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The Application of Optimal Linear Regulator
Theory to a Problem in Water Pollution

C. BYRON WINN AND JOHN B. MOORE

Abstract—At present, many metropolitan sewer systems do not meet

existing and proposed standards on water pollution. Existing systems were
designed to overflow at prescribed locations in order to protect the sewage

treatment plants whenever severe overload conditions exist (usually during

storms). This discharge of untreated overflows into natural receiving
waters is of growing concern to water pollution control authorities. The

model considered in this paper is representative of the combined storm–

sewer systems in cities such as MinneapoliK3t. Paul, Minn., Seattle,
Wash., and San Francisco, Calif. The objective is to utilize the total

storage capacity available in the system in such a manner as to minimize

the water pollution resulting from overflows at individual points within
the system. In addition, it is required that no abrupt changes in control be

admitted, as this is likely to lead to undesirable surges.
The nonlinear model is shown to fit within the framework of an optimal

regulator problem with derivative constraints. The optimal feedback
control law is derived and compared with the optimal bang-bang con-

troller. The solution technique tha~is presented may be applied to many

combined storm–sewer systems in which the flows through the systems to

the treatment plants may be controlled. It may be used by city engineers
to determine necessary modifications to existing systems in order to meet

the new standards regarding water pollution.

I. INTRODUCTION

AMAJOR PROBLEM presently existing in many urban
areas is that of water pollution caused by direct over-

flow from combined storm–sewer systems to natural re-
ceiving waters. Combined storm–sewer systems are sewer

systems in which both sanitary waste and storm runoff are
handled simultaneously, The original design of such systems

was such that not all of the storm runoff could be carried

in addition to the normal sanitary flow. The excess flow was
diverted to receiving waters at numerous points throughout

the system. It was considered that the stormwater was clean
and would sufficiently dilute the sanitary waste so that

there would be no pollution problems associated with the
direct discharge of the excess flow into receiving waters.

The practice in the past has been to increase the number
of overflow locations as the total load on the system has

increased due to growth in the urban area. This principle
may have been appropriate when the total sewer overflow

and the overflow locations did not contribute seriously to
water pollution. Recent studies [1] have shown, however,
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that the storm runoff itself may be heavily polluted,
especially during the early phases of runoff when it picks up
pollutants from the surface. Also, as the urban areas ex-

panded and more of the surface area within a drainage

basin was covered by construction, the frequency of occur-
rence of overflows has increased. In addition, due to a
decrease in the percentage of permeable ground cover that
results from urban expansion, the magnitude of the over-
flows has tended to increase.

As a result of more stringent water quality standards,

and also due to the fact that there are 1329 municipal
jurisdictions with combined storm-sewer systems affecting
36 million people in the United States [2], there are many
studies being conducted at present to determine methods of
minimizing the effect of pollution from the overflows them-

selves. Methods proposed for reducing the effects of the
overflows include screening/dissolved air flotation and
microscreening; these appear to reduce pollutant concentra-

tions [3], [4]. In addition, separation of storm and sanitary

sewers has been considered, but this is very expensive [5]
and still does not consider the problem of pollution from

stormwater runoff. Reduction of overflows themselves may
be accomplished by modification of the hydrology of the
watershed basin, by improving the design and maintenance
of the regulator structures, or through utilizing the entire

storage capacity of the sewer system. By installing flow-
control devices within the system, it is possible to store more

of the inflows (sanitary waters plus stormwater) until they
can be routed through the normal treatment facilities. This
has been accomplished in Minneapolis–St. Paul, Minn.,
and significant reductions in overflows have been demon-
strated [5]. Use of in-system storage is also planned for
Seattle, Wash., San Francisco, Calif., Chicago, 111., and
Detroit, Mich. The method usually employed in these

systems is to equip each regulator–outfall station with
automatic controls which use water conditions at the station
as control references. It is still essentially a single-unit

control strategy, with the control at each overflow point
being determined by conditions at that point and not neces-

sarily by conditions at all other control points in the system.
The problem of minimizing the effects of pollution from

overflows as well as minimizing the overflows themselves
has been considered in [6], and the results have been applied
to a representative situation in [7]. In these papers it was
considered that overflows from different control points

within a system would have different polluting effects on

the receiving waters. Therefore, the problem that was con-

sidered was to find the control strategy that would minimize
the weighted sum of overflows from all control points
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Fig. 1. Physical system.

within a system. The necessary conditions of optimal con-

trol theory were utilized to determine the form of the
optimal control for systems with up to and including three
control points. This has potential importance for large-scale
systems because the data handling and computational re-
quirements for large-scale systems may be so great that it
would be advantageous to share the control task among

several local controllers, with each group of controllers
acting in an optimal manner.

Although it may be possible to extend these results to

systems with many control points, the results may not be

practical in that the optimal control strategy was determined
to be bang-bang. The effects of rapid changes in the control
variables in a hydrological system may not be tolerable due

to undesirable surges.
This paper presents a suboptimal control strategy that

may be applied to a system with an arbitrary number of

control points and that avoids the problem associated with
rapid changes in control variables. The optimal control
problem for the nonlinear system is transformed to a linear

regulator problem for which the solution is well known,

II. PROBLEMFORMULATION

A pictorial representation of a watershed basin is shown
in Fig. 1. The system consists of the six subcatchment areas

with runoff from the subcatchments feeding into the system
at the three points numbered 10, 12, and 13 on Fig. 1. The

combined storm–sewer system has the four conduits shown.
Three of the conduits have control points (numbered 1, 2,

and 3 on the figure) at which flow may be stored or diverted

to the receiving waters. The backwater storage locations
may be interpreted as reservoirs where the dimensions of
each reservoir are determined by the dimensions of the
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Fig, 2. Control program analog of physical system.

conduit directly upstream from each control point. This
three-reservoir analogy is shown on Fig. 2. The flow through
the system is controlled by the orifice dpenings and the
overflows are controlled by variable-height weirs. The ob-
jective function selected on which to determine the control
logic was to minimize the weighted overflows from the

system. If the different weighting factors are chosen on the

basis of pollutant concentrations within the systems, com-
bined with a knowledge of the receiving waters, then the

overall effect on the receiving waters may be minimized.

For example, overflow from a control point in a subcatch-
ment located in an industrial region with high traffic density
may contain a higher percentage of pollutants than that
from a residential section.

The functions Fl(t), F2(t), and F3(t) represent the inflows

to the sewer systems (corresponding to points 10, 12, and
13 on Fig. 1). The variables VI, Vz, and V3 represent the

overflows to be diverted to the receiving waters, while

ql, qz, and qs represent the outflow volumes through the
controllable area orifices. The flows over the variable-height

weirs are governed by

Vi = cwLhi3/2

where q,{ is an empirical coefficient and hi represents the

depth of flow over weir i. The flows through the orifices are
governed by

gi = C~i~i2(di)1/2

where CO,is an empirical coefficient, ri is the radius of the
opening, and di is the depth of water above the center line

of the orifice. The depth di is governed by

~, = Fi – co,ri2(di)112 – cwihi312
L ●

Ai(di)

where A i(di) is an area–depth relationship determined by

the dimensions of the conduit immediately upstream of the
control point.

The objective is to determine ri(t),hi(t) to minimize the
functional

J= H )“ ~ zicwihi3/2(t) dt
1

i=l,,

where Zi represents the weighting factor, tf represents the
final time, which may be specified (the predicted duration
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Fig. 3. Computed optimal control.

of a storm, for example) or may be arbitrary, and to
represents the initial time. In addition to satisfying the state

equations, the following state and control variable inequality
constraints must be satisfied:

lli(/?i – di) <0 (1)

this states that the depth of flow over the weir cannot be
less than zero nor greater than the depth of water in the

reservoir;

ri(ri – Ri) < 0 (2)

this states that the orifice radius cannot be negative nor
exceed a specified maximum value;

di(di — Di) < 0 (3)

this provides that the depth of water above the control
point cannot be negative nor greater than some preset
maximum value. In addition to the above constraints, it

may be necessary to include a flow constraint that provides

that flow rates downstream of a control point (or control

points) cannot exceed maximum limits. For example, a
constraint of the form

CjZ+~3– Q<0

may be included.
The usual necessary conditions may be used to determine

the optimal control strategy and the resulting overflows for
given inputs Fi(t). The form of the optimal control is

presented in [6] and the particular control for a repre-

sentative system is shown in [7] and presented here in

Fig. 3 for convenience. The orifice and weir controls ex-
perience rapid changes which would lead to undesirable

surges in a real system and which are not reflected in the
relatively simple mathematical model used in this analysis.
In addition, it would be quite acornp]ex and time-consuming
task to determine the optimal control for a system with a
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large number of control points, The following transforma-

tion from the nonlinear model to a linear regulator problem

circumvents these difficulties.

111, REGULATORMODEL

By considering a modified cost function and by making

some standard transformations, the nonlinear optimal

control problem may be restated as a linear regulator

problem,
In the differential equation for the depth presented earlier,

the area–depth relationship may be assumed linear in many
cases [7]. Considering the state variables to be the depth of
water at a control point and the flow through the orifice at
each control point, the state equations take the form

‘idi = +, {Fi(t) – coiri2J’~ – c~illj3/2}

On making~h~t~~~~~~~ation

d.2~i=+-

the state equations may be written as

ji =

gi =

where

‘i(f) – + ~o,ri2(.Yj)l’4 – + c,,,ihi31=

1 1

Zo,ri2(yi)1/4

Fi(t) = : ?., = C0,(2)”4.
1

One obvious suggestion is to define rz and 11312as the

controls, in which case the state equations are nonlinear.
An alternative suggestion is to define the control com-
ponents in terms of fluid flows as follows. Define the control
components by

C,”,(hipz
Ui =2

ki

?o,ri2( yi)l’4
ui+j~ =

ki

where N represents the number of control points in the

system. Then the state equations assume the form

jj = Fj – 1/; – I-lj+,.y

(ji = h’iUi+,v

which represents a dynamical system in the form

.? = Fx + CL(

where the system matrix is identically zero and the inputs
~i represent disturbances. It should now be clear why the

alternative formulation of the control components is a good
one. Once optimal control trajectories ui* and U,*+,Vare
determined, the optimal values of the adjustable parameters
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ki* and ri* are recoverable as follows:

[1kiui* 213hi* . _
Cwi

[1kiu~wN 112
ri* =

?~,yi *1/4 “

Notice that ri* is expressed as a function of the optimal state

trajectory ~i*. Since this state variable is readily measured
in such a system, no real difficulty is presented.

A cost function that represents the original cost function
but that also penalizes rapid changes in control variables
maybe defined as

J=
J

“ {xTQx + UTRU + tiTSri} dt
to

where XT = {yTq’} and Q and S may be selected accord-

ing to how much of a penalty is desired with respect to

depth or rate of change of control. The R matrix represents

the relative weighting factors applied to overflows from
the different control points.

This problem with derivative constraints may be re-
written as a standard regulator problem by means of the

transformations [8]

xl T = {x’ u’} til=ti R1=S

[1FG

‘1=0 o “=M Q’=[:
The system dynamics are now given by

i, = Flxl + Gliil, Xl(to) given

and the cost function is

J=
J

“ {XITQIX1 + r21TR1t71}dt.
f.

The problem is now stated as a standard regulator

o1o“

problem
for which the solution is well known. The optimal control
may be easily determined [8] (assuming, of course, various

controllability and observability conditions). In fact, pro-
vided that GTG is positive definite, the optimal control may

be defined in terms of proportional-plus-integral state feed-

back as shown on Fig. 4. The gains are computed in terms
of solutions to the Riccati equation

–P = PF1 + FITP– PGIR1-l GITP+ Q,, P(T, T) = O.

Denoting F = lim,+~ P(t, T), and partitioning P as

the optimal control is given in the form [8]

J

t
u(t) = K3Tx(t) + KITx(t) dt + U(to) – K3~x(to)

10

where
K1’ = _S-~~ T

12

K2T = –s-~~ 22

K3T = K2T(GTG)- lGT.

+

+
~ j,:w

Fig. 4. Proportional-plus-integral state feedback control strategy.
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We stress again that in this section we have formulated

a plant model and performance index so that linear optimal

control results are relevant. From one point of view it is

surprising that nonlinear state equations with a non-

quadratic index can be so manipulated, but when one thinks
in terms of fluid flows rather than weir heights and orifice
radii, it is not so surprising that the problem formulation

simplifies.

IV. SAMPLE CASES

The regulator formulation has been applied to the three-
reservoir model presented in [7]. Before examining this

problem, consider, for simplicity, the single-reservoir model
represented by Fig. 5. The form of the optimal bang-bang

control was presented in [6] and is shown for a particular

example in Fig. 6. The differential equation for depth is

d = F(t) – cor24; – cwh312

where A(d) has been taken as unity, as this is meant for
illustrative purposes only. The control is
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where

u~ = cwh3’2 u2 = cor’~j.

The cost function is

J=
J

‘f {u’Ru + ziTSti + XTQX} dt
f.

where

X=d R = [ml] s = [ct2] Q = [a,].

The state equation is

i= Fx+Gu

where

F = [0] G = [–1].

The optimal control is

J

r
u = U(to) – K3x(to) + K3x(t) + K4x(t) dt

f.
where

K3 = ~U1/C12 + 2U3 K4 = U3.

The results are presented in Fig. 6. The shape of the response
can be adjusted by adjusting the coefficients Ui.

The three-reservoir problem shown in Fig. 2 may be

described by

~ = F1(~) + co2r224Z - co,r,2JZ - cw11z1312
1

Al(d, )

~ = F2(t) – co2r22J~ – cw,1h2312
2

A2(d2)

d, =
F3(t) - co3r32JZ - C.,,113312

A3(d3)

91 = Co,rl 2J~

92 = cozy’ ‘J~

q3 = co,r32J~.

The inputs Fi(t) have been determined for this case by
means of a rainfall–runoff simulation program in which a
simulated rainstorm is moved across the drainage basin
(Fig. 1) and the corresponding runoff from the subcatch-
ments is calculated and fed into the sewer system. On
making the transformations presented earlier and using a

linear area-depth relationship, the equations may be written
as

where

F = [0] G=

i= Fx+Gu

–1 o o–l lo-
0–10 0–10
0 o–lo 0 –1
000/2100

Ooook, o

oooook3
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Fig. 7. Weir control for three-reservoir system.

The solution to the Riccati equation has been obtained by

the method presented in [9] and the solution for the weir
control is presented in Fig. 7. The limiting solution of the
Riccati equation has been used; this is considered satis-
factory due to the relative times involved in reaching the
limiting solution and the flow in the physical system. This

suboptimal control strategy results in a slightly greater
spillage than that obtained through use of the optimal
bang-bang controller, but part of this spillage is due to a

tendency on the part of the regulator to spill regardless of
the magnitude of the disturbance. This could be corrected
in an operational environment by the inclusion of a dead-

band. Also, the weighting matrices have been selected by

trial and error and have not been optimized. It is a straight-
forward parameter optimization problem to adjust the
coefficients in the weighting matrices to minimize the cost
function and still satisfy the constraints. The weighting
matrices may also be considered to be time varying, so that
high-intensity or long-duration storms may be handled

differently from those with low intensity or short duration.
There exists the possibility of selecting parameters which
would lead to an oscillatory solution. Since negative depth
is not meaningful, this would necessarily have to be ex-

amined for any given system in order to determine an
admissible range of values for the coefficients in the weight-

ing matrices.

V. CONCLUSIONS

The problem of reducing pollution from combined
storm–sewer systems has been presented as a standard
regulator problem for which the optimal solution may be
readily obtained. The solution is obtained as a feedback
control law and has the advantage over previously deter-

mined control strategies that involved a prediction of the

disturbances. This formulation has assumed no time delay

between control points in the system and has also assumed
no backflow. Hence, this would necessarily have to be

modified for systems in which those factors would have to

be taken into account. The time delay may be readily taken
into account by using a discrete time model, so this would
present no great difficulty. The approach would remain the
same with the appropriate modifications appearing in the
model. It is recognized that the model presented here is not
precise, but it is expected that through adjustment of the

model parameters it could be made representative of many

given systems.
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