the case yi|j and yj|i are vector-valued, we have to do the thresholding
component wise.

5

<latexit sha1_base64="NUFEU2mnQcT2Om8eLhk5aSRIVOQ=">AAADUHicbZJNb9NAEIa3Dh/FfKVwAwlFRJE4WJYdUqfHihzggigRaat2o2htj91VvWvLu6FYq5X4NVzht3Djn3CDjRNLJGZka0fzPnrHs56wyKiQnvdrz+rcun3n7v49+/6Dh48edw+enIp8WUYwi/IsL89DIiCjHGaSygzOixIICzM4C68nK/3sM5SC5vyTrAqYM5JymtCISFNadJ9hnlMeA5c2vrQxI/IqTJSvbTxfdPue69XRayf+JumjTZwsDqwXOM6jJTNuUUaEUKSUNMpA2wMbLwUUJLomKSjCRJJzKRyTrDrqLbUearsEhUhoWtuUwOEmyhkjPFY4IYxmVQwJWWZSKyySJrexAHMbPJVXCkv4Im9obDop33OHEaut/jUysL7052p9A6Hq+1pvE1OtakxN9a500UgXLWnSSJOWxKoS4nVTYLieWr2vpqa27j6wBz0zjfmxvVoUq29eF7bgMg21cgPHczy9C7zJlrAhPMcdjRx3PGpBb0sA3viMxo4bmNc/anEfSsLTxs49em0MA6fn+uP/OVYNd+jUz2oes1H+7v60k9Oh6wfu4cdh/zjY7NY+eo5eolfIR2N0jN6hEzRDEfqKvqHv6If10/pt/ensrVFrc6KnaCs69l9wtxBw</latexit>

1

<latexit sha1_base64="EQ/XA6TjqrKH7TgY7XcJWCHWzBw=">AAADVXicbVJdb9MwFPXaMUb4WAePSBBRVRpSiJLStXtBmugDvEyMim7T5qpykpvMWuxEscsIVh75NbzCb0H8GCTctJFIw5UtHd1zfK6vfb00pkI6zu+tVnv7zs7d3XvG/QcPH+119h+fiWSR+TD1kzjJLjwiIKYcppLKGC7SDAjzYjj3bsZL/vwzZIIm/JPMU5gxEnEaUp9InZp3nmOeUB4Alwa+Mr6ab8zJ/OQgf6nBq9zAs3mn69hOGWYTuGvQRes4ne+3nuEg8RdMW/oxEUKRTFI/hsLoGXghICX+DYlAESbChEthacCIvC5qbNlZPQWpCGlU2mTA4dZPGCM8UDgkjMZ5ACFZxLJQWIQVNrAA/SQ8ktcKS/gib2mgKynXsfs+K63+NdLi4sqdKby8j+eprlsUdcWkUKVMTYpN6rKiLhvUuKLGDYrlGQSrosBw2bU6ySc6t6reM3qm7kb/rlmSYnnnVaImziKvUPbQciyn2BS8jRewVjiWPRhY9mjQEL3LAHjlMxhZ9lBv96ih+5ARHlV29tFrbTi0TNsd/c8xr3SHVrmW/eiJcjfnpwnO+rY7tA8/9rvHw/Vs7aKn6AU6QC4aoWP0Hp2iKfLRN/Qd/UA/W79af9rb7Z2VtLW1PvME1aK99xfzoQ+O</latexit>

z = RM (y) = �y

<latexit sha1_base64="NnQYH9J1Qgs8ScDpuBFsItcRGNI=">AAADXnicbZLBbtNAEIa3CZRiKE3hgoSELKJIPViWHdKk6qkiB7ggStS0VbshWttj1+ruOng3LdZqX4Gn4QrvwY1HYePEEokZ2dJo/m//8awnmNFUSM/7vdVoPni4/WjnsfXk6e6zvdb+83ORzfMQxmFGs/wyIAJoymEsU0nhcpYDYQGFi+B2uNAv7iAXacbPZDGDCSMJT+M0JNKUpq0DzLOUR8Clha+t4tguvpxhRuRNECtf2xam8NX2LDyZttqe65Vh1xN/lbTRKk6n+43XOMrCOTPeISVCKJLLNKSgrY6F5wJmJLwlCSjCRJxxKRyTLDrrNbUccb0EMxGnSWmTA4f7MGOM8EjhmLCUFhHEZE6lVljEVW5hAeZueCJvFJbwTd6nkemkfM/thqy0+tfIwPran6jlTQSq7Wu9Toy0KjE10pvSVSVd1aRhJQ1rEityiJZNgeFyavWxGJnasnvH6thmGvOb7VIUi29eFtbgPAm0cvuO53h6E3hH57AiPMft9Rx30KtB73MAXvn0Bo7bN69/VOM+5YQnlZ179NYY9h3b9Qf/cywq7tApn8U8ZqP8zf2pJ+dd1++7h5+77ZP+ard20Cv0Bh0gHw3QCfqATtEYheg7+oF+ol+NP83t5m5zb4k2tlZnXqC1aL78C2KDExQ=</latexit>

y : yT 1 0

<latexit sha1_base64="VbnSdvBQXP40zN87BFqZB9LKlOE=">AAADWnicbZLPbtNAEMa3CX9aF2hKuSEhixCJg2XZIU2qHlBFDnBBlKhpq3ZDtLbH7qredeTdUKzVvgBPwxXeBImHYePEEokZ2dJovt9+41lPMEupkJ73e6vRvHf/wcPtHWv30eMne639p+cim+chjMMszfLLgAhIKYexpDKFy1kOhAUpXAS3w4V+8RVyQTN+JosZTBhJOI1pSKQpTVuvMM8oj4BLC19bxbFdfDnDjMibIFa+tt/anoUn01bbc70y7Hrir5I2WsXpdL/xAkdZOGfGN0yJEIrkkoYpaKtj4bmAGQlvSQKKMBFnXArHJIuuek0tx1svwUzENCltcuBwF2aMER4pHBNG0yKCmMxTqRUWcZVbWIC5F57IG4UlfJN3NDKdlO+53ZCVVv8aGVhf+xO1vIVAtX2t14mRViWmRnpTuqqkq5o0rKRhTWJFDtGyKTBcTq0+FiNTW3bvWB3bTGN+sV2KYvHNy8IanCeBVm7f8RxPbwLv0jmsCM9xez3HHfRq0PscgFc+vYHj9s3rH9W4TznhSWXnHr0xhn3Hdv3B/xyLijt0ymcxj9kof3N/6sl51/X77uHnbvukv9qtbfQcvUSvkY8G6AR9QKdojEL0Hf1AP9Gvxp9mo7nT3F2ija3VmQO0Fs1nfwGYUxGC</latexit>

y : yT 1 > 0

<latexit sha1_base64="bGBsIwAOdeRPEOZslDcqBqRLYSY=">AAADVXicbVJda9swFFWTruu8j6bb42AzC4EOjLHT1OnLoCwP20tZFpa2tApBtq9dUUsOltLWE37cr9nr9lvGfsxgihPDEu8iweGeo3N1pevPEiqk4/zeajS3H+w83H1kPH7y9Nlea//5mUjnWQDjIE3S7MInAhLKYSypTOBilgFhfgLn/s1gwZ/fQiZoyr/IfAYTRmJOIxoQqVPT1mvMU8pD4NLAV8ZX8505mp4e5G81GOYGnkxbbcd2yjDrwF2BNlrFcLrfeIXDNJgzbRkkRAhFMkmDBAqjY+C5gBkJbkgMijARpVwKSwNG5HWxxpadradgJiIalzYZcLgLUsYIDxWOCKNJHkJE5oksFBZRhQ0sQD8Jj+W1whLu5R0NdSXlOnY3YKXVv0ZaXFy5E4UX9/F91XaLYl0xKlQpU6Nik7qsqMsaNaioQY1ieQbhsigwXHatTvORzi2rd4yOqbvRv2uWpFjceZlYE2exXyjbsxzLKTYF75M5rBSOZfd6lt3v1UQfMgBe+fT6lu3p7R7XdJ8ywuPKzj4+1IaeZdpu/3+OeaU7ssq16EdPlLs5P3Vw1rVdzz763G2feKvZ2kUv0Rt0gFzURyfoIxqiMQrQN/Qd/UA/G78af5rbzZ2ltLG1OvMCrUVz7y9Wzw+x</latexit>

z = RM (y) = Py

<latexit sha1_base64="VPpqPxywe1/bW9mcsJ7a9hlR5Wo=">AAADdXicbVJNb9NAEN0mfBTzlcIRgVaEIA6WsUOaVEiIihzgUhEq0lbtptF6PXZXtdfBu6ZEK/8cfg1XOPBLuLJxYonEjLzS07znNzuz489iLpXr/t5qNK9dv3Fz+5Z1+87de/dbOw+OZJpnDMYsjdPsxKcSYi5grLiK4WSWAU38GI79y+GCP/4KmeSp+KzmM5gkNBI85Iwqk5q23hKRchGAUBY5sw7wG0x0jgkXmCRUXfi+PizOu/g1zg01ym2cE5kzBl+wSwqLTKattuu4ZeA68FagjVYxmu40npAgZXliSrKYSqlppjiLobA6FsklzCi7pBFomsgwFUraBiyuUqyxZefrKZjJkEelTQYCrliaJFQEmoQ04fE8gJDmsSo0kWGFLSLBjExE6kITBd/UFQ9MJe25TpclpdW/RkZcnHkTXY2m7RXFuuKw0KXMTG2TOq2o0xo1rKhhjUrmGQTLopCQsmt9MD80uWX1jtXBphvz+rgk5eLOy8SaOIv8Qjt927XdYlPwLs5hpXBtp9eznUGvJnqfAYjKpzewnb453l5N9zGjIqrsnL1XxrBvY8cb/M9xXul27fJb9GM2ytvcnzo46jpe39n91G3v91e7tY0eoafoBfLQAO2jD2iExoih7+gH+ol+Nf40HzefNZ8vpY2t1T8P0Vo0X/4FVIUbFQ==</latexit>

M = {u 2 R2 : u = Pu, u ⌫ 0}

<latexit sha1_base64="EsnmGUjZSxw2SF7PAO+3nNYFXkg=">AAADV3icbZLPbtNAEMa3CZRg/jSBIxIyRJE4WJYd0qQXpIoc4IIoUdNW7YZobY/dVb3ryLumRKs98zRc4Vn6NLBxYonEjGxpNN9vv/GsJ1ikVEjPu9trNO/d33/Qemg9evzk6UG78+xMZEUewjTM0iy/CIiAlHKYSipTuFjkQFiQwnlwM17p598gFzTjp3K5gBkjCacxDYk0pXn7FeYZ5RFwaeErq/h6ihmR10GsfG2/sz0Lz+btrud6Zdj1xN8kXbSJk3mn8RJHWVgwYxqmRAhFcknDFLTVs3AhYEHCG5KAIkzEGZfCMcmqq95Sy9m2S7AQMU1Kmxw43IYZY4RHCseE0XQZQUyKVGqFRVzlFhZgLoUn8lphCd/lLY1MJ+V7bj9kpdW/RgbWV/5MrW8hUF1f621iolWJqYnelS4r6bImjStpXJPYModo3RQYLqdWn5YTU1t371k920xj/q9dimL1zevCFpwngVbu0PEcT+8C79MCNoTnuIOB444GNehDDsArn8HIcYfm9Y9q3Oec8KSyc4/eGsOhY7v+6H+Oy4o7dMpnNY/ZKH93f+rJWd/1h+7hl373eLjZrRZ6gV6jN8hHI3SMPqITNEUh+oF+ol/od+Ou8ae532yt0cbe5sxztBXNzl/JZxGL</latexit>

uT 1 = 0

<latexit sha1_base64="FTpMcuwUGW8LVfJOW/ovxM7+uIQ=">AAADSXicbZLNbtNAEMe3Dh/FfKX0iIQiokgcLMsOqdNjRQ5wQZSItFW7UbS2x+6q3rXlXVOslZ+FKzwLT8BjcEOc2Di2RGJGtjSa/2//s2OPnyVUSMf5uWf07ty9d3//gfnw0eMnT/sHz85EWuQBLII0SfMLnwhIKIeFpDKBiywHwvwEzv2b2Vo//wy5oCn/JMsMlozEnEY0IFKXVv1DzFPKQ+DSxFdmsXJNvFz1h47t1DHoJm6TDFETp6sD4wUO06Bg2iZIiBCK5JIGCVTmyMSFgIwENyQGRZiIUi6FpRNG5HW1pdbTbJcgExGNa5scONwGKWOEhwpHhNGkDCEiRSIrhUXU5iYWoD8Dj+W1whK+yFsa6k7KdexxwGqrf400XF25S4XX9/F9NXSrapuYV6rG1LzalS5b6bIjzVpp1pFYmUO4aQoM11Or9+Vc1zbdR+ZooKfRf3RQi2J9501hC85jv1K2ZzmWU+0Cb5ICGsKx7MnEsqeTDvQ2B+Ctz2Rq2Z5+3eMO9yEnPG7t7OPX2tCzBrY7/Z9j2XJHVv2s59Eb5e7uTzc5G9uuZx99HA9PvGa39tFz9BK9Qi6aohP0Dp2iBQpQib6ib+i78cP4Zfw2/mxQY685c4i2otf7C/70Djc=</latexit>u1

<latexit sha1_base64="igVBvILKYl86qXkKCBclcxQom3Q=">AAADSXicbZLNbtNAEMe3Dh/FfKX0iIQiokgcLMsOqdNjRQ5wQZSItFW7UbS2x+6q3rXlXVOslZ+FKzwLT8BjcEOc2Di2RGJGtjSa/2//s2OPnyVUSMf5uWf07ty9d3//gfnw0eMnT/sHz85EWuQBLII0SfMLnwhIKIeFpDKBiywHwvwEzv2b2Vo//wy5oCn/JMsMlozEnEY0IFKXVv1DzFPKQ+DSxFdmsRqbeLnqDx3bqWPQTdwmGaImTlcHxgscpkHBtE2QECEUySUNEqjMkYkLARkJbkgMijARpVwKSyeMyOtqS62n2S5BJiIa1zY5cLgNUsYIDxWOCKNJGUJEikRWCouozU0sQH8GHstrhSV8kbc01J2U69jjgNVW/xppuLpylwqv7+P7auhW1TYxr1SNqXm1K1220mVHmrXSrCOxModw0xQYrqdW78u5rm26j8zRQE+j/+igFsX6zpvCFpzHfqVsz3Isp9oF3iQFNIRj2ZOJZU8nHehtDsBbn8nUsj39uscd7kNOeNza2cevtaFnDWx3+j/HsuWOrPpZz6M3yt3dn25yNrZdzz76OB6eeM1u7aPn6CV6hVw0RSfoHTpFCxSgEn1F39B344fxy/ht/Nmgxl5z5hBtRa/3FwHXDjg=</latexit>u2

Fig. 1. Illustration of the reflection operator RM .

yi|j + yj|i > 0 and locally update zi|j ← −yi|j , zj|i ← −yj|i
otherwise. Figure 1 illustrates the effect of RM for a two-dimensional
example, where 1 = (1, 1)T . If y is in the halfspace {u : uT1 > 0}
we have z = Py, and z = −y otherwise.

The iterates (11) can now be expressed as

µ(k) = JcT1(z
(k)),

y(k) = 2µ(k) − z(k),

z(k+1) = RM (y(k)).

In order to find a dual expression for JcT1(z
(k)), we note that

µ̃ = JcT1(z) ⇔ z − µ̃ ∈ cT1(µ̃).

Hence, µ̃ = z + c(Cx̃ − d) where x̃ ∈ ∂f∗(−CT µ̃), and thus
−CT µ̃ ∈ ∂f(x̃). Hence, 0 ∈ ∂f(x̃) + CT µ̃ = ∂f(x̃) + CT z +
cCT (Cx̃− d) so that

x̃ = argmin
x

(
f(x) + zTCx+

c

2
∥Cx− d∥2

)
.

With this, the iterates can be expressed as

x(k) = argmin
x

(
f(x) + z(k)

T
Cx+

c

2
∥Cx− d∥2

)
, (14a)

µ(k) = z(k) + c(Cx(k) − d), (14b)

y(k) = 2µ(k) − z(k), (14c)

z(k+1) = RM (y(k)), (14d)

which can be simplified to

x(k) = argmin
x

(
f(x) + z(k)

T
Cx+

c

2
∥Cx− d∥2

)
, (15a)

y(k) = z(k) + 2c(Cx(k) − d), (15b)

z(k+1) = RM (y(k)). (15c)

The iterates (15) are collectively referred to as the inequality-
constraint primal-dual method of multipliers (IEQ-PDMM).

The distributed nature of PDMM can be made explicit by exploit-
ing the structure of C and d and writing out the update equations
(15), which is visualised in the pseudo-code of Algorithm 1. It can
be seen that no direct collaboration is required between nodes during
the computation of these updates, leading to an attractive (parallel)
algorithm for optimisation in practical networks. The update (15c) can
be interpreted as one-way transmissions of the auxiliary y variables
to neighbouring nodes where the actual update of the z variables is
done.

Algorithm 1 Synchronous IEQ-PDMM.

1: Initialise: z(0) ∈ R2m ▷ Initialisation
2: for k = 0, ..., do
3: for i ∈ V do ▷ Node updates

4: x
(k)
i = argmin

xi

(
fi(xi)+∑

j∈Ni

(
z
(k)T

i|j Aijxi +
c
2
∥Aijxi − 1

2
bij∥2

))
5: for all j ∈ Ni do
6: y

(k)

i|j = z
(k)

i|j + 2c
(
Aijx

(k)
i − 1

2
bij

)
7: end for
8: end for

9: for all i ∈ V, j ∈ Ni do ▷ Transmit variables
10: nodej ← nodei(y(k)

i|j)
11: end for

12: for all i ∈ V, j ∈ Ni do ▷ Auxiliary updates
13: if y(k)

i|j + y
(k)

j|i > 0 then
14: z

(k+1)

i|j = y
(k)

j|i
15: else
16: z

(k+1)

i|j = −y(k)

i|j
17: end if
18: end for
19: end for

A. Equality and inequality constraints

As mentioned before the only difference in having equality or
inequality constraints is in having a nonnegativity constraint λ ⪰ 0
in the latter case, and thus in the definition of the set M . Hence,
we can trivially extend our proposed inequality constraint algorithm
to include equality constraints as well. In the case of an equality
constraint, we simply ignore the thresholding and exchange the asso-
ciated auxiliary variables along that edge. That is, let µ = (µT

ν , µ
T
λ)

T ,
where µν denote the Lagrange multipliers for the equality constraints
and µλ the Lagrange multipliers for the inequality constraints. Then
µλ ⪰ 0, while µν is unconstrained. Defining the auxiliary variables
y and z in a similar way, (15c) becomes

z(k+1)
ν = Py(k),

z
(k+1)
λ = RM (y(k)).

B. Node constraints

In the previous sections we considered constraints of the form
Aijxi+Ajixj ⪯ bij , or Aijxi+Ajixj = bij in the case of equality
constraints. If we set Aji to be the mij × nj zero matrix, we have
constraints of the form Aijxi ⪯ bij or Aijxi = bij , which are
node constraints; it sets constraints on the values xi can take on.
Even though xj is not involved in the constraint anymore, there is
still communication needed between node i and node j since at the
formulation of the lifted dual problem (7) we have introduced two
auxiliary variables, µi|j and µj|i, one at each node, to control the
constraints between node i and j. This was done independent of the
actual value of Aij and Aji. In order to guarantee convergence of the
algorithm, these variables need to be updated and exchanged during
the iterations. Note that it is irrelevant which of the neighbouring
nodes is used to define the node constraint on node i. We could
equally well define Aiℓxi ⪯ biℓ with ℓ ∈ Ni, in which case there
will be communication between node i and node ℓ. To avoid such
communication between nodes, we can introduce dummy nodes, one
for every node that has a node constraint. Let i′ denote the dummy

6

node introduced to define the node constraint on node i. That is,
we have Aii′xi ⪯ bii′ . Since dummy node i′ is only used to
communicate with node i, it is a fictive node and can be incorporated
in node i, thereby avoiding any network communication for node
constraints.

C. Relation with ADMM

Consider the prototype ADMM problem given by

minimise f(x) + g(u),

subject to Ax+Bu = c.
(16)

Following [19], we can reformulate (4) in the form (16) by in-
troducing auxiliary variables ui|j , uj|i ∈ Rmij such that ui|j =
Aijxi − 1

2
bij and uj|i = Ajixj − 1

2
bij . Collecting all auxiliary

variables ui|j and uj|i into a vector u ∈ R2m and using the matrices
C,P and d as defined before, the constraints of (4) are given by
u = Cx − d and u + Pu ⪯ 0. Hence, (4) can be equivalently
expressed as

minimise f(x) + g(u)

subject to Cx− u = d,

where g(u) is the indicator function IM′ on M ′ = {u ∈ R2m |u+
Pu ⪯ 0}. The dual problem is therefore given by

minimise f∗(−CTµ) + I∗M′(µ) + dTµ, (17)

where µ, as in the PDMM case, denotes the stacked vector of
dual variables µi|j and µj|i associated with the edges (i, j) ∈ E .
The ADMM algorithm is equivalent to applying Douglas Rachford
splitting to the dual problem (17). Comparing (8) and (17), we can
note that the apparent difference in the dual problems is the use of
IM (µ) in the case of PDMM and I∗M′(µ) in the case of ADMM.
However, we have

I∗M′(µ) = sup
u

(
µTu− IM′(u)

)
=

{
0, µ = Pµ, µ ⪰ 0

∞ otherwise,

and thus I∗M′(µ) = IM (µ) and we conclude that the problems (8)
and (17) are identical. As Douglas-Rachford splitting is equivalent to
a half-averaged form of Peaceman-Rachford splitting, half-averaged
PDMM and ADMM will give identical results.

V. CONVERGENCE OF (IN)EQUALITY-CONSTRAINT PDMM

Let T = CcT2◦CcT1 . Since both CcT2 and CcT1 are nonexpansive,
T is nonexpansive, and the sequence generated by the Banach?Picard
iteration z(k+1) = T (z(k)) may fail to produce a fixed point of
T . A simple example of this situation is T = −I and z(0) ̸= 0.
Although operator averaging provides a means of ensuring algo-
rithmic convergence, it is well known that Banach-Picard iterations
converge provable faster than Krasnosel’skii-Mann iterations for the
important class of quasi-contractive operators [46]. As discussed
before, the Peaceman-Rachford splitting algorithm converges when
T1 is uniformly monotone. However, by inspection of (10), due to
the row-rank deficiency of C, ∃(µ, η), µ ̸= η : CT (µ − η) = 0
which prohibits T1 of being strictly monotone, and thus uniformly
monotone. It is therefore of interest to consider if there are milder
conditions under which certain optimality can be guaranteed. Whilst
such conditions may be restrictive in the case of convergence of the
auxiliary variables, in the context of distributed optimisation we are
often only interested in primal optimality. For this reason we define
conditions that ensure x(k) → x∗ even if z(k) ̸→ z∗, z∗ ∈ fix(T).

Proposition 1. Let T1 = −C∂f∗(−CT (·))+d and T2 = ∂IM such
that Z = fix(T) ̸= ∅ and ∂f is uniformly monotone with modulus

ϕ, let c > 0, and let x∗ be the solution to the primal problem (4).
Given the iterates (11) and z(0) ∈ R2m, we have x(k) → x∗.

Proof: Let z∗ ∈ Z . We have for all k ∈ N,

∥z(k+1) − z∗∥2 = ∥CcT2 ◦ CcT1(z
(k))− CcT2 ◦ CcT1(z

∗)∥2

≤ ∥CcT1(z
(k))− CcT1(z

∗)∥2

= ∥2µ(k) − z(k) − (2µ∗ − z∗)∥2

= ∥z(k) − z∗∥2

− 4(µ(k) − µ∗)T (z(k) − µ(k) − (z∗ − µ∗))

= ∥z(k) − z∗∥2

+ 4c(µ(k) − µ∗)TC(x(k) − x∗), (18)

where the last equality follows from (14b). Moreover, since x(k)

minimises f(x) + z(k)
T

Cx + c
2
∥Cx − d∥2, we have that 0 ∈

∂f(x(k)) + CT z(k) + cCT (Cx(k) − d) = ∂f(x(k)) + CTµ(k), so
that (18) can be expressed as

∥z(k+1) − z∗∥2 ≤ ∥z(k) − z∗∥2

− 4c(∂f(x(k))− ∂f(x∗))T (x(k) − x∗)

≤ ∥z(k) − z∗∥2 − 4cϕ(∥x(k) − x∗∥). (19)

Hence, ϕ(∥x(k) − x∗∥)→ 0 and, in turn, ∥x(k) − x∗∥ → 0.

Remark 1. Since T is at best nonexpansive, the auxiliary variables
will not converge in general. In fact, they will reach an alternating
limit state, similar to what has been shown for equality constraint
PDMM [19]. In addition, the condition for primal convergence
given in Proposiiton 1 is less restrictive than the ones given in
[19] for equality constrained PDMM, where strong convexity and
differentiability of f is assumed. We will demonstrate the convergence
of the algorithm for non-differentiable uniformly convex functions in
Section VII.

VI. STOCHASTIC COORDINATE DESCENT

In order to obtain an asynchronous (averaged) IEQ-PDMM algo-
rithm, we will apply randomised coordinate descent to the algorithms
presented in Section IV.

Stochastic updates can be defined by assuming that each auxiliary
variable zi|j can be updated based on a Bernoulli random variable
ξi|j ∈ {0, 1}. Collecting all random variables ξi|j in the random
vector ξ ∈ R2|E|, following the same ordering as the entries of z,
let (ξ(k))k∈N denote an i.i.d. random process defined on a common
probability space (Ω,A,P), such that ξ(k) : (Ω,A) 7→ {0, 1}2|E|.
Hence, ξ(k)(ω) ⊆ {0, 1}2|E| indicates which entries of z(k) will be
updated at iteration k. We assume that the following condition holds:

(∀(i, j) ∈ Ed) P({ξ(0)i|j = 1}) > 0. (20)

Since (ξ(k))k∈N is i.i.d., (20) guarantees that at every iteration, entry
z
(k)

i|j has nonzero probability to be updated. We define the block-
diagonal random matrix U ∈ R2m×2m as U = diag(ξi|jImij). With
this, we define the stochastic Banach-Picard iteration [20] as

Z(k+1) =
(
I − U (k))Z(k) + U (k)T (Z(k)), (21)

where Z(k) denotes the random variable having realisation z(k). If
T is α-averaged, a convergence proof is given in [47], [48], where
it is shown that Z(k) − T (Z(k))

a.s.→ 0 (almost surely). If T is not
averaged, we do not have convergence in general since T is at best
nonexpansive and we need additional conditions for convergence.

Let ∥z∥2Q = zTQz where Q ≻ 0 (Hermitian positive definite).
Moreover, let Q−1 = E(U). Clearly, Q ≻ 0 by condition (20). In

7

addition, let (Ak)k≥1 be a filtration on (Ω,A) such that

Ak := σ{ξ(t) : t ≤ k},

the σ-algebra generated by the random vectors ξ(1), . . . , ξ(k) and thus
Ak ⊆ Al for k ≤ l. We have the following convergence result for
stochastic PDMM.

Proposition 2. Let T1 = −C∂f∗(−CT (·))+d and T2 = ∂IM such
that Z = fix(T) ̸= ∅ and ∂f is uniformly monotone with modulus ϕ,
let c > 0, and let x∗ be the solution to the primal problem (4). Given
the stochastic iteration (21) and z(0) ∈ R2m, we have X(k) a.s.→ x∗.

Proof: For any z∗ ∈ Z we have [49, Appendix A]

E
(
∥Z(k+1) − z∗∥2Q | Ak

)
=

∥Z(k) − z∗∥2Q + ∥T (Z(k))− z∗∥22 − ∥Z(k) − z∗∥22. (22)

Using (19), (22) becomes

E
(
∥Z(k+1) − z∗∥2Q | Ak) ≤

∥Z(k) − z∗∥2Q − 4cϕ(∥X(k) − x∗∥), (23)

which shows that (∥Z(k) − z∗∥2Q)k≥1 is a nonnegative supermartin-
gale. Moreover, since (·)1/2 is concave and nondecreasing on R+,
we conclude that (∥Z(k) − z∗∥Q)k≥1 is a nonnegative supermartin-
gale as well and therefore converges almost surely by the martingale
convergence theorem [50, Theorem 27.1]. Taking expectations on
both sides of (23) and iterating over k, we obtain

E
(
∥Z(k+1) − z∗∥2Q

)
≤ ∥z(0)−z∗∥2Q−4c

k∑
t=1

E
(
ϕ(∥X(t) − x∗∥)

)
.

Since E
(
∥Z(k) − z∗∥2Q

)
≥ 0, we have

k∑
t=1

E
(
ϕ(∥X(t) − x∗∥)

)
≤ 1

4c
∥z(0) − z∗∥2Q <∞,

which shows that the sum of the expected values of the primal error
is bounded. Hence, using Markov’s inequality, we conclude that

∞∑
t=1

Pr
{
∥X(t) − x∗∥2 ≥ ϵ

}
≤ 1

ϵ

∞∑
t=1

E
[
∥X(t) − x∗∥2

]
<∞,

for all ϵ > 0, and by Borel Cantelli’s lemma [50, Theorem 10.5] that

Pr

{
lim sup
k→∞

(
∥X(k) − x∗∥2 ≥ ϵ

)}
= 0,

which shows that ∥X(k) − x∗∥2 a.s.→ 0.

Remark 2. As with synchronous IEQ-PDMM, the condition for
primal convergence given in Proposiiton 2 is less restrictive than
the ones given in [20] for equality constrained stochastic PDMM,
where strong convexity and differentiability of f is assumed.

A. Asynchronous IEQ-PDMM

In practice, synchronous algorithm operation implies the presence
of a global clocking system between nodes. Clock synchronisation,
however, in particular in large-scale heterogeneous sensor networks,
can be cumbersome. In addition, due to the heterogeneous nature
of the sensors/agents, processors that are fast either because of high
computing power or because of small workload per iteration, must
wait for the slower processors to finish their iteration. Asynchronous
algorithms partly overcome these problems as there is much more
flexibility regarding the use of the information received from other
processors. Asynchronous IEQ-PDMM can be seen as a special case

of stochastic IEQ-PDMM when we update a set of auxiliary variables
simultaneously. That is, at each iteration, a single node, or possibly
a subset of nodes chosen at random, are activated. More formally,
let (ζ(k))k∈N denote an i.i.d. random process defined on a common
probability space such that ζ(k) ⊆ 2V denotes a set of indices
indicating which nodes will be updated at iteration k. Hence, ζ(k)

denotes the set of active nodes at iteration k. Asynchronous IEQ-
PDMM can be seen as a specific case of stochastic IEQ-PDMM
when we define the entries of ξ(k) as

(∀(i, j) ∈ E) ξ
(k)

j|i =

{
1 if i ∈ ζ(k),

0 otherwise.

That is, at iteration k, we update all auxiliary variables ξ(k)i|j , j ∈ Ni,

for all nodes i ∈ ζ(k). The pseudocode for lossy asynchronous IEQ-
PDMM is given in Algorithm 2.

B. IEQ-PDMM with transmission failures

IEQ-PDMM with transmission losses can also be seen as a special
case of stochastic IEQ-PDMM. Let (η(k))k∈N denote an i.i.d. random
process defined on a common probability space such that η(k) ⊆ 2Ed

denotes a set of ordered pairs of nodes indicating which directed
edges will be updated at iteration k. Hence, η(k) denotes the set of
active directed edges at iteration k; (i, j) ∈ η(k) implies that there
has been a successful transmission from node i to node j, but we
could have a transmission failure from node j to i. IEQ-PDMM with
transmission losses can thus be seen as a specific case of stochastic
IEQ-PDMM when we define the entries of ξ(k) as

(∀(i, j) ∈ Ed) ξ
(k)

j|i =

{
1 if (i, j) ∈ η(k),

0 otherwise.

Obviously, a combination of asynchronous updating and transmission
loss can be modelled by defining

(∀(i, j) ∈ Ed) ξ
(k)

j|i =

{
1 if i ∈ ζ(k) and (i, j) ∈ η(k),

0 otherwise.

VII. NUMERICAL EXPERIMENTS

In this section we will discuss experimental results obtained by
computer simulations. We will start by demonstrating that the relaxed
condition (∂f being uniformly monotone) as given in Proposition 1
and Proposition 2 is a sufficient condition for primal convergence. We
show convergence results for synchronous and asynchronous IEQ-
PDMM, and demonstrate the robustness of the algorithm against
transmission faillures. Secondly, we will discuss an application of
network linear programming, where we collaboratively compute the
intersection of convex polytopes for target localisation. Finally, we
will compare the proposed algorithm with extended ADMM [1] and
a PDMM variant where we introduced slack variables to handle the
inequality constraints.

A. Primal convergence guarantees

To demonstrate that PDMM doesn’t converge for general problems,
we consider the following ℓ1 consensus problem:

minimise
n∑

i=1

∥xi − ai∥1

subject to xi = xj , (i, j) ∈ E ,
(24)

where the data ai was randomly generated from a Gaussian distribu-
tion. We consider a random geometric graph of n = 25 nodes where

8

Algorithm 2 Asynchronous IEQ-PDMM.

1: Initialise: z(0) ∈ R2m ▷ Initialisation
2: for k = 0, ..., do
3: Select a random subset of active nodes: ζ(k) ⊆ 2V

4: for i ∈ ζ(k) do ▷ Active node updates

5: x
(k)
i = argmin

xi

(
fi(xi)+∑

j∈Ni

(
z
(k)T

i|j Aijxi +
c
2
∥Aijxi − 1

2
bij∥2

))
6: for all j ∈ Ni do
7: y

(k)

i|j = z
(k)

i|j + 2c
(
Aijx

(k)
i − 1

2
bij

)
8: end for
9: end for

10: for all i ∈ ζ(k), j ∈ Ni do ▷ Transmit variables
11: nodej ← nodei(y(k)

i|j)
12: end for

13: for i ∈ ζ(k), j ∈ Ni do ▷ Auxiliary updates
14: if y(k)

i|j + y
(k)

j|i > 0 then
15: z

(k+1)

j|i = y
(k)

i|j
16: else
17: z

(k+1)

j|i = −y(k)

j|i
18: end if
19: end for
20: end for

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Random geometric graph, n = 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
22

23

24

25

Fig. 2. Demonstration of a random geometric graph with 25 nodes.

we have set the communication radius r =
√

2 log(n)/n, thereby
guaranteeing a connected graph with probability at least 1 − 1/n2

[51]. The resulting graph is depicted in Figure 2.

Since the objective function is not uniformly convex, the IEQ-
PDMM algorithm is not guaranteed to converge. This is shown in
Figure 3 (blue curve). In addition, results are shown when we average
IEQ-PDMM for different values of α in which case the algorithm
is expected to converge. Note that the case α = 1

2
corresponds to

Douglas-Rachford splitting of the lifted dual function. The step size
parameter c was set to c = 0.4.

To demonstrate that uniform monotonicity of the subdifferential
∂f is sufficient for primal convergence, we consider the following

0 200 400 600 800 1000
iterations

10-10

10-8

10-6

10-4

10-2

100

102

||x
(k

) -x
* ||2

Primal convergence

IEQ-PDMM
IEQ-PDMM, = 0.2
IEQ-PDMM, = 0.5
IEQ-PDMM, = 0.8

Fig. 3. Convergence results for IEQ-PDMM for the ℓ1 consensus problem
(24).

0 50 100 150 200 250
iterations

10-10

10-8

10-6

10-4

10-2

100

102

||x
(k

) -x
* ||2

Primal convergence

IEQ-PDMM (synchronous)
IEQ-PDMM (synchronous), = 0.5

Fig. 4. Convergence results for IEQ-PDMM for the extended ℓ1 consensus
problem (25).

extended problem:

minimise
n∑

i=1

(
∥xi − ai∥1 + ∥xi − ai∥33

)
subject to xi = xj , (i, j) ∈ E .

(25)

That is, compared to problem (24), we added to the ℓ1 norm an ℓ3
norm cubed, thereby making the objective function uniformly convex.
Note that the resulting objective is not differentiable nor strongly con-
vex. Figure 4 shows convergence results for problem (25), where the
MATLAB function “fmincon” was used as the internal optimisation
solver. As expected, standard IEQ-PDMM converges for this problem
and averaging slows down the convergence rate.

To demonstrate the convergence of stochastic IEQ-PDMM, we
consider problem (25) again. Figure 5 shows convergence results for
synchronous and asynchronous IEQ-PDMM, where again the MAT-
LAB function “fmincon” was used as the internal optimisation solver.
The blue curve shows the result for synchronous IEQ-PDMM and is
identical to the blue curve in Figure 4. However, in order to make
a meaningful comparison between synchronous and asynchronous
update schemes, the convergence results are presented as a function
of number of transmission rather than number of iterations. We

9

0 2 4 6 8 10 12 14 16
transmissions 104

10-10

10-8

10-6

10-4

10-2

100

102
||x

(k
) -x

* ||2
Primal convergence

IEQ-PDMM (synchronous), no loss
IEQ-PDMM (asynchronous), no loss
IEQ-PDMM (asynchronous), 25% loss
IEQ-PDMM (asynchronous), 50% loss
IEQ-PDMM (asynchronous), 75% loss

Fig. 5. Convergence of IEQ-PDMM for synchronous and asynchronous
update schemes with different levels of transmission loss.

can observe that synchronous and asynchronous IEQ-PDMM have
similar convergence rates. In addition, the algorithm is robust against
transmission failures and converges for all loss rates; the convergence
rate decreases proportional to the loss rate, similar to what has been
observed for equality constraint PDMM [20].

B. Target localisation

The second simulation considers an application of network linear
programming (LP) for target localisation. We consider a set of n
sensors randomly distributed in a unit cube which have to detect a
target location xt ∈ Rd. The sensors could be, for example, cameras,
microphones or radars. We assume that each sensor has focused on
the target by steering a beam towards the target, where we have added
zero-mean Gaussian noise to the true direction to model uncertainty in
the direction-of-arrival. We will model the beam as the intersection
of a finite number of half-planes. In our two-dimensional example
scenario, we will use two half-planes to model the beam pattern so
that the sensing region is modeled by a cone. Figure 6 shows such a
set-up, where we have four sensors indicated by the blue dots. The
dashed blue lines indicate the hyperplanes (lines in R2) modeling
the sensing beams. The intersection of the regions detected by the
sensors (grey area in Figure 6) can be used to estimate the target
location. Since this is the intersection of half-planes, this region is
a polytope which itself is convex and non-empty. The goal is to
find an inner approximation of the polytope by computing the largest
Euclidean ball contained in it. The centre of the optimal ball is called
the Chebyshev centre of the polytope and is the point deepest inside
the polytope, i.e., farthest from the boundary. A polytope, in general,
can be described as

P = {x ∈ Rd : aT
ℓ x ≤ bℓ, ℓ = 1, . . . ,m},

where m is the number of hyperplanes defining the polytope, and a
ball as B = {xc + u : ∥u∥ < r}, where xc ∈ Rd is the centre and
r ∈ R the radius of the ball. Our task is to maximise r subject to the
constraint B ⊆ P . Finding the Chebyshev centre can be determined
by solving the LP [52]

maximise r,

subject to aT
ℓ xc + r∥aℓ∥ ≤ bℓ, ℓ = 1, . . . ,m.

In order to solve this problem distributed, we introduce local variables
xi and ri at each node and add the additional constraint that xi =

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Intersection of half-spaces

Target location
Sensor location
Chebyshev center
k-Polytope center
Intersecting polytope

Fig. 6. Target location estimation by collaboratively computing the intersec-
tion of convex polytopes.

0 200 400 600 800 1000
iterations

10-10

10-8

10-6

10-4

10-2

100

102

||x
(k

) -x
* ||2

Primal convergence

Fig. 7. Convergence results for finding the Chebyshev centre.

xj and ri = rj for all (i, j) ∈ E , where E is the set of edges
(communication links) in the network. That is, we solve the LP

maximise
n∑

i=1

ri,

subject to aT
ℓ xi + ri∥aℓ∥ ≤ bℓ, i ∈ V, ℓ = 1, . . . ,m,

xi = xj , ri = rj , (i, j) ∈ E .

(26)

Obviously, (26) is of the form of our prototypical problem with
both linear equality and inequality constraints and can, therefore,
be solved using IEQ-PDMM. Figure 6 shows the result (red circle
and red triangle) for our two-dimensional example in the case of
synchronous IEQ-PDMM. Figure 7 shows convergence results for
finding the Chebyshev centre. In this example, we half-averaged the
operator T since the objective function is not uniformly convex and
the algorithm would fail to converge without averaging.

Alternatively, we could find an outer approximation of the polytope
by finding the smallest bounding rectangle (or k-polytope) enclosing
it. In the case of a bounding rectangle, we need to solve four linear
programs. Let dk, k = 1, . . . , 4, denote the normal vector to the kth
hyperplane defining the bounding rectangle. We then have to solve

10

the following LPs:

minimise dTk x,

subject to aT
ℓ x ≤ bℓ, ℓ = 1, . . . ,m,

for k = 1, . . . , 4. Again, in order to solver this problem distributed,
we introduce local variables xi at each node and add the additional
constraint that xi = xj for all (i, j) ∈ E . That is, we solve the LPs

minimise dTk xi,

subject to aT
ℓ xi ≤ bℓ, i ∈ V, ℓ = 1, . . . ,m,

xi = xj , (i, j) ∈ E ,
which are of the standard form suitable to be solved using IEQ-
PDMM. The result is shown in Figure 6 (orange rectangle and cor-
responding centre point), where we again half-averaged the operator
T for the same reason as mentioned above.

C. Comparison with existing algorithms

In this section we consider a distributed quadratic optimisation
problem with inequality constraints over the random geometric graph
depicted in Figure 2. The problem we consider here is given by

minimise
∑
i∈V

1

2
∥xi − ai∥2

subject to xi ≤ xj for i < j, (i, j) ∈ E ,
(27)

where the data ai was randomly generated from a Gaussian dis-
tribution. We compared three methods. First of all we compared
the proposed IEQ-PDMM method with a PDMM variant where we
introduced, as is commonly done, additional slack variables. The
reason for this comparison is to find out if the introduction of
slack variables helps accelerating the convergence. For every edge
constraint we introduce a slack variable wij ≥ 0 such that the
inequality constraints in (3) can be expressed as

Aijxi +Ajixj + wij = bij ,

wij ≥ 0.

Since standard PDMM can only handle equality constraints, the
inequality constraints wij ≥ 0 can be included in the objective
function by introducing the indicator function I{w⪰0}. However, by
doing so, the objective function is not separable anymore. This can
be easily overcome by introducing two slack variables per edge,
wi|j ≥ 0 and wj|i ≥ 0, and add the additional equality constraint
wi|j = wj|i. With this, the PDMM variant that can handle inequality
constraints becomes

minimise
∑
i∈V

fi(xi) +
∑
j∈Ni

I{wi|j≥0}

subject to Aijxi +Ajixj + wi|j + wj|i = bij

wi|j − wj|i = 0
(i, j) ∈ E .

We will refer to this algorithm as PDMM-slack. Secondly, we will
compare our proposed algorithm to a state-of-the-art ADMM-based
algorithm that avoids slack variables, referred to as extended ADMM
[1]. Since the extended ADMM algorithm is a synchronous update
scheme, we only compare synchronous versions of the algorithms.
In both IEQ-PDMM and PDMM-slack, the parameter c was set
to c = 0.7 and in extended ADMM [1] the parameters ν and
β were set to (ν, β) = (0.5, 0.5). These values for c, ν and β
were chosen to produce the fastest convergence rate. To make a
fair comparison between the methods, we set α = 1

2
(ADMM).

For completeness, we included results for α = 1 as well. Figure 8
visualises the convergence results of the three methods. As can be

0 20 40 60 80 100 120
iterations

10-6

10-4

10-2

100

102

||x
(k

) -x
* ||2

Primal convergence

IEQ-PDMM (= 0.5)
PDMM-slack (= 0.5)
extended ADMM
IEQ-PDMM (= 1)
PDMM-slack (= 1)

Fig. 8. Convergence comparison of IEQ-PDMM, PDMM-slack, and extended
ADMM over the random geometric graph depicted in Figure 2.

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY PER ITERATION (IN

SECONDS)

extended ADMM [1] IEQ-PDMM PDMM-slack

4.5 · 10−4 3.9 · 10−5 8.6 · 10−2

seen, both PDMM algorithms have similar convergence rates and
outperform the extended ADMM algorithm in terms of number of
iterations needed to converge to a certain accuracy level. However,
the computational complexity of the proposed IEQ-PDMM algorithm
is significantly lower than the extended ADMM and PDMM-slack
algorithm. This can be seen from Table I which shows the average
time (in seconds) needed per iteration for the three methods. Clearly,
IEQ-PDMM consumes the least amount of time, demonstrating its
efficiency. The PDMM-slack algorithm is most expensive because we
have to perform an inequality constraint optimisation problem at each
and every iteration (here implemented using the MATLAB program
“quadprog”). The above results indicate that the introduction of slack
variables does not improve the convergence rate of PDMM and that
it is most efficient to handle the inequality constraints directly by
imposing non-negativity constraints on the dual variables as is done
in (5).

VIII. CONCLUSIONS

In this paper we have presented a node-based distributed opti-
misation algorithm for optimising a separable convex cost func-
tion with linear equality and ineqaulity node and edge constraints,
termed inequality-constraint primal-dual method of multipliers (IEQ-
PDMM). Using monotone operator theory and operator splitting, we
derived node-based update rules for solving the problem. To incorpo-
rate the inequality constraints, we imposed non-negativity constraints
on the associated dual variables, resulting in the introduction of a
reflection operator to model the data exchange in the network, instead
of a permutation operator as derived for equality constraint PDMM.
We showed how to avoid unnecessary communication between nodes
in the case we have node constraints by introducing fictive nodes in
the network and highlighted the relation with Peaceman-Rachford
splitting and ADMM. We showed convergence results for both
synchronous and stochastic update schemes, where the latter includes
asynchronous update schemes and update schemes with transmission
losses. The algorithm converges for any CCP cost function when
using averaged iterations, and has primal convergence for non-
averaged updates in the case the cost function is uniformly convex.

11

REFERENCES

[1] B. He, S. Xu, and X. Yuan, “Extensions of ADMM for separable convex
optimization problems with linear equality or inequality constraints,”
Handbook of Numerical Analysis, vol. 24, pp. 511–557, 2023.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Op-
timization and Statistical Learning via the Alternating Direction Method
of Multipliers,” In Foundations and Trends® in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[3] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip Algorithms for Distributed Signal Processing,” Proceedings of
the IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learn-
ing: Challenges, Methods and Future Directions,” Technical Report,
arxiv.org/abs/1908.07873, 2019.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized Gossip
Algorithms,” IEEE Trans. Information Theory, vol. 52, no. 6, pp. 2508–
2530, 2006.

[6] D. Üstebay, B. Oreshkin, M. Coates, and M. Rabbat, “Greedy gossip
with eavesdropping,” IEEE Trans. on Signal Processing, vol. 58, no. 7,
pp. 3765–3776, July 2010.

[7] F. Bénézit, A. Dimakis, P. Thiran, and M. Vetterli, “Order-optimal con-
sensus through randomized path averaging,” IEEE Trans. on Information
Theory, vol. 56, no. 10, pp. 5150–5167, October 2010.

[8] F. Lutzeler, P. Ciblat, and W. Hachem, “Analysis of Sum-Weight-Like
Algorithms for Averaging in Wireless Sensor Networks,” IEEE Trans.
Signal Processing, vol. 61, no. 11, pp. 2802–2814, 2013.

[9] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on trees: Message-passing and linear programming,” IEEE
Trans. Information Theory, vol. 51, no. 11, pp. 3697–3717, November
2005.

[10] A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun, “Distributed
message passing for large scale graphical models,” Proc. IEEE Conf.
Comput.Vision Pattern Recognition, p. 1833–1840, 2011.

[11] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Magazine, vol. 30, no. 3, pp. 83–98,, May 2013.

[12] A. Loukas, A. Simonetto, and G. Leus, “Distributed autoregressive
moving average graph filters,” IEEE Signal Process. Letters, vol. 22,
no. 11, p. 1931–1935, Nov. 2015.

[13] E. Isufi, A. Simonetto, A. Loukas, and G. Leus, “Stochastic graph
filtering on time-varying graphs,” Proc. IEEE 6th Int. Workshop Comput.
Adv. Multi-Sensor Adaptive Process., p. 89–92, 2015.

[14] R. Xin and U. A. Khan, “A linear Algorithm for optimisation over
directed graphs with geometric convergence,” IEEE Control Systems
Letters, vol. 2, no. 3, pp. 315–320, 2018.

[15] H. Yuan and T. Ma, “Federated Accelerated Stochastic Gradient De-
scent,” in NIPS), 2020.

[16] S. P. Karimireddy, S. Kale, S. J. Reddi, S. U. Stich, and A. T. Suresh,
“SCAFFOLD: Stochastic Controlled Averaging for Federated Learning,”
in ICML, 2020.

[17] Z. Luo and W. Yu, “An introduction to convex optimization for com-
munications and signal processing,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, p. 1426–1438, Aug. 2006.

[18] G. Zhang and R. Heusdens, “Distributed Optimization using the Primal-
Dual Method of Multipliers,” IEEE Trans. Signal and Information
Processing over Networks, 2017.

[19] T. W. Sherson, R. Heusdens, and W. B. Kleijn, “Derivation and analysis
of the primal-dual method of multipliers based on monotone operator
theory,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 5, no. 2, pp. 334–347, 2019.

[20] S. O. Jordan, T. W. Sherson, and R. Heusdens, “Convergence of
stochastic pdmm,” in Proceedings IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

[21] G. Zhang, N. Kenta, and W. B. Kleijn, “Revisiting the Primal-Dual
Method of Multipliers for Optimisation Over Centralised Networks,”
IEEE Trans. Signal and Information Processing over Networks, vol. 8,
pp. 228–243, 2022.

[22] R. Pathak and M. J. Wainwright, “FedSplit: An algorithmic framework
for fast federated optimization,” in NIPS, 2020.

[23] Q. Li, R. Heusdens and M. G. Christensen, “Convex optimisation-based
privacy-preserving distributed average consensus in wireless sensor
networks,” in Proc. Int. Conf. Acoust., Speech, Signal Process., pp. 5895-
5899, 2020.

[24] Q. Li, J. S. Gundersen, R. Heusdens and M. G. Christensen, “Privacy-
preserving distributed processing: Metrics, bounds, and algorithms,” in
IEEE Trans. Inf. Forensics Security. vol. 16, pp. 2090–2103, 2021.

[25] Q. Li, R. Heusdens and M. G. Christensen, “Privacy-preserving dis-
tributed optimization via subspace perturbation: A general framework,”
in IEEE Trans. Signal Process., vol. 68, pp. 5983 - 5996, 2020.

[26] Q. Li, J. S. Gundersen, M. Lopuhaä-Zwakenberg, and R. Heusdens,
“Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A
Unified Framework for Privacy-Preserving Distributed Average Consen-
sus,” IEEE Transactions on Information Forensics and Security, 2023,
accepted for publication.

[27] J. A. G. Jonkman, T. Sherson, and R. Heusdens, “Quantisation effects
in distributed optimisation,” in Proc. Int. Conf. Acoust., Speech, Signal
Process., pp. 3649–3653, 2018.

[28] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
pp. 48–61, 2009.

[29] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralised consensus optimization,” SIAM Journal on
Optimization, vol. 25, pp. 944–966, 2014.

[30] S. Pu and A. Nedic, “A Distributed Stochastic Gradient Tracking
Method,” in in IEEE Conference on Decision and Control (CDC), 2018.

[31] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-Sum Distributed
Dual Averaging for Convex Optimization,” in in 51st IEEE Conference
on Decision and Control (CDC), 2012.

[32] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, 2nd ed. Springer, 2017, CMS
Books in Mathematics.

[33] C. Xu, “Generalized Lasso Problem With Equality And Inequality
Constraints Using ADMM,” Ph.D. dissertation, Auburn University, 2019.

[34] J. Giesen and S. Laue, “Combining ADMM and the Augmented
Lagrangian Method for Efficiently Handling Many Constraints,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence (IJCAI-19), 2019.

[35] Y. Chen, M. Santillo, M. Jankovic, and A. D. Ames, “Online decentral-
ized decision making with inequality constraints: an ADMM approach,”
in IEEE Control Systems Letters, 2020.

[36] H. Yu and M. J. Neel, “A Simple Parallel Algorithm with an O(1/t)
Convergence Rate for General Convex Programs,” arXiv:1512.08370
[math.OC], 2017.

[37] Xuyang Wu and He Wang and Jie Lu, “Distributed Optimization with
Coupling Constraints,” arXiv:2102.12989 [math.OC], 2021.

[38] E. Ryu and S. Boyd, “A primer on monotone operator methods,” Applied
Computational mathematics, vol. 15, no. 1, pp. 3 – 43, 2016.

[39] J. Douglas and H. Rachford, “On the numerical solution of heat
conduction problems in two and three space variables,” Transactions
of the American Mathematical Society, vol. 82, pp. 421–439, 1956.

[40] P. Lions and B. Mercier, “Splitting algorithms for the sum of two
nonlinear operators,” SIAM Journal on Numerical Analysis, vol. 16,
no. 6, pp. 964–979, 1979.

[41] R. Glowinski and A. Marroco, “Sur l’approximation, par elements finis
d’ordre un, et la resolution, par penalisation-dualite d’une classe de
problemes de Dirichlet non lineaires,” Revue francaise d’automatique,
informatique, recherche operationnelle. Analyse numerique, vol. 9,
no. R2, pp. 41–76, 1975.

[42] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Computers and
Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976.

[43] J. Eckstein and M. Fukushima, “Some Reformulations and Applications
of the Alternating Direction Method of Multipliers,” Large Scale Opti-
mization: State of the Art, pp. 119–138, 1993.

[44] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” In Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[45] L. Bregman, “The relaxation method of finding the common point of
convex sets and its application to the solution of problems in convex
programming,” USSR Computational Mathematics and Mathematical
Physics, vol. 7, no. 3, pp. 200–217, 1967.

[46] V. Berinde, “Picard iteration converges faster than Mann iteration for a
class of quasi-contractive operators,” Fixed Point Theory and Applica-
tions, vol. 2004, no. 2, pp. 97–105, 2004.

[47] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous
distributed optimizationusing a randomized alternating direction method
of multipliers,” 52nd IEEE Conference on Decision and Control, pp.
3671–3676, 2013, firenze, Italy.

http://arxiv.org/abs/1512.08370
http://arxiv.org/abs/2102.12989

12

[48] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithmand application to distributedasynchronous optimization,”
IEEE Trans. on Automatic Control, vol. 61, no. 10, pp. 2947–2957,
October 2016.

[49] S. O. Jordan, T. W. Sherson, and R. Heusdens, “Convergence of
Stochastic PDMM,” in ICASSP, 2023.

[50] J. Jacod and P. Protter, Probability Essentials, 2nd ed. Springer, 2004.
[51] J. Dall and M. Christensen, “Random geometric graphs,” Phys. Rev. E,

vol. 66, p. 016121, Jul 2002.
[52] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.

	Introduction
	Related work
	Main contribution
	Organisation of the paper

	Background
	Notations and functional properties
	Monotone operators and operator splitting

	Problem Setting
	Operater splitting of the lifted dual function
	Equality and inequality constraints
	Node constraints
	Relation with ADMM

	Convergence of (in)equality-constraint PDMM
	Stochastic coordinate descent
	Asynchronous IEQ-PDMM
	IEQ-PDMM with transmission failures

	Numerical experiments
	Primal convergence guarantees
	Target localisation
	Comparison with existing algorithms

	Conclusions
	References

