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Manipulating decision making of typical agents
Vyacheslav I. Yukalov and Didier Sornette

Abstract—We investigate how the choice of decision makers
can be varied under the presence of risk and uncertainty. Our
analysis is based on the approach we have previously applied
to individual decision makers, which we now generalize to
the case of decision makers that are members of a society.
The approach employs the mathematical techniques that are
common in quantum theory, justifying our naming as Quantum
Decision Theory. However, we do not assume that decision makers
are quantum objects. The techniques of quantum theory are
needed only for defining the prospect probabilities taking into
account such hidden variables as behavioral biases and other
subconscious feelings. The approach describes an agent’s choice
as a probabilistic event occurring with a probability that is the
sum of a utility factor and of an attraction factor. The attraction
factor embodies subjective and unconscious dimensions in the
mind of the decision maker. We show that the typical aggregate
amplitude of the attraction factor is 1/4, and it can be either
positive or negative depending on the relative attraction of the
competing choices. The most efficient way of varying the decision
makers choice is realized by influencing the attraction factor. This
can be done in two ways. One method is to arrange in a special
manner the payoff weights, which induces the required changes of
the values of attraction factors. We show that a slight variation of
the payoff weights can invert the sign of the attraction factors and
reverse the decision preferences, even when the prospect utilities
remain unchanged. The second method of influencing the decision
makers choice is by providing information to decision makers.
The methods of influencing decision making are illustrated by
several experiments, whose outcomes are compared quantitatively
with the predictions of our approach.

Index Terms—Decision theory, Decision making under risk and
uncertainty, Group consultations, Social interactions, Informa-
tion and knowledge

I. INTRODUCTION

How to influence decision choices made by separate de-
cision makers as well as by societies of many agents is an
important and widely studied problem in psychology [1]–
[6]. This problem is important for a variety of practical
applications ranging from medicine [7], [8] to politics [9]–
[13]. A number of articles are devoted to the effects of
influencing decision making in economics, studying the role
of different framing effects on product evaluation [14]–[16],
consumer response to price [17]–[20], evaluation of retail
outlets [21], market advertising [22]–[24], buying decisions
[25], [26], perceptions of control and efficacy [27], distributive
justice [28], performance feedbacks [29], and so on.
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The principal possibility of influencing the choices of deci-
sion makers is based on the fact that decision makers do not
exactly follow the prescriptions of expected utility theory, as
formulated by von Neumann and Morgenstern [30]. Really,
if each decision maker were to make decisions following
the strict rules of utility theory, then it would be difficult,
if possible at all, to influence his/her decisions without es-
sentially varying the utility of the related lottery. However,
it is well known that the choices of decision makers are not
based solely on utility, but also are strongly influenced by
emotions, prejudices, biases, and other subconscious feelings.
There have been numerous attempts to modify utility theory by
taking into account such subconscious degrees of freedom. For
this purpose, a number of non-additive nonlinear probability
models have been developed to account for the deviations
from objective to subjective probabilities observed in human
agents [31]–[40], trying to take into account satisfaction [41],
anxiety [42], subjective perception [43], subjective utility [44],
aspiration adaptation [45], [46], and so on. The necessity
of taking into account the subconscious behavioral biases is
emphasized in behavioral economics [47]. The variety of the
approaches, deviating from the expected utility theory, are
commonly named ”non-expected utility theories” [48].

The non-expected utility theories have been thoroughly
analyzed in several reviews [48]–[51]. The conclusion is that
such theories are in the best case only descriptive, hence,
do not have predictive power and do not explain numerous
paradoxes existing in classical decision making. Moreover,
their use ends up creating more paradoxes and inconsistencies
than it resolves [50].

To overcome the problem, we have developed an approach
based on the mathematical techniques of quantum theory [52]–
[58], which explains our choice of its name, Quantum Decision
Theory (QDT). We do not assume that decision makers are
quantum objects. But the mathematical quantum techniques
serve as the most convenient tool for taking into account the
subconscious degrees of freedom of decision makers, similarly
to how quantum theory avoids the explicit use of hidden
variables, at the same time taking into account their possible
existence resulting in the probabilistic formulation of the the-
ory. We have shown that, in the frame of QDT, all paradoxes of
classical decision making find simple and natural explanations
[54], [57], [58]. QDT provides the expressions for discount
functions, employed in the theory of time discounting [59],
[60] and explains dynamical inconsistences [53]. Within QDT,
behavioral biases result from interference and entanglement
caused by decision makers deliberations [56]. While QDT has
been developed to describe the behavior of human decision
makers, it can also be used as a guide for creating artificial
quantum intelligence [55].

In our previous publications [52]–[58], we have considered
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a single decision maker. In the present paper, we generalize
QDT, developed earlier for individual decision makers, to the
case of decision makers interacting within a society. This
generalization is formulated in Sec. II. Our main concern
is the formulation of a mathematical model describing how
decision makers can be influenced and how it would be
possible to quantitatively evaluate the consequences of this
influence. In experiments, one usually deals with large groups
of decision makers with different preferences. In order to
compare theoretical predictions with experimental results, we
introduce and characterize, in Sec. III, the notion of typical
social agents. Here and in what follows, by the term ‘ex-
periments’, we mean empirical observations derived from the
behavior of human subjects. In Sec. IV, we explain how it is
possible to influence the typical decision makers preference
by varying the arrangement of prospects. We formulate a
criterion for the inversion of the attraction factor leading to the
inversion of preferences. In Sec. V, the results, predicted by
our approach, are compared with several classical experiments,
demonstrating good quantitative agreement. In Sec. VI, we
show how decision makers can be influenced by providing
them additional either correct or wrong information. Section
VII concludes.

II. QUANTUM DECISION MAKING IN SOCIETY

In this section, we generalize the QDT approach, whose
detailed exposition can be found in our previous publications,
developed for individual decision makers, to a society of many
decision makers. We recall that the decision makers are not
quantum objects, but are normal humans. The techniques of
quantum theory are employed merely for taking into account
the hidden variables, such as emotions and biases of decision
makers [58]. The possibility of taking into account hidden
variables is at the heart of the quantum-theory techniques that
allow for their existence by modifying the rules of calculating
the quantum probabilities. This is why the quantum techniques
make it possible to characterize human decision making,
incorporating in it the existence of such hidden variables as
subconscious feelings and behavioral biases. The efficiency of
quantum techniques for human decision making is not because
humans are quantum objects, but because these techniques
are mathematically designed to accommodate the existence of
hidden variables, which can be of a very different nature.

The theory presented below requires the use of some
mathematical techniques that are common in quantum theory.
But, as is explained above, the reader does not need to know
anything about quantum theory. Actually, what one needs is
the basic knowledge of the functional analysis in Hilbert space
and the definition of scalar products used for introducing
the prospect probabilities. In order to make the presentation
self-consistent and to justify the derived results, we describe
the main mathematical steps of the derivation, at the same
time, omitting intermediate calculations for not overloading
the reader. However, we cannot omit all mathematical formu-
las, since then it would not be clear how we get the final
important expressions and why they have the properties that
are essentially used in the following applications.

Let us consider a society of N agents who are decision
makers. The agents are enumerated by α = 1, 2, . . . , N . Each
agent is characterized by a set {eαn : n = 1, 2, . . . , d} of d
elementary prospects that are represented by vectors |αn〉 in
a Hilbert space.

Everywhere below, we employ the Dirac [61], [62] bracket
notation, where a function ψn(x) is represented as |n〉 and the
scalar product of two functions is given by the formula

〈m | n〉 ≡
∫
ψ∗m(x)ψn(x) dx .

Different elementary prospects are orthonormal to each
other,

〈αm|αn〉 = δmn ,

which symbolizes their mutual independence and incompat-
ibility. The space of mind of an α - decision maker is the
Hilbert space

Hα ≡ Spann{|αn〉} . (1)

The dimension of this space of mind is d. The space of mind
of the whole society is the tensor product

H =

N⊗
α=1

Hα , (2)

whose dimension is Nd.
An α - agent deliberates on deciding between L prospects

forming a complete lattice

Lα ≡ {παj : j = 1, 2, . . . , L} . (3)

Each prospect παj is represented by a vector |παj〉 in the
space of mind (1). The prospect vectors do not need to
be orthonormal, which implies that they are not necessarily
incompatible.

The prospect operator

P̂ (παj) ≡ |παj〉〈παj | (4)

acts on the space of mind (1). The set of all these operators
is analogous to the algebra of local observables in quantum
theory [62]. Respectively, the prospect probabilities are defined
as the expectation values of the prospect operators. The
expectation values for an individual decision maker are given
by averaging the prospect operators over a strategic state of
this decision maker [58], with such a strategic state being
treated as a pure state represented by a single vector.

However, for the agents of a society, pure states of separate
agents, generally, do not exist, since the society agents interact
with each other by exchanging information. Moreover, the
society as a whole may not be completely isolated from its sur-
rounding. Therefore, the society state has to be characterized
by a statistical operator ρ̂ that is a non-negative normalized
operator,

TrHρ̂ = 1 , (5)

where the trace operation is over the society space (2). Then
the expectation values of the prospect operators are given by
the trace

p(παj) ≡ TrHρ̂P̂ (παj) , (6)
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defining the probabilities of the corresponding prospects. This
definition makes the basic difference in the calculation of the
prospect probabilities, as compared to the averaging over a
single strategic state for individual decision makers [52]–[54].

Quantity (6), by its construction, is non-negative and defines
the prospect probabilities under the normalization condition

L∑
j=1

p(παj) = 1 , 0 ≤ p(παj) ≤ 1 . (7)

This definition of prospect probabilities is similar to the
definition of quantum probabilities in the quantum theory of
measurements [63].

Remembering that the prospect operator (4) acts on the
space of mind (1) and introducing the reduced statistical
operator

ρ̂α ≡ TrH/Hα
ρ̂ ,

in which the trace is over the partial factor space

H/Hα ≡
N⊗

β(6=α)

Hβ ,

makes it possible to rewrite the prospect probability (6) in the
form

p(παj) = TrHα
ρ̂αP̂ (παj) , (8)

with the trace over the space of mind (1).
Expanding the prospect vectors over the elementary

prospect basis, and introducing the matrix elements

ραmn ≡ 〈αm|ρ̂α|αn〉 ,

Pmn(παj) ≡ 〈αm|P̂ (παj)|αn〉 , (9)

it is straightforward to get the prospect probability

p(παj) = f(παj) + q(παj) , (10)

consisting of two terms. The first term, called the utility factor,

f(παj) =
∑
n

ραnnPnn(παj) , (11)

describes the classical objective probability, showing how the
considered prospect is useful for the decision maker. While
the second term, called the attraction factor,

q(παj) =
∑
m 6=n

ραmnPnm(παj) , (12)

characterizes the subjective influence of subconscious feelings,
emotions, and biases and shows to what extent the prospect is
attractive for the decision maker.

One could think that the form of probability (10) could be
postulated, without deriving it from the preceding equations.
Then, however, one would not know the properties of the
terms f(π) and q(π). Hence, these properties should also be
postulated, thus making the whole consideration overloaded
by a number of postulates. Using the quantum techniques,
we obtain the form of probability (10) automatically, which
makes the approach self-consistent and well justified. In this
way, the appearance of two terms in probability (10) is not an
assumption, but it is the straightforward consequence of using

quantum techniques. The properties of these terms follow
directly from Eqs. (1) to (8).

By its definition, the utility factor (11) is non-negative,

0 ≤ f(παj) ≤ 1 , (13)

and also it is normalized,
L∑
j=1

f(παj) = 1 , (14)

representing the classical objective probability. In the case
when the prospect utilities U(παj) can be evaluated by means
of classical utility theory, the utility factor takes the form

f(παj) =
U(παj)∑
j U(παj)

. (15)

The attraction factor (12), by its definition, varies in the
range

− 1 ≤ q(παj) ≤ 1 . (16)

An important property of the attraction factor, following from
conditions (7) and (14), is the alternation property

L∑
j=1

q(παj) = 0 . (17)

It is worth mentioning that the attraction factor comes
into play only for composite prospects experiencing mutual
interference [58]. For elementary prospects, it does not occur,
being identically zero:

q(eαn) = 0 .

Having defined the prospect probabilities, the prospects
become naturally ordered. A prospect πα1 is said to be
preferred to a prospect πα2 if and only if

p(πα1) > p(πα2) (πα1 > πα2) . (18)

The prospects πα1 and πα2 are indifferent if and only if

p(πα1) = p(πα2) (πα1 = πα2) . (19)

And the prospect πα1 is preferred or indifferent to πα2 if

p(πα1) ≥ p(πα2) (πα1 ≥ πα2) . (20)

A prospect π∗α that corresponds to the maximal probability

p(π∗α) = max
j
p(παj)

is called optimal.
It is important to stress that the utility factor and attraction

factor are principally different, having different mathematical
properties, as described above. The term f(π) contains only
diagonal elements in sum (11), while term (12) contains only
non-diagonal elements. In quantum theory, the non-diagonal
terms characterize the existence of interference. When the
latter is absent, the quantity f(π) reduces to the classical
probability. Similarly, in decision theory the term f(π) is
associated with the classical probability, while the second term
q(π) has no classical counterparts. The attraction factor in
decision theory describes the interference of different prospect
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modes, which is related to the deliberation of a decision maker
choosing between several admissible possibilities.

Being principally different from both mathematical as well
as decision-making points of view, the utility and attraction
factors in no way could be combined into one quantity.
Actually, the failure of the numerous “non-expected utility
theories” [48] is due to the fact that in these approaches
one has tried to construct a single quantity generalizing the
expected utility, which has been shown to be impossible [48]–
[51]. In the frame of the approach of the present paper,
it is clear why such a combination of f(π) and q(π) is
impossible, since they possess very different mathematical
properties. And this impossibility is also easily understood
in the frame of decision theory, where f(π) describes an
objective quantity that can be objectively measured, while q(π)
represents a subjective quantity that for a single decision maker
can be found only empirically, though its aggregate value for
a typical decision maker can be estimated as is explained in
the following section.

The attraction factor in QDT is also basically different from
the visceral factors considered in decision-making literature
[64], where the visceral factors are assumed to be additional
unknown variables entering the definition of utility functions.
However, the explicit dependence of such utility functions on
these visceral factors is also not known. Contrary to this, the
properties of the attraction factor are prescribed by its deriva-
tion. In addition, including the visceral factors into utility
functions leads to a redefinition of expected utility combining
objective and subjective features, which is impossible, as
discussed above.

III. TYPICAL BEHAVIOR OF SOCIAL AGENTS

Considering large societies, consisting of many agents N �
1 and confronting numerous prospects, it is important to
understand the typical behavior of such complex societies,
corresponding to their behavior on average. The society is
treated to be large, when N is greater than 10. Strictly
speaking, the considered society has to contain so many
members, for which it is admissible to collect reliable and
representative statistical data, with a small standard error. For
instance, measuring a quantity whose mean value is M , the
typical statistical error for 10 agents is of the order of 0.3M
and for 100 agents, of order 0.1M .

A. Definition of typical agent behavior

Let all agents in a society confront the same prospect lattice
(3), with the same prospects πj = παj . The agents composing
the society are different individuals and their decisions, even
related to the same set of prospects, can vary, producing
different probabilities p(παj).

The society as a whole can be characterized by the average
probability

p(πj) ≡
1

N

N∑
α=1

p(παj) , (21)

averaged over all society members, which describes the typical
behavior of agents. In view of expression (10), the typical

probability (21) reads as

p(πj) = f(πj) + q(πj) , (22)

with the typical utility factor

f(πj) ≡
1

N

N∑
α=1

f(παj) (23)

and typical attraction factor

q(πj) ≡
1

N

N∑
α=1

q(παj) . (24)

Expression (22), with terms (23) and (24), appears here
directly from using Eq. (10). That is, the occurrence of the
attraction factor (24) is not an assumption, but the immediate
consequence of the employed mathematical techniques, which
themselves embody the entanglement of composite prospects.
The appearance of such additional terms is typical of quantum
theory, where they describe interference effects.

Because of Eqs. (13) and (14), the typical utility factor,
describing the objective probability, satisfies the conditions

L∑
j=1

f(πj) = 1 , 0 ≤ f(πj) ≤ 1 . (25)

In the case when it is defined by the prospect utilities according
to Eq. (15), it reduces to the expression

f(πj) =
U(πj)∑
j U(πj)

, (26)

since all agents have the same objective utilities: U(παj) =
U(πj).

The attraction factor, generally, is not the same for different
decision makers (it is not invariant with respect to a change of
decision makers) but, owing to Eqs. (16) and (17), it preserves
the alternation conditions

L∑
j=1

q(πj) = 0 , −1 ≤ q(πj) ≤ 1 . (27)

In this way, each prospect is evaluated by the society with
respect to two characteristics, its utility and its attractiveness.
A prospect πi is more useful than πj , if f(πi) > f(πj). And
a prospect πi is more attractive than πj , if q(πi) > q(πj).
Therefore, a prospect can be more useful, but not preferred,
being less attractive. As follows from expression (22), a
prospect π1 is preferred to a prospect π2, in the sense of
definition (18), when

p(π1) > p(π2) (π1 > π2) , (28)

if and only if the inequality

f(π1)− f(π2) > q(π2)− q(π1) (29)

holds true.
Actually, the comparison of theory with experiment is mean-

ingful only for a sufficiently large pool of decision makers,
when the general typical features can be defined. In such a
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large society, when the number of agents choosing a prospect
πj is Nj , then the experimentally observed fraction

pexp(πj) ≡
Nj
N

(30)

provides the aggregate frequentist definition of probability that
should be compared with the theoretical value (22).

For comparing the empirical frequentist probability pexp(π)
with the theoretical probability p(π), we need to know how the
latter can be calculated. The utility factor is explicitly defined
in Eq. (26). The attraction factor, being a subjective quantity,
essentially depends on the subjective state of a decision
maker. Moreover, the same prospect, at different times, can
be appreciated by a decision maker differently. Therefore, it
seems that it is so much random that there is no way of finding
its quantitative definition. However, as is explained above, the
attraction factor possesses some general well defined and fixed
properties. For instance, we know that it varies in the interval
[−1, 1] and that it obeys the alternation condition (27). Being
a random quantity does not preclude that it can enjoy some
general typical properties. That is, an aggregate value of the
attraction factor can be well defined. Under the aggregate
value, we mean an average value, averaged either over many
realizations of the same problem for a single decision maker or
over the results for many decision makers deciding on a given
problem. Such a typical value of the attraction factor can be
found by accomplishing a series of experimental observations.
Another way of theoretically defining the typical attraction
factor is explained in the following section.

B. Typical values of attraction factors

The attraction factors are subjective quantities that can be
different for different decision makers. And for the same
decision maker, attraction factors are different for different
prospects, and even can be different for the same prospect
at different times. This is equivalent to accepting that the
attraction factor is a random quantity that can be characterized
by a distribution ϕ(q(παj)). Since the attraction factor lies in
the interval [−1, 1], its distribution is normalized as∫ 1

−1
ϕ(q) dq = 1 . (31)

And, in view of the alternation condition (27), the mean value
of the attraction factor is zero,∫ 1

−1
ϕ(q)q dq = 0 . (32)

The exact attraction-factor distribution is unknown in gen-
eral. In particular cases, it could be extracted from empirical
observations. Moreover, even in the absence of any a priori
empirical information, the typical values of the attraction
factor, being a random quantity varying in the interval [−1, 1],
can be estimated [58] in the following way.

Let us define the values

q+ ≡
∫ 1

0

ϕ(q)q dq , q− ≡
∫ 0

−1
ϕ(q)q dq , (33)

which, according to the alternation condition (32), are related
as

q+ + q− = 0 . (34)

The absence of any a priori information implies that the
distribution ϕ(q) is uniform. This is evident from the generally
accepted notion of no-a-priori information that implies the
equiprobability of the variable in its whole domain. Also, as is
well known, the equiprobable distribution provides the maxi-
mum of the Shannon entropy, which, in turn, characterizes the
information measure [65].

In the case of the equiprobable distribution, the normaliza-
tion condition (31) yields ϕ(q) = 1/2. As a result, the values
(33) become

q+ =
1

4
, q− = − 1

4
. (35)

We have called the existence of such typical values of the
attraction factor, corresponding to the non-informative priors,
as the quarter law [58]. These values (35) can be used
for estimating the influence of the attraction factors on the
decision making of typical agents.

It has been proved in the earlier publications [53], [54],
[57], [58] that the quarter law is in perfect agreement with
a variety of empirical observations. Below we also show that
the use of this typical value for the attraction factor is in good
agreement with many other empirical data.

It is worth emphasizing that the value 1/4 for the typical
attraction factor is valid not only in the case of an equiprobable
distribution, but also for a wide class of distributions. Let us
take, for example, the symmetric beta-distribution

ϕ(q) =
Γ(2α)

2Γ2(α)
|q|α−1(1− |q|)α−1 ,

with the domain [−1, 1], often employed in many applications
[66], where α is an arbitrary positive parameter. Then the
typical values q− and q+ are exactly −1/4 and +1/4, re-
spectively, for any α > 0. The same quarter law follows from
several other distributions normalized on the interval [−1, 1],
for instance, from the symmetric quadratic distribution

ϕ(q) = 6

(
|q| − 1

2

)2

and from the symmetric triangular distribution

ϕ(q) =

{
2|q|, 0 ≤ |q| ≤ 1

2
2(1− |q|), 1

2 < |q| ≤ 1
.

In this way, the quarter law is not an ad hoc assumption,
but it is a consequence of the theoretical evaluation for
several distributions, which is in agreement with a number
of empirical data.

C. Quantitative resolution of classical paradoxes

The typical values of the attraction factor (35) make it
possible to give quantitative predictions for decisions of
typical decision makers. For instance, the disjunction effect,
studied in different forms in a variety of experiments [67],
was thoroughly analyzed [54], [58], and we found that the
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empirically determined absolute value of the aggregate attrac-
tion factor |q(πj)| coincided with the value 0.25 predicted
by expressions (35), within the typical statistical error of the
order of 20% characterizing these experiments. The same
quantitative agreement, between the QDT prediction for the
absolute value of the attraction factors and empirical values,
holds for experiments testing the conjunction fallacy [54], [58].
The planning paradox has also found a natural explanation
within QDT [53]. Moreover, it has been shown [57] that QDT
explains practically all typical paradoxes of classical decision
making, arising when decisions are taken by typical decision
makers.

In order to illustrate how QDT resolves classical paradoxes,
let us consider a typical paradox happening in decision mak-
ing. In game theory, there is a series of games in which several
subjects can choose either to cooperate with each other or to
defect. Such setups have the general name of prisoner dilemma
games. The cooperation paradox consists in the real behavior
of game participants who often incline to cooperate despite the
prescription of utility theory for defection. Below, we show
that this paradox is easily resolved within QDT, which gives
correct quantitative predictions.

The generic structure of the prisoner dilemma game is as
follows. Two participants can either cooperate with each other
or defect from cooperation. Let the cooperation action of one
of them be denoted by C1 and the defection by D1. Similarly,
the cooperation of the second subject is denoted by C2 and the
defection by D2. Depending on their actions, the participants
receive payoffs from the set

X = {x1, x2, x3, x4} , (36)

whose values are arranged according to the inequality

x3 > x1 > x4 > x2 . (37)

There are four admissible cases: both participants cooperate
(C1C2), one cooperates and the other defects (C1D2), the first
defects but the second cooperates (D1C2), and both defect
(D1D2). The payoffs to each of them, depending on their
actions, are given according to the rule[

C1C2 C1D2

D1C2 D1D2

]
→
[
x1x1 x2x3
x3x2 x4x4

]
. (38)

As is clear, the enumeration of the participants is arbitrary, so
that it is possible to analyze the actions of any of them.

Each subject has to decide what to do, to cooperate or
to defect, when he/she is not aware about the choice of the
opponent. Then, for each of the participants, there are two
prospects, either to cooperate,

π1 = C1(C2 +D2) , (39)

or to defect,
π2 = D1(C2 +D2) . (40)

The sum (C2 +D2) embodies the fact that the decision maker
does not know the choice (cooperate or defect) of the second
participant. In the absence of any information on the action
chosen by the opponent, the probability for each of these
actions is 1/2. Assuming for simplicity a linear utility function

of the payoffs, the expected utility of cooperation for the first
subject is

U(π1) =
1

2
x1 +

1

2
x2 , (41)

while the utility of defection is

U(π2) =
1

2
x3 +

1

2
x4 . (42)

The assumption of linear utility is not crucial, and can be
removed by reinterpreting the payoff set (36) as a utility set.
Because of condition (37), the utility of defection is always
larger than that of cooperation, U(π2) > U(π1). According
to utility theory, this means that all subjects have always to
prefer defection.

However, numerous empirical studies demonstrate that an
essential fraction of participants choose to cooperate despite
the prescription of utility theory. This contradiction between
reality and the theoretical prescription constitutes the cooper-
ation paradox [39], [68].

Considering the same game within the framework of QDT,
we have the probabilities of the two prospects,

p(π1) = f(π1) + q(π1) , p(π2) = f(π2) + q(π2) . (43)

Let us recall that humans possess the so-called propensity
for cooperation, which is a well established empirical fact
[69]–[71]. This propensity has developed during the history of
humanity starting from the very beginning of human existence
as hunters-gatherers. In the process of their development,
humans noticed that cooperation is profitable for their survival
and well-being. The propensity for cooperation has been
the driving force for the creation of human societies, from
tribes to states and country unions [69]–[72]. Without this
feature, no social groups would be formed. The propensity to
cooperation proposes that the attraction factor for cooperative
prospect is larger than that for the defecting prospect, that
is, q(π1) > q(π2). In view of the alternation law (27), we
have q(π1) = −q(π2), which can be estimated by the typical
value 1/4, as in expressions (35). Hence, we can estimate the
considered prospects by the equations

p(π1) = f(π1) + 0.25 , p(π2) = f(π2)− 0.25 . (44)

From here, we see that, even if defection seems to be more
useful than cooperation, so that f(π2) > f(π1), the coopera-
tive prospect can be preferred by some of the participants.

To illustrate numerically how this paradox is resolved, let us
take the data from the experimental realization of the prisoner
dilemma game by Tversky and Shafir [67]. Subjects played
a series of prisoner dilemma games, without feedback. Three
types of setups were used: first, when the subjects knew that
the opponent had defected; second, when they knew that the
opponent had cooperated; and third, when subjects did not
know whether their opponent had cooperated or defected.
The rate of cooperation was 3% when subjects knew that
the opponent had defected, and 16% when they knew that
the opponent had cooperated. However, when subjects did not
know whether their opponent had cooperated or defected, the
rate of cooperation was 37%.
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Treating the utility factors as classical probabilities, we have

f(π1) =
1

2
f(C1|C2) +

1

2
f(C1|D2) ,

f(π2) =
1

2
f(D1|C2) +

1

2
f(D1|D2) .

According to the Tversky-Shafir data,

f(C1|C2) = 0.16 , f(C1|D2) = 0.03 .

Therefore,

f(π1) = 0.10 , f(π2) = 0.90 . (45)

Then, for the prospect probabilities (22), we get

p(π1) = 0.35 , p(π2) = 0.65 . (46)

In this way, the fraction of subjects choosing cooperation
is predicted to be 35%. This is in remarkable agreement
with the empirical data of 37% by [67]. Actually, within
the statistical accuracy of the experiment, the predicted and
empirical numbers are indistinguishable.

IV. INFLUENCING CHOICE BY REVERSING ATTRACTION
FACTORS

In the prospect probability (22), the first term (23) is an
objectively defined quantity characterizing, depending on the
setup, either a classical probability or the prospect utility
factor. It would, of course, be possible to change the society
choice by varying the utility of prospects. This, however,
would be just an objective shift of preferences caused by the
varying prospect utilities.

More important is that it is possible to essentially change the
decision makers choice merely by influencing the attractive-
ness of the considered prospects, without essentially varying
their utilities. This means that the attraction factors are to be
influenced.

A. Prospect probabilities for binary lattices
The most often and illustrative case is the choice between

two prospects forming a binary lattice

L = {π1, π2} . (47)

Suppose that the prospect π1 is more attractive than π2,
which means that q(π1) > q(π2). According to the alternation
property (27), we have q(π1) = −q(π2). Then, taking into
account the quarter law (35), we can estimate the attraction
factor q(π1) as 1/4, while the attraction factor q(π2) as −1/4.
Keeping in mind that a probability, by its meaning, lies in the
interval [0, 1], the prospect probabilities can be evaluated by
the formulas

p(π1) = Ret[0,1]

{
f(π1) +

1

4

}
,

p(π2) = Ret[0,1]

{
f(π2)− 1

4

}
, (48)

where the retract function

Ret[0,1]{z} ≡

 0, z < 0
z, 0 ≤ z ≤ 1
1, z > 1

is employed.

B. Attraction factors and risk aversion

Formulas (48) can be used for evaluating the prospect prob-
abilities in the case of the binary lattice (47). The classification
of prospects onto more or less attractive is based on subjective
feelings of decision makers. Among these, a very important
role is played by the notion of aversion to uncertainty and
risk, or ambiguity aversion [31], [32], [73]–[78]. It is possible
to define as more attractive the prospect that provides more
certain gain, hence, more uncertain loss [58].

It is worth recalling that the attraction factors are not fixed
by the values ±1/4. These values have been obtained as non-
informative priors allowing us to estimate the probability of
selecting between the prospects. In particular cases, they can
be different, since by their definition, they characterize sub-
jective features of decision makers. Nevertheless, these non-
informative priors provide a simple way for the probability
estimation and lead to a very good agreement with empirical
observations, as has been shown in our previous publications
quantitatively resolving the classical paradoxes in decision
making, such as disjunction effect and conjunction fallacy
[54], [56], [58]. And in Sec. III C above, we have shown how
the prisoner-dilemma paradox is quantitatively resolved within
QDT. Below, we illustrate the applicability of the approach to
several examples considered earlier by Kahneman and Tversky
[31]. We stress that our theory has not been specially designed
for explaining these examples, but the latter provide just one
more illustration of the QDT approach that is general and can
be applied to arbitrary cases as has been shown in our previous
publications. We consider below different prospects with gains.
The case of losses is also treatable by QDT. However, this case
requires a separate consideration that is out of the scope of the
present paper.

C. Rule for defining attraction factor signs

The attraction factor sign is principally important, since it
essentially influences the value of the prospect probability.
The choice of this sign depends on the balance between the
possible gain and related risk. Below, we describe how this
choice can be done for the most often considered case of the
binary prospect lattice.

Mathematically, the attraction factor, due to mode interfer-
ence, arises only for the entangled composite prospects [63],
which implies decisions under uncertainty. To the first glance,
it seems that deciding between two simple lotteries does not
explicitly involve uncertainty. However, it is necessary to stress
that practically all decisions always deal with uncertainty,
though it may be not explicitly formulated. Suppose, e.g., one
has to decide between two lotteries π1 and π2. In the process
of decision making, the uncertainty comes from two origins.
One is related to the doubt about the objectivity of the setup
suggesting the choice. The other, probably more important,
is the uncertainty caused by the subjective hesitations of the
decision maker with respect to his/her correct understanding
of the problem and his/her knowledge of what would be the
best criterion for making a particular choice. Therefore, even
when one formally deals with two simple lotteries π1 and
π2, one actually confronts the composite prospects π1

⊗
B
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and π2
⊗
B, with B = {B1, B2} being a set of two events.

One of them, B1, represents the confidence of the decision
maker in the empirical setup as well as in the correctness of
his/her decision. The other, B2, corresponds to the disbelief
of the decision maker in the suggested setup and/or in his/her
understanding of the appropriate criteria for the choice. In
what follows, we shall keep in mind the composite prospects
πi
⊗
B, with i = 1, 2, while, for brevity, we shall write just

πi.
Let us consider two prospects

π1 = {xi, p1(xi) : i = 1, 2, . . .} ,

π2 = {yj , p2(yj) : j = 1, 2, . . .} . (49)

The related maximal and minimal gains are denoted as

xmax ≡ sup
i
{xi} , xmin ≡ inf

i
{xi} ,

ymax ≡ sup
j
{yj} , ymin ≡ inf

j
{yj} . (50)

The signs of the attraction factors for the binary prospect
lattice, in view of the alternation condition (27), are connected
with each other,

sgn q(π1) = −sgn q(π2) ,

because of which in what follows it is sufficient to analyze
only one of them, say the sign of q(π1).

The first prospect gain factor is the ratio

g(π1) ≡ xmax
ymax

showing how much the maximal gain of the first prospect
is larger than that of the second one. On the other hand, the
larger the probability of getting the minimal gain in the second
prospect, the larger is the ratio

r(π2) ≡ p2(ymin)

p1(xmin)
,

playing the role of the risk factor when choosing the second
prospect. The combined influence of possible gain and risk is
described by the product g(π1)r(π2). The attractiveness of a
prospect is characterized by how much the gain prevails over
risk, that is, how the latter product g(π1)r(π2) differs from
one, hence by the sign of the value

α(π1) ≡ g(π1)r(π2)− 1 =
xmaxp2(ymin)

ymaxp1(xmin)
− 1 . (51)

Then the sign of the first prospect attraction factor is defined
by the rule

sgn q(π1) =

{
+1, α(π1) > 0
−1, α(π1) ≤ 0

. (52)

In the following section, we illustrate the practical applica-
tion of this rule and show that it yields the results in good
agreement with empirical observations. Let us stress that the
formulated rule is designed for the case where the utilities
of two prospects are close to each other and may be not
applicable when these utilities are strongly different.

V. ILLUSTRATION OF PREFERENCE REVERSAL BY
EXAMPLES

Here, we consider several examples of experiments de-
scribed by Kahneman and Tversky [31]. In these experiments,
the total number of decision makers was about equal to or
smaller than one hundred, and the corresponding statistical
errors were close to ±0.1. Decision makers had to choose
between two prospects having the properties as those discussed
above. Payoff were counted in monetary units, say in thou-
sands of schekels, francs, or dollars. The kind of monetary
units has no influence on the relative quantities, such as
utility factors and prospect probabilities. Calculating the utility
factors, we use for simplicity a linear utility function.

Example 1. One chooses between the prospects

π1 = {2.5, 0.33 | 2.4, 0.66 | 0, 0.01} , π2 = {2.4, 1} .

Here, the first number of each pair corresponds to the payoff
while the second number is the associated probability. Thus,
the second prospect π2 corresponds to the sure gain (proba-
bility 1) of 2.4 monetary units.

Using definition (26) of the utility factors

f(π1) =
U(π1)

U(π1) + U(π2)
, f(π2) =

U(π2)

U(π1) + U(π2)
,

with the utilities

U(π1) = 2.5×0.33+2.4×0.66 = 2.409 , U(π2) = 2.4 ,

gives the utility factors

f(π1) = 0.501, f(π2) = 0.499 .

Following the rule described above, we get

g(π1) = 1.042 , r(π2) = 0 , α(π1) = −1 ,

which tells us that the first prospect is less attractive. Then,
again employing the non-informative priors, q(π1) can be
estimated as −1/4, while q(π2), as 1/4. Thus, we get the
prospect probabilities

p(π1) = 0.251, p(π2) = 0.749 .

In experiments, it was found that

pexp(π1) = 0.18, pexp(π2) = 0.82 ,

which, within the experimental accuracy, coincides with the
theoretical prediction.

Example 2. One considers the prospects

π1 = {2.5, 0.33 | 0, 0.67} , π2 = {2.4, 0.34 | 0, 0.66} .

The utility factors are practically the same as in the previous
example:

f(π1) = 0.503, f(π2) = 0.497 .

Now, the uncertainties of the two prospects are close to each
other and the gain in the first prospect is a bit larger, which
gives

g(π1) = 1.042 , r(π2) = 0.985 , α(π1) = 0.027 ,
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which suggests that the first prospect is more attractive. This
yields the prospect probabilities

p(π1) = 0.753, p(π2) = 0.247 .

Again, this is in agreement with the experimental values

pexp(π1) = 0.83, pexp(π2) = 0.17 ,

being in the corridor of statistical errors.
Comparing the examples 1 and 2, we see that a change in

the distribution of payoff weights, under the same payoffs, has
lead to the reversal of the attraction factors and, as a result,
to the preference reversal.

Example 3. The prospects are

π1 = {4, 0.8 | 0, 0.2} , π2 = {3, 1} .

The utility factors (26) become

f(π1) = 0.516, f(π2) = 0.484 .

In so far as

g(π1) = 1.333 , r(π2) = 0 , α(π1) = −1 ,

the second prospect is more attractive. Then, we have the
prospect probabilities

p(π1) = 0.266, p(π2) = 0.734 ,

which agree well with the empirical results

pexp(π1) = 0.2, pexp(π2) = 0.8 .

Example 4. The prospects

π1 = {4, 0.2 | 0, 0.8} , π2 = {3, 0.25 | 0, 0.75}

have the same payoffs and the same utility factors

f(π1) = 0.516, f(π2) = 0.484 ,

as in the previous case. Now we have

g(π1) = 1.333 , r(π2) = 0.937 , α(π1) = 0.249 .

Hence the first prospect is more attractive. This gives the
prospect probabilities

p(π1) = 0.766, p(π2) = 0.234 ,

with the reverse preference, as compared to Example 3. The
experimental results

pexp(π1) = 0.65, pexp(π2) = 0.35

are in agreement with the theoretical prediction.

Example 5. For the prospects

π1 = {6, 0.45 | 0, 0.55} , π2 = {3, 0.9 | 0, 0.1} ,

the utility factors are equal,

f(π1) = 0.5, f(π2) = 0.5 .

The second prospect is more attractive, since

g(π1) = 2 , r(π2) = 0.182 , α(π1) = −0.636 .

Then
p(π1) = 0.25, p(π2) = 0.75 .

The experimental results

pexp(π1) = 0.14, pexp(π2) = 0.86 ,

within the statistical errors of ±0.1, agree with the theoretical
prediction.

Example 6. The prospects

π1 = {6, 0.001 | 0, 0.999} , π2 = {3, 0.002 | 0, 0.998}

lead to the same utility factors

f(π1) = 0.5, f(π2) = 0.5 ,

as in the previous example. The uncertainties of the two
prospects are close to each other. However, the gain in the
first prospect is essentially larger, which gives

g(π1) = 2 , r(π2) = 0.999 , α(π1) = 0.998 .

This makes the second prospect less attractive. As a result, the
prospect preference reverses, as compared to Example 5, with
the prospect probabilities

p(π1) = 0.75, p(π2) = 0.25 .

The experimental data

pexp(π1) = 0.73, pexp(π2) = 0.27

practically coincide with the theoretical prediction, again
demonstrating the preference reversal.

Example 7. Consider the prospects

π1 = {6, 0.25 | 0, 0.75} , π2 = {4, 0.25 | 2, 0.25| 0, 0.5}

The utility factors are

f(π1) = 0.5, f(π2) = 0.5 ,

Now we have

g(π1) = 1.5 , r(π2) = 0.667 , α(π1) = 0 .

Hence, the first prospect is less attractive, leading to the
probabilities

p(π1) = 0.25, p(π2) = 0.75 .

The empirical data

pexp(π1) = 0.18, pexp(π2) = 0.82 ,

within the experimental accuracy, are in agreement with the
theoretical prediction.

The results are summarized in the Table where, in the last
column, the error

∆(π1) = |p(π1)− pexp(π1)|

is shown. For all cases, this error is about 0.1, which is
the same as the standard error 0.1 for the corresponding
experiments.

In the above examples, we have considered prospects
that are characterized by different gains. The treatment of
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TABLE I
UTILITY FACTOR f(π1), PROSPECT PROBABILITY p(π1), EMPIRICAL

FREQUENCY pexp(π1), AND THE DEVIATION ∆(π1) FOR THE
CONSIDERED EXAMPLES OF DECISION-MAKING MANIPULATION.

f(π1) p(π1) pexp(π1) ∆(π1)

1 0.501 0.251 0.18 0.07

2 0.503 0.753 0.83 0.08

3 0.516 0.266 0.20 0.07

4 0.516 0.766 0.65 0.12

5 0.5 0.25 0.14 0.11

6 0.5 0.75 0.73 0.02

7 0.5 0.25 0.18 0.07

prospects, involving losses, is a separate problem. Strictly
speaking, in real life, in order to lose something, it is in
general the case that one possesses a wealth no less than the
loss. However, there are also examples of negative wealth,
associated with debts that are larger than present equity. For
a firm, this leads in general to bankruptcy. Rationally, agents
should also default on their debts, if they can, a situation that
often but not always occurs, as for instance exemplified by the
many cases of negative equity of homeowners in the USA [79]
and Great Britain [80] following the real estate price collapse
and financial crisis. Thus, in general, we should expect that the
prospect probabilities depend on the initial richness of decision
makers. But in the laboratory experiments, one usually con-
siders artificial situations, with imaginary or unrealistic small
losses, when the starting assets are not important. The real
and imaginary losses are rather different things and are to
be treated differently. These delicate problems are out of the
scope of the present paper and will be treated in a separate
publication.

Our aim has been to demonstrate the fact that, under
practically the same utility, by appropriately arranging the
payoff weights, it is possible to realize the reversal of the
attraction factors and, as a result, the reversal of decision
preferences.

VI. INFLUENCE BY VARYING AVAILABLE INFORMATION

The standard setup of studying decision making in the
laboratory is when decision makers are assumed to give re-
sponses without consulting each other and without looking for
additional information. However, in a number of experimental
studies, it has been found that decisions can essentially change
when the agents are allowed to consult with each other,
increasing by this their mutual information [81]–[87], or when
they can get additional information by learning from their own
experience [88].

When the objective parts of the prospect probabilities are
assumed to remain invariant, the influence on decision making
of the obtained information can be realized by varying the
attraction factors. Therefore, we have to understand how the
latter vary with respect to the change of information available
to decision makers.

Let us denote by µ the measure of information available to a
decision maker. This measure can be defined according to one

of the known ways of measuring information [89]. Decision
making depends on the amount of information and varies when
it changes [90].

Generalizing the consideration of Sec. II, we take into
account that the society state, represented by the statistical
operator ρ̂(µ), depends on the available information µ. This
means that the society state ρ̂ is influenced by the received
additional information µ, which transforms ρ̂ into ρ̂(µ). The
transformation law can be represented by a unitary evolution
operator, as is described below. In simple language, this im-
plies that the society state depends on the available information
and varies when the level of information changes [91]. In
mathematical terms, the amount of the received information
can be quantified by the Kullback-Leibler [92] information

IKL(µ) = Trρ̂(µ) ln
ρ̂(µ)

ρ̂
.

The prospect probabilities of an α - agent take the form

p(παj , µ) = TrHρ̂(µ)P̂ (παj) , (53)

where all notations are the same as in Sec. II.
The variation of the society state with information can be

described by the information evolution operator Û(µ), so that

ρ̂(µ) = Û(µ)ρ̂Û+(µ) , (54)

where
ρ̂(0) = ρ̂ . (55)

As before, the society state is normalized, such that

TrHρ̂(µ) = 1 . (56)

The initial condition (55) yields

Û(0) = 1̂H , (57)

with 1̂H being the unity operator on space (2). And the nor-
malization condition (56) requires that the evolution operator
be a unitary operator:

Û+(µ)Û(µ) = 1̂H . (58)

These properties make it possible to represent the evolution
operator as

Û(µ) = e−iĤµ , (59)

where Ĥ , acting on space (2), is called the evolution generator.
The general form of the evolution generator can be written

as the sum of the terms acting on each of the decision makers
in the society and the term characterizing the interactions
between these decision makers:

Ĥ =

N⊕
α=1

Ĥα + Ĥint , (60)

where Ĥα acts on space (1) and Ĥint, on space (2).
The agents of the society are considered as separate in-

dividuals who, though interacting with each other, do not
loose their personal identities and are able to take individual
decisions. In mathematical language, this means that agents
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are quasi-isolated [93]. The mathematical formulation of the
quasi-isolated state reads as the commutation condition[

Ĥα

⊗
1̂H , Ĥint

]
= 0 . (61)

Similarly to Sec. III, assuming that all agents are confronted
with the same prospect lattice, we introduce the notion of a
typical agent, whose decisions are described by the average
prospect probabilities

p(πj , µ) =
1

N

N∑
α=1

p(παj , µ) . (62)

The property of quasi-isolation (61) makes it possible to show
that the prospect probabilities (62) acquire the form

p(πj , µ) = f(πj) + q(πj , µ) , (63)

similar to Eq. (22). Here, the first term is the utility factor that
is the same as in Eqs. (23) and (26). The second term is the
attraction factor that can be represented as

q(πj , µ) = q(πj)D(µ) , (64)

where
q(πj) = q(πj , 0) (65)

is the attraction factor at the initial state, when no additional
information has yet been digested, and D(µ) is a decoherence
factor. This name comes from the fact that, technically, the
attraction factor appears under the interference of composite
prospects [58]. Decoherence implies that the interference
effects fade away, so that the prospect probabilities tend to
their classical values defined by the utility factors. In other
words, this means that

lim
µ→∞

p(πj , µ) = f(πj) . (66)

Treating the agent interactions in analogy with a scattering
process over random scatterers, with the width µc in the
Lorentzian distribution of scatterer defects [93], we have

D(µ) = exp

(
− µ

µc

)
. (67)

The meaning of µc is the amount of information required for
the reduction of the attraction factor by a ratio of e = 2.718....

The dependence of the attraction factors on the available in-
formation suggests that it is admissible to vary these factors by
regulating the amount of information. Respectively, by varying
the attraction factors, it is possible to influence decisions. For
instance, suppose that, at µ = 0, the prospect π1 is preferred
to π2. By providing additional information, one can reduce
the attraction factors according to Eq. (67). As a result, the
preference can be reversed, with the prospect π2 becoming
preferable to π1.

In a series of experimental studies, it has been found that
decisions essentially change when the agents are allowed to
consult with each other, increasing in this way their mutual
information [81]–[87], or when they can get additional infor-
mation by learning from their own experience [88]. In these
experiments [81]–[88], it has been proved that additional infor-
mation does decrease the errors in decision making, which in

our notation correspond to the diminishing decoherence factor
D(µ). However, in those experiments, one considers two-
step procedures. The knowledge of only two points does not
allow for defining the whole function. Therefore more detailed
experiments analyzing multi-step procedures are needed for
comparing empirical results with the form of the theoretical
decoherence factor.

Note that it is possible to provide correct information as
well as incorrect one, the latter corresponding to the process
of confusing decision makers and forcing them to accept some
desired decision. The effect, similar to providing negative
information, can be achieved if decision makers are asked to
deliberate concentrating of the uncertainty contained in the
considered prospects [94].

It is worth stressing that, while the attraction factor and
hence the decision makers choice can be influenced by the
provided additional information, decision makers can never
become completely rational. This is because the amount of
information cannot be infinite. Therefore, the attraction factor
is never exactly zero.

VII. CONCLUSION

We have studied how the choice of decision makers can
be influenced under the presence of risk and uncertainty. Our
analysis is based on the Quantum Decision Theory that has
been previously developed by the authors for individual deci-
sion makers. The term “quantum” does not imply that decision
makers are assumed to be quantum objects, but it reflects the
use of mathematical techniques that are common for quantum
theory, in particular, for the definition of event probabilities.
In quantum theory, these mathematical techniques make it
possible to take into account unknown hidden variables, at the
same time, avoiding their explicit consideration. Similarly, in
decision theory, these techniques allow for taking into account
such hidden variables as subconscious feelings, emotions, and
behavioral biases.

We have suggested a generalization of the theory to the
case of decision makers that are members of a society. The
social decision makers interact with each other by exchanging
information. The notion of a typical decision maker, repre-
senting the average society behavior, has been introduced and
characterized.

Under the given utility of prospects, the typical behavior
of agents can be influenced. Changing the results of decision
making can be realized by influencing the attraction factor of
decision makers. This can be done in two ways. One method
is to arrange the payoff weights so as to induce the required
changes of the attraction factors. The variation of the payoff
weights can invert the attraction-factor values and reverse the
decision preferences. The second method of influencing is
by providing information to decision makers or by allowing
consultations between the agents of the society. The attraction
factors can be either decreased, when decision makers obtain
correct information, or increased if the delivered information
is wrong. The variation of the attraction factors, induced by
positive or negative information, can lead to the reversal of
preferences. Since the amount of information is never infinite,
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the attraction factors cannot be reduced exactly to zero. This
means that decision makers cannot become absolutely rational
and will always exhibit some behavioral biases.

The possibility of influencing decision makers is, of course,
not a novelty. What is principally new in the present paper
is the mathematical description of the process allowing for
quantitative predictions. By treating several concrete decision
problems, we have illustrated that our theory yields theoretical
predictions that, within experimental accuracy, coincide with
empirical results.

In the present paper, we have considered the application
of the Quantum Decision Theory to human decision making.
This, however, is only one of the admissible applications.
Having in hands a well developed mathematical theory, it
is possible to apply it to the problem of creating artificial
quantum intelligence [55] and to use it for quantum informa-
tion processing [95]. Understanding the logic of functioning
of the human brain can give us hints on the optimal ways
of arranging the functioning of artificial machine devices. In
that sense, the Quantum Decision Theory plays a special role.
From one side, it makes it possible to give unambiguous
interpretation of human decision making. And from another
side, this theory can be used for organizing artificial processes
imitating the logic of humans. Some ideas on the feasibility of
creating artificial quantum intelligence have been advanced in
Ref. [55] and a model of quantum information processing has
been analyzed in Ref. [95]. The detailed consideration of such
artificial processes is a separate problem that needs additional
investigations.
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