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Computers are increasingly being used in a number of



decision making situations. As it seems reasonable to



expect human and computer to eventually have overlapping



abilities, adaptive allocation of responsibility may be the
 


best mode of human-computer interaction. To give the human



a coherent role in the system, it is suggested that the



computer serve as a backup decision maker, accepting



responsibility when human workload becomes excessive and



relinquishing responsibility when workload becomes



acceptable.



A queueing theory formulation of multi-task decision



making is used to develop a procedure for determining when



the computer should be assigned decision making



responsibility. A threshold policy for turning computer



on/off according to the weighted number of events present in



the system is proposed. This policy minimizes event waiting



cost subject to human workload constraints.
 




An experimental representation of a computer aided



multi-task flight management situation had been developed.



A computer aiding program was implemented. An experiment



was conducted with a balanced design of several subject runs



for different task demand levels. This was achieved using



three levels of subsystem event arrival rates, three levels



of control involvement, and three levels of availability of



computer aiding. All experimental variables were shown to



be significant in affecting most performance measures. It



was seen that the computer aiding had enhanced subsystem



performance as well as subjective ratings, and that the



adaptive aiding policy further reduced subsystem delay.



Experimental results compared quite favorably with



those from a computer simulation which employed an



(M/Ek/2) (PRP/K/K) queueing model. The queueing model



appears to be adequate to represent the multi-task decision



making situation, and to be capable of predicting the system



performance such as delay time and server occupancy. This



simple measure of server occupancy was found to highly



correlate with the subjective effort ratings. Thus, the



model has the potential for predicting human workload in



multi-task situations.
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1. INTRODUCTION



Computers are increasingly being used in a number of



decision-making situations, especially when several tasks



have to be performed at the same time by a human decision



maker (DM). Commercial aircraft can now, in many



situations, be flown solely using computer as pilot.



Industrial process can be monitored and controlled by



computers. Such fast and intelligent computers can provide



sound, well-evaluated decisions which may reduce system



risk, human workload and errors.



On this frontier, the human has to interact with



computers which are capable of processing and routing



information, exerting control actions, and making choices in



view of priority conflicts. The important issue arises of



exactly what roles the human and computer decision makers



should play as systems become increasingly automated.



The potentials for active, flexible interaction between



human and computer have only recently been addressed [Rouse,



1-977], [Steeb, et al., 1975]. A central issue concerns



allocation of decision making responsibility between human



and computer. As it seems reasonable to expect human and



computer to eventually have overlapping abilities, adaptive



allocation of responsibility may be the best mode of



human-computer interaction. With adaptive allocation,
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responsibility at any particular instant will go to the



decision maker most able at that moment to perform the task.



Such a procedure for allocation would improve the



utilization of system resources and thereby improve system



performance. The emphasis of this thesis is the development



of a method of adaptively allocating decision making



responsibility and also, the modeling of human decision



making in computer-aided multi-task situations.



1.1 Multi-Task Situations
 


Technology has produced a variety of machines and tools



for the human to use. Higher levels of automation have



continuously been introduced to further reduce the human's



involvement in complex systems such as industrial process
 


control, high performance aircraft, etc. During normal



operation of these systems, monitoring the automated



processes and, perhaps occasional adjustment or corrective



actions, comprise a major part of the task requirements.



Less frequent and more involved are situations when



malfunctions arise and either backup/restart procedures or



diagnosis/problem-solving processes have to be performed.



Before total automation becomes socially, economically and



technically feasible, these tasks are likely to be left to



the human and to become a major part of his overall task.



His role is therefore becoming more of a supervisor rather



than of a direct controller.
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Because the performance and functional demands on the



system are so great, it appears that the need for human in



the system, supervising and managing the operation, hag not



diminished. Further, his task is likely to become



progressively more demanding, due to increased complexitty,



increased risk, and the need for more accuracy and faster



response. A flight management situation to be discussed in



the latter part of this thesis is an obvious example, based



on projected levels of aircraft density and all-weather



flight requirements [Wempe, 1974].



As another example, industrial process control



traditionally allows slower response time and lower



operating skills compared to flight management. However, it



is getting more complicated,. For economic reasons, the



operator in an industrial plant is usually given the



supervison of a large section of the total plant or of



numerous processes. Consequently, the operator "performs a



multitude of tasks in a time-varying pattern, with periods



of relatively calm and other ones with frenzied activities"



[Rijnsdorp and Rouse, 1977].



More specifically, a modern central control room may be
 


equipped with dozens or hundreds of computerized



CRT-displays serving as a main interface between the



processes and human operator. Information such as current



values or historical process data as well as alerting or
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emergency signals which are triggered when certain variables



approach critical boundaries are presented to the human



operator.



1.2 Human Decision Making



Within multi-task situations in general, it appears



that an appropriate assumption is that the human has a



rather narrow-band information channel capacity and if



several tasks each require a substantial amount of



processing capacity then the human must handle them



sequentially. Furthermore, the human must devote some



fraction of his total capacity to keeping track of the total



parallel operation. This characterization of the human



suggests an analogy between the human and a general-purpose



time sharing processor.



Thus, the operator in the monitoring task can be



described as in a situation where he observe one indicator



at a time and progressively attends to the various



indicators. A psychological stimulus-response formulation



is inadequate to account for human decision making in this



multi-task situation. Instead, it can be viewed as a



combination of active rational information selection,



manipulation, and evaluation of outputs. While the pure



scanning of displays is a more or less constant fraction



(approximately 0.2 seconds) of total worktime [Rijnsdorp and
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Rouse, 1977], the operator may have consciously and



unconsciously performed functions that include activities



such as pattern recognition, prediction, induction and



deduction, etc. Those skills are by nature more difficult



to perform and also, for our purpose, to model. However, a



well-organized task scenario as well as a structured



information presentation seems to reduce this difficulty.



Senders [1964] and Smallwood [1967] have modeled human



decision making in multiple process monitoring. Senders



employed an information theory approach to determine how



often and how long the human should sample. Smallwood



proposed that the operator forms an internal model of the



processes, and based on this model he directs his attention



to the process with highest probability of exceeding



threshold. Carbonell [1966] and Senders and Posner [1976]



have proposed queueing theory approaches which relate to the



multi-task formulation espoused in this thesis. These



authors emphasize the monitoring of the displays, rather



than perception of the displayed values and the subsequent



actions of the operator.'



Greenstein and Rouse [1978] propose that human decision



making be modeled in terms of event detection and attention



allocation. Discriminant analysis is employed to model



human event detection by generating the probabilities of
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event occurrence as functions of features of the displayed



signals. Sheridan and Tulga [1978] have modeled human



attention allocation using a dynamic programming approach to



determine the action sequence which maximizes the operator's



earnings. These models, which emphasize the operator's task



performance, may find usage in modeling coordinated



human-computer decision making systems.



Rouse [1977] has addressed the issue of human-computer



interaction in a multi-task situation closely related to



this thesis. Queueing theory is suggested as an approach to



the allocation of decision making responsibility between



human and computer. The decision makers are assumed to



generate, based on the displayed information, the



probability that events have occurred in the tasks and the



probability estimates of event arrival and action times.



They then choose their actions so as to minimize an



appropriate cost criterion. The simplicity in the structure



of this model lends itself to flexible implementation within



a variety of multi-task situations.



1.3 Workload Considerations



An important research and design issue is the



correlation between human performance and workload perceived



in terms of the effort expended. The workload idea employed
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here is derived from the concept of fraction of capacity and



time-allocation. Methods that are generally used to measure



this workload include: 1) secondary task performance, 2)



physiological signals, and 3) subjective effort ratings.



For our purpose, it is reasonable to assume that,



between boring and 
 fatiguing, there is an acceptable



workload range for the human in decision making tasks. The



capacity of human information processing and decision making



is seen to have an upper limit. Due to the requirement that



a certain level of activity of the human decision maker



should be maintained to avoid vigilance problems and loss of



concentration during task execution, this capacity is also



limited on the lower side as well [Pasmooij, et al., 1976].



While unexpcted task demands occasionally push the human



toward the upper limit (i.e., high workload), the general



trend of lowering task requirements to the mere monitoring



state has furthered the possibility that the lower limit be



passed. Further, wide variations of workload within the



duration of a task has become one undesirable side effect of



automation. 
 I 

This raises the question of how to allocate decision



making responsibility so as to maintain 
 human workload



within an acceptable range during task execution. For the



purpose of flexible allocation with respect to this
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criterion, it is essential to have a workload measure that



can both predict human performance and respond to changes in



task demand instantaneously. A general formulation of this



problem will later be discussed.



1.4 Man-Computer Interaction



The human decision maker can be described as having



limited mental capabilities constrained by limited memory,



inconsistent performance, and motivational factors. He,



however, has remarkable perceptual capabilities [Gregory,



1966], and the flexibility to respond to unusual and



unexpected situations. In general, the human's performance



is slow, sloppy, but intelligent [James and Partridge,



1972]. He is sensitive to workload and is subject to



several kinds of errors. The computer is characterized as



fast, rigorous but rather stupid [James and Partridge,



1972].. It occasionally has hardware or software reliability



problems and has limited intelligence. It appears that the



members of the man-computer team have complementary talent.



The interaction of man;and computer is without question



a complex phenomenon. As a straightforward approach, one



might allocate a fixed portion of the set of the tasks to



the computer with the remainder of the set being allocated



to the human. Heralding a man-computer symbiosis, Licklider



[1960] has proposed guidelines for task allocation. In this
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symbiotic partnership, the human will set the goals,



formulate the hypotheses, determine the criteria, and



evaluate the results. The computer will do the routinizable



work such as transform the data, simulate the mechanism and



models, and implemented the results for the human decision



maker.



The division of tasks is not as clear-cut, however, for



decision making tasks that include computerized decision



aiding systems. The rules of thumb suggested by Licklider



are that man will handle the very-low-probability



situations, and fill in the gaps in the problem solution 
 or



in the computer program; while the computer may serve as



statistical inference, decision theory., or 
 game theory



machine, to perform elementary evaluation, diagnosis, and



pattern recognition as a second role. 
 This is the domain of



the tasks for which human and computer decision makers have



overlapping responsibility.



In fact, one human factors consideration in system



design may 
 be to first give the human a more coherent role



(in terms of his workload, confidence, acceptance, etc). He



may have to be allocated some functions which he performs at



a level inferior to that of the computer. On the other



hand, the computer's ability to perform intelligently



appears to be evolving rather rapidly [Firschein, 1974] and
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an aiding program can be designed to both learn from the



human and adapt to the human. Therefore, the domain of



overlapping tasks seems to widen, and the allocation of



responsibility in this domain seems to become a major issue



of man-computer interaction.



An important issue related to the allocation of



responsibility is man-computer communication. At the



man-machine communication level, discussions of design of



displays and input devices have been given by several



authors and are summarized by Rouse [1975]. The problems of



higher level communication between decision makers, such as



letting human and computer know what each other is doing,



without involving substantial extra workload, needs more
 


research. It is comparatively easy, on one hand, for the



computer to tell the human what it is doing. Some type of



indicators visible to the human during normal scanning,



could inform the human of the computer's actions and



confidence in its performance, etc. On the other hand,



real-time human-to-computer communication presents more



difficulties. Approaches such as natural language



processing [Martin, 1973], physiological EEG measures



[Pinneo, 1975], and statistical model matching [Enstrom and



Rouse, 1977], seem to extract sound features which can be



used to characterize the human's decision making activities.





II 

1.5 Adaptive Allocation



Given that the communication channels between human and



computer have been established and that the status of



decision makers and the system states could be estimated, it



would then be possible to dynamically allocate functions.



There are three main reasons for adaptive allocation:



1. 	 Increased utilization of system resources. From



queueing systems analysis, we know that a multiple



server system where servers can move freely among



queues results in much less customer waiting than



would occur if servers were strictly assigned to



particular queues. Thus if human and computer both



are allocated full responsibility for the overlapping



tasks, the events will be serviced more promptly.



2. 	 More flexibility to cope with computer malfunctions.



The possibility of the computer encountering either a



hardware failure or an event whose decision making



requirements exceed its abilities can never 
 be



overestimated. The sum of the probabilities of these



low-probability local events may dften be much too



high to neglect. It would seem reasonable that the



human should be allocated at least monitoring



responsibility for all tasks. 
 On the other hand, if



tasks are strictly allocated, the human would not
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know or attend to those operations under the



computer's supervision until abnormal situations



developed and placed still higher demands on the



human to explore and control the subsystems. It is



generally recognized that this is an inferior



position for the human decision maker to the one



where he would be if he had interacted with the



subsystem activities. An adaptive policy offers the



human more flexibility to cope with malfunction



situations, and also gives grounds for training the



learning machine-based decision program if



applicable.



3. 	 The human's role in the system can be substantially



benefited. Since the human has potential



responsibility on all tasks, he must have a



perception for all tasks, and must retain the



capability to override the computer's decisions when



priority conflicts arise. Furthermore, in view of



maintaining the human's workload, the idea of using



the computer as back-up decision maker seems to be



plausible and will be discussed in detail later. The



adaptive policy could assure the human a coherent



role in that the above considerations were taken into



account.
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While the adaptive policy is proposed to achieve the



goal of allocating tasks to the decision maker most able to



perform the task, the mechanism of allocation should be



organized in such a way as to 
 ensure human acceptance and



minimum extra workload. Manual allocation control by the



human at each decision epoch, either by physically



allocating the task or by a threshold device set by himself,



requires the human's 
 continuous attention. This requires



him to continously evaluate the system, the computer, and



himself. Such a requirement might generate more workload



than is acceptable. Therefore, if possible, the allocation



decision should be automated, and delegated to a



computerized coordinator. An algorithm has been developed



to perform this role and will be discussed in the next



chapter.
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2. APPROACHES



2.1 Theoretical Background



In the last chapter, it was proposed that the



allocation of decision making responsibility be adaptive to



the status of decision makers and the system states. While



the details of a solution to this problem will depend on the



specific task scenario, this chapter considers a rather



general, context-independent formulation of dynamic



allocation in multi-task situations with somewhat concise



system dynamics and clear decision goals. Reviewed in the



next section are the stochastic decision and control



approaches, which are suitable for describing fine-grained



dynamic decision processes and are finding increasing



application in modeling complex decision making situations.



2.1.1 Stochastic decision and control approaches



Since the uncertainties present in the system under



consideration can be conveniently represented as stochastic



processes and the two decision makers (i.e., human and



computer) as two controllers with appropriate cost



functions, it appears that a stochastic control formulation



is plausible. The overall system can then be represented as



a two-level hierarchical control structure composed of local



decision making units (the human and the DM computer) and a
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supremal unit (the coordinator). A coordination theory has



been developed by Mesarovic and his colleagues [1970], which



employed supremal intervention in the local decision making



units to achieve an agreement of system objectives. While



an iterative procedure of coordination for on-line



steady-state hierarchical system control has been developed



by Findeisen and his colleagues [1978], the coordination



scheme for dynamic systems needs further investigation.



If the hierarchical structure is disregarded and the



competing process is emphasized, a game theoretic approach



seems appropriate. A nonzero-sum two-person cooperative



game problem arises when the human and the computer each



have to decide how to allocate his attention based on a



given level of on-line information exchanged. One



difficulty associated with the use of differential game



theory in the man-computer decision situation is that no



clear-cut procedure exists for splitting an overall index of



performance into distinct cost functionals for each DM.



In addition, the man and computer are, in general, in a



dynamic decision team, in which the information obtained by



one DM is also affected by what the other DM has done. For



simplicity, we can reasonably assume that either there is



perfect communication or that the system allows for one step



communication delay which enables the reduction of a dynamic





problem to a static one [Ho and Chu, 1971]. Under these



assumptions, it appears that we may model human and computer



decision making behavior separately (a decentralized



structure of information and control) while seeking the same



goal (centralized structural optimization).



In each of the local decision making units, the problem



is to develop a policy for performing experiments (i.e.,



monitoring) and then allocating action resources on the



basis of the outcome such that a performance index is



optimal. One important issue is that optimal stochastic



control requires the solution of stochastic dynamic



programming equations which are infinite dimensional. An



approximation solution in this case has been proposed by



Bar-Shalom, Larson, and Grossberg [1974].



Another issue is that the separation principle does not



hold for two controllers with different information sets



[Chong and Athans, 1971]. Aoki and Toda [1975] consider a



two-level hierarchical decision with decentralized



information system and suggest a certainty equivalence



control which gives a suboptimal decision algorithm with



learning (Bayesian estimates). Both approaches require too



much computation to be implemented in an on-line real-time



multi-task environment with reasonable implementation cost.
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A more realistic representation of the



supervisor-regulator-subsystem decision unit is given by



Forestier and Varaiya [1978] employing a two-layer feedback



control of Markov subsystem process. At the lower layer a



regulator continuously monitors the subsystem. Whenthe



state of the subsystem reaches extreme or boundary values,



the supervisor at the higher layer intervenes to reset the



regulator. The study showed that while the supervisor



needed to intervene only at reset instants, the structure



would require the supervisor to obtain complete knowledge of



the lower layer transition probabilities and costs. Further



study is required to determine an applicable adaptive



control policy based on this structure.



Hsuan and Shaw [1976] and Sworder and Kazangey [19721



consider quadratic linear stochastic random jump process



within control and dynamic repair situations. If we want to



penalize deviations of task states from some desired values,



then we might formulate the criterion so as to allow for the



use of their results. On the other hand, if our main



interest is to minimize the average delay of servicing



events or to appropriately allocate workload, then a



queueing theory approach seems appropriate.
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2.1.2 Queueing theory approaches



When the time expenditure in the various decision tasks



is of major concern, the multi-task decision making system



may be considered as a queueing system with two servers



(human and computer) and K classes of customers. Thus, we



have simplified the problem of allocating decision making



responsibility to be one of determining who serves a



particular customer or, equivalently, which server the



arriving customer should be directed to.



In a system similar to our multi-task situation,



Carbonell [1966,1968] presents a queueing model of



many-instrument visual sampling. The model is based on the



concept of the different instruments competing for the



attention of the human. At each sampling instant the



decision as to what instrument to look at is based on the



combined effect of both the probability and the cost of



exceeding the threshold. This model has been validated for



human visual sampling. A queueing model of the human



decision maker that emphasizes the important aspects of



multi-task decision making noted in earlier discussions has



been developed by Walden and Rouse [1977].



Man [1973], and Hsuan and Shaw [1976] have separately



presented the stochastic optimal strategies for arrival rate



regulated and service rate controlled systems with time
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varying input traffic demand. A set of continuous time



state-space differential equations is derived, the maximal



principle is applied, and a two point boundary value problem



is obtained. Due to the formidable complexity in



computation, the author suggests that a bang-bang fixed



threshold policy would be an acceptable suboptimal solution.



Using a queueing system framework, the technique of



Markov decision processes has been applied by many



researchers to solve the queueing control problem. We will



first present results for optimal control of queues. A more



thorough review of literature with emphasis on the dynamic



control of queues using service variables, arrival



variables, and priority disciplines is given by Chu [1976].



Heyman [1968] considers the problem of controlling a



queueing system with Poisson arrivals, general service time



distribution and single server (M/G/l) by turning the



service mechanism on when a customer arrives or 
 off when a



customer leaves. He shows that the optimal stationary



policy which minimizes linear average or discounted cost



over an infinite horizon has a simple critical number



characterization: (M,m). This 
(M,m) policy is to provide



no service if the system size N (i.e., number of customers



in the queue) is m or less, and to turn the server on when



the size N is greater than M (referred to later as the
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N-policy). The cost incurred includes waiting cost, running



cost, and switching cost. This result is quite similar to



those obtained from inventory control theory.



Bell [1971,1973] extends the result to an M/G/Il



nonpreemptive priority queue and proves the existence of an



optimal average cost policy of the (a,b,c) type for two



priority classes. This optimal policy is never to turn the



server off or to turn the server off only when the system is



empty and to turn the server on the first time that



a n1 + b n2 > c, where n1 and n2 are the number of class 
 

customers and class 2 customers in the system. For the



general K priority classes, the optimal control actions are



simply characterized by the (K-l)-dimensional hyperplane of



the form: a1n1 + a2n2 +...+ aKnK = c. This result will be



utilized in the later discussion.



Balachandran [1973] has considered the same on-off



policy with control measures determined by the unfinished



work D in the system (hence the approach requires that the



service time be known for customers in the system). This



D-policy ,is later proven by Balachandran [19751 to be



superior to the usual N-policy.



Shaw [1972,1976] presents results for optimal



assignment of servers or rejection (detour) of customers on'



the basis of the arriving customer's waiting time W in



1 
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queue. He shows 
 that the optimal customer diversion to



minimize total delay to accepted and detoured customers is



of the control limit form for the M/G/Il case. While the



number in the queue in an N-policy is easier to measure than



waiting time, it is useful to know what performance could be



achieved by this W-policy if a greater amount of information



is available.



To employ the N-, D-, or W-policies, an idle server



must constantly monitor the queue for an arrival. 
 When this



situation cannot occur, Heyman [1977] proposes the T-policy



where the server scans the queue T time units after the end



of the last busy period to determine if customers are



present. He shows that under the optimal T-policy, the



corresponding N-policy is optimal. He also proves that the



optimal N-policy is always better than the optimal T-policy,



which seems intuitively to be correct.



Concerning the value of information and preemption, one



may 
 expect to do a better job if one has better information



about the likely processing time of a job or if one is



allowed to preempt a job which is in process. Schrage



[1975] surveys the analytical results in scheduling under



uncertainty. He concludes that the optimal nonpreemptive



sequencing strategy for a linear cost criterion is 
 to employ



the first come first serve (FCFS) disciplines under no
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information situations and to employ the shortest processing



time first (SPT) disciplines under full or partial



information. In the preemptive disciplines, the shortest



remaining processing time first (SRPT) disciplines are 

employed in substitution for the SPT for the system to be 

optimal. 

On the priority assignment among K tasks, a useful



result is given by Cox and Smith [1960] based on the service



rate [4 k and the waiting cost ck for an M/G/l system: of all



the nonpreemptive work-conserving stationary policies, the



head-of-the-line discipline with priority assigned to the



class k customer with higher MkCk product is that which



minimizes the average waiting cost. However, this simple



solution does not hold for a system with a finite queue. As



shown by Mova and Ponomorenko [1974], the optimal priority



assignment depends on the time-varying system configuration
 


(i.e., specific pattern of the waiting line).



For systems with known parameters, there are well-known



methods for dynamic priority assignment. The standard



procedure is to set up the probability equation (Markov



process, stationary regime), to apply the necessary



condition for the principle of optimality and then to solve



either a linear programming or a dynamic programming problem



[Mova and Ponomarenko, 1974, Nazarov, 1976].
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However, if there are unknown parameters such as the



arrival rates or service rates, the necessity arises of



considering adaptive systems both neutral (i.e., anticipated



future information is of no value) as well as with 4dual



control (i.e., anticipated future information requires



simultaneous solution of the control and estimation



problems). Nazarov and Terpugov [19761 propose a variant of



the Bayesian approach for finding an adaptive control on an



unknown parameter with given prior distribution. Assuming



that there exists the possibility of obtaining additional



information through experimentation to supplement prior



judgement, Bagchi and Cunningham [1972] show how a



statistical decision theory approach may be gainfully



applied to handle the uncertainty of parameters pertaining



to the optimal design of queueing systems.



The above literature considered queueing systems with



independent identically distributed arrivals. In most real



situations, however, the inputs are correlated. Gopinath



and Morrison [1977] presented the analysis of single server



queues with inputs represented as a sum of moving averages.



The analysis of the situations where events arrival are



correlated deserves further effort.
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Summarizing the literature, there is certainly an



appreciation for the complexity involved in the stochastic



control approach as well as the Markov decision approach for



representing multi-task decision making situations. No



results have been found concerning the control of queues of



two servers, and of finite waiting places. In fact, the



multi-task decision making situation discussed here is much



more complex than any results available in the literature.



There are, however, several useful suggestions: the



threshold policies probably are acceptable suboptimal



solutions; the better information the better control; the



optimal priority assignment of tasks could deviate from a



static one such as the 1c solution; and further adaption to



unknown parameters can make the system less vulnerable to



uncertainty.



2.2 The Proposed Approach



In view of the complex task situations under



consideration, it appears both natural and appealing that



the system lends itself to a two-level hierarchical



structure with the top level coordination between human and



computer being our main concern. Considering a task domain



where the computer is employed as back-up decision maker,



the problem is further simplified by assuming that the
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coordinator has all the information needed and that both DM



have a common, centralized system goal. Then the simplified



coordination problem, to be first investigated here, becomes



one of self-organizing on the part of computer DM: jWhen



should the computer request and relinquish responsibility?



For the low-level decision making within a multi-task



situation, the human DM is assumed to appropriately allocate



his attention and effort among the tasks. He is assumed to



employ a quasi-optimal decision making strategy for scanning



displays and allocating attention. This is based on the



assumptions that the tasks are independent and that events



either unequivocally or progressively present themselves.



The human DM scans the task display in order of decreasing



priority at a given rate. He then performs the first task



for which he perceives some action-evoking events. The



computer is assumed to adopt the same strategy either by



being hard-wired or learning from the human DM. More



specifically, the basic description of a multi-task decision



making situation is as follows:



1. 	 The multi-task situation can be classified as K



independent tasks characterized by a set of state



vectors, Xkf k l,2, ... ,K.
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2. 	 The prior statistics for the observations of system



state are given (for example, - the joint 

distributions of the presence of events, 

interarrival times, and action times etc.). 

3. 	 The DM scans the task display in order of decreasing



priority at a given rate. He then performs the



first task for which he perceives some



action-evoking events.



4. 	 The performance index (cost function) is given as an



average waiting cost, weighted according to the



importance of each task.



5. 	 The DM has given probabilities of making false



alarms, missed events, and incorrect actions, which
 


may depend on other situation parameters such as the



overall arrival rate.



A simulation of this basic multi-task situation is



discussed by Rouse [1977]. Poisson arrivals and exponential



service distributions were assumed. Two results are



important to note. First, the false alarms were more



detrimental to performance than the missed events. Second,



the average delay increased quickly as probability of



conflict increased. The degree that human and computer know
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about each other's action was shown to be important. Using



the multi-task context descr'ibed, we now want to consider



the question of when the computer should request and



relinquish responsibility for a portion of the tasks.



2.2.1 The optimal adaptive policy



We will consider the design of an adaptive computer



decision making system for the multi-task situation



discussed earlier. Assuming there are K processes, at epoch



i process k can be characterized by a state vector xk(i),



k=l,2, ...,K, while the decision maker j is characterized by



his observation of the state,



j
z = (zl, z3 2' "' z 'K), 
his perception of event occurrence, 

pJ(.Iz j ) = p3(el, e2, ... , eKI ), 

his perception of event interarrival time,



fJ(.Iz j ) = fJ(tel, te2, ... teK Z] 

and his perception of event service time,



gJ(.Iz j ) = gJ(ts , ts2, -... tS YZ). 

Combining the above information and the system performance



criterion allows the decision makers to determine their



strategies [Rouse, 19771.



It is impossible to give a universal performance



criterion. In terms of a stationary expected cost



structure, a convenient measure seems to include waiting
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cost, service cost, and switching cost. By assigning



relative waiting cost rates and minimizing the average



waiting cost, one can take into account delay as well as



relative risks.



While one might regard the cost of temporarily



diminished capacity of the CPU as the cost for switching on



the computer, we will assume it to be negligible. Thus, the



optimal policy seems to be to have the computer on all the



time. However, even without explicit costs, the possibility



of server errors such as false alarms and incorrect actions
 


as well as degradation of service rate will yield effective



costs and thereby may lead to non-trivial solutions. This



allows the use of a modest and analytically appealing



formulation for expected cost such as



E[C] = E[ clw 1 + c2w 2 
+ ... + CKWK 1, 

where E[.] denotes the expected value, wk and ck are the



delay and the cost per unit delay time of service to process



k.



Human workload as it affects performance degradation



(e.g. decrease in service rate or increase in service



error) is an important issue. Considerable human factors



engineering has been aimed at reducing workload to avoid an



overloaded condition. But there is evidence of vigilance
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and warm-up decrement on sustained manual operation, and



issues of new workload measurement methods are under



investigation [Verplank, 1977; Moray, 1978]. If there is



an optimal workload that sustains performance on long tasks,



we may want to seek a policy for computer aiding such that



an optimal workload is achieved.



Thus, we have two performance criteria and, it is quite



likely that the optimal workload solution does not coincide



with the minimum waiting time solution and one must trade 

between these two criteria. One way to avoid this 

difficulty is to assume that human performance degradation 

can be represented by the increase in his chance of making



errors or perhaps a decrease in his service rate. Thus, we



assume a functional relationship between error probabilities



and/or service rate and workload. By appending this



functional constraint to the minimum waiting time



formulation in a way similar to the method of Lagrange



multiplier, the policy is then forced to take the human



workload into consideration [Chu, 1977]. Another



alternative is simply to assume a workload interval which is



acceptable for a specific task, and to minimize the average



waiting time subject to this workload contraint.
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Also, it may be found that the relationship between



false alarms and human workload is not strong enough tp



dictate giving a higher workload to the human purely on the



basis of waiting time. In this case, if workload is the



primary consideration, then the computer's threshold should



adapt to the subsystem arrival rate since it is the primary



cause of changes in workload.



In view of the above theoretical background and the 

complex task situations, we will advocate the use of the 

stationary expected cost optimal policy for computer on-off 

of the following form: turn the computer on at arrival 

epoch when N = c1n1 + c2 n2 + ... + cKn K > M and turn it off 

when N < m, where M, m, cI , c2, ....cK are non-negative



constants and nk= 0 indicates that there is no event in



process k, while nk=l indicates that there is an event. The



ck are chosen according to the relative priorities of



events. Bell's results f1973] imply that the ck here



happpen to be the same as the assigned constant cost rates



ck for single server, two priority process situation. This



choice of N-policy (which depends on the number of customers



present) is based on the ease with which it can be measured,



its responsiveness to the variation of arrival rate and



service rate and the fact that considerable literature



suggests this measure.
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The optimal threshold policy (i.e., M and m) thus



obtained should vary as the system variables vary. The



sources of variation include: 1) traffic demand (arrival



rates), 2) server performance and task complexity (task



involvement, service rates and probabilities of error), .3)



system and performance uncertainties (unidentified



parameters). An approach to implementing the adaptive



optimal policy is to set up a table of stationary control



policies off-lLne and to implement a table look-up along



with on-line identification and estimation of system



variables. In the next two sections, we will discuss two



approaches for obtaining optimal stationary policies.



2.2.2 Determination of the optimal thresholds
 


The control policy to be discussed is to turn the



computer on at arrival epochs, if the total number N of
 


events in the system is greater than or equal to M and to



turn the computer off, at completion epochs of computer



service, when N is smaller than or equal to i. Assume an



(M/M/2) queue with general priority discipline, finite K



waiting1places, and finite population K: (GD/K/K). In such



a case, the k-process cannot go 'down' more than once at the


K 

same time and thus, the total arrival rate is X = 2 XK, when 

nk=0-for all k. An analytical approach is to write the 

steady-state balance equations [White, Schmidt, and Bennett, 
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1975] for given M and m. The steady state probability



vector which characterizes system state is given by



= [p n 2 ' KiJI] 

where nk=l indicates a k-event in the system; i=0, or j=0


indicates idleness, and i=l or j=l indicates business for


the appropriate server. The sequence nl. . .nK can take on 2
K


unique patterns of is and Os. The state equations can be 

written, using the rate in equals rate out approach, in the 

following form (details are shown in. Appendix I)



A p= b, 

+ 2
where A is a 2 K+2x 2K+2 matrix and b is a 2K vector which



is determined with the state-dependent arrival rates and



service rates given. For a simple six process, no server



error problem, the solution of state probabilities requires



an inversion of a 256x256 matrix.



With the state probabilities defined, we can calculate



operating characteristics such as the average waiting time W



and server utilization Di' P." After delqting all



unreachable states for an (M,m) policy, the matrix dimension



can be reduced to an order of 2N+2M-1. However, if we are



to further allow for two types of server errors (namely, the



false alarm for i,j=2, and the incorrect action for i,j=3),



we will find that the matrix to be inverted is of order
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9(2N-l)+3(2M)-l. Then a modest six process, M=6 problem



requires inversion of a 758x758 matrix.



The difficulty of the matrix inversion could probably



be eliminated by taking advantage of the matrix being fa'rly



sparse [Duff, 1977]. However, a more important difficulty



arises when unequal costs of delay (among processes) is



considered. This requires that we determine the particular



patterns of n1n2 ..nK that will exceed that threshold. One



then must rewrite the balance equations for each set of



patterns.



Thus, while an analytical solution to optimal control



of the (M/M/2):(GD/K/K) queue is possible, it is



unreasonably cumbersome for the situations which we wish to



consider.



2.2.3 Simulation approaches



Because of the complexity of the analytical solution, a



simulation approach may be adopted to determine the optimal



stationary policy. A FORTRAN simulation program based on



one discussed by Rouse [1977] was developed for the



computer-aided situations. Using an activity scanning



approach to simulate an (M/G/2):(GD/K/K) queue, the program



maintained separate process mechanisms for each individual
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task, including false alarms for each decision maker. Among



the assumptions of the program were fixed priorities among



the tasks and constant probabilities for incorrect actions



and missed events for each decision maker, although further



generalizations are not too difficult. Preemption of the



high priority tasks over low priority ones and override of



the human over computer were also possible.



There were three classes of input variables in the



simulation. The first class included process arrival rates,



service rates, and waiting cost rates for subsystem



processes. The second class of variables were those



specific to the decision makers: the probabilities of



incorrect actions and missed events, the false alarm arrival



rates and service rates, scan times, task switching times,



and computer on-off switching times, etc. The third class



of variables included the control limits, M and m. The



simulation output supplied statistics for the operational



characteristics of interest such as delay time, server



occupancy etc. (Program structure is shown in Appendix II.)



Program validity was tested by comparing the resulting



average waiting time (for the cases of equal costs of delay,



single and double server without error) with that obtained



from an analytical solution for an (M/M/c): (GD/K/K) queue





35 

[White, Schmidt, and Bennett, 1975]. For all the cases



tested, the hypothesis that the two sets of solutions have



the same mean waiting time was not rejected at the 5%



significance level.
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3. FLIGHT MANAGEMENT AS AN EXAMPLE



3.1 Flight Management



As aircraft become more complicated and greater demands
 


and better performance are being required of the pilot, the



development of automated airborne systems to share the tasks



of piloting an airplane becomes increasing attractive.



Advances in electronics and computer technology have made



this approach both feasible and promising. Progress in



sophisticated cockpit design and growth in avionic computer



systems reflect the trend.



As an example, McDonnell Douglas has introduced a



digital flight guidance system and category 3A autolanding



system with 50 foot decision height in the DC-9 Super 80 to



reduce pilot workload [Smith, 1978]. Included in the system



are Sperry dual digital computers to control autopilot,



flight directors, speed control, and autothrottles. The



French Air's A-300 all weather autolanding system is another



example which is capable of performing category 3B takeoff



and landings on a daily basis [Ropelewski, 1978]. The



system allows takeoff with runway visibility as low as 330



feet and a 25 foot decision height landing with 400 foot



RVR.
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The automated navigation system of British Airways



employs a Control and Display Unit (CDU) supplemented with



an Electronic Automatic Chart System (EACS) to interface the



pilot and the navigation computer [ARMA, 1977]. The CDU is



used to insert navigation information from the pilot into



the computer store, and to annunciate system status and



malfunctions, whereas the EACS generates a cockpit map



display which provides a presentation of aircraft position



and heading moving against a background map showing



appropriate navigation data. Then the pilot is allowed to



plan flight paths by inserting waypoints, editing a route,



or changing marker points.



The airborne traffic situation display system developed



by Connelly [1977] presents an integrated traffic, map and



weather information to allow the pilot a greater degree of



participation in the air traffic control process. Connelly



also predicts that the key element in post-1985 period is



the development of a modularly expandable avionic device



that can provide navigation, collision avoidance and



communication functions.



Equipped with autopilot and subsystem computers



performing automatic navigation, guidance, energy



calculations, flight planning, information display, etc.,



the next-generation of aircraft are quite likely to be
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capable of carrying out all phases of flight automatically.



However, the human pilot is likely to remain a part of the



system to cope with unpredicted or failure situations for



which automation may be economically or politically



infeasible. The pilot's roll then is changing from one of



controller to one of supervisor and manager, responsible for



monitoring, planning and decision making.



The pilot as the airborne system manager has



responsibility to monitor the aircraft subsystems such as



navigation, guidance, etc. as well as the autopilot and to



detect possible hardware failures and potential hazards. He



must constantly respond to action-evoking events such as:



to communicate information, to change aircraft configuration



and to reduce 4-D accuracy errors. He is also required to



respond to unexpected events such as a change in flight



plan, to establish the backup mode, and to declare



emergencies, etc. [Wempe, 1974]. The pilot is in a



multi-task situation.



If the pilot perceives an irregularity in one of the



subsystems, he may seek more detailed information through



either the on-board information system or actual sensor



readings. Or, if he considers the irregularity to be minor,



he may decide to continue his monitoring for higher priority
 


events. There may also be autopilot malfunctions or sudden
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changes requiring the pilot to take charge of flight



control. A proper representation of information through 
 a



flight map display indicating the continuous functioning of



automatic control may help to ensure his remaining alert and



responding quickly.



As described above, the automated system can normally



take charge of the whole system except during critical



situations such as when the system is suffering from a



malfunction. Or a high-workload situation may develop when



the aircraft is close to the ground and a high level of



pilot activity is required. In all of these situations, the



pilot is more 
 than usually busy and further assistance of a



computer would be most useful.



The recent development of fast and intelligent computer



systems presents the potential for providing sound,



well-evaluated airborne decisions which could reduce 
 system



risk, pilot workload and errors. While the computer as a



decision maker is basically an implemented set of



algorithms, adaptation and learning is possible. It is



reasonable to expect that this evolving "intelligent"



computer may be employed as the supervisor to the subsystem



computers, taking charge of the tasks 
 within its decision



capability. 
 The pilot and the computer thus have comparable



abilities and overlapping responsibilities in performing



these tasks.
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.3-.2- -An Ex-per-tment-a-l -Situation



Two experiments are to be discussed here. A brief



review is given of an experiment previously reported by



Walden and Rouse [1977] investigating pilot decision making



in an unaided situation. The second experiment, considering



the computer aiding and autopilot malfunction situations,



employs basically an outgrowth of the experimental



representation used in the previous experiment.



The experimental situation developed earlier [Rouse,



Chu, and Walden, 1976] used a PDP-11 driven CRT graphic



system to represent a cockpit-like display to an 

experimental subject. (The experimental apparatus and 

simulation software used are described in Appendix III.) The 

display shown in Figure 3-1 included standard aircraft



instruments such as artificial horizon, altimeter, heading



and airspeed indicators. Also displayed was a flight map



which indicated the airplane's position relative to the



course to be followed. A small circle moved along the



mapped course indicating the position the aircraft should



have for it to be on schedule.
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Figure 3-1. The fliqht manageMent situation. 
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In the manual control mode, the pilot controlled the 

pitch and roll of Boeing 707 aircraft dynamics with a 

joystick. (The aircraft dynamics was taken from Blakelock 

[1965] and is described in Appendix IV.) Another control 

stick regulated the airspeed. The pilot's control task was



to fly the airplane along the mapped route while maintaining



a fixed altitude and stable pitch and roll attitude.



Below the map were the subsystem dials that represented



the numerous aircraft subsystems which the pilot monitored



for possible action-evoking events. Upon detecting an event



(represented by the pointer pointing downward as shown for



the engine subsystem in Figure 3-1) to which he wished to



respond, the subject selected that subsystem via a 4x3



keyboard. The display shown in Figure 3-2 then appeared.



This represented the first level of a check list-like tree



associated with the subsystem of interest. He then searched



for a branch labeled with a zero and selected the branch



with his keyboard. After completing the last level of the



tree, the action was completed and the display shown in



Figure 3-1 returned, with the subsystem information or



diagnostic check complete.



The subsystem events were scheduled to arrive according



to a prescribed Poisson distribution. Events of different



subsystems arrived independently with fixed priority. The
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subjects were advised to place a high priority on the



control tasks than on subsystem tasks; and within subsystem



tasks, priority decreased from left to right. For example,



the navigation subsystem was the most important while the



cabin temperature subsystem was the least.



Using the experimental situation, an experiment was



performed by Walden to study unaided pilot decision making



strategies and the resulting performance. The two



independent variables in the experiment were the



inter-arrival time of subsystem events and the difficulty of



the flight path. The results showed that, while average



waiting time increased with subsystem event arrival rate,



the average service time appeared to be independent of



subsystem arrival rate. The waiting time was also shown to



increase as the control task was added. This effect was



only a function of the mere presence of the control task,



rather than the control task difficulty. Incorrect actions



in servicing subsystems tended to increase with subsystem



arrival rate, but showed no consistent variation with



control task difficulty. False alarms, however, tended to



occur more frequently with the easier control task and lower



subsystem arrival rate. This presented evidence of



performance degradation under low workload situations.
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The data collected was used in the queueing model of



pilot decision making in an unaided monitoring and control



situation. The model gave a reasonable prediction of pilot



performance in performing subsystem tasks, suggesting that



it was an adequate description of pilot decision making in



the given situation and that a similar model would be useful



in the adaptive aiding system.



Based on the experimental representation discussed



above, a new experimental situation for adaptive aiding was



developed with the aiding program (i.e., the computer



decision maker) and the coordinator program (i.e., the



on-off algorithm) added to the original system. Issues



concerning the capability of the computer to perform the



subsystem tasks, the communication linkage between the pilot



and the computer, and the activities of the coordinator



deserve further discussion.



The computer is assumed to be able to perform



monitoring and diagnostic check procedures using information



from channels linked with subsystem computers and from the



data links. it makes no errors such as false alarms, missed



events, or incorrect actions after it gains confidence in



performing the task. The detection and service times are



assumed constant. As for the service discipline among the



subsystems, the computer employs the same priority rule as





h6


that used by the pilot. To be consistent in its back-up



role, the computer adapts itself to the pilot and avoids



interference with him. To this end, the pilot is allowed to



override any decision the computer has made.



Without knowing what each other is doing, the pilot and



the computer may compete for the same task or resource. The



prospect of conflict between the two is highly undesirable,



since, it simply causes confusion and also results in higher



workload and degraded performance. The question as to how



to design effective communication links without increasing



the pilot's workload becomes important.



To inform the pilot of the computer's action, a 

succinctly displayed computer status indicator on or near 

the subsystem displays would seem to be -satisfactory. 

Relevant information, if needed by the pilot for further



details, may be structured into the hierarchical check-list



procedure. In the experimental situation shown in Figure



3-3, The 'NAV'symbol over the navigation dial flashed if



the computer decided (when the threshold was exceeded) that



an event had occurred and was waiting to be serviced in the



navigation system. The purpose of this indicator was to



inform the pilot that he could take charge of the navigation



system and the computer would take some other responsibility



to avoid interference; otherwise, the symbol would continue
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Figure 3-3. 	 Display when the computer is servicing


navigation system.
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to flash for a total period of four seconds until the



computer started interacting with the navigation system,



resulting in a dim indicator showing in the navigation dial.



If the pilot was in the middle of performing some other



subsystem check procedure, say within the engine system, he



would not see the flashing 'NAV' symbol over the navigation



dial. The status of the computer was then shown on the



lower right hand corner of the CRT by an 'AIDING NAy' symbol



(flashing during the interval of possible pilot preemption),



if the computer was awaiting preemption or interacting with



the navigation subsystem. This computer status area was.
 


blank if the computer was not actively involved in the



subsystems.



Airborne pilot-to-computer communication is, in



general, more complicated. Problems involved include



estimating and processing signals as well as matching or



recognizing system states. For the purpose of the



experiment reported here, however, the communication channel



from the pilot to subsystems was narrowly defined. For our



experimental situation, these included the keyboard input



and stick response sampling (through an A/D converter).



These channels provided the monitoring computer a way of



determining if the pilot was interacting with any portion of



the system. If a number had been received through the



keyboard, and the checklist was being processed then the
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pilot had to be performing a subsystem task. The deviation



of stick from normal position revealed that the pilot was



performing the control task.



While the computer had to constantly check the, pilot's



actions to avoid conflicts, the coordinatordhad to



synchronously check the subsystem states to determine if



there was any system change. The decision epoch was when an



event arrival or departure occurred. Then the coordinator



calculated both the weighted sum of events and the



threshold. The criterion discussed earlier was used to



determine if the computer was to be turned on at the arrival



epoch or to be turned off at completion epoch.



Data, sampled synchronously (twice per second),



included subsystem status and states, autopilot status,



aircraft dynamic variables, stick and keyboard responses,



computer status and the threshold values.
 


3.3 Formulation of the Flight Management Situation



We have proposed that responsibilities not be strictly



assigned to each decision maker. Instead, allocation should



adapt to the state of the aircraft and the state of the



pilot [Chu and Rouse, 1977]. Further, to retain a coherent



role, the pilot should be given overall responsibility for



the whole aircraft while the computer would enable the pilot
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to avoid having to continually exercise all of these



responsibilities. On one hand, it may not be. appropri-ate



for the computer to make the vital, final judgement where



losses may extend beyond the point of recovery. On the



other hand, there may be vigilance problems and the pilot's



performance may degrade. This leads to the idea of



utilizing the computer as a backup for the pilot. The



allocation problem becomes one of deciding when the computer



should request and relinquish responsibility.
 


Given these descriptions, we will explore several



issues concerned with pilot decision making in



computer-aided flight management situati'ons. Is system



performance enhanced by computer aiding? How effective are



different aiding policies? How does the pilot feel about



aiding? Is his role or performance affected? To



investigate the feasibility of the approach, and to predict



the effects of numerous system variables and aiding



policies, a queueing formulation of multi-task decision



making with two servers (the pilot and the computer) and K+l



classes of customers (K subsystem events plus control events



represented by displayed 4-D errors in manual control mode)



was developed.





To obtain the stationary policy (i.e., to determine the



values of M and m) suitable for the experimental situation,



a computer simulation was performed. Poisson arrivals and



Erlang service time distributions for subsystems were



assumed. The K subsystem tasks were preempted by the



control task whenever it occurred. The system was



represented as a preemptive resume priority queueing system:



(M/Ek/2):(PRP/K/K) with implemented threshold control.



A simple case was considered in which the model



parameters were determined in the following manner.



1) Subsystem arrival rates, service rates, and waiting 
 cost



rates were all uniform among the subsystems. Furthermore,



=
cI c2 = ... = cK = 1 was used. 2) Two levels of arrival



rates were assumed, i.e., low arrival (at 0.0167 events per



second per subsystem) and high arrival (at 0.0333 events per



second per subsystem). 3) Pilot performance in terms of



service rates, service errors and control services were



obtained from the experiment discussed in the next section.



4) The computer aiding employed the same service rates as



the pilot and automatically went off when no event needed



service (i.e., m=0).



The results based on the computer simulation of 10,000



events for K=6 and desired server occupancy for the pilot of



P = 0.7 showed that, without control task, M=7 for low
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arrival and 3 for high arrival; with control task, M=3 for



low and 1 for high arrival. This choice of 0.7 as the



desired server occupancy is based on the observation of



simple queueing systems where a higher value of occupancy



will result in a steep rise in queue length and wide



fluctuations in traffic flow.



The values obtained above are the threshold values 

which the computer should employ to adapt to both the 

subsystem arrival rate and the control task involvement to 

minimize expected subsystem waiting time subject to the 

desired occupancy level. For systems with different values 

of X, X, A, or p etc., the appropriate threshold values are 

likely to be different from those listed above. These 

values could be determined using the computer simulation



with the parameters modified appropriately.



Prediction of system performance by the model was also



obtained through the computer simulation. The results will



be discussed in a later section.



3.4 Experimental Design



An experiment based on the representation described



above was conducted. First, four subjects, all very



knowledgeable of the system, were used in a preliminary



experiment. Another eight trained subjects, all of them
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male students in engineering, then participated in a



balanced sequence of sixteen experimental runs (see Table



3-1) with different workload levels. This was achieved by



combining three levels of control task involvement (perfect



autopilot, manual control, autopilot with ,possible



malfunctions), three levels of subsystem event arrival rates



(no arrival, low arrival, high arrival), and three levels of



availability of computer aiding (no aiding, aiding with



fixed switching policy, and aiding with adaptive policy).



For each experimental run, the subject was first told the



specific tasks to perform, then a 14-minute trial was given,



and a questionare (in the form that is shown in Appendix V)



was filled out by the subject.



For the experimental runs with perfect autopilot, only



the subsystem task was considered. An "autopilot" kept the



aircraft on course and on schedule. These runs served as



baseline performance for the subsystem task. In the manual



control runs, the subject had to perform both subsystem and



control task. He was told that the control task was more



importantithan the subsystem task. For the runs where



autopilot maufunctions were possible, the autopilot was



available during most of the experiment such that the



subject was not required to fly the airplane except to



occasionally check autopilot performance. As soon as he



detected an autopilot malfunction, which was characterized





Subject I 
 
5 
 

(training) 
 

low arrival 
 
with aiding 
 

Autopilot 	 low arrival 
 
without 	 without aiding 
 
Malfunction



high arrival 
 
with aiding 
 

high arrival 
 
without aiding 
 

(training) 
 

no arrival 
 

low arrival 
 
with aiding


Manual



Control 	 low arrival 
 
without aiding 
 

high arrival 
 
with aiding 
 

high arrival 
 
without aiding 
 

(training) 
 

no arrival 
 

low arrival 
 
witn aiding 
 

low arrival 
 
without aiding


Autoptlot 
with high arrival, 
 
Malfunction with aiding 
 

high arrival 
 
without aiding 
 

low arrival 
 
adaptive aid 
 

high arrival 
 
adaptive aid 
 

Subject 	 2 
 
6 
 

(training) 
 

low arrival 
 
without aiding 
 

low arrival 
 
witn aiding 
 

high arrival 
 
without aiding 
 

high arrival 
 
with aiding 
 

(training) 
 

no arrival 
 

low arrival 
 
without aiding 
 

low arrival 
 
with aiding 
 

nigh arrival 
 
without aiding 
 

high arrival 
 
with aiding 
 

(training) 
 

no arrival 
 

low arrival 
 
witnout aiding 
 

low arrival 
 
witn aiding 
 

high arrival 
 
without aiding 
 

high arrival 
 
witn aiding 
 

low arrival 
 
adaptive aid 
 

high arrival 
 
adaptive aid 
 

Subject 3 
 
7 
 

(training) 
 

high arrival 
 
with aiding 
 

high arrival 
 
without aiding 
 

low arrival 
 
with aiding 
 

low arrival 
 
without aiding 
 

(training) 
 

no arrival 
 

high arrival 
 
with aiding 
 

high arrival 
 
without aiding 
 

low arrival 
 
with aiding 
 

low arrival 
 
without aiding 
 

(training) 
 

no arrival 
 

high arrival 
 
with aiding 
 

high arrival 
 
without aiding 
 

low arrival 
 
with aiding 
 

low arrival 
 
without 	 aiding 
 

high arrival 
 
adaptive aid 
 

low arrival 
 
adaptive ad 
 

Subject 	 4


8



(training)



high arrival


without aiding



high arrival


with aiding



low arrival


without aiding



low arrival


with aiding
 


(training)



no arrival



nigh arrival


without 	 aiding



high arrival


with aiding



low arrival


without aiding



low arrival


with aiding



(training)



no arrival



high arrival


without aiding
 


high arrival


with aiding
 


low arrival


without aiding



low arrival
 

with aiding
 


high arrival
 

adaptive aid



low arrival


adaptive ad



Table 3-1. Design of experiment. 

ORGINAL pAGE IS 

nwhTTY 
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by the airplane deviating from the mapped course at a 
 rate



of one degree per second, he was required to take over the



flight control task, and fly the airplane back to the mapped



course. In this case, the airplane would lock on the



desired course as soon as it flew within a slowly-expanding



circle around the on-schedule circle, and the autopilot mode



was restored. The autopilot malfunction happened relatively



infrequently, based on a Poisson distribution with mean



inter-arrival time of 160 seconds.



After the pilot detected the autopilot malfunction, he



had to devote a major portion of his attention to the



control task, leaving subsystem tasks less attended and



thus, risk and uncertainties grew as subsystem event



detection and service were further delayed. This is one 
 of
 

many situations in which airborne computer aiding is 
 more



valuable. Also, in this period, the pilot's workload



suddenly increased. To adapt to this type of change, a



lower threshold value can be used to reduce subsystem



service delay and pilot workload.



Based on this idea, two experiment runs with adaptive



computer aiding were included in the set of 
runs with



autopilot malfunctions possible. Instead of using M=3 all­


the time as in the fixed threshold policy, the adaptive



policy used M=l whenever the pilot was in manual mode. In
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total, there were seven experimental runs with autopilot



malfunction: one run with no subsystem arrival (serving as



a baseline performance for malfunctions), two runs with no



aiding, two with fixed-threshold aiding, and two with



adaptive aiding. This arrangement allowed for the



evaluation for the effectiveness of computer aiding and



further the benefit of the adaptive policy beyond that of



fixed aiding.



Three or more, depending on the task situation, of the



following performance measures were evaluated in every



experimental run:



1. 	 average delay in response and service for subsystem


events,



2. 	 subsystem service errors (e.g., false alarms,


incorrect actions, etc.),



3. 	 4-D RMS and average flight course errors (distance,


schedule, and altitude errors),



4. 	 flight control inputs including aileron, elevator,


speed, etc.,



5. 	 detection and service times for autopilot


malfunctions,



6., 	 server occupancy in terms of the fraction of time the


subject was performing either subsystem or control


tasks,



7. 	 subjective ratings of level of effort required for the


tasks and the desirability of computer aiding.





5? 

All these measures were obtained by analyzing the



sampled data. The subsystem event response time was



measured from the time of event occurrence to the time at



which an action was initiated. The service time was



measured from the time of last action initiation to the time



of action completion for the event. The waiting time was



measured from the time of event occurrence to the time of



action completion for the event. Waiting time is equal to



the sum of response time and service time- only when the



event is serviced by one server and no incorrect action



occurs. The empirical results along with the analyses of



variance are discussed in the next chapter.
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4. RESULTS



The results presented in this chapter include



experimental results obtained from the flight management



situation (section 4.1), the results from the simulation



program, and the comparison of the two sets of results



(section 4.2).



4.1 Experimental Results



The data sampled during the flight management



experiment was analyzed to obtain the seven objective



measures listed in the previous chapter. The subjective



ratings of the task situations based on the questionnaire



answered by the subjects during the experiment were also



obtained. For each of these measures, factors of



significance were determined using the analysis of variance



and the underlying trends of variation are investigated.



Finally, a correlation test was conducted between subjective



effort rating and the measured server occupancy.



4.1.1 Objective measures



An analysis of variance was conducted for each



performance measure. (ANOVA tables appear in Appendix VI.)



Effects were accepted as significant if p < 0.05. For the



mean subsystem waiting time averaged across the subjects
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(Figure 4-1), all three experimental variables (i.e., the



level of control involvement, the level of subsystem event



arrivals, and the level of availability of computer aiding)



produced statistically significant effects. The hypothesis



that the mean waiting times at the three levels of4 control



involvement (i.e., autopilot, manual, and autopilot



malfunction modes) are all equal was rejected. Similar



results were obtained for the two levels (low or high) of



subsystem arrival rates and the two levels (with or without)



of availability of computer aiding (Table VI-l). Thus, as



shown in Figure 4-1, the subsystem waiting time increased as



the subsystem arrival rate increased, as the control



involvement increased, and as the aiding availability



decreased. The interaction between control mode and aiding



type are also found to be significant (Table VI-l).



However, the effect was not substantial compared to the main



effects (Figure 4-1). A separate test showed that the



adaptive policy also produced significant improvement (Table



VI-2). The adaptive aiding further reduced the subsystem



waiting time beyond the fixed-threshold aiding, even though



the adaptive policy was only utilized during a small portion



of the total task time (i.e., only when there were



malfunctions).
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Figure 4-i. Average subsystem waiting time.
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The average subsystem service time, shown in Table 4-1,



appears to be independent of subsystem event arrival rate



and the availability of computer aiding. The measured



service time increased as control involvement increased, due



to the preemption of subsystem service by the control tasks.



It is reasonable here to assume that the subsystem service



time obtained in the autopilot mode may serve as the



baseline estimate of the service time the subjects had to



devote to the subsystems.



Service errors (false alarms and incorrect actions)



were counted. The false alarm arrival rates (Figure 4-2)



were then calculated as the inverse of the average 

inter-arrival time of false alarms (i.e., as the mean 

frequency of false alarms during the server idle period). 

The probabilities of incorrect actions (Figure 4-3) were



calculated as the ratio of the number of incorrect actions



to the total number of actions. Both false alarm arrival



rate and probability of incorrect action increased as



subsystem arrival rate increased. Thus, with the arrival



levels used in the experiment, higher subsystem arrival



caused a deviation of human workload from optimal in terms



of increased service errors. On the other hand, a lower



arrival level (of 0.0111 arrivals per second) used in the
 


previous experiment had shown that lower arrival rates would



also cuase a deviation from optimal workload. This evidence
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Subsystem service time



Arrival Aiding Mean Variace 
rate type, (sec.) (sec. 

Autopilot mode 
Low No aiding 5.56 0.49 

Low Aiding 5.60 0.58 

High No aiding 5.78 0.48 

High Aiding 5.74 0.59 

Manual mode 
Low No aiding 8.54 33.16 

Low Aiding 7.44 14.76 

High No aiding 7.59 18.68 

High Aiding 7.69 13.47 

Malfunction mode 
LOw No aiding 6.16 10.93 

Low Aiding 6.14 11.58 

Low Adaptive aiding 5.96 21.77 

High No aiding 6.27 19.87 

High Aiding 6.33 36.29 

High Adaptive aiding 5.86 13.76 

Table 4-1. Subsystem service time. 
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supports the notion of the existence of an acceptable



workload range for the human in decision making tasks.



The control task performance in terms of the mean and



RMS schedule errors, mean'and RMS altitude'errors, and mean



distance errors is shown in Table 4-2. To show the effect



of the experiment variables on control errors, the RMS



distance error is presented in Figure 4-4. The analysis of



the RMS distance error indicated that both the level of



control involvement (Tables VI-3 and VI-4) and the mere



presence of subsystem tasks (Table VI-5) significantly



affected the control error. No consistent variation in this



distance error was observed as the subsystem arrival rate or



aiding situation varied. The lower RMS distance error for



the autopilot malfunction mode probably resulted from the



subjects' more intense attention to the control task in the



case of autopilot malfunction.



The RMS values of roll and pitch angles across the



subjects were obtained and are shown in Figure 4-5 and 4-6.



Only control mode had a significant effect (Tables VI-6, -7,



-8) on the RMS roll angle. The subjects were observed to



control more frequently and to use more extreme control



actions to fulfill the malfunction task requirements than



when in the normal manual mode.
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Arrival Aiding Schedule error Alt-i-tute error - - Mean 
rate- ..- type- Mean EMS Mean RMS distance error 

(ft.) (ft.) (ft.) (ft.) (ft.)


Manual mode



No No aiding 1969 2405 854 3852 
 1523



Low No aiding 2677 3569 98 4059 2155



Low Aiding 2675 3216 1189 4758 2029



High No aiding 3580 4818 245 5794 1842



High Aiding 2832 3567 895 4298 1708



Malfunction mode



No No aiding 1079 1487 364 858 961



LOw No aiding 1647 2752 581 1736 1521



LOw Aiding 1431 2292 777 2391 1333



LoW Adaptive aiding 2265 3413 2905 6100 1844



High No aiding 1650 2455 1716 4916 1480



High Aiding 2548 3929 2022 5382 2023



High Adaptive aiding 1388 2017 550 1788 1255



Table 4-2. Control task performance.
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To illustrate typical control stick input samples,



Figure 4-7 plots the sampled a-il-eron stick input versus-time



for two experimental runs (one in the manual and one in the



autopilot malfunction mode). It can be seen that discrete



control actions were adopted by the subjects and the



intensity of control effort may be appropriately measured by



the frequency and duration of the control action. It



appears that a skillful subject would wait until some of the
 


observed errors (e.g., schedule/distance errors, altitude



error, etc.) exceeded certain thresholds and then a control



action was promptly initiated.



For the aileron control, the control duration (measured



as the period from initiation until release of the control



sticks) and arrival rate (measured as the inverse of average



stick idle time) were averaged across subjects and are shown



in Table 4-3. Elevator control by itself was more stable



and demanded less attention, and when it was employed to



adjust the altitude, it usually required a 'bang-off-bang'



type attention. It is thus assumed that a maximum of 1.5



seconds each was spent by the subjects in the beginning and



the end of the elevtor control. The combined aileron plus



elevator control durations and arrival times were then



calculated, and are listed in Table 4-3. These values



served as input to the simulation program to be discussed in



the next section. Again, the level of control involvement





Figure 4-7. Aileron control input inmanual mode (top) and 
in malfunction mode (bottom). 
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Arrival Aiding Aileron control Aileron+elevator control 
rate type Duration Arrival Duration Arrival 

(sec.) (sec.-) (sec.) (sec. 

Manual mode 

No No aiding 2.48 0.13 2.37 0.28 

Low No aiding 1.73 0.09 1.90 0.22 

Low Aiding 1.97 0.09 2.04 0.20 

High No aiding 2.02 0.08 2.10 0.16 

High Aiding 2.34 0.08 2.25 0.18 

Malfunction mode 

No No aiding 3.52 0.17 2.99 0.41 

LOw No aiding 3.00 0.15 2.69 0.32 

LOw Aiding 3.23 0.16 2.97 0.32 

LOw Adaptive aiding 3.65 0.15 3.32 0.28 

High No aiding 3.23 0.16 2.93 0.33 

High Aiding 3.27 0.14 2.97 0.28 

High Adaptive aiding 3.25 0.16 3.04 0.29 

Table 4-3. Mean duration and mean arrival rate of control actions.
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was significant. It appears that the subjects, in general,



employed longer and more frequent control action in



malfunction situations than in the normal manual mode and



also in the situations without subsystem tasks as compared



to those with subsystem tasks.



The server occupancies averaged across subjects in the



various task situations were calculated (using the control



parameters estimated earlier whenever the control task was



involved), and are presented in Figure 4-8. As expected,



all three experiment variables were significant in affecting



this measure (Table VI-9). The adaptive policy seems to



reduce the server occupancy further, however, the effect is



not significant (Table VI-10).



The service time and detection time for autopilot



malfunction were measured and are shown in Table 4-4. The



analysis showed that no consistent variation of these



measures with respect to the experimental variables was 

observed and no effect of statistical significance was 

obtained. 

4.1.2 Subjective ratings



Subject's ratings concerning the perceived level of



effort in performing the tasks, the effectiveness, and the



desirability of computer aiding, and the ease of interaction
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Arrival 
rate 

Aiding 
type 

Detection time 
Mean Variynce 
(sec.) (sec 

Service time 
Mean Vriance 
(sec.) (sec 

No No aiding 6.69 4.91 23.27 260.35 

Low No aiding 7.04 7.80 27.09 284.25 

Low Aiding 7.22 8.99 29.07 423 34 

Low Adaptive aiding 7.17 3.94 33.35 1240.48 

High No aiding 7.44 10.19 32.83 885.38 

High Aiding 8.43 11.14 36.16 1922.17 

High Adaptive aiding 6.95 5.72 29.27 578.89 

Table 4-4. Detection time and service time of autopilot malfunction.
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with the aiding were analyzed. Individual ratings for



d-i-fferent task situations were first converted to a



normalized scale, then these measures of variation among



tasks were averaged across the subjects. The resulting



effort ratings (Figure 4-9) were shown to be affected by all



the experiment variables, which included level of aiding



availability, level of control involvement, interaction of



aiding and level of control, and subsystem event arrival



rate (Table VI-12). The perceived level of effort increased



as control involvement increased, as subsystem arrival



increased, and as computer availability decreased. The



effect of adaptive computer aiding was not found to be



significant. This is probably because the adaptive aiding



used did not lead to a significantly lower overall server



occupancy, and also because the adaptive policy was employed



rather infrequently. Further, when it was being used, the



subjects usually were too involved with restoring the



autopilot to notice the fact that the computer was helping



more often than usual.



The subjective ratings of the various aspects of



computer aiding appear to vary less among the subjects than



those of effort ratings. The aiding was considered 'easy to



interact with' (Figure 4-10) and 'desirable' by the subjects



(Figure 4-11). Its effect on performance improvement was



perceived to be from 'slight' to 'large' (Figure 4-12).
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Among the factors of significance the subjects saw the



aiding to be relatively more effective and more desirable in



the situations of high arrival rates, and in the situations



with high control involvement (Tables VI-14, -15, -16,--17).



It is interesting to note that even though the subjects' did



not fully perceive the effectiveness of adaptive aiding



beyond a fixed-threshold aiding, they did confirm the



desirability of adaptive aiding. As far as the ease of



interaction is concerned, variations in the main effects did



not consistently affect subjects' perceptions of the ease



with which they could interact with the computer aiding.



There is, however, a strong interaction between the effects



of control mode and subsystem arrival rate in affecting this



measure. A possible reason is that, in the autopilot mode,



the higher subsystem arrival rate increased the likelihood



of the subjects's noticing the computer's request for 

possible preemption. While in the manual and malfunction 

modes, where the subjects were involved in the control 

tasks, they probably did not notice as much the computer 

requesting possible preemption. Thus, we can conjecture 

that the form of preemption designed into the system



discussed here may require more thought in terms of ease of



interaction.
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In general, based on the comments from the subjects, it



appears that all subjects were quite in favor of both the



aiding scheme used in the experimental situation and the 

general computer aiding idea. 

4.1.3 The correlation of subjective effort ratings and 

server occupancy



One particularly important issue in research into pilot



workload is the development of a technique for reliable



prediction of the effort the pilot exerts to meet



predetermined levels of input load [Smit, 1976]. Among the



common workload measures are physiological measurements,



task performance, and subjective ratings. In the multi-task



situation, the performance in terms of server occupancy



provides not only a direct measure of fraction of time the



pilot is busy but also an indirect estimate of the intensity



of attention that the tasks demand of the pilot. Thus, the



measure of server occupancy seems appropriate to serve as



pilot workload indicator in a multi-task flight management



situation.



While the measurement of server occupancy and its



relationship to average queue length and hence intensity of



demand is somewhat of a conjecture and deserves further



exploration, an accurate correlation of this measure to the



subjective effort rating may offer promise for this



approach. The empirical occupancy data is plotted versus





83



the subjective effort ratings in Figure 4-13. The 

correlation coefficient c was computed and found to be 

0.950. The hypothesis that the two measures are 

uncorrelated was also tested using a student-t test. It was 

rejected at 0.0025 level (t1 4 = 11.35). 

4.2 Simulation Results and Comparison



The simulation approach proposed in Chapter Two,



incorporated with the flight management specifications in



Chapter Three, provides a model representation reasonably



close to that of the flight management experiment. A



detailed program flow diagram is shown in Appendix VII.



Human false alarms, human control actions and autopilot



malfunctions were considered to be separate processes with



given arrival and service statistics and with appropriate



interactions with each other. Features of computer aiding
 


such as the preemption period were easily implemented. To



provide comparable results with those from the experiment,



the following ,parameters were specified for the program



using values corresponding to those in the experiment:



1. 	 subsystem arrival rates, (0.0167, and 0.0333 events


per second for low and high arrival, respectively),



2. 	 subsystem scanning time, (0.25 seconds per subsystem


for human, 0.0 for computer),



3. 	 monitor/control attention shift (0.2 seconds),
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4. 	 computer service time (7 seconds),



5. 	 autopilot malfunction arrival rate (0.0667 arrivals


per second).



In the simulation program, all process arivals



(including subsystem arrivals, false alarm arrivals,



autopilot malfunction arrivals, and control action arrivals)



were generated using a Poisson distribution, and all service



times (including service of subsystem events, incorrect



actions, false alarms, autopilot malfunctions, and control



actions) were according to Erlang-k distribution. In the



cases of subsystem and false alarm services, the service



time distributions were approximately constant. The set of



variables used in the program represent values measured from



the experiment and averaged across all appropriate



situations. These variables served as input to the program



and 	 included:



1. 	 the subsystem service time distribution (with mean of


5.668 seconds and k = 62),



2. 	 the control service time distribution (with mean of


2.13 seconds for manual mode, and 2.99 seconds for


malfunction mode, k = 2 for both),



3. 	 the false alarm arrival rates (with mean of 0.00344


arrivals per second for low arrival rate, and 0.00915


arrivals per second for high arrival rate),



4. 	 the probabilities of incorrect actions (of 0.0656 for


low arrival rate, and of 0.0865 for high arrival


rate),



5. 	 the autopilot malfunction detection and service time


distribution (with mean of 7.28 seconds and 30.15


seconds respectively, and k = 2 for both),
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6. 	 the incorrect action service time distribution (with


mean of 3.50 seconds and k = 5),



7. 	 false alarm service time distribution (of constant


1.56 seconds)



Subsystem waiting time and server occupancy statistics



are shown in Table 4-5. All parameters in the model were



either predetermined or empirically measured and no



adjustments were made. A comparison of the average



subsystem waiting time and server occupancy with those



measured from the experiment is shown in Figures 4-14 and
 


4-15. A statistical test was conducted for both measures of



all experimental cases. The hypothesis that the model



resuLts and the empirical data have the same set of mean



values was not rejected at the 5% significance level.



The variance of the waiting time is relatively high in



some cases, resulting from a saturation of arrivals which



caused subjects to be in a very high workload situation.



Other than that, the model's predictions are very good,



especially for average waiting time in autopilot mode and



for server occupancy in autopilot malfunction mode. In



addition, a high correlation (r=0.96) is found between this



model occupancy and the subjective effort ratings.
 


A better understanding of the control task mechanism



and a better estimate of control task parameters will



further improve the model accuracy. In this respect,
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Subsystem waiting time (sec.) Server occupancy 
Arrival Aiding Standard 
rate type Mean deviation 

Autopilot mode 
Low No aiding 9.89 5.07 0.424zz 

Low Aiding 9.70 4.09 0.424 

High No aiding 14.01 11.68 0.725 

High Aiding 12.15 6.35 0.684 

Manual mode 
No No aiding -­ -­ 0.406 

Low No aiding 18.47 14.04 0.727 

Low Aiding 16.50 8.74 0.715 

High No aiding 30.12 36.89 0.900 

High Aiding 18.20 10.32 0.853 

Malfunction mode 
No No aiding -­ - 0.095 

LOw No aiding 11.88 7.70 0.509 

LOw Aiding 11.69 6.68 0.501 

Low Adaptive aiding 10.54 4.68 0.478 

High No aiding 17.30 16.99 0.770 

High Aiding 13.71 7.98 0.735 

High Adaptive aiding 12.69 6.67 0.718 

Table 4-5. Subsystem waiting time and server occupancy 
from simulation model. 
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Govindaraj and Rouse [19781 are currently working on 

modeling of the human as a controller in - mu1ti-task 

monitoring and control situations. 

4.3 Summary



The experimental results (summarized in Table 4-6) show



that all the experimental variables were statistically



significant in terms of affecting the subsystem waiting



time, the server occupancy, and subjective effort ratings.



It was observed that systems that are designed to relax



control requirements, such as the autopilot, seem to improve



both control and subsystem performance, while systems that



are designed to relax subsystem requirements, such as



computer aiding in monitoring or highly reliable subsystems



seem to improve only subsystem performance. The possible



reason for this is that the control tasks preempt subsystem



tasks, and thus control task inefficiency is likely to



affect the performance of subsystem tasks; the reverse in



not true.



Server occupancy and subjective effort ratings were



highly correlated. Aiding enhanced system performance in



terms of subsystem average waiting time, server occupancy



and subjective effort ratings. Adaptive aiding was shown to



further reduce subsystem waiting time. Interestingly,



adaptive aiding did not significantly affect subjective
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Arrival 
rate 

Control 
mode Aiding 

Adaptive 
aiding 

Subsystem waiting 

Effort ratings 

Server occupancy 

Distance error 

* 

4 

4 

A 

A4 

4 

r 

Roll angle 

Aiding effectiveness 

Aiding desirability 

_ 

A 

4N 

* 4 _ significant increase 
S- significant decrease 

- - not significant. 

Table 4-6. Summary of average main effects. 
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effort ratings, and it did not significantly improve service



occupancy. However, it did improve system performance.



Consequently, the subjective effort ratings are more closely



tied to service occupancy than to system performance.
 


The queueing model fits the experiment results



reasonably well, especially when one considers that no



parameter adjustments were made. A better representation of



control task preemption is needed to further improve model



accuracy in predicting system performance. Although the



parameters used are based on averages across the subjects,



it is simple to adjust the parameters according to each 

individual and thus, the model is adaptable to individual 

differences. 
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5. DISCUSSION AND CONCLUSIONS



The purpose of this research has been to present a



unified formulation of computer-aided multi-task decision



making and to develop a general strategy for allocation of



decision making responsibility between human and computer.



An experimental study was conducted in the context of a



flight management situation. A model based on a queueing



theory framework appears adequate to represent the situation



and flexible enough for future implementation. The



allocation policy also seemed to be well-accepted by the



subjects in the experiment. Implementation issues and model



applications are to be di-scussed inwthe following sections.



5.1 Implementation Issues



The simulation of an airborne flight management system



became a major research tool for validating the human



decision making model and investigating the proposed



allocation policy. The development of a more detailed task



'scenario to represent a real-world flight management



situation seems necessary before the proposed scheme is



actually tested and implemented on a full-scale simulator or



real aircraft. Issues involving representation of the



pilot's task and measurement of parameters are of particular



importance in this respect.
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5.1.1 Task representation



The aiding system would be most beneficial if it was



designed to be of use during the whole flight mission from



take-off until landing. A multiple mode scenario generator



including take-off, climb-out, enroute, approach, and



landing modes may seem desirable and feasible. In the



enroute mode, which is the setting of the current



experimental situation, the pilot should be allowed to plan



flight paths by inserting way points, editing a route and



estmating the speed and time to each points, etc. and then



the automated navigation system would assure that these



,specifications were met. In different flight operation



modes, the requirements and priorities are different. An



information display similar to the Master Monitor Display



reported by Hughes Aircraft Co.[1974] seems appropriate to



handle this multi-mode operation. Information concerning



system states and status as well as alerts and warnings are



centralized in an integrated display. Pilot information



seeking behavior becomes the focus of research within this



approach [Rouse and Neubauer, 1978].



Considering the subsystem tasks, the checklist



structure may be expanded to meet flight operation



requirements such as those described in the DC-10 Flight



Crew Operating Manual [Douglas Aircraft Co., 1975]. Tasks
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may be organized either by functional classification (e.g.,



divided into subsystems such as power plant, landing gear,



pneumatic, navigation, fuel, electrical, communication,



flight control, hydraulic systems, etc), or by procedural



classification (e.g., emergency, abnormal, normal, and



conditional procedures, etc.). The functional subsystems



are composed of several sublevels of physical component



units, and are under pilot's supervision. Abnormal signals



in the low level units are assumed to propagate upward to



the top level to signify the occurrance of an event, while a



top-down tree-structured checklist could guide a procedure



for diagnosis purposes. Considerations of importance in



fault diagnosis situations are discussed by Rouse [1978].



The aircraft dynamics, on the other hand, can simply be



modified or reprogrammed to represent the specific type of



aircraft of interest. The autopilot malfunctions could



occur in a variety of ways. In addition to the current



presentation of a random deviation from the prescribed map



course, other modes of malfunction include deviation from



the normal speed setting or a loss of altitude.



With the above considerations in mind, it seems that



implementation in an aircraft simulator would provide a



reasonable level of reality. Furthermore, this simulator



* In fact, such implementation in a GAT-2 simulator is 
planned as the next phase of this research. 
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could provide not only the necessary motion and alerting



cues (audio-, symbolic cues, etc) but also extra room and



speed (because of the availability of analog devices for the



aircraft dynamics and instruments) for the use of digital



computation. This would enhance the realization of the



allocation algorithm and the design of a realistic task



scenario. In addition, after the new experimental situation



is established, regular pilots may be used as the subjects.



5.1.2 Task dependency



Because the sublevel units of the subsystems may be



inter-connected physically, the subsystem arrivals may not



be independently distributed as assumed in the previous



analysis. As a result, a specific subsystem event arrival



distribution may depend on the overall time-variant



subsystem configuration: (n1 , n2, ... , nK;T), where nk is



the number of events in subsystem k and x represents the



mode or phase of system operation. With this change, the



problem certainly becomes more complicated. However, the



approach in Chapter Two is still applicable. The proposed



algorithm could be followed using
 


K


X K(n I , n2 , ..., nK;T),


K=1I



and then employing a threshold M as a function of arrival



rate X . Hopefully, only a small number of tasks would be



X 
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inter-dependent, and the space needed to store these



functional relations would not be too large. Another



problem that arises is the estimation of the set of



parameters IK(n I , n2 , ...,nK;t), which is to be disdussed in



the next section.
 


5.1.3 Parameter estimation and measurement



The parameters used in the system, mainly the arrival



rates, service rates, and cost rates, may be obtained by



pre-determined statistics or by on-line measurement. The



arrival and service information of subsystems may be



pre-determined by an analysis of field data. For example,



the event arrival information used in an air traffic



controller model [Schmidt, 1978] was based on reports of



Couluris, et al. [1974] and of Hunter, et al. [1974].



Since the pilot or the operator would also perform



information checking, adjustment, and mode selection etc.,



in addition to fault correction; the normal reliability



data of the subsystems are usually not adequate, and data



collected from field observation would be necessary. The



process for collecting these data probably is not more
 


complicated or difficult than the regular reliability and



maintainability analysis for the subsystems.
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On-line measurement of these data may be facilitated by



using real-time -human-to-compUter communication channels,



mentioned in Section 1.4, such as the physiological EEG



measure and statistical model matching. The use of scalp



recorded, cortical event related potentials (ERP) [Wickens,



et al.,1977] seems to successfully predict the human's



detection and reaction to an event. Thus, the statistics of



event arrivals perceived by the human can be easily



collected and used as the simulation input.



The priority assignment and the waiting costs of



subsystem events may also depend on system configuration:



(nl, n 2, ..., nK;T). For example, the functioning of



landing gear requires more attention during the landing



phase than it requires in the enroute mode. Even in the



same operational mode, the rapid increase of risk and



uncertainty due to delay in servicing some subsystems may



result in a change in relative priories. A time-dependent
 


priority, other than the fixed priority rule that was used



in the flight management experimental situation, may be
 


appropriate. Kleinrock's [1976] priority queue model may be



applicable in this case. This approach assumes a



proportionality between priority of subsystem i, pi(t), and



its waiting time: pi(t) = bi (t-ti), where bi is a constant



and ti is the time of event arrival in the subsystem 1.
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The relative waiting costs of subsystems, if they are



to be measured on-line, may be represented as negative



utility functions which may be assessed by using a dynamic



utility estimation technique [Freedy, et al., 1976]. This



approach, combined with a pattern recognition technique



developed by Freedy and his colleagues, might enable the



computer decision maker to learn the human's utility



function by watching his activities. This would also be



useful in avoiding conflicts.



As discussed in the last chapter, the server occupancy



measure appears to be a good workload index which can both



predict system performance (e.g., effort ratings and



subsystem waiting time), and be responsive to changes in



task demands (i.e., the subsystem arrival rate). As with



the previous parameters, both field estimation and on-line



measurement are applicable to this carameter. However, this



measure is usually evaluated in stationary processes, and an



on-line evaluation requires a continuous updating of the



ratio of busy to total time over a given time duration.



Besides, due to possible preemption among tasks, error in



this measure could accumulate unless every instance of human



initiation and relinquishing of action can be accurately



detected and recorded (so as to determine when a busy period



starts and when it ends). A moving average estimate



combined with the ERP measure seems to solve these problems.
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Given this, the question of what is an acceptable level of



workload, in terms of human oc-upancy, will be easier to



answer.



5.2 Extensions of the Approach



It would be rather simple for the model to be adapted



to new task implementations. Particularly, because each



subsytem unit is simulated as an individual process flow,



the program is modularly expandable as far as the



interaction (activation/deactivation, preemption, etc.)



among processes is concerned. Time-varying priorities would



be easy to implement in the program. In general, the 

queueing framework lends the model flexibility to 

incorporate a number of find-grained models emphasizing 

signal detection, attention allocation, information 

processing, or utility assessment aspects of human decision



making.



The adaptive policy discussed in Chapter Two is only



partially realized and verified in the experiment. Due to



limited task variations, the allocation policy was only used



to adapt to autopilot malfunctions. Even in this situation,



the adaptive policy proposed is seen only in some cases to



realize an advantage from the additional information of



malfunction occurrence. Therefore the policy is only



qualified as "quasi-adaptive" [Bertsekas, 19761. The



adaptive features of the policy would stand out better in
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less structured problems. However, experimental



justification of using this policy in a truly dynamic sense



would prove expensive at this stage. Therefore, we have



been satisfied with a scheme of setting up a stationary



policy and performing on-line estimation and table look-up.



There certainly are other schemes which would be superior to



this open-loop feedback type scheme [Bertsekas, 1976]. They



are, however, much more complicated.



5.3 Applications



The approach espoused in this thesis is applicable to



many multi-task situations where system criteria and goals



are rather clear, computer decision aids are desirable, the



tasks to be performed are well-structured, and the time



delay of discrete events rather than the deviation' of



continuous states is of major concern. Situations falling



into this category include: flight management, air traffic



control, and various industrial process monitoring -and



control tasks. The design of computer aiding for each of



these situations would involve developing an experimental



situation, conducting experiments, measuring parameters, and



analyzing the cost-effectiveness of the predicted



performance improvements. The procedure and example in this



thesis may also serve as a guide line for the design of



multi-task decision making systems in those other



situations.
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Appendix I



An Analytical Approach to Control of the Second Server
 


in an (M/G/2):(GD/K/K) Queue



The question of interest concerns a queueing system



where the second server can be turned on or off so as to



optimize system performance with respect to some criterion.



The strategy will be to turn the second server on at arrival



epochs, if the number of customers in the system is >M*;



and to turn the second server off at departure epochs for



customers of the second server, when the number of customers



in the system is <M (assuming m = M-l). The approach to



analyzing this strategy will be to write the steady-state



balance equations for the system for arbitrary M. We will



assume M>0 since M=0 is a normal two server problem.



Consider the simple case where no service errors and



equal costs are incurred for the subsystems. The



steady-state probabilities for which we want to form the



balance equations will have elements



* The symbol M here represents the threshold value which is 

not related to the M in the standard notation of (M/G/2). 
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pnij= 	 Probability of n customers in the system



with server 1-in- st-ate- i afd server 2 in



state j where i=0 or j=0 indicates



idleness and i=l or j=l indicates busyness



for the appropriate server.



Arrival rates n as well as service rates in and 2n may be



functions of system state.



Now, we can draw the state diagram (Figure I-1). The



state equations can be written using the rate out equals
 


rate in 	approach [White, et al, 1975],



"0 000 = "I"110 + "21PI01



(x1+P 11)P110  x 0P0 0 0 +PI 2 P2 10 +P 2 2 P2 1 1
 


(X1+21+)P 1 0 1 =12P211



(Xi+"i )P 1 0 =ki- P(i -)10+Pl(i+l)P(i+!)10 

+P2(i+1) 	 P (i+ l ) 11 ' 2<i<M-2, m>4 

P ( 2- ( i + l ) P ( i + l ) l l (ki +Pli +P 2i )Pi= lx-i ) l l + 
 

(kM_ 1+11I(MI) )P(MI)I0 = XM_-2P(- _2)I0+P2MPMII


(XM-. +PI1(M-1) +P2 PM2) P(1)O
)IMP0mII + 
 

( +11 IM+1 2X)PMI kMP(MI)I0MIP(lx)l 1



+ G.L1(M+l) 	 +P2 (M+l))P(M+l)1i 
+

O i+Pli+P2i)Pill = i-iP(i_!)11 0"Pl(i+l) +P 2(i+l) ) F ll , 

(ltK +P 2K)P KI11 = x K-1 P (K+)<i<K­

An additional equation constraints the probabilities to sum



to one,


M-I K



P00 + PIIO + POI + (P + + =

i=2 il0 ill + P-1l
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Figure I-1. State-transition-rate diagram of an 
(M/G/2) :(GD/K/K) queue. 
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Solving this equation for pNll and substituting into the



last of the balance equat-i-ons, wcan arrange in matrix form



to obtain



2000 0 

Pilo 0 

I01 0 

(K+M-I) X (K+M-1) -

0



and thus,



00


0
Pilo 
 
0
Plo]. 
 

(K+M-l) X (K+M-I) 

0 

P(K-1)11 IK+ P2K) 

With the state probabilities defined, we can calculate



operating characteristics 
M-1 K 

X = X0P000 + + EX i(Pi 0 +?il l) + S ill
i=2 i=M



K



L = (Pilo+P)01 + E i(il0 +Pill) + E iPil I



M-1 
 

i=M
i=2 
 
=W L/ ; 

= 1 - 2000 - PI01
 

M-I



p1 
 

P2 = I - P000 -i= 
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Appendix II



Computer Simulation Program Structure



of an (M/G/2) :(GD/K/K) Queue



A Fortran simulation program has been written to



simulate an (M/G/2):(GD/K/K) queue with removable second



server. This is based on the Monte Carlo method of event



generation and time iteration of event activity scanning.



The simulation flow chart shown in Figure II-I represents an



scanning process, which starts at time = 0, moves from one



event to next, records the changes in the system at each



event. The process continues until the next event is the



end of the simulation, then the statistics of interest are



calculated.
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queue. 
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Appendix III



Experimental Apparatus and Software



The experimental situation is generated by a PDP-ll/40



driven CRT graphics system. The computer system includes a



removable-disk drive, real-time 
 clock, and floating-point



arithmetic hardware.



A spring-centered x-y joystick (Measurement 
 Systems,



Inc., Model 521), and two control levers (connected to



linear potentiometers) are interfaced to the computer using



a multiplexed A/D converter. The joystick is used by



subjects to control aileron and elevator deflection. The



control levels are used to control the speed of the



simulated aircraft and to setup the appropriate control



mode. The graphics system includes a display processor



(with point, vector, and character generation hardware), and



a vector-type display CRT (Hewlett Packard Model 131A;



38.1 x 27.9 cm. screen size). The display processor uses



direct access of the PDP-11 memory for display refresh at a



rate of 30 Hz. Using this graphics system, a simulated



airplane instrument panel is presented to the pilot (see



Figure 3-1). 
 A 4 x 3 numeric entry keyboard (portion of an



Infoton Vistar/2 terminal keyboard) is used by the pilot for



entering his responses to events occurring on the display.



(See Figure III-1 for the experimental situation.) A
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for diagnostic action, one of two things can happen. If no



event -h8s occdrred in the selected subsystem, a false alarm



has been made, and the loop is begun again. If an event has



occurred in the subsystem, the checklist diagnostic



procedure is begun. If the subject makes an incorrect



response in the checklist procedure, the main loop is



immediately restarted. Otherwise, after the response to the



event is correctly completed, the subsystem pointer is



redrawn (upward), and another event is scheduled for that



subsystem, before the loop is restarted.



As the main iteration loop is being executed, the



real-time clock is running, and checks are made frequently



to determine if it is time to perform a system states and



status update. Update of the simulation state is made every



0.50 second. Several things happen during a simulation



update. First, a data sample is taken, and stored on the



PDP-1l disk. The state of each subsystem indicator, the



status of each subsystem (whether or not an event has



occurred), control inputs and keyboard responses, and the



states of the aircraft dynamics are sampled. Also included



are autopilot status as well as computer aiding status in



the aiding experiment.
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Next, a schedule of events isichecked, and if an event



is to occur at the present time, the corresponding subsystem



indicator is redrawn (downward) on the display. In



autopilot mode, if an autopilot malfunction occurs, the



aircraft roll angle drift is added to the aircraft dynamics



(Section 3-4). Or, during autopilot restoration, distance



of the aircraft from the "on-schedule" marker is measured



and compared with a calculated distance to decide if the



autopilot is to be re-engaged. In the event of computer



aiding available, to coordinate the computer decision maker



the status of subsystems has to be checked to determine if



there is any system change. Upon encountering an arrival or



completion of a sybsystem event, the program then calculates



both the weighted sum of events and the threshold to decide



if the computer should be turned on or off.



The aircraft display update is performed next. The



position of the airplane is updated, as well as the position



of the "on-schedule" marker, and both are redrawn on the



display. If the airplane is near enough to the edge of the



map currently being displayed, the map is updated to show



the next portion of the course. The cockpit instruments are



updated to reflect the current status of the aircraft, and



redrawn. The aircraft state variables are updated, for use



in the next iteratiofl. The joystick position and the



-setting- of the control levers are sampled. At this point,
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the simulation update is complete, and the main itexration-


Iocrp i§ resumed.



When the subject has flown the airplane over the



complete course (the course is completed when the airplane



moves to the right of a vertical line through the target at



the end of the course), or after a specified time has



elapsed,whichever is desired, the simulation ends. At this



time, information such as starting and finishing time of the



trial, subject name, experiment identification, date, and



subjective pilot comments are recorded in the data file.
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Appendix IV



Aircraft Dynamics



The aircraft dynamics used in the simulation are



basically 
 those of a Boeing 707, taken from Blakelock



[1965]. Several simplifying assumptions are made. The



atmosphere is assumed 
 to be at rest relative to the earth



(groundspeed = airspeed). No rudder 
 input was provided in



the experimental setup. 
 The yaw rate r for non-zero roll



angles is given by r = g sin 4 . (VT is assumed equal to u, 
VT 

the airspeed.) The transfer functions used are 
 (flat-earth)



approximations linearized about an equilibrium flight



condition corresponding to 
level flight at constant altitude



and speed. The short-period longitudinal transfer functions



used are for pitch rate q, and z-velocity (relative to



aircraft-fixed axes) component w, as a function of 
 elevator



deflection 8e:



q 2.391s + 2.985



+

be 0.428s2 1.408s + 2.934



w 0-.031s + 2.452



be 0.428s2 + 1.408s + 2.934 

The lateral (roll) transfer function gives roll rate 
 p
 

as a function of aileron deflection 6a:



P 0.064s 3 + 0.034s2 + 0.197s 

ba 0.002s4 + 0.007s3 + 0.008s2 + 0.019s + 0.00003 

(The coefficients in the above transfer functions 
 were
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calculated using the formulas from Blakelock [1965],



substituting the speed and altitude used--600 fps., and



40,000 ft-.--where appropriate. Since the resulting dynamics



were judged to be overly difficult to control, further



adjustments were made to stabilize the roots of the



resulting equations. The goal here was not to perfectly



model the Boeing 707 dynamics, but to provide reasonable



dynamics which could be learned relatively quickly.)



The angular velocities p, q, and r are projected onto



earth-reference axes using the standard formulas (see Etkin



[1972]), yielding @, 9, and These earth-reference
'. 

angular velocities are integrated using numerical 

integration of the form x(k+l) = x(k) + x(k)*dt, to give 

standard earth-reference angles , 9, and . 

The velocity components (u,v,w) relative to aircraft 

body-fixed axes, are approximated as follows. u is assumed 

equal to the airspeed. v is zero, since turns are 

coordinated, and yaw angle is zero. w is given by the 

transfer function above. 

Aircraft-fixed reference velocities u and w are



projected onto earth fixed axes using the formulas:



xe = u(cos cos) + w(cos# sin0cos + sin sin ) 

Ye = u(cos 0 sin %) + w(cos 0 sin 9sin ' - sin cos 

z = u(-sin ) + w(cos cos 0) 
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These velocities are integrated (as the angular velocities



above) to give position and altitude of the aircraft.
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Appendix V



Subjective Rating Questionnaire



At the end of each experimental run, a rating



questionnaire shown in Figure V-i was given to the subject.



On the rating scale following each question, subjects made a



mark indicating their perception of relative effort and



quality of computer aiding. These ratings were then



quantified and scaled for statistical analysis. Subjects'



comments were also summarized.
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1) What level of effort did you have to expend?
 


very low moderate high very


low high



2) How easy was it to interact with the comouter aiding? 

very difficult reasonable easy very


difficult easy



3) What effect do you think computer aicing had on overall performance?



large modest slight no slight modest large


degr. degr. degr. effect impr. impr. impr.



4) How desirable ao you find computer aiding?



definitely somewhat doesn't somewhat definitely 
don't like it undesirable matter desirable like it 

0V


5) Other comments: 
 

Figure V-i. Subjective rating questionnaire.
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Appendix VI



Analysis of Variance



A set of analyses of variance based on the data for



eight subjects was conducted. The results for each



experimental measures are listed in the following tables.
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Source df MS F



Control Mode (C) 2 824.131 67.806 (p < 0.005)



Computer Aiding (A) 1 375.685 30.910 (p < 0.005)



Arrival Rate (R) 1 365.157 30.04L (p < 0.005)



C x A 2 99.074 8,151 (p < 0,.005) 

C x R 2 6.076 0.500 

A x R 1 36.642 3.015 

C x A x R 2 0.156 0.013



Table VI-I. Average subsystem waiting time.



Source df MS F



Adaptive Aiding (V) 1 L5.244 10.496 '(p < 0.005)



Arrival Rate (R) 1 53.587 12.431 (p < 0.005)



V x R 1 0.247



Table VI-2. Average subsystem waiting time: adaptive effect.
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Source df MS(xlO5 ) F



Control Mode (C) 1 70.364 4.532 (-p < 0.05)



Computer Aiding (A) 1 7.134 0.459



Arrival Rate (R) 1 5.382 0.347 

C x A 1 1.686 0.109 

C x R 1 3.983 0.257 

A x R 1 6.891 0.444 

C x A x R 1 6.200 0.399 

Table VI-3. RMS distance error.



Source df MS(xl06) F



Adaptive Aiding (V) 1 0.008 0.004



Arrival Rate (R) 1 0.581 0.297



V x R 1 3.373 1.726



Table VI-4. RMS distance error: adaptive effect.



Source df MS(xl06) F 

Control Mode (C) 1 5.215 4.423 (p < 0.05)



Subsystem Presence (R) 1 8.506 7.215 (p < 0.025)



C x R 1 0.052 0.044



Table VI-5. RMS distance error: effect of subsystem presence.
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Source df MS F



Control Mode (C) 1 0.050 20.103 (p < 0.005)



Computer Aiding (A) 1 0.001 0.522



Arrival Rate (R) 1 0.008 3.067



C x A 1 0.002 0.834



C x R 1 0.003 1.276



A x R 1 0.000 0.021



C x A x R 1 0.000 0.004


Table VT-6. 
 RMS roll angle.



Source df 
 MS F



Control Mode (C) 1 
 0.011 7.204 (p < 0.025)



Presence of Subsystem (R) 1 
 0.000 0.008



C x K 1 
 0.002 1.605



Table V1-7. PNS roll angle: 
 effect of subsystem presence.



Source 
 df MS F



Adaptive Aiding (V) 
 1 0.009 2.557



Arrival Rate (R) 
 1 0.001 0.205



V x R 1 0.007 1.899



Table VI-8. PMIS roll angle: adaptive effect. 
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Source df MS F 

Control Mode (C) 2 0.429 28.085 - (p-< 0.005)-

Computer Aiding (A) 1 1.244 81.381 (p < 0.005) 

Arrival Rate (R) 1 0.098 6.425 (p < 0.025) 

C x A 2 0.014 0.925 

C x R 2 0.009 0.568 

A x R 1 0.001 0.053 

C x A x R 2 0.006 0.406 

Table VI-9. Empirical server occupancy. 

Source df MS F 

Arrival Rate (R) 1 0.459 102.115 (p< 0.005) 

Adaptive Aiding (V) 1 0.009 1.962 

R x V 1 1 0.000 0.018 

Table VI-10. Empirical server occupancy: adaptive effect. 
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Source df MS F



Adaptive Aiding (V) 1 141.414 0.489



Arrival Rate (R) 1 586.959 2.031



V x R 1 19.861 0.069



Table VI-li. Average autopilot malfunction waiting time.
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Source df MS F



C~nt'ol Mode (C) 2 0.940 35.963 (p < 0.005)



Computer Aiding (A) 1 2.074 79.323 (p < 0.005)



Arrival Rate (R) 1 0.106 4.054 (p < 0.05) 

C x A 2 0.119 4.564 (p < 0.025) 

C x R 2 0.002 0.071 

A x R 1 0.021 0.792 

C x A x R 2 0.010 0.394 

Table VI-12. Subjective effort ratings.



Source df MS F



Adaptive Aiding (V) 1 0.009 0.236



Arrival Rate (R) 1 0.549 13.723 ! (p < 0.005)



V x R 1 0.002 0.057



Table VI-i3. Subjective effort ratings: adaptive effect.
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Source df MS F



Control Mode (C) 2 1.018 27.114 (p < 0.005)



Arrival Rate (R) 1 2.258 60.109 (p < 0.005)



C x R 2 0.042 1.130



Table VI-14. 	 Subjective ratings of the effectiveness of


computer aiding.



Source df MS F 

Adaptive Aiding (V) 1 0.045 0.416 

Arrival Rate (R) 1 0.242 2.230 

V x R 1 0.020 0.185 

Table VI-15. Subjective ratings of the effectiveness of


adaptive aiding.
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Source df MS F



-Control Modd (C) 2 - 0.445 6.601 (p< 0.005



Arrival Rate (R) 1 2.168 32.123 (p< 0.005)"



C x K 2 0.160 2.375



Table VI-16. 	 Subjective ratings of the desirability of


computer aiding.



Source 	 df MS F



Adaptive Aiding (V) 1 0.385 4.499 (p < 0.05)



Arrival Rate (R) 1 1.492 17.436 (p < 0.005)



V x R 1 0.009 0.103



Table VI-17. 	 Subjective ratings of the desirability of


adaptive aiding.
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Source 	 df MS F



Control Mode (C) 2 0.324 3.666 (p < 0.05)



Arrival Rate (R) 1 0.163 1.846



C x R 2 1.276 14.416 (p <0.005)



Table VI-18. 	 Subjective ratings of the ease to interact with


computer aiding.



Source 	 df MS F



Adaptive Aiding (V) 1 0.130 1.579



Arrival Rate (R) 1 0.088 1.071



V x R 1 0.000 0.002



Table VI-19. 	 Subjective ratings of the ease to interact with


adaptive aiding.
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Appendix VII



Simulation Flow Diagram for a Flight Management Situation-


The flow chart of Figure VII-l simulates a flight



management situation represented as an (M/G/2):(PRP/K/K)



queue with removable second server. The preemptive resume



priority discipline of control service is used. The



presence and absence of control tasks is also implemented to



represent the various control modes (such as manual or



autopilot malfunction modes, etc.) in the flight management



situation.
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